2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
25 #include <linux/debugfs.h>
26 #include <linux/slab.h>
27 #include <trace/events/ext4.h>
31 * - test ext4_ext_search_left() and ext4_ext_search_right()
32 * - search for metadata in few groups
35 * - normalization should take into account whether file is still open
36 * - discard preallocations if no free space left (policy?)
37 * - don't normalize tails
39 * - reservation for superuser
42 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
43 * - track min/max extents in each group for better group selection
44 * - mb_mark_used() may allocate chunk right after splitting buddy
45 * - tree of groups sorted by number of free blocks
50 * The allocation request involve request for multiple number of blocks
51 * near to the goal(block) value specified.
53 * During initialization phase of the allocator we decide to use the
54 * group preallocation or inode preallocation depending on the size of
55 * the file. The size of the file could be the resulting file size we
56 * would have after allocation, or the current file size, which ever
57 * is larger. If the size is less than sbi->s_mb_stream_request we
58 * select to use the group preallocation. The default value of
59 * s_mb_stream_request is 16 blocks. This can also be tuned via
60 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
61 * terms of number of blocks.
63 * The main motivation for having small file use group preallocation is to
64 * ensure that we have small files closer together on the disk.
66 * First stage the allocator looks at the inode prealloc list,
67 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
68 * spaces for this particular inode. The inode prealloc space is
71 * pa_lstart -> the logical start block for this prealloc space
72 * pa_pstart -> the physical start block for this prealloc space
73 * pa_len -> length for this prealloc space
74 * pa_free -> free space available in this prealloc space
76 * The inode preallocation space is used looking at the _logical_ start
77 * block. If only the logical file block falls within the range of prealloc
78 * space we will consume the particular prealloc space. This makes sure that
79 * we have contiguous physical blocks representing the file blocks
81 * The important thing to be noted in case of inode prealloc space is that
82 * we don't modify the values associated to inode prealloc space except
85 * If we are not able to find blocks in the inode prealloc space and if we
86 * have the group allocation flag set then we look at the locality group
87 * prealloc space. These are per CPU prealloc list represented as
89 * ext4_sb_info.s_locality_groups[smp_processor_id()]
91 * The reason for having a per cpu locality group is to reduce the contention
92 * between CPUs. It is possible to get scheduled at this point.
94 * The locality group prealloc space is used looking at whether we have
95 * enough free space (pa_free) within the prealloc space.
97 * If we can't allocate blocks via inode prealloc or/and locality group
98 * prealloc then we look at the buddy cache. The buddy cache is represented
99 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
100 * mapped to the buddy and bitmap information regarding different
101 * groups. The buddy information is attached to buddy cache inode so that
102 * we can access them through the page cache. The information regarding
103 * each group is loaded via ext4_mb_load_buddy. The information involve
104 * block bitmap and buddy information. The information are stored in the
108 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
111 * one block each for bitmap and buddy information. So for each group we
112 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
113 * blocksize) blocks. So it can have information regarding groups_per_page
114 * which is blocks_per_page/2
116 * The buddy cache inode is not stored on disk. The inode is thrown
117 * away when the filesystem is unmounted.
119 * We look for count number of blocks in the buddy cache. If we were able
120 * to locate that many free blocks we return with additional information
121 * regarding rest of the contiguous physical block available
123 * Before allocating blocks via buddy cache we normalize the request
124 * blocks. This ensure we ask for more blocks that we needed. The extra
125 * blocks that we get after allocation is added to the respective prealloc
126 * list. In case of inode preallocation we follow a list of heuristics
127 * based on file size. This can be found in ext4_mb_normalize_request. If
128 * we are doing a group prealloc we try to normalize the request to
129 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
130 * 512 blocks. This can be tuned via
131 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
132 * terms of number of blocks. If we have mounted the file system with -O
133 * stripe=<value> option the group prealloc request is normalized to the
134 * the smallest multiple of the stripe value (sbi->s_stripe) which is
135 * greater than the default mb_group_prealloc.
137 * The regular allocator (using the buddy cache) supports a few tunables.
139 * /sys/fs/ext4/<partition>/mb_min_to_scan
140 * /sys/fs/ext4/<partition>/mb_max_to_scan
141 * /sys/fs/ext4/<partition>/mb_order2_req
143 * The regular allocator uses buddy scan only if the request len is power of
144 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
145 * value of s_mb_order2_reqs can be tuned via
146 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
147 * stripe size (sbi->s_stripe), we try to search for contiguous block in
148 * stripe size. This should result in better allocation on RAID setups. If
149 * not, we search in the specific group using bitmap for best extents. The
150 * tunable min_to_scan and max_to_scan control the behaviour here.
151 * min_to_scan indicate how long the mballoc __must__ look for a best
152 * extent and max_to_scan indicates how long the mballoc __can__ look for a
153 * best extent in the found extents. Searching for the blocks starts with
154 * the group specified as the goal value in allocation context via
155 * ac_g_ex. Each group is first checked based on the criteria whether it
156 * can be used for allocation. ext4_mb_good_group explains how the groups are
159 * Both the prealloc space are getting populated as above. So for the first
160 * request we will hit the buddy cache which will result in this prealloc
161 * space getting filled. The prealloc space is then later used for the
162 * subsequent request.
166 * mballoc operates on the following data:
168 * - in-core buddy (actually includes buddy and bitmap)
169 * - preallocation descriptors (PAs)
171 * there are two types of preallocations:
173 * assiged to specific inode and can be used for this inode only.
174 * it describes part of inode's space preallocated to specific
175 * physical blocks. any block from that preallocated can be used
176 * independent. the descriptor just tracks number of blocks left
177 * unused. so, before taking some block from descriptor, one must
178 * make sure corresponded logical block isn't allocated yet. this
179 * also means that freeing any block within descriptor's range
180 * must discard all preallocated blocks.
182 * assigned to specific locality group which does not translate to
183 * permanent set of inodes: inode can join and leave group. space
184 * from this type of preallocation can be used for any inode. thus
185 * it's consumed from the beginning to the end.
187 * relation between them can be expressed as:
188 * in-core buddy = on-disk bitmap + preallocation descriptors
190 * this mean blocks mballoc considers used are:
191 * - allocated blocks (persistent)
192 * - preallocated blocks (non-persistent)
194 * consistency in mballoc world means that at any time a block is either
195 * free or used in ALL structures. notice: "any time" should not be read
196 * literally -- time is discrete and delimited by locks.
198 * to keep it simple, we don't use block numbers, instead we count number of
199 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
201 * all operations can be expressed as:
202 * - init buddy: buddy = on-disk + PAs
203 * - new PA: buddy += N; PA = N
204 * - use inode PA: on-disk += N; PA -= N
205 * - discard inode PA buddy -= on-disk - PA; PA = 0
206 * - use locality group PA on-disk += N; PA -= N
207 * - discard locality group PA buddy -= PA; PA = 0
208 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
209 * is used in real operation because we can't know actual used
210 * bits from PA, only from on-disk bitmap
212 * if we follow this strict logic, then all operations above should be atomic.
213 * given some of them can block, we'd have to use something like semaphores
214 * killing performance on high-end SMP hardware. let's try to relax it using
215 * the following knowledge:
216 * 1) if buddy is referenced, it's already initialized
217 * 2) while block is used in buddy and the buddy is referenced,
218 * nobody can re-allocate that block
219 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
220 * bit set and PA claims same block, it's OK. IOW, one can set bit in
221 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
224 * so, now we're building a concurrency table:
227 * blocks for PA are allocated in the buddy, buddy must be referenced
228 * until PA is linked to allocation group to avoid concurrent buddy init
230 * we need to make sure that either on-disk bitmap or PA has uptodate data
231 * given (3) we care that PA-=N operation doesn't interfere with init
233 * the simplest way would be to have buddy initialized by the discard
234 * - use locality group PA
235 * again PA-=N must be serialized with init
236 * - discard locality group PA
237 * the simplest way would be to have buddy initialized by the discard
240 * i_data_sem serializes them
242 * discard process must wait until PA isn't used by another process
243 * - use locality group PA
244 * some mutex should serialize them
245 * - discard locality group PA
246 * discard process must wait until PA isn't used by another process
249 * i_data_sem or another mutex should serializes them
251 * discard process must wait until PA isn't used by another process
252 * - use locality group PA
253 * nothing wrong here -- they're different PAs covering different blocks
254 * - discard locality group PA
255 * discard process must wait until PA isn't used by another process
257 * now we're ready to make few consequences:
258 * - PA is referenced and while it is no discard is possible
259 * - PA is referenced until block isn't marked in on-disk bitmap
260 * - PA changes only after on-disk bitmap
261 * - discard must not compete with init. either init is done before
262 * any discard or they're serialized somehow
263 * - buddy init as sum of on-disk bitmap and PAs is done atomically
265 * a special case when we've used PA to emptiness. no need to modify buddy
266 * in this case, but we should care about concurrent init
271 * Logic in few words:
276 * mark bits in on-disk bitmap
279 * - use preallocation:
280 * find proper PA (per-inode or group)
282 * mark bits in on-disk bitmap
288 * mark bits in on-disk bitmap
291 * - discard preallocations in group:
293 * move them onto local list
294 * load on-disk bitmap
296 * remove PA from object (inode or locality group)
297 * mark free blocks in-core
299 * - discard inode's preallocations:
306 * - bitlock on a group (group)
307 * - object (inode/locality) (object)
318 * - release consumed pa:
323 * - generate in-core bitmap:
327 * - discard all for given object (inode, locality group):
332 * - discard all for given group:
339 static struct kmem_cache
*ext4_pspace_cachep
;
340 static struct kmem_cache
*ext4_ac_cachep
;
341 static struct kmem_cache
*ext4_free_ext_cachep
;
343 /* We create slab caches for groupinfo data structures based on the
344 * superblock block size. There will be one per mounted filesystem for
345 * each unique s_blocksize_bits */
346 #define NR_GRPINFO_CACHES 8
347 static struct kmem_cache
*ext4_groupinfo_caches
[NR_GRPINFO_CACHES
];
349 static const char *ext4_groupinfo_slab_names
[NR_GRPINFO_CACHES
] = {
350 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
351 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
352 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
355 static void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
357 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
359 static void release_blocks_on_commit(journal_t
*journal
, transaction_t
*txn
);
361 static inline void *mb_correct_addr_and_bit(int *bit
, void *addr
)
363 #if BITS_PER_LONG == 64
364 *bit
+= ((unsigned long) addr
& 7UL) << 3;
365 addr
= (void *) ((unsigned long) addr
& ~7UL);
366 #elif BITS_PER_LONG == 32
367 *bit
+= ((unsigned long) addr
& 3UL) << 3;
368 addr
= (void *) ((unsigned long) addr
& ~3UL);
370 #error "how many bits you are?!"
375 static inline int mb_test_bit(int bit
, void *addr
)
378 * ext4_test_bit on architecture like powerpc
379 * needs unsigned long aligned address
381 addr
= mb_correct_addr_and_bit(&bit
, addr
);
382 return ext4_test_bit(bit
, addr
);
385 static inline void mb_set_bit(int bit
, void *addr
)
387 addr
= mb_correct_addr_and_bit(&bit
, addr
);
388 ext4_set_bit(bit
, addr
);
391 static inline void mb_clear_bit(int bit
, void *addr
)
393 addr
= mb_correct_addr_and_bit(&bit
, addr
);
394 ext4_clear_bit(bit
, addr
);
397 static inline int mb_find_next_zero_bit(void *addr
, int max
, int start
)
399 int fix
= 0, ret
, tmpmax
;
400 addr
= mb_correct_addr_and_bit(&fix
, addr
);
404 ret
= ext4_find_next_zero_bit(addr
, tmpmax
, start
) - fix
;
410 static inline int mb_find_next_bit(void *addr
, int max
, int start
)
412 int fix
= 0, ret
, tmpmax
;
413 addr
= mb_correct_addr_and_bit(&fix
, addr
);
417 ret
= ext4_find_next_bit(addr
, tmpmax
, start
) - fix
;
423 static void *mb_find_buddy(struct ext4_buddy
*e4b
, int order
, int *max
)
427 BUG_ON(EXT4_MB_BITMAP(e4b
) == EXT4_MB_BUDDY(e4b
));
430 if (order
> e4b
->bd_blkbits
+ 1) {
435 /* at order 0 we see each particular block */
437 *max
= 1 << (e4b
->bd_blkbits
+ 3);
438 return EXT4_MB_BITMAP(e4b
);
441 bb
= EXT4_MB_BUDDY(e4b
) + EXT4_SB(e4b
->bd_sb
)->s_mb_offsets
[order
];
442 *max
= EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[order
];
448 static void mb_free_blocks_double(struct inode
*inode
, struct ext4_buddy
*e4b
,
449 int first
, int count
)
452 struct super_block
*sb
= e4b
->bd_sb
;
454 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
456 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
457 for (i
= 0; i
< count
; i
++) {
458 if (!mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
)) {
459 ext4_fsblk_t blocknr
;
461 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
462 blocknr
+= first
+ i
;
463 ext4_grp_locked_error(sb
, e4b
->bd_group
,
464 inode
? inode
->i_ino
: 0,
466 "freeing block already freed "
470 mb_clear_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
474 static void mb_mark_used_double(struct ext4_buddy
*e4b
, int first
, int count
)
478 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
480 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
481 for (i
= 0; i
< count
; i
++) {
482 BUG_ON(mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
));
483 mb_set_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
487 static void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
489 if (memcmp(e4b
->bd_info
->bb_bitmap
, bitmap
, e4b
->bd_sb
->s_blocksize
)) {
490 unsigned char *b1
, *b2
;
492 b1
= (unsigned char *) e4b
->bd_info
->bb_bitmap
;
493 b2
= (unsigned char *) bitmap
;
494 for (i
= 0; i
< e4b
->bd_sb
->s_blocksize
; i
++) {
495 if (b1
[i
] != b2
[i
]) {
496 ext4_msg(e4b
->bd_sb
, KERN_ERR
,
497 "corruption in group %u "
498 "at byte %u(%u): %x in copy != %x "
500 e4b
->bd_group
, i
, i
* 8, b1
[i
], b2
[i
]);
508 static inline void mb_free_blocks_double(struct inode
*inode
,
509 struct ext4_buddy
*e4b
, int first
, int count
)
513 static inline void mb_mark_used_double(struct ext4_buddy
*e4b
,
514 int first
, int count
)
518 static inline void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
524 #ifdef AGGRESSIVE_CHECK
526 #define MB_CHECK_ASSERT(assert) \
530 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
531 function, file, line, # assert); \
536 static int __mb_check_buddy(struct ext4_buddy
*e4b
, char *file
,
537 const char *function
, int line
)
539 struct super_block
*sb
= e4b
->bd_sb
;
540 int order
= e4b
->bd_blkbits
+ 1;
547 struct ext4_group_info
*grp
;
550 struct list_head
*cur
;
555 static int mb_check_counter
;
556 if (mb_check_counter
++ % 100 != 0)
561 buddy
= mb_find_buddy(e4b
, order
, &max
);
562 MB_CHECK_ASSERT(buddy
);
563 buddy2
= mb_find_buddy(e4b
, order
- 1, &max2
);
564 MB_CHECK_ASSERT(buddy2
);
565 MB_CHECK_ASSERT(buddy
!= buddy2
);
566 MB_CHECK_ASSERT(max
* 2 == max2
);
569 for (i
= 0; i
< max
; i
++) {
571 if (mb_test_bit(i
, buddy
)) {
572 /* only single bit in buddy2 may be 1 */
573 if (!mb_test_bit(i
<< 1, buddy2
)) {
575 mb_test_bit((i
<<1)+1, buddy2
));
576 } else if (!mb_test_bit((i
<< 1) + 1, buddy2
)) {
578 mb_test_bit(i
<< 1, buddy2
));
583 /* both bits in buddy2 must be 0 */
584 MB_CHECK_ASSERT(mb_test_bit(i
<< 1, buddy2
));
585 MB_CHECK_ASSERT(mb_test_bit((i
<< 1) + 1, buddy2
));
587 for (j
= 0; j
< (1 << order
); j
++) {
588 k
= (i
* (1 << order
)) + j
;
590 !mb_test_bit(k
, EXT4_MB_BITMAP(e4b
)));
594 MB_CHECK_ASSERT(e4b
->bd_info
->bb_counters
[order
] == count
);
599 buddy
= mb_find_buddy(e4b
, 0, &max
);
600 for (i
= 0; i
< max
; i
++) {
601 if (!mb_test_bit(i
, buddy
)) {
602 MB_CHECK_ASSERT(i
>= e4b
->bd_info
->bb_first_free
);
610 /* check used bits only */
611 for (j
= 0; j
< e4b
->bd_blkbits
+ 1; j
++) {
612 buddy2
= mb_find_buddy(e4b
, j
, &max2
);
614 MB_CHECK_ASSERT(k
< max2
);
615 MB_CHECK_ASSERT(mb_test_bit(k
, buddy2
));
618 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b
->bd_info
));
619 MB_CHECK_ASSERT(e4b
->bd_info
->bb_fragments
== fragments
);
621 grp
= ext4_get_group_info(sb
, e4b
->bd_group
);
622 list_for_each(cur
, &grp
->bb_prealloc_list
) {
623 ext4_group_t groupnr
;
624 struct ext4_prealloc_space
*pa
;
625 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
626 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &groupnr
, &k
);
627 MB_CHECK_ASSERT(groupnr
== e4b
->bd_group
);
628 for (i
= 0; i
< pa
->pa_len
; i
++)
629 MB_CHECK_ASSERT(mb_test_bit(k
+ i
, buddy
));
633 #undef MB_CHECK_ASSERT
634 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
635 __FILE__, __func__, __LINE__)
637 #define mb_check_buddy(e4b)
641 * Divide blocks started from @first with length @len into
642 * smaller chunks with power of 2 blocks.
643 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
644 * then increase bb_counters[] for corresponded chunk size.
646 static void ext4_mb_mark_free_simple(struct super_block
*sb
,
647 void *buddy
, ext4_grpblk_t first
, ext4_grpblk_t len
,
648 struct ext4_group_info
*grp
)
650 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
654 unsigned short border
;
656 BUG_ON(len
> EXT4_BLOCKS_PER_GROUP(sb
));
658 border
= 2 << sb
->s_blocksize_bits
;
661 /* find how many blocks can be covered since this position */
662 max
= ffs(first
| border
) - 1;
664 /* find how many blocks of power 2 we need to mark */
671 /* mark multiblock chunks only */
672 grp
->bb_counters
[min
]++;
674 mb_clear_bit(first
>> min
,
675 buddy
+ sbi
->s_mb_offsets
[min
]);
683 * Cache the order of the largest free extent we have available in this block
687 mb_set_largest_free_order(struct super_block
*sb
, struct ext4_group_info
*grp
)
692 grp
->bb_largest_free_order
= -1; /* uninit */
694 bits
= sb
->s_blocksize_bits
+ 1;
695 for (i
= bits
; i
>= 0; i
--) {
696 if (grp
->bb_counters
[i
] > 0) {
697 grp
->bb_largest_free_order
= i
;
703 static noinline_for_stack
704 void ext4_mb_generate_buddy(struct super_block
*sb
,
705 void *buddy
, void *bitmap
, ext4_group_t group
)
707 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
708 ext4_grpblk_t max
= EXT4_BLOCKS_PER_GROUP(sb
);
713 unsigned fragments
= 0;
714 unsigned long long period
= get_cycles();
716 /* initialize buddy from bitmap which is aggregation
717 * of on-disk bitmap and preallocations */
718 i
= mb_find_next_zero_bit(bitmap
, max
, 0);
719 grp
->bb_first_free
= i
;
723 i
= mb_find_next_bit(bitmap
, max
, i
);
727 ext4_mb_mark_free_simple(sb
, buddy
, first
, len
, grp
);
729 grp
->bb_counters
[0]++;
731 i
= mb_find_next_zero_bit(bitmap
, max
, i
);
733 grp
->bb_fragments
= fragments
;
735 if (free
!= grp
->bb_free
) {
736 ext4_grp_locked_error(sb
, group
, 0, 0,
737 "%u blocks in bitmap, %u in gd",
740 * If we intent to continue, we consider group descritor
741 * corrupt and update bb_free using bitmap value
745 mb_set_largest_free_order(sb
, grp
);
747 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
, &(grp
->bb_state
));
749 period
= get_cycles() - period
;
750 spin_lock(&EXT4_SB(sb
)->s_bal_lock
);
751 EXT4_SB(sb
)->s_mb_buddies_generated
++;
752 EXT4_SB(sb
)->s_mb_generation_time
+= period
;
753 spin_unlock(&EXT4_SB(sb
)->s_bal_lock
);
756 /* The buddy information is attached the buddy cache inode
757 * for convenience. The information regarding each group
758 * is loaded via ext4_mb_load_buddy. The information involve
759 * block bitmap and buddy information. The information are
760 * stored in the inode as
763 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
766 * one block each for bitmap and buddy information.
767 * So for each group we take up 2 blocks. A page can
768 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
769 * So it can have information regarding groups_per_page which
770 * is blocks_per_page/2
772 * Locking note: This routine takes the block group lock of all groups
773 * for this page; do not hold this lock when calling this routine!
776 static int ext4_mb_init_cache(struct page
*page
, char *incore
)
778 ext4_group_t ngroups
;
784 ext4_group_t first_group
;
786 struct super_block
*sb
;
787 struct buffer_head
*bhs
;
788 struct buffer_head
**bh
;
792 struct ext4_group_info
*grinfo
;
794 mb_debug(1, "init page %lu\n", page
->index
);
796 inode
= page
->mapping
->host
;
798 ngroups
= ext4_get_groups_count(sb
);
799 blocksize
= 1 << inode
->i_blkbits
;
800 blocks_per_page
= PAGE_CACHE_SIZE
/ blocksize
;
802 groups_per_page
= blocks_per_page
>> 1;
803 if (groups_per_page
== 0)
806 /* allocate buffer_heads to read bitmaps */
807 if (groups_per_page
> 1) {
809 i
= sizeof(struct buffer_head
*) * groups_per_page
;
810 bh
= kzalloc(i
, GFP_NOFS
);
816 first_group
= page
->index
* blocks_per_page
/ 2;
818 /* read all groups the page covers into the cache */
819 for (i
= 0; i
< groups_per_page
; i
++) {
820 struct ext4_group_desc
*desc
;
822 if (first_group
+ i
>= ngroups
)
825 grinfo
= ext4_get_group_info(sb
, first_group
+ i
);
827 * If page is uptodate then we came here after online resize
828 * which added some new uninitialized group info structs, so
829 * we must skip all initialized uptodate buddies on the page,
830 * which may be currently in use by an allocating task.
832 if (PageUptodate(page
) && !EXT4_MB_GRP_NEED_INIT(grinfo
)) {
838 desc
= ext4_get_group_desc(sb
, first_group
+ i
, NULL
);
843 bh
[i
] = sb_getblk(sb
, ext4_block_bitmap(sb
, desc
));
847 if (bitmap_uptodate(bh
[i
]))
851 if (bitmap_uptodate(bh
[i
])) {
852 unlock_buffer(bh
[i
]);
855 ext4_lock_group(sb
, first_group
+ i
);
856 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
857 ext4_init_block_bitmap(sb
, bh
[i
],
858 first_group
+ i
, desc
);
859 set_bitmap_uptodate(bh
[i
]);
860 set_buffer_uptodate(bh
[i
]);
861 ext4_unlock_group(sb
, first_group
+ i
);
862 unlock_buffer(bh
[i
]);
865 ext4_unlock_group(sb
, first_group
+ i
);
866 if (buffer_uptodate(bh
[i
])) {
868 * if not uninit if bh is uptodate,
869 * bitmap is also uptodate
871 set_bitmap_uptodate(bh
[i
]);
872 unlock_buffer(bh
[i
]);
877 * submit the buffer_head for read. We can
878 * safely mark the bitmap as uptodate now.
879 * We do it here so the bitmap uptodate bit
880 * get set with buffer lock held.
882 set_bitmap_uptodate(bh
[i
]);
883 bh
[i
]->b_end_io
= end_buffer_read_sync
;
884 submit_bh(READ
, bh
[i
]);
885 mb_debug(1, "read bitmap for group %u\n", first_group
+ i
);
888 /* wait for I/O completion */
889 for (i
= 0; i
< groups_per_page
; i
++)
891 wait_on_buffer(bh
[i
]);
894 for (i
= 0; i
< groups_per_page
; i
++)
895 if (bh
[i
] && !buffer_uptodate(bh
[i
]))
899 first_block
= page
->index
* blocks_per_page
;
900 for (i
= 0; i
< blocks_per_page
; i
++) {
903 group
= (first_block
+ i
) >> 1;
904 if (group
>= ngroups
)
907 if (!bh
[group
- first_group
])
908 /* skip initialized uptodate buddy */
912 * data carry information regarding this
913 * particular group in the format specified
917 data
= page_address(page
) + (i
* blocksize
);
918 bitmap
= bh
[group
- first_group
]->b_data
;
921 * We place the buddy block and bitmap block
924 if ((first_block
+ i
) & 1) {
925 /* this is block of buddy */
926 BUG_ON(incore
== NULL
);
927 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
928 group
, page
->index
, i
* blocksize
);
929 trace_ext4_mb_buddy_bitmap_load(sb
, group
);
930 grinfo
= ext4_get_group_info(sb
, group
);
931 grinfo
->bb_fragments
= 0;
932 memset(grinfo
->bb_counters
, 0,
933 sizeof(*grinfo
->bb_counters
) *
934 (sb
->s_blocksize_bits
+2));
936 * incore got set to the group block bitmap below
938 ext4_lock_group(sb
, group
);
940 memset(data
, 0xff, blocksize
);
941 ext4_mb_generate_buddy(sb
, data
, incore
, group
);
942 ext4_unlock_group(sb
, group
);
945 /* this is block of bitmap */
946 BUG_ON(incore
!= NULL
);
947 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
948 group
, page
->index
, i
* blocksize
);
949 trace_ext4_mb_bitmap_load(sb
, group
);
951 /* see comments in ext4_mb_put_pa() */
952 ext4_lock_group(sb
, group
);
953 memcpy(data
, bitmap
, blocksize
);
955 /* mark all preallocated blks used in in-core bitmap */
956 ext4_mb_generate_from_pa(sb
, data
, group
);
957 ext4_mb_generate_from_freelist(sb
, data
, group
);
958 ext4_unlock_group(sb
, group
);
960 /* set incore so that the buddy information can be
961 * generated using this
966 SetPageUptodate(page
);
970 for (i
= 0; i
< groups_per_page
; i
++)
979 * Lock the buddy and bitmap pages. This make sure other parallel init_group
980 * on the same buddy page doesn't happen whild holding the buddy page lock.
981 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
982 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
984 static int ext4_mb_get_buddy_page_lock(struct super_block
*sb
,
985 ext4_group_t group
, struct ext4_buddy
*e4b
)
987 struct inode
*inode
= EXT4_SB(sb
)->s_buddy_cache
;
988 int block
, pnum
, poff
;
992 e4b
->bd_buddy_page
= NULL
;
993 e4b
->bd_bitmap_page
= NULL
;
995 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
997 * the buddy cache inode stores the block bitmap
998 * and buddy information in consecutive blocks.
999 * So for each group we need two blocks.
1002 pnum
= block
/ blocks_per_page
;
1003 poff
= block
% blocks_per_page
;
1004 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1007 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1008 e4b
->bd_bitmap_page
= page
;
1009 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1011 if (blocks_per_page
>= 2) {
1012 /* buddy and bitmap are on the same page */
1017 pnum
= block
/ blocks_per_page
;
1018 poff
= block
% blocks_per_page
;
1019 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1022 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1023 e4b
->bd_buddy_page
= page
;
1027 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy
*e4b
)
1029 if (e4b
->bd_bitmap_page
) {
1030 unlock_page(e4b
->bd_bitmap_page
);
1031 page_cache_release(e4b
->bd_bitmap_page
);
1033 if (e4b
->bd_buddy_page
) {
1034 unlock_page(e4b
->bd_buddy_page
);
1035 page_cache_release(e4b
->bd_buddy_page
);
1040 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1041 * block group lock of all groups for this page; do not hold the BG lock when
1042 * calling this routine!
1044 static noinline_for_stack
1045 int ext4_mb_init_group(struct super_block
*sb
, ext4_group_t group
)
1048 struct ext4_group_info
*this_grp
;
1049 struct ext4_buddy e4b
;
1053 mb_debug(1, "init group %u\n", group
);
1054 this_grp
= ext4_get_group_info(sb
, group
);
1056 * This ensures that we don't reinit the buddy cache
1057 * page which map to the group from which we are already
1058 * allocating. If we are looking at the buddy cache we would
1059 * have taken a reference using ext4_mb_load_buddy and that
1060 * would have pinned buddy page to page cache.
1062 ret
= ext4_mb_get_buddy_page_lock(sb
, group
, &e4b
);
1063 if (ret
|| !EXT4_MB_GRP_NEED_INIT(this_grp
)) {
1065 * somebody initialized the group
1066 * return without doing anything
1071 page
= e4b
.bd_bitmap_page
;
1072 ret
= ext4_mb_init_cache(page
, NULL
);
1075 if (!PageUptodate(page
)) {
1079 mark_page_accessed(page
);
1081 if (e4b
.bd_buddy_page
== NULL
) {
1083 * If both the bitmap and buddy are in
1084 * the same page we don't need to force
1090 /* init buddy cache */
1091 page
= e4b
.bd_buddy_page
;
1092 ret
= ext4_mb_init_cache(page
, e4b
.bd_bitmap
);
1095 if (!PageUptodate(page
)) {
1099 mark_page_accessed(page
);
1101 ext4_mb_put_buddy_page_lock(&e4b
);
1106 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1107 * block group lock of all groups for this page; do not hold the BG lock when
1108 * calling this routine!
1110 static noinline_for_stack
int
1111 ext4_mb_load_buddy(struct super_block
*sb
, ext4_group_t group
,
1112 struct ext4_buddy
*e4b
)
1114 int blocks_per_page
;
1120 struct ext4_group_info
*grp
;
1121 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1122 struct inode
*inode
= sbi
->s_buddy_cache
;
1124 mb_debug(1, "load group %u\n", group
);
1126 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1127 grp
= ext4_get_group_info(sb
, group
);
1129 e4b
->bd_blkbits
= sb
->s_blocksize_bits
;
1132 e4b
->bd_group
= group
;
1133 e4b
->bd_buddy_page
= NULL
;
1134 e4b
->bd_bitmap_page
= NULL
;
1136 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
1138 * we need full data about the group
1139 * to make a good selection
1141 ret
= ext4_mb_init_group(sb
, group
);
1147 * the buddy cache inode stores the block bitmap
1148 * and buddy information in consecutive blocks.
1149 * So for each group we need two blocks.
1152 pnum
= block
/ blocks_per_page
;
1153 poff
= block
% blocks_per_page
;
1155 /* we could use find_or_create_page(), but it locks page
1156 * what we'd like to avoid in fast path ... */
1157 page
= find_get_page(inode
->i_mapping
, pnum
);
1158 if (page
== NULL
|| !PageUptodate(page
)) {
1161 * drop the page reference and try
1162 * to get the page with lock. If we
1163 * are not uptodate that implies
1164 * somebody just created the page but
1165 * is yet to initialize the same. So
1166 * wait for it to initialize.
1168 page_cache_release(page
);
1169 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1171 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1172 if (!PageUptodate(page
)) {
1173 ret
= ext4_mb_init_cache(page
, NULL
);
1178 mb_cmp_bitmaps(e4b
, page_address(page
) +
1179 (poff
* sb
->s_blocksize
));
1184 if (page
== NULL
|| !PageUptodate(page
)) {
1188 e4b
->bd_bitmap_page
= page
;
1189 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1190 mark_page_accessed(page
);
1193 pnum
= block
/ blocks_per_page
;
1194 poff
= block
% blocks_per_page
;
1196 page
= find_get_page(inode
->i_mapping
, pnum
);
1197 if (page
== NULL
|| !PageUptodate(page
)) {
1199 page_cache_release(page
);
1200 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1202 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1203 if (!PageUptodate(page
)) {
1204 ret
= ext4_mb_init_cache(page
, e4b
->bd_bitmap
);
1213 if (page
== NULL
|| !PageUptodate(page
)) {
1217 e4b
->bd_buddy_page
= page
;
1218 e4b
->bd_buddy
= page_address(page
) + (poff
* sb
->s_blocksize
);
1219 mark_page_accessed(page
);
1221 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
1222 BUG_ON(e4b
->bd_buddy_page
== NULL
);
1228 page_cache_release(page
);
1229 if (e4b
->bd_bitmap_page
)
1230 page_cache_release(e4b
->bd_bitmap_page
);
1231 if (e4b
->bd_buddy_page
)
1232 page_cache_release(e4b
->bd_buddy_page
);
1233 e4b
->bd_buddy
= NULL
;
1234 e4b
->bd_bitmap
= NULL
;
1238 static void ext4_mb_unload_buddy(struct ext4_buddy
*e4b
)
1240 if (e4b
->bd_bitmap_page
)
1241 page_cache_release(e4b
->bd_bitmap_page
);
1242 if (e4b
->bd_buddy_page
)
1243 page_cache_release(e4b
->bd_buddy_page
);
1247 static int mb_find_order_for_block(struct ext4_buddy
*e4b
, int block
)
1252 BUG_ON(EXT4_MB_BITMAP(e4b
) == EXT4_MB_BUDDY(e4b
));
1253 BUG_ON(block
>= (1 << (e4b
->bd_blkbits
+ 3)));
1255 bb
= EXT4_MB_BUDDY(e4b
);
1256 while (order
<= e4b
->bd_blkbits
+ 1) {
1258 if (!mb_test_bit(block
, bb
)) {
1259 /* this block is part of buddy of order 'order' */
1262 bb
+= 1 << (e4b
->bd_blkbits
- order
);
1268 static void mb_clear_bits(void *bm
, int cur
, int len
)
1274 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1275 /* fast path: clear whole word at once */
1276 addr
= bm
+ (cur
>> 3);
1281 mb_clear_bit(cur
, bm
);
1286 void ext4_set_bits(void *bm
, int cur
, int len
)
1292 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1293 /* fast path: set whole word at once */
1294 addr
= bm
+ (cur
>> 3);
1299 mb_set_bit(cur
, bm
);
1304 static void mb_free_blocks(struct inode
*inode
, struct ext4_buddy
*e4b
,
1305 int first
, int count
)
1312 struct super_block
*sb
= e4b
->bd_sb
;
1314 BUG_ON(first
+ count
> (sb
->s_blocksize
<< 3));
1315 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
1316 mb_check_buddy(e4b
);
1317 mb_free_blocks_double(inode
, e4b
, first
, count
);
1319 e4b
->bd_info
->bb_free
+= count
;
1320 if (first
< e4b
->bd_info
->bb_first_free
)
1321 e4b
->bd_info
->bb_first_free
= first
;
1323 /* let's maintain fragments counter */
1325 block
= !mb_test_bit(first
- 1, EXT4_MB_BITMAP(e4b
));
1326 if (first
+ count
< EXT4_SB(sb
)->s_mb_maxs
[0])
1327 max
= !mb_test_bit(first
+ count
, EXT4_MB_BITMAP(e4b
));
1329 e4b
->bd_info
->bb_fragments
--;
1330 else if (!block
&& !max
)
1331 e4b
->bd_info
->bb_fragments
++;
1333 /* let's maintain buddy itself */
1334 while (count
-- > 0) {
1338 if (!mb_test_bit(block
, EXT4_MB_BITMAP(e4b
))) {
1339 ext4_fsblk_t blocknr
;
1341 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
1343 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1344 inode
? inode
->i_ino
: 0,
1346 "freeing already freed block "
1349 mb_clear_bit(block
, EXT4_MB_BITMAP(e4b
));
1350 e4b
->bd_info
->bb_counters
[order
]++;
1352 /* start of the buddy */
1353 buddy
= mb_find_buddy(e4b
, order
, &max
);
1357 if (mb_test_bit(block
, buddy
) ||
1358 mb_test_bit(block
+ 1, buddy
))
1361 /* both the buddies are free, try to coalesce them */
1362 buddy2
= mb_find_buddy(e4b
, order
+ 1, &max
);
1368 /* for special purposes, we don't set
1369 * free bits in bitmap */
1370 mb_set_bit(block
, buddy
);
1371 mb_set_bit(block
+ 1, buddy
);
1373 e4b
->bd_info
->bb_counters
[order
]--;
1374 e4b
->bd_info
->bb_counters
[order
]--;
1378 e4b
->bd_info
->bb_counters
[order
]++;
1380 mb_clear_bit(block
, buddy2
);
1384 mb_set_largest_free_order(sb
, e4b
->bd_info
);
1385 mb_check_buddy(e4b
);
1388 static int mb_find_extent(struct ext4_buddy
*e4b
, int order
, int block
,
1389 int needed
, struct ext4_free_extent
*ex
)
1396 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1399 buddy
= mb_find_buddy(e4b
, order
, &max
);
1400 BUG_ON(buddy
== NULL
);
1401 BUG_ON(block
>= max
);
1402 if (mb_test_bit(block
, buddy
)) {
1409 /* FIXME dorp order completely ? */
1410 if (likely(order
== 0)) {
1411 /* find actual order */
1412 order
= mb_find_order_for_block(e4b
, block
);
1413 block
= block
>> order
;
1416 ex
->fe_len
= 1 << order
;
1417 ex
->fe_start
= block
<< order
;
1418 ex
->fe_group
= e4b
->bd_group
;
1420 /* calc difference from given start */
1421 next
= next
- ex
->fe_start
;
1423 ex
->fe_start
+= next
;
1425 while (needed
> ex
->fe_len
&&
1426 (buddy
= mb_find_buddy(e4b
, order
, &max
))) {
1428 if (block
+ 1 >= max
)
1431 next
= (block
+ 1) * (1 << order
);
1432 if (mb_test_bit(next
, EXT4_MB_BITMAP(e4b
)))
1435 ord
= mb_find_order_for_block(e4b
, next
);
1438 block
= next
>> order
;
1439 ex
->fe_len
+= 1 << order
;
1442 BUG_ON(ex
->fe_start
+ ex
->fe_len
> (1 << (e4b
->bd_blkbits
+ 3)));
1446 static int mb_mark_used(struct ext4_buddy
*e4b
, struct ext4_free_extent
*ex
)
1452 int start
= ex
->fe_start
;
1453 int len
= ex
->fe_len
;
1458 BUG_ON(start
+ len
> (e4b
->bd_sb
->s_blocksize
<< 3));
1459 BUG_ON(e4b
->bd_group
!= ex
->fe_group
);
1460 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1461 mb_check_buddy(e4b
);
1462 mb_mark_used_double(e4b
, start
, len
);
1464 e4b
->bd_info
->bb_free
-= len
;
1465 if (e4b
->bd_info
->bb_first_free
== start
)
1466 e4b
->bd_info
->bb_first_free
+= len
;
1468 /* let's maintain fragments counter */
1470 mlen
= !mb_test_bit(start
- 1, EXT4_MB_BITMAP(e4b
));
1471 if (start
+ len
< EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[0])
1472 max
= !mb_test_bit(start
+ len
, EXT4_MB_BITMAP(e4b
));
1474 e4b
->bd_info
->bb_fragments
++;
1475 else if (!mlen
&& !max
)
1476 e4b
->bd_info
->bb_fragments
--;
1478 /* let's maintain buddy itself */
1480 ord
= mb_find_order_for_block(e4b
, start
);
1482 if (((start
>> ord
) << ord
) == start
&& len
>= (1 << ord
)) {
1483 /* the whole chunk may be allocated at once! */
1485 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1486 BUG_ON((start
>> ord
) >= max
);
1487 mb_set_bit(start
>> ord
, buddy
);
1488 e4b
->bd_info
->bb_counters
[ord
]--;
1495 /* store for history */
1497 ret
= len
| (ord
<< 16);
1499 /* we have to split large buddy */
1501 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1502 mb_set_bit(start
>> ord
, buddy
);
1503 e4b
->bd_info
->bb_counters
[ord
]--;
1506 cur
= (start
>> ord
) & ~1U;
1507 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1508 mb_clear_bit(cur
, buddy
);
1509 mb_clear_bit(cur
+ 1, buddy
);
1510 e4b
->bd_info
->bb_counters
[ord
]++;
1511 e4b
->bd_info
->bb_counters
[ord
]++;
1513 mb_set_largest_free_order(e4b
->bd_sb
, e4b
->bd_info
);
1515 ext4_set_bits(EXT4_MB_BITMAP(e4b
), ex
->fe_start
, len0
);
1516 mb_check_buddy(e4b
);
1522 * Must be called under group lock!
1524 static void ext4_mb_use_best_found(struct ext4_allocation_context
*ac
,
1525 struct ext4_buddy
*e4b
)
1527 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1530 BUG_ON(ac
->ac_b_ex
.fe_group
!= e4b
->bd_group
);
1531 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1533 ac
->ac_b_ex
.fe_len
= min(ac
->ac_b_ex
.fe_len
, ac
->ac_g_ex
.fe_len
);
1534 ac
->ac_b_ex
.fe_logical
= ac
->ac_g_ex
.fe_logical
;
1535 ret
= mb_mark_used(e4b
, &ac
->ac_b_ex
);
1537 /* preallocation can change ac_b_ex, thus we store actually
1538 * allocated blocks for history */
1539 ac
->ac_f_ex
= ac
->ac_b_ex
;
1541 ac
->ac_status
= AC_STATUS_FOUND
;
1542 ac
->ac_tail
= ret
& 0xffff;
1543 ac
->ac_buddy
= ret
>> 16;
1546 * take the page reference. We want the page to be pinned
1547 * so that we don't get a ext4_mb_init_cache_call for this
1548 * group until we update the bitmap. That would mean we
1549 * double allocate blocks. The reference is dropped
1550 * in ext4_mb_release_context
1552 ac
->ac_bitmap_page
= e4b
->bd_bitmap_page
;
1553 get_page(ac
->ac_bitmap_page
);
1554 ac
->ac_buddy_page
= e4b
->bd_buddy_page
;
1555 get_page(ac
->ac_buddy_page
);
1556 /* store last allocated for subsequent stream allocation */
1557 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
1558 spin_lock(&sbi
->s_md_lock
);
1559 sbi
->s_mb_last_group
= ac
->ac_f_ex
.fe_group
;
1560 sbi
->s_mb_last_start
= ac
->ac_f_ex
.fe_start
;
1561 spin_unlock(&sbi
->s_md_lock
);
1566 * regular allocator, for general purposes allocation
1569 static void ext4_mb_check_limits(struct ext4_allocation_context
*ac
,
1570 struct ext4_buddy
*e4b
,
1573 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1574 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1575 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1576 struct ext4_free_extent ex
;
1579 if (ac
->ac_status
== AC_STATUS_FOUND
)
1582 * We don't want to scan for a whole year
1584 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
&&
1585 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1586 ac
->ac_status
= AC_STATUS_BREAK
;
1591 * Haven't found good chunk so far, let's continue
1593 if (bex
->fe_len
< gex
->fe_len
)
1596 if ((finish_group
|| ac
->ac_found
> sbi
->s_mb_min_to_scan
)
1597 && bex
->fe_group
== e4b
->bd_group
) {
1598 /* recheck chunk's availability - we don't know
1599 * when it was found (within this lock-unlock
1601 max
= mb_find_extent(e4b
, 0, bex
->fe_start
, gex
->fe_len
, &ex
);
1602 if (max
>= gex
->fe_len
) {
1603 ext4_mb_use_best_found(ac
, e4b
);
1610 * The routine checks whether found extent is good enough. If it is,
1611 * then the extent gets marked used and flag is set to the context
1612 * to stop scanning. Otherwise, the extent is compared with the
1613 * previous found extent and if new one is better, then it's stored
1614 * in the context. Later, the best found extent will be used, if
1615 * mballoc can't find good enough extent.
1617 * FIXME: real allocation policy is to be designed yet!
1619 static void ext4_mb_measure_extent(struct ext4_allocation_context
*ac
,
1620 struct ext4_free_extent
*ex
,
1621 struct ext4_buddy
*e4b
)
1623 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1624 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1626 BUG_ON(ex
->fe_len
<= 0);
1627 BUG_ON(ex
->fe_len
> EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
1628 BUG_ON(ex
->fe_start
>= EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
1629 BUG_ON(ac
->ac_status
!= AC_STATUS_CONTINUE
);
1634 * The special case - take what you catch first
1636 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1638 ext4_mb_use_best_found(ac
, e4b
);
1643 * Let's check whether the chuck is good enough
1645 if (ex
->fe_len
== gex
->fe_len
) {
1647 ext4_mb_use_best_found(ac
, e4b
);
1652 * If this is first found extent, just store it in the context
1654 if (bex
->fe_len
== 0) {
1660 * If new found extent is better, store it in the context
1662 if (bex
->fe_len
< gex
->fe_len
) {
1663 /* if the request isn't satisfied, any found extent
1664 * larger than previous best one is better */
1665 if (ex
->fe_len
> bex
->fe_len
)
1667 } else if (ex
->fe_len
> gex
->fe_len
) {
1668 /* if the request is satisfied, then we try to find
1669 * an extent that still satisfy the request, but is
1670 * smaller than previous one */
1671 if (ex
->fe_len
< bex
->fe_len
)
1675 ext4_mb_check_limits(ac
, e4b
, 0);
1678 static noinline_for_stack
1679 int ext4_mb_try_best_found(struct ext4_allocation_context
*ac
,
1680 struct ext4_buddy
*e4b
)
1682 struct ext4_free_extent ex
= ac
->ac_b_ex
;
1683 ext4_group_t group
= ex
.fe_group
;
1687 BUG_ON(ex
.fe_len
<= 0);
1688 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1692 ext4_lock_group(ac
->ac_sb
, group
);
1693 max
= mb_find_extent(e4b
, 0, ex
.fe_start
, ex
.fe_len
, &ex
);
1697 ext4_mb_use_best_found(ac
, e4b
);
1700 ext4_unlock_group(ac
->ac_sb
, group
);
1701 ext4_mb_unload_buddy(e4b
);
1706 static noinline_for_stack
1707 int ext4_mb_find_by_goal(struct ext4_allocation_context
*ac
,
1708 struct ext4_buddy
*e4b
)
1710 ext4_group_t group
= ac
->ac_g_ex
.fe_group
;
1713 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1714 struct ext4_free_extent ex
;
1716 if (!(ac
->ac_flags
& EXT4_MB_HINT_TRY_GOAL
))
1719 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1723 ext4_lock_group(ac
->ac_sb
, group
);
1724 max
= mb_find_extent(e4b
, 0, ac
->ac_g_ex
.fe_start
,
1725 ac
->ac_g_ex
.fe_len
, &ex
);
1727 if (max
>= ac
->ac_g_ex
.fe_len
&& ac
->ac_g_ex
.fe_len
== sbi
->s_stripe
) {
1730 start
= ext4_group_first_block_no(ac
->ac_sb
, e4b
->bd_group
) +
1732 /* use do_div to get remainder (would be 64-bit modulo) */
1733 if (do_div(start
, sbi
->s_stripe
) == 0) {
1736 ext4_mb_use_best_found(ac
, e4b
);
1738 } else if (max
>= ac
->ac_g_ex
.fe_len
) {
1739 BUG_ON(ex
.fe_len
<= 0);
1740 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1741 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1744 ext4_mb_use_best_found(ac
, e4b
);
1745 } else if (max
> 0 && (ac
->ac_flags
& EXT4_MB_HINT_MERGE
)) {
1746 /* Sometimes, caller may want to merge even small
1747 * number of blocks to an existing extent */
1748 BUG_ON(ex
.fe_len
<= 0);
1749 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1750 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1753 ext4_mb_use_best_found(ac
, e4b
);
1755 ext4_unlock_group(ac
->ac_sb
, group
);
1756 ext4_mb_unload_buddy(e4b
);
1762 * The routine scans buddy structures (not bitmap!) from given order
1763 * to max order and tries to find big enough chunk to satisfy the req
1765 static noinline_for_stack
1766 void ext4_mb_simple_scan_group(struct ext4_allocation_context
*ac
,
1767 struct ext4_buddy
*e4b
)
1769 struct super_block
*sb
= ac
->ac_sb
;
1770 struct ext4_group_info
*grp
= e4b
->bd_info
;
1776 BUG_ON(ac
->ac_2order
<= 0);
1777 for (i
= ac
->ac_2order
; i
<= sb
->s_blocksize_bits
+ 1; i
++) {
1778 if (grp
->bb_counters
[i
] == 0)
1781 buddy
= mb_find_buddy(e4b
, i
, &max
);
1782 BUG_ON(buddy
== NULL
);
1784 k
= mb_find_next_zero_bit(buddy
, max
, 0);
1789 ac
->ac_b_ex
.fe_len
= 1 << i
;
1790 ac
->ac_b_ex
.fe_start
= k
<< i
;
1791 ac
->ac_b_ex
.fe_group
= e4b
->bd_group
;
1793 ext4_mb_use_best_found(ac
, e4b
);
1795 BUG_ON(ac
->ac_b_ex
.fe_len
!= ac
->ac_g_ex
.fe_len
);
1797 if (EXT4_SB(sb
)->s_mb_stats
)
1798 atomic_inc(&EXT4_SB(sb
)->s_bal_2orders
);
1805 * The routine scans the group and measures all found extents.
1806 * In order to optimize scanning, caller must pass number of
1807 * free blocks in the group, so the routine can know upper limit.
1809 static noinline_for_stack
1810 void ext4_mb_complex_scan_group(struct ext4_allocation_context
*ac
,
1811 struct ext4_buddy
*e4b
)
1813 struct super_block
*sb
= ac
->ac_sb
;
1814 void *bitmap
= EXT4_MB_BITMAP(e4b
);
1815 struct ext4_free_extent ex
;
1819 free
= e4b
->bd_info
->bb_free
;
1822 i
= e4b
->bd_info
->bb_first_free
;
1824 while (free
&& ac
->ac_status
== AC_STATUS_CONTINUE
) {
1825 i
= mb_find_next_zero_bit(bitmap
,
1826 EXT4_BLOCKS_PER_GROUP(sb
), i
);
1827 if (i
>= EXT4_BLOCKS_PER_GROUP(sb
)) {
1829 * IF we have corrupt bitmap, we won't find any
1830 * free blocks even though group info says we
1831 * we have free blocks
1833 ext4_grp_locked_error(sb
, e4b
->bd_group
, 0, 0,
1834 "%d free blocks as per "
1835 "group info. But bitmap says 0",
1840 mb_find_extent(e4b
, 0, i
, ac
->ac_g_ex
.fe_len
, &ex
);
1841 BUG_ON(ex
.fe_len
<= 0);
1842 if (free
< ex
.fe_len
) {
1843 ext4_grp_locked_error(sb
, e4b
->bd_group
, 0, 0,
1844 "%d free blocks as per "
1845 "group info. But got %d blocks",
1848 * The number of free blocks differs. This mostly
1849 * indicate that the bitmap is corrupt. So exit
1850 * without claiming the space.
1855 ext4_mb_measure_extent(ac
, &ex
, e4b
);
1861 ext4_mb_check_limits(ac
, e4b
, 1);
1865 * This is a special case for storages like raid5
1866 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1868 static noinline_for_stack
1869 void ext4_mb_scan_aligned(struct ext4_allocation_context
*ac
,
1870 struct ext4_buddy
*e4b
)
1872 struct super_block
*sb
= ac
->ac_sb
;
1873 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1874 void *bitmap
= EXT4_MB_BITMAP(e4b
);
1875 struct ext4_free_extent ex
;
1876 ext4_fsblk_t first_group_block
;
1881 BUG_ON(sbi
->s_stripe
== 0);
1883 /* find first stripe-aligned block in group */
1884 first_group_block
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
1886 a
= first_group_block
+ sbi
->s_stripe
- 1;
1887 do_div(a
, sbi
->s_stripe
);
1888 i
= (a
* sbi
->s_stripe
) - first_group_block
;
1890 while (i
< EXT4_BLOCKS_PER_GROUP(sb
)) {
1891 if (!mb_test_bit(i
, bitmap
)) {
1892 max
= mb_find_extent(e4b
, 0, i
, sbi
->s_stripe
, &ex
);
1893 if (max
>= sbi
->s_stripe
) {
1896 ext4_mb_use_best_found(ac
, e4b
);
1904 /* This is now called BEFORE we load the buddy bitmap. */
1905 static int ext4_mb_good_group(struct ext4_allocation_context
*ac
,
1906 ext4_group_t group
, int cr
)
1908 unsigned free
, fragments
;
1909 int flex_size
= ext4_flex_bg_size(EXT4_SB(ac
->ac_sb
));
1910 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
1912 BUG_ON(cr
< 0 || cr
>= 4);
1914 /* We only do this if the grp has never been initialized */
1915 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
1916 int ret
= ext4_mb_init_group(ac
->ac_sb
, group
);
1921 free
= grp
->bb_free
;
1922 fragments
= grp
->bb_fragments
;
1930 BUG_ON(ac
->ac_2order
== 0);
1932 if (grp
->bb_largest_free_order
< ac
->ac_2order
)
1935 /* Avoid using the first bg of a flexgroup for data files */
1936 if ((ac
->ac_flags
& EXT4_MB_HINT_DATA
) &&
1937 (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) &&
1938 ((group
% flex_size
) == 0))
1943 if ((free
/ fragments
) >= ac
->ac_g_ex
.fe_len
)
1947 if (free
>= ac
->ac_g_ex
.fe_len
)
1959 static noinline_for_stack
int
1960 ext4_mb_regular_allocator(struct ext4_allocation_context
*ac
)
1962 ext4_group_t ngroups
, group
, i
;
1965 struct ext4_sb_info
*sbi
;
1966 struct super_block
*sb
;
1967 struct ext4_buddy e4b
;
1971 ngroups
= ext4_get_groups_count(sb
);
1972 /* non-extent files are limited to low blocks/groups */
1973 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)))
1974 ngroups
= sbi
->s_blockfile_groups
;
1976 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1978 /* first, try the goal */
1979 err
= ext4_mb_find_by_goal(ac
, &e4b
);
1980 if (err
|| ac
->ac_status
== AC_STATUS_FOUND
)
1983 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
1987 * ac->ac2_order is set only if the fe_len is a power of 2
1988 * if ac2_order is set we also set criteria to 0 so that we
1989 * try exact allocation using buddy.
1991 i
= fls(ac
->ac_g_ex
.fe_len
);
1994 * We search using buddy data only if the order of the request
1995 * is greater than equal to the sbi_s_mb_order2_reqs
1996 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1998 if (i
>= sbi
->s_mb_order2_reqs
) {
2000 * This should tell if fe_len is exactly power of 2
2002 if ((ac
->ac_g_ex
.fe_len
& (~(1 << (i
- 1)))) == 0)
2003 ac
->ac_2order
= i
- 1;
2006 /* if stream allocation is enabled, use global goal */
2007 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
2008 /* TBD: may be hot point */
2009 spin_lock(&sbi
->s_md_lock
);
2010 ac
->ac_g_ex
.fe_group
= sbi
->s_mb_last_group
;
2011 ac
->ac_g_ex
.fe_start
= sbi
->s_mb_last_start
;
2012 spin_unlock(&sbi
->s_md_lock
);
2015 /* Let's just scan groups to find more-less suitable blocks */
2016 cr
= ac
->ac_2order
? 0 : 1;
2018 * cr == 0 try to get exact allocation,
2019 * cr == 3 try to get anything
2022 for (; cr
< 4 && ac
->ac_status
== AC_STATUS_CONTINUE
; cr
++) {
2023 ac
->ac_criteria
= cr
;
2025 * searching for the right group start
2026 * from the goal value specified
2028 group
= ac
->ac_g_ex
.fe_group
;
2030 for (i
= 0; i
< ngroups
; group
++, i
++) {
2031 if (group
== ngroups
)
2034 /* This now checks without needing the buddy page */
2035 if (!ext4_mb_good_group(ac
, group
, cr
))
2038 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2042 ext4_lock_group(sb
, group
);
2045 * We need to check again after locking the
2048 if (!ext4_mb_good_group(ac
, group
, cr
)) {
2049 ext4_unlock_group(sb
, group
);
2050 ext4_mb_unload_buddy(&e4b
);
2054 ac
->ac_groups_scanned
++;
2056 ext4_mb_simple_scan_group(ac
, &e4b
);
2057 else if (cr
== 1 && sbi
->s_stripe
&&
2058 !(ac
->ac_g_ex
.fe_len
% sbi
->s_stripe
))
2059 ext4_mb_scan_aligned(ac
, &e4b
);
2061 ext4_mb_complex_scan_group(ac
, &e4b
);
2063 ext4_unlock_group(sb
, group
);
2064 ext4_mb_unload_buddy(&e4b
);
2066 if (ac
->ac_status
!= AC_STATUS_CONTINUE
)
2071 if (ac
->ac_b_ex
.fe_len
> 0 && ac
->ac_status
!= AC_STATUS_FOUND
&&
2072 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
2074 * We've been searching too long. Let's try to allocate
2075 * the best chunk we've found so far
2078 ext4_mb_try_best_found(ac
, &e4b
);
2079 if (ac
->ac_status
!= AC_STATUS_FOUND
) {
2081 * Someone more lucky has already allocated it.
2082 * The only thing we can do is just take first
2084 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2086 ac
->ac_b_ex
.fe_group
= 0;
2087 ac
->ac_b_ex
.fe_start
= 0;
2088 ac
->ac_b_ex
.fe_len
= 0;
2089 ac
->ac_status
= AC_STATUS_CONTINUE
;
2090 ac
->ac_flags
|= EXT4_MB_HINT_FIRST
;
2092 atomic_inc(&sbi
->s_mb_lost_chunks
);
2100 static void *ext4_mb_seq_groups_start(struct seq_file
*seq
, loff_t
*pos
)
2102 struct super_block
*sb
= seq
->private;
2105 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2108 return (void *) ((unsigned long) group
);
2111 static void *ext4_mb_seq_groups_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2113 struct super_block
*sb
= seq
->private;
2117 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2120 return (void *) ((unsigned long) group
);
2123 static int ext4_mb_seq_groups_show(struct seq_file
*seq
, void *v
)
2125 struct super_block
*sb
= seq
->private;
2126 ext4_group_t group
= (ext4_group_t
) ((unsigned long) v
);
2129 struct ext4_buddy e4b
;
2131 struct ext4_group_info info
;
2132 ext4_grpblk_t counters
[16];
2137 seq_printf(seq
, "#%-5s: %-5s %-5s %-5s "
2138 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2139 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2140 "group", "free", "frags", "first",
2141 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2142 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2144 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(sg
.info
.bb_counters
[0]) +
2145 sizeof(struct ext4_group_info
);
2146 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2148 seq_printf(seq
, "#%-5u: I/O error\n", group
);
2151 ext4_lock_group(sb
, group
);
2152 memcpy(&sg
, ext4_get_group_info(sb
, group
), i
);
2153 ext4_unlock_group(sb
, group
);
2154 ext4_mb_unload_buddy(&e4b
);
2156 seq_printf(seq
, "#%-5u: %-5u %-5u %-5u [", group
, sg
.info
.bb_free
,
2157 sg
.info
.bb_fragments
, sg
.info
.bb_first_free
);
2158 for (i
= 0; i
<= 13; i
++)
2159 seq_printf(seq
, " %-5u", i
<= sb
->s_blocksize_bits
+ 1 ?
2160 sg
.info
.bb_counters
[i
] : 0);
2161 seq_printf(seq
, " ]\n");
2166 static void ext4_mb_seq_groups_stop(struct seq_file
*seq
, void *v
)
2170 static const struct seq_operations ext4_mb_seq_groups_ops
= {
2171 .start
= ext4_mb_seq_groups_start
,
2172 .next
= ext4_mb_seq_groups_next
,
2173 .stop
= ext4_mb_seq_groups_stop
,
2174 .show
= ext4_mb_seq_groups_show
,
2177 static int ext4_mb_seq_groups_open(struct inode
*inode
, struct file
*file
)
2179 struct super_block
*sb
= PDE(inode
)->data
;
2182 rc
= seq_open(file
, &ext4_mb_seq_groups_ops
);
2184 struct seq_file
*m
= file
->private_data
;
2191 static const struct file_operations ext4_mb_seq_groups_fops
= {
2192 .owner
= THIS_MODULE
,
2193 .open
= ext4_mb_seq_groups_open
,
2195 .llseek
= seq_lseek
,
2196 .release
= seq_release
,
2199 static struct kmem_cache
*get_groupinfo_cache(int blocksize_bits
)
2201 int cache_index
= blocksize_bits
- EXT4_MIN_BLOCK_LOG_SIZE
;
2202 struct kmem_cache
*cachep
= ext4_groupinfo_caches
[cache_index
];
2208 /* Create and initialize ext4_group_info data for the given group. */
2209 int ext4_mb_add_groupinfo(struct super_block
*sb
, ext4_group_t group
,
2210 struct ext4_group_desc
*desc
)
2214 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2215 struct ext4_group_info
**meta_group_info
;
2216 struct kmem_cache
*cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2219 * First check if this group is the first of a reserved block.
2220 * If it's true, we have to allocate a new table of pointers
2221 * to ext4_group_info structures
2223 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2224 metalen
= sizeof(*meta_group_info
) <<
2225 EXT4_DESC_PER_BLOCK_BITS(sb
);
2226 meta_group_info
= kmalloc(metalen
, GFP_KERNEL
);
2227 if (meta_group_info
== NULL
) {
2228 ext4_msg(sb
, KERN_ERR
, "EXT4-fs: can't allocate mem "
2229 "for a buddy group");
2230 goto exit_meta_group_info
;
2232 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)] =
2237 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)];
2238 i
= group
& (EXT4_DESC_PER_BLOCK(sb
) - 1);
2240 meta_group_info
[i
] = kmem_cache_alloc(cachep
, GFP_KERNEL
);
2241 if (meta_group_info
[i
] == NULL
) {
2242 ext4_msg(sb
, KERN_ERR
, "EXT4-fs: can't allocate buddy mem");
2243 goto exit_group_info
;
2245 memset(meta_group_info
[i
], 0, kmem_cache_size(cachep
));
2246 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
,
2247 &(meta_group_info
[i
]->bb_state
));
2250 * initialize bb_free to be able to skip
2251 * empty groups without initialization
2253 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2254 meta_group_info
[i
]->bb_free
=
2255 ext4_free_blocks_after_init(sb
, group
, desc
);
2257 meta_group_info
[i
]->bb_free
=
2258 ext4_free_blks_count(sb
, desc
);
2261 INIT_LIST_HEAD(&meta_group_info
[i
]->bb_prealloc_list
);
2262 init_rwsem(&meta_group_info
[i
]->alloc_sem
);
2263 meta_group_info
[i
]->bb_free_root
= RB_ROOT
;
2264 meta_group_info
[i
]->bb_largest_free_order
= -1; /* uninit */
2268 struct buffer_head
*bh
;
2269 meta_group_info
[i
]->bb_bitmap
=
2270 kmalloc(sb
->s_blocksize
, GFP_KERNEL
);
2271 BUG_ON(meta_group_info
[i
]->bb_bitmap
== NULL
);
2272 bh
= ext4_read_block_bitmap(sb
, group
);
2274 memcpy(meta_group_info
[i
]->bb_bitmap
, bh
->b_data
,
2283 /* If a meta_group_info table has been allocated, release it now */
2284 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2285 kfree(sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)]);
2286 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)] = NULL
;
2288 exit_meta_group_info
:
2290 } /* ext4_mb_add_groupinfo */
2292 static int ext4_mb_init_backend(struct super_block
*sb
)
2294 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2296 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2297 struct ext4_super_block
*es
= sbi
->s_es
;
2298 int num_meta_group_infos
;
2299 int num_meta_group_infos_max
;
2301 struct ext4_group_desc
*desc
;
2302 struct kmem_cache
*cachep
;
2304 /* This is the number of blocks used by GDT */
2305 num_meta_group_infos
= (ngroups
+ EXT4_DESC_PER_BLOCK(sb
) -
2306 1) >> EXT4_DESC_PER_BLOCK_BITS(sb
);
2309 * This is the total number of blocks used by GDT including
2310 * the number of reserved blocks for GDT.
2311 * The s_group_info array is allocated with this value
2312 * to allow a clean online resize without a complex
2313 * manipulation of pointer.
2314 * The drawback is the unused memory when no resize
2315 * occurs but it's very low in terms of pages
2316 * (see comments below)
2317 * Need to handle this properly when META_BG resizing is allowed
2319 num_meta_group_infos_max
= num_meta_group_infos
+
2320 le16_to_cpu(es
->s_reserved_gdt_blocks
);
2323 * array_size is the size of s_group_info array. We round it
2324 * to the next power of two because this approximation is done
2325 * internally by kmalloc so we can have some more memory
2326 * for free here (e.g. may be used for META_BG resize).
2329 while (array_size
< sizeof(*sbi
->s_group_info
) *
2330 num_meta_group_infos_max
)
2331 array_size
= array_size
<< 1;
2332 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2333 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2334 * So a two level scheme suffices for now. */
2335 sbi
->s_group_info
= ext4_kvzalloc(array_size
, GFP_KERNEL
);
2336 if (sbi
->s_group_info
== NULL
) {
2337 ext4_msg(sb
, KERN_ERR
, "can't allocate buddy meta group");
2340 sbi
->s_buddy_cache
= new_inode(sb
);
2341 if (sbi
->s_buddy_cache
== NULL
) {
2342 ext4_msg(sb
, KERN_ERR
, "can't get new inode");
2345 /* To avoid potentially colliding with an valid on-disk inode number,
2346 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2347 * not in the inode hash, so it should never be found by iget(), but
2348 * this will avoid confusion if it ever shows up during debugging. */
2349 sbi
->s_buddy_cache
->i_ino
= EXT4_BAD_INO
;
2350 EXT4_I(sbi
->s_buddy_cache
)->i_disksize
= 0;
2351 for (i
= 0; i
< ngroups
; i
++) {
2352 desc
= ext4_get_group_desc(sb
, i
, NULL
);
2354 ext4_msg(sb
, KERN_ERR
, "can't read descriptor %u", i
);
2357 if (ext4_mb_add_groupinfo(sb
, i
, desc
) != 0)
2364 cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2366 kmem_cache_free(cachep
, ext4_get_group_info(sb
, i
));
2367 i
= num_meta_group_infos
;
2369 kfree(sbi
->s_group_info
[i
]);
2370 iput(sbi
->s_buddy_cache
);
2372 ext4_kvfree(sbi
->s_group_info
);
2376 static void ext4_groupinfo_destroy_slabs(void)
2380 for (i
= 0; i
< NR_GRPINFO_CACHES
; i
++) {
2381 if (ext4_groupinfo_caches
[i
])
2382 kmem_cache_destroy(ext4_groupinfo_caches
[i
]);
2383 ext4_groupinfo_caches
[i
] = NULL
;
2387 static int ext4_groupinfo_create_slab(size_t size
)
2389 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex
);
2391 int blocksize_bits
= order_base_2(size
);
2392 int cache_index
= blocksize_bits
- EXT4_MIN_BLOCK_LOG_SIZE
;
2393 struct kmem_cache
*cachep
;
2395 if (cache_index
>= NR_GRPINFO_CACHES
)
2398 if (unlikely(cache_index
< 0))
2401 mutex_lock(&ext4_grpinfo_slab_create_mutex
);
2402 if (ext4_groupinfo_caches
[cache_index
]) {
2403 mutex_unlock(&ext4_grpinfo_slab_create_mutex
);
2404 return 0; /* Already created */
2407 slab_size
= offsetof(struct ext4_group_info
,
2408 bb_counters
[blocksize_bits
+ 2]);
2410 cachep
= kmem_cache_create(ext4_groupinfo_slab_names
[cache_index
],
2411 slab_size
, 0, SLAB_RECLAIM_ACCOUNT
,
2414 ext4_groupinfo_caches
[cache_index
] = cachep
;
2416 mutex_unlock(&ext4_grpinfo_slab_create_mutex
);
2419 "EXT4-fs: no memory for groupinfo slab cache\n");
2426 int ext4_mb_init(struct super_block
*sb
, int needs_recovery
)
2428 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2434 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_offsets
);
2436 sbi
->s_mb_offsets
= kmalloc(i
, GFP_KERNEL
);
2437 if (sbi
->s_mb_offsets
== NULL
) {
2442 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_maxs
);
2443 sbi
->s_mb_maxs
= kmalloc(i
, GFP_KERNEL
);
2444 if (sbi
->s_mb_maxs
== NULL
) {
2449 ret
= ext4_groupinfo_create_slab(sb
->s_blocksize
);
2453 /* order 0 is regular bitmap */
2454 sbi
->s_mb_maxs
[0] = sb
->s_blocksize
<< 3;
2455 sbi
->s_mb_offsets
[0] = 0;
2459 max
= sb
->s_blocksize
<< 2;
2461 sbi
->s_mb_offsets
[i
] = offset
;
2462 sbi
->s_mb_maxs
[i
] = max
;
2463 offset
+= 1 << (sb
->s_blocksize_bits
- i
);
2466 } while (i
<= sb
->s_blocksize_bits
+ 1);
2468 spin_lock_init(&sbi
->s_md_lock
);
2469 spin_lock_init(&sbi
->s_bal_lock
);
2471 sbi
->s_mb_max_to_scan
= MB_DEFAULT_MAX_TO_SCAN
;
2472 sbi
->s_mb_min_to_scan
= MB_DEFAULT_MIN_TO_SCAN
;
2473 sbi
->s_mb_stats
= MB_DEFAULT_STATS
;
2474 sbi
->s_mb_stream_request
= MB_DEFAULT_STREAM_THRESHOLD
;
2475 sbi
->s_mb_order2_reqs
= MB_DEFAULT_ORDER2_REQS
;
2476 sbi
->s_mb_group_prealloc
= MB_DEFAULT_GROUP_PREALLOC
;
2478 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2479 * to the lowest multiple of s_stripe which is bigger than
2480 * the s_mb_group_prealloc as determined above. We want
2481 * the preallocation size to be an exact multiple of the
2482 * RAID stripe size so that preallocations don't fragment
2485 if (sbi
->s_stripe
> 1) {
2486 sbi
->s_mb_group_prealloc
= roundup(
2487 sbi
->s_mb_group_prealloc
, sbi
->s_stripe
);
2490 sbi
->s_locality_groups
= alloc_percpu(struct ext4_locality_group
);
2491 if (sbi
->s_locality_groups
== NULL
) {
2495 for_each_possible_cpu(i
) {
2496 struct ext4_locality_group
*lg
;
2497 lg
= per_cpu_ptr(sbi
->s_locality_groups
, i
);
2498 mutex_init(&lg
->lg_mutex
);
2499 for (j
= 0; j
< PREALLOC_TB_SIZE
; j
++)
2500 INIT_LIST_HEAD(&lg
->lg_prealloc_list
[j
]);
2501 spin_lock_init(&lg
->lg_prealloc_lock
);
2504 /* init file for buddy data */
2505 ret
= ext4_mb_init_backend(sb
);
2511 proc_create_data("mb_groups", S_IRUGO
, sbi
->s_proc
,
2512 &ext4_mb_seq_groups_fops
, sb
);
2515 sbi
->s_journal
->j_commit_callback
= release_blocks_on_commit
;
2518 kfree(sbi
->s_mb_offsets
);
2519 kfree(sbi
->s_mb_maxs
);
2524 /* need to called with the ext4 group lock held */
2525 static void ext4_mb_cleanup_pa(struct ext4_group_info
*grp
)
2527 struct ext4_prealloc_space
*pa
;
2528 struct list_head
*cur
, *tmp
;
2531 list_for_each_safe(cur
, tmp
, &grp
->bb_prealloc_list
) {
2532 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
2533 list_del(&pa
->pa_group_list
);
2535 kmem_cache_free(ext4_pspace_cachep
, pa
);
2538 mb_debug(1, "mballoc: %u PAs left\n", count
);
2542 int ext4_mb_release(struct super_block
*sb
)
2544 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2546 int num_meta_group_infos
;
2547 struct ext4_group_info
*grinfo
;
2548 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2549 struct kmem_cache
*cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2551 if (sbi
->s_group_info
) {
2552 for (i
= 0; i
< ngroups
; i
++) {
2553 grinfo
= ext4_get_group_info(sb
, i
);
2555 kfree(grinfo
->bb_bitmap
);
2557 ext4_lock_group(sb
, i
);
2558 ext4_mb_cleanup_pa(grinfo
);
2559 ext4_unlock_group(sb
, i
);
2560 kmem_cache_free(cachep
, grinfo
);
2562 num_meta_group_infos
= (ngroups
+
2563 EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2564 EXT4_DESC_PER_BLOCK_BITS(sb
);
2565 for (i
= 0; i
< num_meta_group_infos
; i
++)
2566 kfree(sbi
->s_group_info
[i
]);
2567 ext4_kvfree(sbi
->s_group_info
);
2569 kfree(sbi
->s_mb_offsets
);
2570 kfree(sbi
->s_mb_maxs
);
2571 if (sbi
->s_buddy_cache
)
2572 iput(sbi
->s_buddy_cache
);
2573 if (sbi
->s_mb_stats
) {
2574 ext4_msg(sb
, KERN_INFO
,
2575 "mballoc: %u blocks %u reqs (%u success)",
2576 atomic_read(&sbi
->s_bal_allocated
),
2577 atomic_read(&sbi
->s_bal_reqs
),
2578 atomic_read(&sbi
->s_bal_success
));
2579 ext4_msg(sb
, KERN_INFO
,
2580 "mballoc: %u extents scanned, %u goal hits, "
2581 "%u 2^N hits, %u breaks, %u lost",
2582 atomic_read(&sbi
->s_bal_ex_scanned
),
2583 atomic_read(&sbi
->s_bal_goals
),
2584 atomic_read(&sbi
->s_bal_2orders
),
2585 atomic_read(&sbi
->s_bal_breaks
),
2586 atomic_read(&sbi
->s_mb_lost_chunks
));
2587 ext4_msg(sb
, KERN_INFO
,
2588 "mballoc: %lu generated and it took %Lu",
2589 sbi
->s_mb_buddies_generated
,
2590 sbi
->s_mb_generation_time
);
2591 ext4_msg(sb
, KERN_INFO
,
2592 "mballoc: %u preallocated, %u discarded",
2593 atomic_read(&sbi
->s_mb_preallocated
),
2594 atomic_read(&sbi
->s_mb_discarded
));
2597 free_percpu(sbi
->s_locality_groups
);
2599 remove_proc_entry("mb_groups", sbi
->s_proc
);
2604 static inline int ext4_issue_discard(struct super_block
*sb
,
2605 ext4_group_t block_group
, ext4_grpblk_t block
, int count
)
2607 ext4_fsblk_t discard_block
;
2609 discard_block
= block
+ ext4_group_first_block_no(sb
, block_group
);
2610 trace_ext4_discard_blocks(sb
,
2611 (unsigned long long) discard_block
, count
);
2612 return sb_issue_discard(sb
, discard_block
, count
, GFP_NOFS
, 0);
2616 * This function is called by the jbd2 layer once the commit has finished,
2617 * so we know we can free the blocks that were released with that commit.
2619 static void release_blocks_on_commit(journal_t
*journal
, transaction_t
*txn
)
2621 struct super_block
*sb
= journal
->j_private
;
2622 struct ext4_buddy e4b
;
2623 struct ext4_group_info
*db
;
2624 int err
, count
= 0, count2
= 0;
2625 struct ext4_free_data
*entry
;
2626 struct list_head
*l
, *ltmp
;
2628 list_for_each_safe(l
, ltmp
, &txn
->t_private_list
) {
2629 entry
= list_entry(l
, struct ext4_free_data
, list
);
2631 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2632 entry
->count
, entry
->group
, entry
);
2634 if (test_opt(sb
, DISCARD
))
2635 ext4_issue_discard(sb
, entry
->group
,
2636 entry
->start_blk
, entry
->count
);
2638 err
= ext4_mb_load_buddy(sb
, entry
->group
, &e4b
);
2639 /* we expect to find existing buddy because it's pinned */
2643 /* there are blocks to put in buddy to make them really free */
2644 count
+= entry
->count
;
2646 ext4_lock_group(sb
, entry
->group
);
2647 /* Take it out of per group rb tree */
2648 rb_erase(&entry
->node
, &(db
->bb_free_root
));
2649 mb_free_blocks(NULL
, &e4b
, entry
->start_blk
, entry
->count
);
2652 * Clear the trimmed flag for the group so that the next
2653 * ext4_trim_fs can trim it.
2654 * If the volume is mounted with -o discard, online discard
2655 * is supported and the free blocks will be trimmed online.
2657 if (!test_opt(sb
, DISCARD
))
2658 EXT4_MB_GRP_CLEAR_TRIMMED(db
);
2660 if (!db
->bb_free_root
.rb_node
) {
2661 /* No more items in the per group rb tree
2662 * balance refcounts from ext4_mb_free_metadata()
2664 page_cache_release(e4b
.bd_buddy_page
);
2665 page_cache_release(e4b
.bd_bitmap_page
);
2667 ext4_unlock_group(sb
, entry
->group
);
2668 kmem_cache_free(ext4_free_ext_cachep
, entry
);
2669 ext4_mb_unload_buddy(&e4b
);
2672 mb_debug(1, "freed %u blocks in %u structures\n", count
, count2
);
2675 #ifdef CONFIG_EXT4_DEBUG
2676 u8 mb_enable_debug __read_mostly
;
2678 static struct dentry
*debugfs_dir
;
2679 static struct dentry
*debugfs_debug
;
2681 static void __init
ext4_create_debugfs_entry(void)
2683 debugfs_dir
= debugfs_create_dir("ext4", NULL
);
2685 debugfs_debug
= debugfs_create_u8("mballoc-debug",
2691 static void ext4_remove_debugfs_entry(void)
2693 debugfs_remove(debugfs_debug
);
2694 debugfs_remove(debugfs_dir
);
2699 static void __init
ext4_create_debugfs_entry(void)
2703 static void ext4_remove_debugfs_entry(void)
2709 int __init
ext4_init_mballoc(void)
2711 ext4_pspace_cachep
= KMEM_CACHE(ext4_prealloc_space
,
2712 SLAB_RECLAIM_ACCOUNT
);
2713 if (ext4_pspace_cachep
== NULL
)
2716 ext4_ac_cachep
= KMEM_CACHE(ext4_allocation_context
,
2717 SLAB_RECLAIM_ACCOUNT
);
2718 if (ext4_ac_cachep
== NULL
) {
2719 kmem_cache_destroy(ext4_pspace_cachep
);
2723 ext4_free_ext_cachep
= KMEM_CACHE(ext4_free_data
,
2724 SLAB_RECLAIM_ACCOUNT
);
2725 if (ext4_free_ext_cachep
== NULL
) {
2726 kmem_cache_destroy(ext4_pspace_cachep
);
2727 kmem_cache_destroy(ext4_ac_cachep
);
2730 ext4_create_debugfs_entry();
2734 void ext4_exit_mballoc(void)
2737 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2738 * before destroying the slab cache.
2741 kmem_cache_destroy(ext4_pspace_cachep
);
2742 kmem_cache_destroy(ext4_ac_cachep
);
2743 kmem_cache_destroy(ext4_free_ext_cachep
);
2744 ext4_groupinfo_destroy_slabs();
2745 ext4_remove_debugfs_entry();
2750 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2751 * Returns 0 if success or error code
2753 static noinline_for_stack
int
2754 ext4_mb_mark_diskspace_used(struct ext4_allocation_context
*ac
,
2755 handle_t
*handle
, unsigned int reserv_blks
)
2757 struct buffer_head
*bitmap_bh
= NULL
;
2758 struct ext4_group_desc
*gdp
;
2759 struct buffer_head
*gdp_bh
;
2760 struct ext4_sb_info
*sbi
;
2761 struct super_block
*sb
;
2765 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
2766 BUG_ON(ac
->ac_b_ex
.fe_len
<= 0);
2772 bitmap_bh
= ext4_read_block_bitmap(sb
, ac
->ac_b_ex
.fe_group
);
2776 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
2781 gdp
= ext4_get_group_desc(sb
, ac
->ac_b_ex
.fe_group
, &gdp_bh
);
2785 ext4_debug("using block group %u(%d)\n", ac
->ac_b_ex
.fe_group
,
2786 ext4_free_blks_count(sb
, gdp
));
2788 err
= ext4_journal_get_write_access(handle
, gdp_bh
);
2792 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
2794 len
= ac
->ac_b_ex
.fe_len
;
2795 if (!ext4_data_block_valid(sbi
, block
, len
)) {
2796 ext4_error(sb
, "Allocating blocks %llu-%llu which overlap "
2797 "fs metadata\n", block
, block
+len
);
2798 /* File system mounted not to panic on error
2799 * Fix the bitmap and repeat the block allocation
2800 * We leak some of the blocks here.
2802 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2803 ext4_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
2804 ac
->ac_b_ex
.fe_len
);
2805 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2806 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2812 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2813 #ifdef AGGRESSIVE_CHECK
2816 for (i
= 0; i
< ac
->ac_b_ex
.fe_len
; i
++) {
2817 BUG_ON(mb_test_bit(ac
->ac_b_ex
.fe_start
+ i
,
2818 bitmap_bh
->b_data
));
2822 ext4_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
2823 ac
->ac_b_ex
.fe_len
);
2824 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2825 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
2826 ext4_free_blks_set(sb
, gdp
,
2827 ext4_free_blocks_after_init(sb
,
2828 ac
->ac_b_ex
.fe_group
, gdp
));
2830 len
= ext4_free_blks_count(sb
, gdp
) - ac
->ac_b_ex
.fe_len
;
2831 ext4_free_blks_set(sb
, gdp
, len
);
2832 gdp
->bg_checksum
= ext4_group_desc_csum(sbi
, ac
->ac_b_ex
.fe_group
, gdp
);
2834 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2835 percpu_counter_sub(&sbi
->s_freeblocks_counter
, ac
->ac_b_ex
.fe_len
);
2837 * Now reduce the dirty block count also. Should not go negative
2839 if (!(ac
->ac_flags
& EXT4_MB_DELALLOC_RESERVED
))
2840 /* release all the reserved blocks if non delalloc */
2841 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, reserv_blks
);
2843 if (sbi
->s_log_groups_per_flex
) {
2844 ext4_group_t flex_group
= ext4_flex_group(sbi
,
2845 ac
->ac_b_ex
.fe_group
);
2846 atomic_sub(ac
->ac_b_ex
.fe_len
,
2847 &sbi
->s_flex_groups
[flex_group
].free_blocks
);
2850 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2853 err
= ext4_handle_dirty_metadata(handle
, NULL
, gdp_bh
);
2856 ext4_mark_super_dirty(sb
);
2862 * here we normalize request for locality group
2863 * Group request are normalized to s_mb_group_prealloc, which goes to
2864 * s_strip if we set the same via mount option.
2865 * s_mb_group_prealloc can be configured via
2866 * /sys/fs/ext4/<partition>/mb_group_prealloc
2868 * XXX: should we try to preallocate more than the group has now?
2870 static void ext4_mb_normalize_group_request(struct ext4_allocation_context
*ac
)
2872 struct super_block
*sb
= ac
->ac_sb
;
2873 struct ext4_locality_group
*lg
= ac
->ac_lg
;
2876 ac
->ac_g_ex
.fe_len
= EXT4_SB(sb
)->s_mb_group_prealloc
;
2877 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2878 current
->pid
, ac
->ac_g_ex
.fe_len
);
2882 * Normalization means making request better in terms of
2883 * size and alignment
2885 static noinline_for_stack
void
2886 ext4_mb_normalize_request(struct ext4_allocation_context
*ac
,
2887 struct ext4_allocation_request
*ar
)
2891 loff_t size
, orig_size
, start_off
;
2893 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
2894 struct ext4_prealloc_space
*pa
;
2896 /* do normalize only data requests, metadata requests
2897 do not need preallocation */
2898 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
2901 /* sometime caller may want exact blocks */
2902 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
2905 /* caller may indicate that preallocation isn't
2906 * required (it's a tail, for example) */
2907 if (ac
->ac_flags
& EXT4_MB_HINT_NOPREALLOC
)
2910 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
) {
2911 ext4_mb_normalize_group_request(ac
);
2915 bsbits
= ac
->ac_sb
->s_blocksize_bits
;
2917 /* first, let's learn actual file size
2918 * given current request is allocated */
2919 size
= ac
->ac_o_ex
.fe_logical
+ ac
->ac_o_ex
.fe_len
;
2920 size
= size
<< bsbits
;
2921 if (size
< i_size_read(ac
->ac_inode
))
2922 size
= i_size_read(ac
->ac_inode
);
2925 /* max size of free chunks */
2928 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
2929 (req <= (size) || max <= (chunk_size))
2931 /* first, try to predict filesize */
2932 /* XXX: should this table be tunable? */
2934 if (size
<= 16 * 1024) {
2936 } else if (size
<= 32 * 1024) {
2938 } else if (size
<= 64 * 1024) {
2940 } else if (size
<= 128 * 1024) {
2942 } else if (size
<= 256 * 1024) {
2944 } else if (size
<= 512 * 1024) {
2946 } else if (size
<= 1024 * 1024) {
2948 } else if (NRL_CHECK_SIZE(size
, 4 * 1024 * 1024, max
, 2 * 1024)) {
2949 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
2950 (21 - bsbits
)) << 21;
2951 size
= 2 * 1024 * 1024;
2952 } else if (NRL_CHECK_SIZE(size
, 8 * 1024 * 1024, max
, 4 * 1024)) {
2953 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
2954 (22 - bsbits
)) << 22;
2955 size
= 4 * 1024 * 1024;
2956 } else if (NRL_CHECK_SIZE(ac
->ac_o_ex
.fe_len
,
2957 (8<<20)>>bsbits
, max
, 8 * 1024)) {
2958 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
2959 (23 - bsbits
)) << 23;
2960 size
= 8 * 1024 * 1024;
2962 start_off
= (loff_t
)ac
->ac_o_ex
.fe_logical
<< bsbits
;
2963 size
= ac
->ac_o_ex
.fe_len
<< bsbits
;
2965 size
= size
>> bsbits
;
2966 start
= start_off
>> bsbits
;
2968 /* don't cover already allocated blocks in selected range */
2969 if (ar
->pleft
&& start
<= ar
->lleft
) {
2970 size
-= ar
->lleft
+ 1 - start
;
2971 start
= ar
->lleft
+ 1;
2973 if (ar
->pright
&& start
+ size
- 1 >= ar
->lright
)
2974 size
-= start
+ size
- ar
->lright
;
2978 /* check we don't cross already preallocated blocks */
2980 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
2985 spin_lock(&pa
->pa_lock
);
2986 if (pa
->pa_deleted
) {
2987 spin_unlock(&pa
->pa_lock
);
2991 pa_end
= pa
->pa_lstart
+ pa
->pa_len
;
2993 /* PA must not overlap original request */
2994 BUG_ON(!(ac
->ac_o_ex
.fe_logical
>= pa_end
||
2995 ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
));
2997 /* skip PAs this normalized request doesn't overlap with */
2998 if (pa
->pa_lstart
>= end
|| pa_end
<= start
) {
2999 spin_unlock(&pa
->pa_lock
);
3002 BUG_ON(pa
->pa_lstart
<= start
&& pa_end
>= end
);
3004 /* adjust start or end to be adjacent to this pa */
3005 if (pa_end
<= ac
->ac_o_ex
.fe_logical
) {
3006 BUG_ON(pa_end
< start
);
3008 } else if (pa
->pa_lstart
> ac
->ac_o_ex
.fe_logical
) {
3009 BUG_ON(pa
->pa_lstart
> end
);
3010 end
= pa
->pa_lstart
;
3012 spin_unlock(&pa
->pa_lock
);
3017 /* XXX: extra loop to check we really don't overlap preallocations */
3019 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3021 spin_lock(&pa
->pa_lock
);
3022 if (pa
->pa_deleted
== 0) {
3023 pa_end
= pa
->pa_lstart
+ pa
->pa_len
;
3024 BUG_ON(!(start
>= pa_end
|| end
<= pa
->pa_lstart
));
3026 spin_unlock(&pa
->pa_lock
);
3030 if (start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
3031 start
> ac
->ac_o_ex
.fe_logical
) {
3032 ext4_msg(ac
->ac_sb
, KERN_ERR
,
3033 "start %lu, size %lu, fe_logical %lu",
3034 (unsigned long) start
, (unsigned long) size
,
3035 (unsigned long) ac
->ac_o_ex
.fe_logical
);
3037 BUG_ON(start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
3038 start
> ac
->ac_o_ex
.fe_logical
);
3039 BUG_ON(size
<= 0 || size
> EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
3041 /* now prepare goal request */
3043 /* XXX: is it better to align blocks WRT to logical
3044 * placement or satisfy big request as is */
3045 ac
->ac_g_ex
.fe_logical
= start
;
3046 ac
->ac_g_ex
.fe_len
= size
;
3048 /* define goal start in order to merge */
3049 if (ar
->pright
&& (ar
->lright
== (start
+ size
))) {
3050 /* merge to the right */
3051 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pright
- size
,
3052 &ac
->ac_f_ex
.fe_group
,
3053 &ac
->ac_f_ex
.fe_start
);
3054 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3056 if (ar
->pleft
&& (ar
->lleft
+ 1 == start
)) {
3057 /* merge to the left */
3058 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pleft
+ 1,
3059 &ac
->ac_f_ex
.fe_group
,
3060 &ac
->ac_f_ex
.fe_start
);
3061 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3064 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size
,
3065 (unsigned) orig_size
, (unsigned) start
);
3068 static void ext4_mb_collect_stats(struct ext4_allocation_context
*ac
)
3070 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3072 if (sbi
->s_mb_stats
&& ac
->ac_g_ex
.fe_len
> 1) {
3073 atomic_inc(&sbi
->s_bal_reqs
);
3074 atomic_add(ac
->ac_b_ex
.fe_len
, &sbi
->s_bal_allocated
);
3075 if (ac
->ac_b_ex
.fe_len
>= ac
->ac_o_ex
.fe_len
)
3076 atomic_inc(&sbi
->s_bal_success
);
3077 atomic_add(ac
->ac_found
, &sbi
->s_bal_ex_scanned
);
3078 if (ac
->ac_g_ex
.fe_start
== ac
->ac_b_ex
.fe_start
&&
3079 ac
->ac_g_ex
.fe_group
== ac
->ac_b_ex
.fe_group
)
3080 atomic_inc(&sbi
->s_bal_goals
);
3081 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
)
3082 atomic_inc(&sbi
->s_bal_breaks
);
3085 if (ac
->ac_op
== EXT4_MB_HISTORY_ALLOC
)
3086 trace_ext4_mballoc_alloc(ac
);
3088 trace_ext4_mballoc_prealloc(ac
);
3092 * Called on failure; free up any blocks from the inode PA for this
3093 * context. We don't need this for MB_GROUP_PA because we only change
3094 * pa_free in ext4_mb_release_context(), but on failure, we've already
3095 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3097 static void ext4_discard_allocated_blocks(struct ext4_allocation_context
*ac
)
3099 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
3102 if (pa
&& pa
->pa_type
== MB_INODE_PA
) {
3103 len
= ac
->ac_b_ex
.fe_len
;
3110 * use blocks preallocated to inode
3112 static void ext4_mb_use_inode_pa(struct ext4_allocation_context
*ac
,
3113 struct ext4_prealloc_space
*pa
)
3119 /* found preallocated blocks, use them */
3120 start
= pa
->pa_pstart
+ (ac
->ac_o_ex
.fe_logical
- pa
->pa_lstart
);
3121 end
= min(pa
->pa_pstart
+ pa
->pa_len
, start
+ ac
->ac_o_ex
.fe_len
);
3123 ext4_get_group_no_and_offset(ac
->ac_sb
, start
, &ac
->ac_b_ex
.fe_group
,
3124 &ac
->ac_b_ex
.fe_start
);
3125 ac
->ac_b_ex
.fe_len
= len
;
3126 ac
->ac_status
= AC_STATUS_FOUND
;
3129 BUG_ON(start
< pa
->pa_pstart
);
3130 BUG_ON(start
+ len
> pa
->pa_pstart
+ pa
->pa_len
);
3131 BUG_ON(pa
->pa_free
< len
);
3134 mb_debug(1, "use %llu/%u from inode pa %p\n", start
, len
, pa
);
3138 * use blocks preallocated to locality group
3140 static void ext4_mb_use_group_pa(struct ext4_allocation_context
*ac
,
3141 struct ext4_prealloc_space
*pa
)
3143 unsigned int len
= ac
->ac_o_ex
.fe_len
;
3145 ext4_get_group_no_and_offset(ac
->ac_sb
, pa
->pa_pstart
,
3146 &ac
->ac_b_ex
.fe_group
,
3147 &ac
->ac_b_ex
.fe_start
);
3148 ac
->ac_b_ex
.fe_len
= len
;
3149 ac
->ac_status
= AC_STATUS_FOUND
;
3152 /* we don't correct pa_pstart or pa_plen here to avoid
3153 * possible race when the group is being loaded concurrently
3154 * instead we correct pa later, after blocks are marked
3155 * in on-disk bitmap -- see ext4_mb_release_context()
3156 * Other CPUs are prevented from allocating from this pa by lg_mutex
3158 mb_debug(1, "use %u/%u from group pa %p\n", pa
->pa_lstart
-len
, len
, pa
);
3162 * Return the prealloc space that have minimal distance
3163 * from the goal block. @cpa is the prealloc
3164 * space that is having currently known minimal distance
3165 * from the goal block.
3167 static struct ext4_prealloc_space
*
3168 ext4_mb_check_group_pa(ext4_fsblk_t goal_block
,
3169 struct ext4_prealloc_space
*pa
,
3170 struct ext4_prealloc_space
*cpa
)
3172 ext4_fsblk_t cur_distance
, new_distance
;
3175 atomic_inc(&pa
->pa_count
);
3178 cur_distance
= abs(goal_block
- cpa
->pa_pstart
);
3179 new_distance
= abs(goal_block
- pa
->pa_pstart
);
3181 if (cur_distance
<= new_distance
)
3184 /* drop the previous reference */
3185 atomic_dec(&cpa
->pa_count
);
3186 atomic_inc(&pa
->pa_count
);
3191 * search goal blocks in preallocated space
3193 static noinline_for_stack
int
3194 ext4_mb_use_preallocated(struct ext4_allocation_context
*ac
)
3197 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3198 struct ext4_locality_group
*lg
;
3199 struct ext4_prealloc_space
*pa
, *cpa
= NULL
;
3200 ext4_fsblk_t goal_block
;
3202 /* only data can be preallocated */
3203 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3206 /* first, try per-file preallocation */
3208 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3210 /* all fields in this condition don't change,
3211 * so we can skip locking for them */
3212 if (ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
||
3213 ac
->ac_o_ex
.fe_logical
>= pa
->pa_lstart
+ pa
->pa_len
)
3216 /* non-extent files can't have physical blocks past 2^32 */
3217 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)) &&
3218 pa
->pa_pstart
+ pa
->pa_len
> EXT4_MAX_BLOCK_FILE_PHYS
)
3221 /* found preallocated blocks, use them */
3222 spin_lock(&pa
->pa_lock
);
3223 if (pa
->pa_deleted
== 0 && pa
->pa_free
) {
3224 atomic_inc(&pa
->pa_count
);
3225 ext4_mb_use_inode_pa(ac
, pa
);
3226 spin_unlock(&pa
->pa_lock
);
3227 ac
->ac_criteria
= 10;
3231 spin_unlock(&pa
->pa_lock
);
3235 /* can we use group allocation? */
3236 if (!(ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
))
3239 /* inode may have no locality group for some reason */
3243 order
= fls(ac
->ac_o_ex
.fe_len
) - 1;
3244 if (order
> PREALLOC_TB_SIZE
- 1)
3245 /* The max size of hash table is PREALLOC_TB_SIZE */
3246 order
= PREALLOC_TB_SIZE
- 1;
3248 goal_block
= ext4_grp_offs_to_block(ac
->ac_sb
, &ac
->ac_g_ex
);
3250 * search for the prealloc space that is having
3251 * minimal distance from the goal block.
3253 for (i
= order
; i
< PREALLOC_TB_SIZE
; i
++) {
3255 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[i
],
3257 spin_lock(&pa
->pa_lock
);
3258 if (pa
->pa_deleted
== 0 &&
3259 pa
->pa_free
>= ac
->ac_o_ex
.fe_len
) {
3261 cpa
= ext4_mb_check_group_pa(goal_block
,
3264 spin_unlock(&pa
->pa_lock
);
3269 ext4_mb_use_group_pa(ac
, cpa
);
3270 ac
->ac_criteria
= 20;
3277 * the function goes through all block freed in the group
3278 * but not yet committed and marks them used in in-core bitmap.
3279 * buddy must be generated from this bitmap
3280 * Need to be called with the ext4 group lock held
3282 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
3286 struct ext4_group_info
*grp
;
3287 struct ext4_free_data
*entry
;
3289 grp
= ext4_get_group_info(sb
, group
);
3290 n
= rb_first(&(grp
->bb_free_root
));
3293 entry
= rb_entry(n
, struct ext4_free_data
, node
);
3294 ext4_set_bits(bitmap
, entry
->start_blk
, entry
->count
);
3301 * the function goes through all preallocation in this group and marks them
3302 * used in in-core bitmap. buddy must be generated from this bitmap
3303 * Need to be called with ext4 group lock held
3305 static noinline_for_stack
3306 void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
3309 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3310 struct ext4_prealloc_space
*pa
;
3311 struct list_head
*cur
;
3312 ext4_group_t groupnr
;
3313 ext4_grpblk_t start
;
3314 int preallocated
= 0;
3318 /* all form of preallocation discards first load group,
3319 * so the only competing code is preallocation use.
3320 * we don't need any locking here
3321 * notice we do NOT ignore preallocations with pa_deleted
3322 * otherwise we could leave used blocks available for
3323 * allocation in buddy when concurrent ext4_mb_put_pa()
3324 * is dropping preallocation
3326 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3327 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
3328 spin_lock(&pa
->pa_lock
);
3329 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3332 spin_unlock(&pa
->pa_lock
);
3333 if (unlikely(len
== 0))
3335 BUG_ON(groupnr
!= group
);
3336 ext4_set_bits(bitmap
, start
, len
);
3337 preallocated
+= len
;
3340 mb_debug(1, "prellocated %u for group %u\n", preallocated
, group
);
3343 static void ext4_mb_pa_callback(struct rcu_head
*head
)
3345 struct ext4_prealloc_space
*pa
;
3346 pa
= container_of(head
, struct ext4_prealloc_space
, u
.pa_rcu
);
3347 kmem_cache_free(ext4_pspace_cachep
, pa
);
3351 * drops a reference to preallocated space descriptor
3352 * if this was the last reference and the space is consumed
3354 static void ext4_mb_put_pa(struct ext4_allocation_context
*ac
,
3355 struct super_block
*sb
, struct ext4_prealloc_space
*pa
)
3358 ext4_fsblk_t grp_blk
;
3360 if (!atomic_dec_and_test(&pa
->pa_count
) || pa
->pa_free
!= 0)
3363 /* in this short window concurrent discard can set pa_deleted */
3364 spin_lock(&pa
->pa_lock
);
3365 if (pa
->pa_deleted
== 1) {
3366 spin_unlock(&pa
->pa_lock
);
3371 spin_unlock(&pa
->pa_lock
);
3373 grp_blk
= pa
->pa_pstart
;
3375 * If doing group-based preallocation, pa_pstart may be in the
3376 * next group when pa is used up
3378 if (pa
->pa_type
== MB_GROUP_PA
)
3381 ext4_get_group_no_and_offset(sb
, grp_blk
, &grp
, NULL
);
3386 * P1 (buddy init) P2 (regular allocation)
3387 * find block B in PA
3388 * copy on-disk bitmap to buddy
3389 * mark B in on-disk bitmap
3390 * drop PA from group
3391 * mark all PAs in buddy
3393 * thus, P1 initializes buddy with B available. to prevent this
3394 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3397 ext4_lock_group(sb
, grp
);
3398 list_del(&pa
->pa_group_list
);
3399 ext4_unlock_group(sb
, grp
);
3401 spin_lock(pa
->pa_obj_lock
);
3402 list_del_rcu(&pa
->pa_inode_list
);
3403 spin_unlock(pa
->pa_obj_lock
);
3405 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3409 * creates new preallocated space for given inode
3411 static noinline_for_stack
int
3412 ext4_mb_new_inode_pa(struct ext4_allocation_context
*ac
)
3414 struct super_block
*sb
= ac
->ac_sb
;
3415 struct ext4_prealloc_space
*pa
;
3416 struct ext4_group_info
*grp
;
3417 struct ext4_inode_info
*ei
;
3419 /* preallocate only when found space is larger then requested */
3420 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3421 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3422 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3424 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3428 if (ac
->ac_b_ex
.fe_len
< ac
->ac_g_ex
.fe_len
) {
3434 /* we can't allocate as much as normalizer wants.
3435 * so, found space must get proper lstart
3436 * to cover original request */
3437 BUG_ON(ac
->ac_g_ex
.fe_logical
> ac
->ac_o_ex
.fe_logical
);
3438 BUG_ON(ac
->ac_g_ex
.fe_len
< ac
->ac_o_ex
.fe_len
);
3440 /* we're limited by original request in that
3441 * logical block must be covered any way
3442 * winl is window we can move our chunk within */
3443 winl
= ac
->ac_o_ex
.fe_logical
- ac
->ac_g_ex
.fe_logical
;
3445 /* also, we should cover whole original request */
3446 wins
= ac
->ac_b_ex
.fe_len
- ac
->ac_o_ex
.fe_len
;
3448 /* the smallest one defines real window */
3449 win
= min(winl
, wins
);
3451 offs
= ac
->ac_o_ex
.fe_logical
% ac
->ac_b_ex
.fe_len
;
3452 if (offs
&& offs
< win
)
3455 ac
->ac_b_ex
.fe_logical
= ac
->ac_o_ex
.fe_logical
- win
;
3456 BUG_ON(ac
->ac_o_ex
.fe_logical
< ac
->ac_b_ex
.fe_logical
);
3457 BUG_ON(ac
->ac_o_ex
.fe_len
> ac
->ac_b_ex
.fe_len
);
3460 /* preallocation can change ac_b_ex, thus we store actually
3461 * allocated blocks for history */
3462 ac
->ac_f_ex
= ac
->ac_b_ex
;
3464 pa
->pa_lstart
= ac
->ac_b_ex
.fe_logical
;
3465 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3466 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3467 pa
->pa_free
= pa
->pa_len
;
3468 atomic_set(&pa
->pa_count
, 1);
3469 spin_lock_init(&pa
->pa_lock
);
3470 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3471 INIT_LIST_HEAD(&pa
->pa_group_list
);
3473 pa
->pa_type
= MB_INODE_PA
;
3475 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa
,
3476 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3477 trace_ext4_mb_new_inode_pa(ac
, pa
);
3479 ext4_mb_use_inode_pa(ac
, pa
);
3480 atomic_add(pa
->pa_free
, &EXT4_SB(sb
)->s_mb_preallocated
);
3482 ei
= EXT4_I(ac
->ac_inode
);
3483 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3485 pa
->pa_obj_lock
= &ei
->i_prealloc_lock
;
3486 pa
->pa_inode
= ac
->ac_inode
;
3488 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3489 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3490 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3492 spin_lock(pa
->pa_obj_lock
);
3493 list_add_rcu(&pa
->pa_inode_list
, &ei
->i_prealloc_list
);
3494 spin_unlock(pa
->pa_obj_lock
);
3500 * creates new preallocated space for locality group inodes belongs to
3502 static noinline_for_stack
int
3503 ext4_mb_new_group_pa(struct ext4_allocation_context
*ac
)
3505 struct super_block
*sb
= ac
->ac_sb
;
3506 struct ext4_locality_group
*lg
;
3507 struct ext4_prealloc_space
*pa
;
3508 struct ext4_group_info
*grp
;
3510 /* preallocate only when found space is larger then requested */
3511 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3512 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3513 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3515 BUG_ON(ext4_pspace_cachep
== NULL
);
3516 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3520 /* preallocation can change ac_b_ex, thus we store actually
3521 * allocated blocks for history */
3522 ac
->ac_f_ex
= ac
->ac_b_ex
;
3524 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3525 pa
->pa_lstart
= pa
->pa_pstart
;
3526 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3527 pa
->pa_free
= pa
->pa_len
;
3528 atomic_set(&pa
->pa_count
, 1);
3529 spin_lock_init(&pa
->pa_lock
);
3530 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3531 INIT_LIST_HEAD(&pa
->pa_group_list
);
3533 pa
->pa_type
= MB_GROUP_PA
;
3535 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa
,
3536 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3537 trace_ext4_mb_new_group_pa(ac
, pa
);
3539 ext4_mb_use_group_pa(ac
, pa
);
3540 atomic_add(pa
->pa_free
, &EXT4_SB(sb
)->s_mb_preallocated
);
3542 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3546 pa
->pa_obj_lock
= &lg
->lg_prealloc_lock
;
3547 pa
->pa_inode
= NULL
;
3549 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3550 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3551 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3554 * We will later add the new pa to the right bucket
3555 * after updating the pa_free in ext4_mb_release_context
3560 static int ext4_mb_new_preallocation(struct ext4_allocation_context
*ac
)
3564 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
3565 err
= ext4_mb_new_group_pa(ac
);
3567 err
= ext4_mb_new_inode_pa(ac
);
3572 * finds all unused blocks in on-disk bitmap, frees them in
3573 * in-core bitmap and buddy.
3574 * @pa must be unlinked from inode and group lists, so that
3575 * nobody else can find/use it.
3576 * the caller MUST hold group/inode locks.
3577 * TODO: optimize the case when there are no in-core structures yet
3579 static noinline_for_stack
int
3580 ext4_mb_release_inode_pa(struct ext4_buddy
*e4b
, struct buffer_head
*bitmap_bh
,
3581 struct ext4_prealloc_space
*pa
)
3583 struct super_block
*sb
= e4b
->bd_sb
;
3584 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3589 unsigned long long grp_blk_start
;
3593 BUG_ON(pa
->pa_deleted
== 0);
3594 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3595 grp_blk_start
= pa
->pa_pstart
- bit
;
3596 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3597 end
= bit
+ pa
->pa_len
;
3600 bit
= mb_find_next_zero_bit(bitmap_bh
->b_data
, end
, bit
);
3603 next
= mb_find_next_bit(bitmap_bh
->b_data
, end
, bit
);
3604 mb_debug(1, " free preallocated %u/%u in group %u\n",
3605 (unsigned) ext4_group_first_block_no(sb
, group
) + bit
,
3606 (unsigned) next
- bit
, (unsigned) group
);
3609 trace_ext4_mballoc_discard(sb
, NULL
, group
, bit
, next
- bit
);
3610 trace_ext4_mb_release_inode_pa(pa
, grp_blk_start
+ bit
,
3612 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, next
- bit
);
3615 if (free
!= pa
->pa_free
) {
3616 ext4_msg(e4b
->bd_sb
, KERN_CRIT
,
3617 "pa %p: logic %lu, phys. %lu, len %lu",
3618 pa
, (unsigned long) pa
->pa_lstart
,
3619 (unsigned long) pa
->pa_pstart
,
3620 (unsigned long) pa
->pa_len
);
3621 ext4_grp_locked_error(sb
, group
, 0, 0, "free %u, pa_free %u",
3624 * pa is already deleted so we use the value obtained
3625 * from the bitmap and continue.
3628 atomic_add(free
, &sbi
->s_mb_discarded
);
3633 static noinline_for_stack
int
3634 ext4_mb_release_group_pa(struct ext4_buddy
*e4b
,
3635 struct ext4_prealloc_space
*pa
)
3637 struct super_block
*sb
= e4b
->bd_sb
;
3641 trace_ext4_mb_release_group_pa(pa
);
3642 BUG_ON(pa
->pa_deleted
== 0);
3643 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3644 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3645 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, pa
->pa_len
);
3646 atomic_add(pa
->pa_len
, &EXT4_SB(sb
)->s_mb_discarded
);
3647 trace_ext4_mballoc_discard(sb
, NULL
, group
, bit
, pa
->pa_len
);
3653 * releases all preallocations in given group
3655 * first, we need to decide discard policy:
3656 * - when do we discard
3658 * - how many do we discard
3659 * 1) how many requested
3661 static noinline_for_stack
int
3662 ext4_mb_discard_group_preallocations(struct super_block
*sb
,
3663 ext4_group_t group
, int needed
)
3665 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3666 struct buffer_head
*bitmap_bh
= NULL
;
3667 struct ext4_prealloc_space
*pa
, *tmp
;
3668 struct list_head list
;
3669 struct ext4_buddy e4b
;
3674 mb_debug(1, "discard preallocation for group %u\n", group
);
3676 if (list_empty(&grp
->bb_prealloc_list
))
3679 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3680 if (bitmap_bh
== NULL
) {
3681 ext4_error(sb
, "Error reading block bitmap for %u", group
);
3685 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3687 ext4_error(sb
, "Error loading buddy information for %u", group
);
3693 needed
= EXT4_BLOCKS_PER_GROUP(sb
) + 1;
3695 INIT_LIST_HEAD(&list
);
3697 ext4_lock_group(sb
, group
);
3698 list_for_each_entry_safe(pa
, tmp
,
3699 &grp
->bb_prealloc_list
, pa_group_list
) {
3700 spin_lock(&pa
->pa_lock
);
3701 if (atomic_read(&pa
->pa_count
)) {
3702 spin_unlock(&pa
->pa_lock
);
3706 if (pa
->pa_deleted
) {
3707 spin_unlock(&pa
->pa_lock
);
3711 /* seems this one can be freed ... */
3714 /* we can trust pa_free ... */
3715 free
+= pa
->pa_free
;
3717 spin_unlock(&pa
->pa_lock
);
3719 list_del(&pa
->pa_group_list
);
3720 list_add(&pa
->u
.pa_tmp_list
, &list
);
3723 /* if we still need more blocks and some PAs were used, try again */
3724 if (free
< needed
&& busy
) {
3726 ext4_unlock_group(sb
, group
);
3728 * Yield the CPU here so that we don't get soft lockup
3729 * in non preempt case.
3735 /* found anything to free? */
3736 if (list_empty(&list
)) {
3741 /* now free all selected PAs */
3742 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3744 /* remove from object (inode or locality group) */
3745 spin_lock(pa
->pa_obj_lock
);
3746 list_del_rcu(&pa
->pa_inode_list
);
3747 spin_unlock(pa
->pa_obj_lock
);
3749 if (pa
->pa_type
== MB_GROUP_PA
)
3750 ext4_mb_release_group_pa(&e4b
, pa
);
3752 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
);
3754 list_del(&pa
->u
.pa_tmp_list
);
3755 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3759 ext4_unlock_group(sb
, group
);
3760 ext4_mb_unload_buddy(&e4b
);
3766 * releases all non-used preallocated blocks for given inode
3768 * It's important to discard preallocations under i_data_sem
3769 * We don't want another block to be served from the prealloc
3770 * space when we are discarding the inode prealloc space.
3772 * FIXME!! Make sure it is valid at all the call sites
3774 void ext4_discard_preallocations(struct inode
*inode
)
3776 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3777 struct super_block
*sb
= inode
->i_sb
;
3778 struct buffer_head
*bitmap_bh
= NULL
;
3779 struct ext4_prealloc_space
*pa
, *tmp
;
3780 ext4_group_t group
= 0;
3781 struct list_head list
;
3782 struct ext4_buddy e4b
;
3785 if (!S_ISREG(inode
->i_mode
)) {
3786 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3790 mb_debug(1, "discard preallocation for inode %lu\n", inode
->i_ino
);
3791 trace_ext4_discard_preallocations(inode
);
3793 INIT_LIST_HEAD(&list
);
3796 /* first, collect all pa's in the inode */
3797 spin_lock(&ei
->i_prealloc_lock
);
3798 while (!list_empty(&ei
->i_prealloc_list
)) {
3799 pa
= list_entry(ei
->i_prealloc_list
.next
,
3800 struct ext4_prealloc_space
, pa_inode_list
);
3801 BUG_ON(pa
->pa_obj_lock
!= &ei
->i_prealloc_lock
);
3802 spin_lock(&pa
->pa_lock
);
3803 if (atomic_read(&pa
->pa_count
)) {
3804 /* this shouldn't happen often - nobody should
3805 * use preallocation while we're discarding it */
3806 spin_unlock(&pa
->pa_lock
);
3807 spin_unlock(&ei
->i_prealloc_lock
);
3808 ext4_msg(sb
, KERN_ERR
,
3809 "uh-oh! used pa while discarding");
3811 schedule_timeout_uninterruptible(HZ
);
3815 if (pa
->pa_deleted
== 0) {
3817 spin_unlock(&pa
->pa_lock
);
3818 list_del_rcu(&pa
->pa_inode_list
);
3819 list_add(&pa
->u
.pa_tmp_list
, &list
);
3823 /* someone is deleting pa right now */
3824 spin_unlock(&pa
->pa_lock
);
3825 spin_unlock(&ei
->i_prealloc_lock
);
3827 /* we have to wait here because pa_deleted
3828 * doesn't mean pa is already unlinked from
3829 * the list. as we might be called from
3830 * ->clear_inode() the inode will get freed
3831 * and concurrent thread which is unlinking
3832 * pa from inode's list may access already
3833 * freed memory, bad-bad-bad */
3835 /* XXX: if this happens too often, we can
3836 * add a flag to force wait only in case
3837 * of ->clear_inode(), but not in case of
3838 * regular truncate */
3839 schedule_timeout_uninterruptible(HZ
);
3842 spin_unlock(&ei
->i_prealloc_lock
);
3844 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3845 BUG_ON(pa
->pa_type
!= MB_INODE_PA
);
3846 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, NULL
);
3848 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3850 ext4_error(sb
, "Error loading buddy information for %u",
3855 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3856 if (bitmap_bh
== NULL
) {
3857 ext4_error(sb
, "Error reading block bitmap for %u",
3859 ext4_mb_unload_buddy(&e4b
);
3863 ext4_lock_group(sb
, group
);
3864 list_del(&pa
->pa_group_list
);
3865 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
);
3866 ext4_unlock_group(sb
, group
);
3868 ext4_mb_unload_buddy(&e4b
);
3871 list_del(&pa
->u
.pa_tmp_list
);
3872 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3876 #ifdef CONFIG_EXT4_DEBUG
3877 static void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
3879 struct super_block
*sb
= ac
->ac_sb
;
3880 ext4_group_t ngroups
, i
;
3882 if (!mb_enable_debug
||
3883 (EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
))
3886 ext4_msg(ac
->ac_sb
, KERN_ERR
, "EXT4-fs: Can't allocate:"
3887 " Allocation context details:");
3888 ext4_msg(ac
->ac_sb
, KERN_ERR
, "EXT4-fs: status %d flags %d",
3889 ac
->ac_status
, ac
->ac_flags
);
3890 ext4_msg(ac
->ac_sb
, KERN_ERR
, "EXT4-fs: orig %lu/%lu/%lu@%lu, "
3891 "goal %lu/%lu/%lu@%lu, "
3892 "best %lu/%lu/%lu@%lu cr %d",
3893 (unsigned long)ac
->ac_o_ex
.fe_group
,
3894 (unsigned long)ac
->ac_o_ex
.fe_start
,
3895 (unsigned long)ac
->ac_o_ex
.fe_len
,
3896 (unsigned long)ac
->ac_o_ex
.fe_logical
,
3897 (unsigned long)ac
->ac_g_ex
.fe_group
,
3898 (unsigned long)ac
->ac_g_ex
.fe_start
,
3899 (unsigned long)ac
->ac_g_ex
.fe_len
,
3900 (unsigned long)ac
->ac_g_ex
.fe_logical
,
3901 (unsigned long)ac
->ac_b_ex
.fe_group
,
3902 (unsigned long)ac
->ac_b_ex
.fe_start
,
3903 (unsigned long)ac
->ac_b_ex
.fe_len
,
3904 (unsigned long)ac
->ac_b_ex
.fe_logical
,
3905 (int)ac
->ac_criteria
);
3906 ext4_msg(ac
->ac_sb
, KERN_ERR
, "EXT4-fs: %lu scanned, %d found",
3907 ac
->ac_ex_scanned
, ac
->ac_found
);
3908 ext4_msg(ac
->ac_sb
, KERN_ERR
, "EXT4-fs: groups: ");
3909 ngroups
= ext4_get_groups_count(sb
);
3910 for (i
= 0; i
< ngroups
; i
++) {
3911 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, i
);
3912 struct ext4_prealloc_space
*pa
;
3913 ext4_grpblk_t start
;
3914 struct list_head
*cur
;
3915 ext4_lock_group(sb
, i
);
3916 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3917 pa
= list_entry(cur
, struct ext4_prealloc_space
,
3919 spin_lock(&pa
->pa_lock
);
3920 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3922 spin_unlock(&pa
->pa_lock
);
3923 printk(KERN_ERR
"PA:%u:%d:%u \n", i
,
3926 ext4_unlock_group(sb
, i
);
3928 if (grp
->bb_free
== 0)
3930 printk(KERN_ERR
"%u: %d/%d \n",
3931 i
, grp
->bb_free
, grp
->bb_fragments
);
3933 printk(KERN_ERR
"\n");
3936 static inline void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
3943 * We use locality group preallocation for small size file. The size of the
3944 * file is determined by the current size or the resulting size after
3945 * allocation which ever is larger
3947 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3949 static void ext4_mb_group_or_file(struct ext4_allocation_context
*ac
)
3951 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3952 int bsbits
= ac
->ac_sb
->s_blocksize_bits
;
3955 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3958 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
3961 size
= ac
->ac_o_ex
.fe_logical
+ ac
->ac_o_ex
.fe_len
;
3962 isize
= (i_size_read(ac
->ac_inode
) + ac
->ac_sb
->s_blocksize
- 1)
3965 if ((size
== isize
) &&
3966 !ext4_fs_is_busy(sbi
) &&
3967 (atomic_read(&ac
->ac_inode
->i_writecount
) == 0)) {
3968 ac
->ac_flags
|= EXT4_MB_HINT_NOPREALLOC
;
3972 /* don't use group allocation for large files */
3973 size
= max(size
, isize
);
3974 if (size
> sbi
->s_mb_stream_request
) {
3975 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
3979 BUG_ON(ac
->ac_lg
!= NULL
);
3981 * locality group prealloc space are per cpu. The reason for having
3982 * per cpu locality group is to reduce the contention between block
3983 * request from multiple CPUs.
3985 ac
->ac_lg
= __this_cpu_ptr(sbi
->s_locality_groups
);
3987 /* we're going to use group allocation */
3988 ac
->ac_flags
|= EXT4_MB_HINT_GROUP_ALLOC
;
3990 /* serialize all allocations in the group */
3991 mutex_lock(&ac
->ac_lg
->lg_mutex
);
3994 static noinline_for_stack
int
3995 ext4_mb_initialize_context(struct ext4_allocation_context
*ac
,
3996 struct ext4_allocation_request
*ar
)
3998 struct super_block
*sb
= ar
->inode
->i_sb
;
3999 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4000 struct ext4_super_block
*es
= sbi
->s_es
;
4004 ext4_grpblk_t block
;
4006 /* we can't allocate > group size */
4009 /* just a dirty hack to filter too big requests */
4010 if (len
>= EXT4_BLOCKS_PER_GROUP(sb
) - 10)
4011 len
= EXT4_BLOCKS_PER_GROUP(sb
) - 10;
4013 /* start searching from the goal */
4015 if (goal
< le32_to_cpu(es
->s_first_data_block
) ||
4016 goal
>= ext4_blocks_count(es
))
4017 goal
= le32_to_cpu(es
->s_first_data_block
);
4018 ext4_get_group_no_and_offset(sb
, goal
, &group
, &block
);
4020 /* set up allocation goals */
4021 memset(ac
, 0, sizeof(struct ext4_allocation_context
));
4022 ac
->ac_b_ex
.fe_logical
= ar
->logical
;
4023 ac
->ac_status
= AC_STATUS_CONTINUE
;
4025 ac
->ac_inode
= ar
->inode
;
4026 ac
->ac_o_ex
.fe_logical
= ar
->logical
;
4027 ac
->ac_o_ex
.fe_group
= group
;
4028 ac
->ac_o_ex
.fe_start
= block
;
4029 ac
->ac_o_ex
.fe_len
= len
;
4030 ac
->ac_g_ex
.fe_logical
= ar
->logical
;
4031 ac
->ac_g_ex
.fe_group
= group
;
4032 ac
->ac_g_ex
.fe_start
= block
;
4033 ac
->ac_g_ex
.fe_len
= len
;
4034 ac
->ac_flags
= ar
->flags
;
4036 /* we have to define context: we'll we work with a file or
4037 * locality group. this is a policy, actually */
4038 ext4_mb_group_or_file(ac
);
4040 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4041 "left: %u/%u, right %u/%u to %swritable\n",
4042 (unsigned) ar
->len
, (unsigned) ar
->logical
,
4043 (unsigned) ar
->goal
, ac
->ac_flags
, ac
->ac_2order
,
4044 (unsigned) ar
->lleft
, (unsigned) ar
->pleft
,
4045 (unsigned) ar
->lright
, (unsigned) ar
->pright
,
4046 atomic_read(&ar
->inode
->i_writecount
) ? "" : "non-");
4051 static noinline_for_stack
void
4052 ext4_mb_discard_lg_preallocations(struct super_block
*sb
,
4053 struct ext4_locality_group
*lg
,
4054 int order
, int total_entries
)
4056 ext4_group_t group
= 0;
4057 struct ext4_buddy e4b
;
4058 struct list_head discard_list
;
4059 struct ext4_prealloc_space
*pa
, *tmp
;
4061 mb_debug(1, "discard locality group preallocation\n");
4063 INIT_LIST_HEAD(&discard_list
);
4065 spin_lock(&lg
->lg_prealloc_lock
);
4066 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[order
],
4068 spin_lock(&pa
->pa_lock
);
4069 if (atomic_read(&pa
->pa_count
)) {
4071 * This is the pa that we just used
4072 * for block allocation. So don't
4075 spin_unlock(&pa
->pa_lock
);
4078 if (pa
->pa_deleted
) {
4079 spin_unlock(&pa
->pa_lock
);
4082 /* only lg prealloc space */
4083 BUG_ON(pa
->pa_type
!= MB_GROUP_PA
);
4085 /* seems this one can be freed ... */
4087 spin_unlock(&pa
->pa_lock
);
4089 list_del_rcu(&pa
->pa_inode_list
);
4090 list_add(&pa
->u
.pa_tmp_list
, &discard_list
);
4093 if (total_entries
<= 5) {
4095 * we want to keep only 5 entries
4096 * allowing it to grow to 8. This
4097 * mak sure we don't call discard
4098 * soon for this list.
4103 spin_unlock(&lg
->lg_prealloc_lock
);
4105 list_for_each_entry_safe(pa
, tmp
, &discard_list
, u
.pa_tmp_list
) {
4107 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, NULL
);
4108 if (ext4_mb_load_buddy(sb
, group
, &e4b
)) {
4109 ext4_error(sb
, "Error loading buddy information for %u",
4113 ext4_lock_group(sb
, group
);
4114 list_del(&pa
->pa_group_list
);
4115 ext4_mb_release_group_pa(&e4b
, pa
);
4116 ext4_unlock_group(sb
, group
);
4118 ext4_mb_unload_buddy(&e4b
);
4119 list_del(&pa
->u
.pa_tmp_list
);
4120 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4125 * We have incremented pa_count. So it cannot be freed at this
4126 * point. Also we hold lg_mutex. So no parallel allocation is
4127 * possible from this lg. That means pa_free cannot be updated.
4129 * A parallel ext4_mb_discard_group_preallocations is possible.
4130 * which can cause the lg_prealloc_list to be updated.
4133 static void ext4_mb_add_n_trim(struct ext4_allocation_context
*ac
)
4135 int order
, added
= 0, lg_prealloc_count
= 1;
4136 struct super_block
*sb
= ac
->ac_sb
;
4137 struct ext4_locality_group
*lg
= ac
->ac_lg
;
4138 struct ext4_prealloc_space
*tmp_pa
, *pa
= ac
->ac_pa
;
4140 order
= fls(pa
->pa_free
) - 1;
4141 if (order
> PREALLOC_TB_SIZE
- 1)
4142 /* The max size of hash table is PREALLOC_TB_SIZE */
4143 order
= PREALLOC_TB_SIZE
- 1;
4144 /* Add the prealloc space to lg */
4146 list_for_each_entry_rcu(tmp_pa
, &lg
->lg_prealloc_list
[order
],
4148 spin_lock(&tmp_pa
->pa_lock
);
4149 if (tmp_pa
->pa_deleted
) {
4150 spin_unlock(&tmp_pa
->pa_lock
);
4153 if (!added
&& pa
->pa_free
< tmp_pa
->pa_free
) {
4154 /* Add to the tail of the previous entry */
4155 list_add_tail_rcu(&pa
->pa_inode_list
,
4156 &tmp_pa
->pa_inode_list
);
4159 * we want to count the total
4160 * number of entries in the list
4163 spin_unlock(&tmp_pa
->pa_lock
);
4164 lg_prealloc_count
++;
4167 list_add_tail_rcu(&pa
->pa_inode_list
,
4168 &lg
->lg_prealloc_list
[order
]);
4171 /* Now trim the list to be not more than 8 elements */
4172 if (lg_prealloc_count
> 8) {
4173 ext4_mb_discard_lg_preallocations(sb
, lg
,
4174 order
, lg_prealloc_count
);
4181 * release all resource we used in allocation
4183 static int ext4_mb_release_context(struct ext4_allocation_context
*ac
)
4185 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
4187 if (pa
->pa_type
== MB_GROUP_PA
) {
4188 /* see comment in ext4_mb_use_group_pa() */
4189 spin_lock(&pa
->pa_lock
);
4190 pa
->pa_pstart
+= ac
->ac_b_ex
.fe_len
;
4191 pa
->pa_lstart
+= ac
->ac_b_ex
.fe_len
;
4192 pa
->pa_free
-= ac
->ac_b_ex
.fe_len
;
4193 pa
->pa_len
-= ac
->ac_b_ex
.fe_len
;
4194 spin_unlock(&pa
->pa_lock
);
4199 * We want to add the pa to the right bucket.
4200 * Remove it from the list and while adding
4201 * make sure the list to which we are adding
4204 if ((pa
->pa_type
== MB_GROUP_PA
) && likely(pa
->pa_free
)) {
4205 spin_lock(pa
->pa_obj_lock
);
4206 list_del_rcu(&pa
->pa_inode_list
);
4207 spin_unlock(pa
->pa_obj_lock
);
4208 ext4_mb_add_n_trim(ac
);
4210 ext4_mb_put_pa(ac
, ac
->ac_sb
, pa
);
4212 if (ac
->ac_bitmap_page
)
4213 page_cache_release(ac
->ac_bitmap_page
);
4214 if (ac
->ac_buddy_page
)
4215 page_cache_release(ac
->ac_buddy_page
);
4216 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
4217 mutex_unlock(&ac
->ac_lg
->lg_mutex
);
4218 ext4_mb_collect_stats(ac
);
4222 static int ext4_mb_discard_preallocations(struct super_block
*sb
, int needed
)
4224 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
4228 trace_ext4_mb_discard_preallocations(sb
, needed
);
4229 for (i
= 0; i
< ngroups
&& needed
> 0; i
++) {
4230 ret
= ext4_mb_discard_group_preallocations(sb
, i
, needed
);
4239 * Main entry point into mballoc to allocate blocks
4240 * it tries to use preallocation first, then falls back
4241 * to usual allocation
4243 ext4_fsblk_t
ext4_mb_new_blocks(handle_t
*handle
,
4244 struct ext4_allocation_request
*ar
, int *errp
)
4247 struct ext4_allocation_context
*ac
= NULL
;
4248 struct ext4_sb_info
*sbi
;
4249 struct super_block
*sb
;
4250 ext4_fsblk_t block
= 0;
4251 unsigned int inquota
= 0;
4252 unsigned int reserv_blks
= 0;
4254 sb
= ar
->inode
->i_sb
;
4257 trace_ext4_request_blocks(ar
);
4260 * For delayed allocation, we could skip the ENOSPC and
4261 * EDQUOT check, as blocks and quotas have been already
4262 * reserved when data being copied into pagecache.
4264 if (ext4_test_inode_state(ar
->inode
, EXT4_STATE_DELALLOC_RESERVED
))
4265 ar
->flags
|= EXT4_MB_DELALLOC_RESERVED
;
4267 /* Without delayed allocation we need to verify
4268 * there is enough free blocks to do block allocation
4269 * and verify allocation doesn't exceed the quota limits.
4272 ext4_claim_free_blocks(sbi
, ar
->len
, ar
->flags
)) {
4274 /* let others to free the space */
4276 ar
->len
= ar
->len
>> 1;
4282 reserv_blks
= ar
->len
;
4283 if (ar
->flags
& EXT4_MB_USE_ROOT_BLOCKS
) {
4284 dquot_alloc_block_nofail(ar
->inode
, ar
->len
);
4287 dquot_alloc_block(ar
->inode
, ar
->len
)) {
4289 ar
->flags
|= EXT4_MB_HINT_NOPREALLOC
;
4300 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
4307 *errp
= ext4_mb_initialize_context(ac
, ar
);
4313 ac
->ac_op
= EXT4_MB_HISTORY_PREALLOC
;
4314 if (!ext4_mb_use_preallocated(ac
)) {
4315 ac
->ac_op
= EXT4_MB_HISTORY_ALLOC
;
4316 ext4_mb_normalize_request(ac
, ar
);
4318 /* allocate space in core */
4319 *errp
= ext4_mb_regular_allocator(ac
);
4323 /* as we've just preallocated more space than
4324 * user requested orinally, we store allocated
4325 * space in a special descriptor */
4326 if (ac
->ac_status
== AC_STATUS_FOUND
&&
4327 ac
->ac_o_ex
.fe_len
< ac
->ac_b_ex
.fe_len
)
4328 ext4_mb_new_preallocation(ac
);
4330 if (likely(ac
->ac_status
== AC_STATUS_FOUND
)) {
4331 *errp
= ext4_mb_mark_diskspace_used(ac
, handle
, reserv_blks
);
4332 if (*errp
== -EAGAIN
) {
4334 * drop the reference that we took
4335 * in ext4_mb_use_best_found
4337 ext4_mb_release_context(ac
);
4338 ac
->ac_b_ex
.fe_group
= 0;
4339 ac
->ac_b_ex
.fe_start
= 0;
4340 ac
->ac_b_ex
.fe_len
= 0;
4341 ac
->ac_status
= AC_STATUS_CONTINUE
;
4345 ext4_discard_allocated_blocks(ac
);
4347 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
4348 ar
->len
= ac
->ac_b_ex
.fe_len
;
4351 freed
= ext4_mb_discard_preallocations(sb
, ac
->ac_o_ex
.fe_len
);
4358 ac
->ac_b_ex
.fe_len
= 0;
4360 ext4_mb_show_ac(ac
);
4362 ext4_mb_release_context(ac
);
4365 kmem_cache_free(ext4_ac_cachep
, ac
);
4366 if (inquota
&& ar
->len
< inquota
)
4367 dquot_free_block(ar
->inode
, inquota
- ar
->len
);
4369 if (!ext4_test_inode_state(ar
->inode
,
4370 EXT4_STATE_DELALLOC_RESERVED
))
4371 /* release all the reserved blocks if non delalloc */
4372 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
4376 trace_ext4_allocate_blocks(ar
, (unsigned long long)block
);
4382 * We can merge two free data extents only if the physical blocks
4383 * are contiguous, AND the extents were freed by the same transaction,
4384 * AND the blocks are associated with the same group.
4386 static int can_merge(struct ext4_free_data
*entry1
,
4387 struct ext4_free_data
*entry2
)
4389 if ((entry1
->t_tid
== entry2
->t_tid
) &&
4390 (entry1
->group
== entry2
->group
) &&
4391 ((entry1
->start_blk
+ entry1
->count
) == entry2
->start_blk
))
4396 static noinline_for_stack
int
4397 ext4_mb_free_metadata(handle_t
*handle
, struct ext4_buddy
*e4b
,
4398 struct ext4_free_data
*new_entry
)
4400 ext4_group_t group
= e4b
->bd_group
;
4401 ext4_grpblk_t block
;
4402 struct ext4_free_data
*entry
;
4403 struct ext4_group_info
*db
= e4b
->bd_info
;
4404 struct super_block
*sb
= e4b
->bd_sb
;
4405 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4406 struct rb_node
**n
= &db
->bb_free_root
.rb_node
, *node
;
4407 struct rb_node
*parent
= NULL
, *new_node
;
4409 BUG_ON(!ext4_handle_valid(handle
));
4410 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
4411 BUG_ON(e4b
->bd_buddy_page
== NULL
);
4413 new_node
= &new_entry
->node
;
4414 block
= new_entry
->start_blk
;
4417 /* first free block exent. We need to
4418 protect buddy cache from being freed,
4419 * otherwise we'll refresh it from
4420 * on-disk bitmap and lose not-yet-available
4422 page_cache_get(e4b
->bd_buddy_page
);
4423 page_cache_get(e4b
->bd_bitmap_page
);
4427 entry
= rb_entry(parent
, struct ext4_free_data
, node
);
4428 if (block
< entry
->start_blk
)
4430 else if (block
>= (entry
->start_blk
+ entry
->count
))
4431 n
= &(*n
)->rb_right
;
4433 ext4_grp_locked_error(sb
, group
, 0,
4434 ext4_group_first_block_no(sb
, group
) + block
,
4435 "Block already on to-be-freed list");
4440 rb_link_node(new_node
, parent
, n
);
4441 rb_insert_color(new_node
, &db
->bb_free_root
);
4443 /* Now try to see the extent can be merged to left and right */
4444 node
= rb_prev(new_node
);
4446 entry
= rb_entry(node
, struct ext4_free_data
, node
);
4447 if (can_merge(entry
, new_entry
)) {
4448 new_entry
->start_blk
= entry
->start_blk
;
4449 new_entry
->count
+= entry
->count
;
4450 rb_erase(node
, &(db
->bb_free_root
));
4451 spin_lock(&sbi
->s_md_lock
);
4452 list_del(&entry
->list
);
4453 spin_unlock(&sbi
->s_md_lock
);
4454 kmem_cache_free(ext4_free_ext_cachep
, entry
);
4458 node
= rb_next(new_node
);
4460 entry
= rb_entry(node
, struct ext4_free_data
, node
);
4461 if (can_merge(new_entry
, entry
)) {
4462 new_entry
->count
+= entry
->count
;
4463 rb_erase(node
, &(db
->bb_free_root
));
4464 spin_lock(&sbi
->s_md_lock
);
4465 list_del(&entry
->list
);
4466 spin_unlock(&sbi
->s_md_lock
);
4467 kmem_cache_free(ext4_free_ext_cachep
, entry
);
4470 /* Add the extent to transaction's private list */
4471 spin_lock(&sbi
->s_md_lock
);
4472 list_add(&new_entry
->list
, &handle
->h_transaction
->t_private_list
);
4473 spin_unlock(&sbi
->s_md_lock
);
4478 * ext4_free_blocks() -- Free given blocks and update quota
4479 * @handle: handle for this transaction
4481 * @block: start physical block to free
4482 * @count: number of blocks to count
4483 * @flags: flags used by ext4_free_blocks
4485 void ext4_free_blocks(handle_t
*handle
, struct inode
*inode
,
4486 struct buffer_head
*bh
, ext4_fsblk_t block
,
4487 unsigned long count
, int flags
)
4489 struct buffer_head
*bitmap_bh
= NULL
;
4490 struct super_block
*sb
= inode
->i_sb
;
4491 struct ext4_group_desc
*gdp
;
4492 unsigned long freed
= 0;
4493 unsigned int overflow
;
4495 struct buffer_head
*gd_bh
;
4496 ext4_group_t block_group
;
4497 struct ext4_sb_info
*sbi
;
4498 struct ext4_buddy e4b
;
4504 BUG_ON(block
!= bh
->b_blocknr
);
4506 block
= bh
->b_blocknr
;
4510 if (!(flags
& EXT4_FREE_BLOCKS_VALIDATED
) &&
4511 !ext4_data_block_valid(sbi
, block
, count
)) {
4512 ext4_error(sb
, "Freeing blocks not in datazone - "
4513 "block = %llu, count = %lu", block
, count
);
4517 ext4_debug("freeing block %llu\n", block
);
4518 trace_ext4_free_blocks(inode
, block
, count
, flags
);
4520 if (flags
& EXT4_FREE_BLOCKS_FORGET
) {
4521 struct buffer_head
*tbh
= bh
;
4524 BUG_ON(bh
&& (count
> 1));
4526 for (i
= 0; i
< count
; i
++) {
4528 tbh
= sb_find_get_block(inode
->i_sb
,
4532 ext4_forget(handle
, flags
& EXT4_FREE_BLOCKS_METADATA
,
4533 inode
, tbh
, block
+ i
);
4538 * We need to make sure we don't reuse the freed block until
4539 * after the transaction is committed, which we can do by
4540 * treating the block as metadata, below. We make an
4541 * exception if the inode is to be written in writeback mode
4542 * since writeback mode has weak data consistency guarantees.
4544 if (!ext4_should_writeback_data(inode
))
4545 flags
|= EXT4_FREE_BLOCKS_METADATA
;
4549 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
4552 * Check to see if we are freeing blocks across a group
4555 if (bit
+ count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
4556 overflow
= bit
+ count
- EXT4_BLOCKS_PER_GROUP(sb
);
4559 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
4564 gdp
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
4570 if (in_range(ext4_block_bitmap(sb
, gdp
), block
, count
) ||
4571 in_range(ext4_inode_bitmap(sb
, gdp
), block
, count
) ||
4572 in_range(block
, ext4_inode_table(sb
, gdp
),
4573 EXT4_SB(sb
)->s_itb_per_group
) ||
4574 in_range(block
+ count
- 1, ext4_inode_table(sb
, gdp
),
4575 EXT4_SB(sb
)->s_itb_per_group
)) {
4577 ext4_error(sb
, "Freeing blocks in system zone - "
4578 "Block = %llu, count = %lu", block
, count
);
4579 /* err = 0. ext4_std_error should be a no op */
4583 BUFFER_TRACE(bitmap_bh
, "getting write access");
4584 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
4589 * We are about to modify some metadata. Call the journal APIs
4590 * to unshare ->b_data if a currently-committing transaction is
4593 BUFFER_TRACE(gd_bh
, "get_write_access");
4594 err
= ext4_journal_get_write_access(handle
, gd_bh
);
4597 #ifdef AGGRESSIVE_CHECK
4600 for (i
= 0; i
< count
; i
++)
4601 BUG_ON(!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
));
4604 trace_ext4_mballoc_free(sb
, inode
, block_group
, bit
, count
);
4606 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
4610 if ((flags
& EXT4_FREE_BLOCKS_METADATA
) && ext4_handle_valid(handle
)) {
4611 struct ext4_free_data
*new_entry
;
4613 * blocks being freed are metadata. these blocks shouldn't
4614 * be used until this transaction is committed
4616 new_entry
= kmem_cache_alloc(ext4_free_ext_cachep
, GFP_NOFS
);
4621 new_entry
->start_blk
= bit
;
4622 new_entry
->group
= block_group
;
4623 new_entry
->count
= count
;
4624 new_entry
->t_tid
= handle
->h_transaction
->t_tid
;
4626 ext4_lock_group(sb
, block_group
);
4627 mb_clear_bits(bitmap_bh
->b_data
, bit
, count
);
4628 ext4_mb_free_metadata(handle
, &e4b
, new_entry
);
4630 /* need to update group_info->bb_free and bitmap
4631 * with group lock held. generate_buddy look at
4632 * them with group lock_held
4634 ext4_lock_group(sb
, block_group
);
4635 mb_clear_bits(bitmap_bh
->b_data
, bit
, count
);
4636 mb_free_blocks(inode
, &e4b
, bit
, count
);
4639 ret
= ext4_free_blks_count(sb
, gdp
) + count
;
4640 ext4_free_blks_set(sb
, gdp
, ret
);
4641 gdp
->bg_checksum
= ext4_group_desc_csum(sbi
, block_group
, gdp
);
4642 ext4_unlock_group(sb
, block_group
);
4643 percpu_counter_add(&sbi
->s_freeblocks_counter
, count
);
4645 if (sbi
->s_log_groups_per_flex
) {
4646 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
4647 atomic_add(count
, &sbi
->s_flex_groups
[flex_group
].free_blocks
);
4650 ext4_mb_unload_buddy(&e4b
);
4654 /* We dirtied the bitmap block */
4655 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
4656 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
4658 /* And the group descriptor block */
4659 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
4660 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
4664 if (overflow
&& !err
) {
4670 ext4_mark_super_dirty(sb
);
4672 if (freed
&& !(flags
& EXT4_FREE_BLOCKS_NO_QUOT_UPDATE
))
4673 dquot_free_block(inode
, freed
);
4675 ext4_std_error(sb
, err
);
4680 * ext4_group_add_blocks() -- Add given blocks to an existing group
4681 * @handle: handle to this transaction
4683 * @block: start physcial block to add to the block group
4684 * @count: number of blocks to free
4686 * This marks the blocks as free in the bitmap and buddy.
4688 int ext4_group_add_blocks(handle_t
*handle
, struct super_block
*sb
,
4689 ext4_fsblk_t block
, unsigned long count
)
4691 struct buffer_head
*bitmap_bh
= NULL
;
4692 struct buffer_head
*gd_bh
;
4693 ext4_group_t block_group
;
4696 struct ext4_group_desc
*desc
;
4697 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4698 struct ext4_buddy e4b
;
4699 int err
= 0, ret
, blk_free_count
;
4700 ext4_grpblk_t blocks_freed
;
4702 ext4_debug("Adding block(s) %llu-%llu\n", block
, block
+ count
- 1);
4707 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
4709 * Check to see if we are freeing blocks across a group
4712 if (bit
+ count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
4713 ext4_warning(sb
, "too much blocks added to group %u\n",
4719 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
4725 desc
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
4731 if (in_range(ext4_block_bitmap(sb
, desc
), block
, count
) ||
4732 in_range(ext4_inode_bitmap(sb
, desc
), block
, count
) ||
4733 in_range(block
, ext4_inode_table(sb
, desc
), sbi
->s_itb_per_group
) ||
4734 in_range(block
+ count
- 1, ext4_inode_table(sb
, desc
),
4735 sbi
->s_itb_per_group
)) {
4736 ext4_error(sb
, "Adding blocks in system zones - "
4737 "Block = %llu, count = %lu",
4743 BUFFER_TRACE(bitmap_bh
, "getting write access");
4744 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
4749 * We are about to modify some metadata. Call the journal APIs
4750 * to unshare ->b_data if a currently-committing transaction is
4753 BUFFER_TRACE(gd_bh
, "get_write_access");
4754 err
= ext4_journal_get_write_access(handle
, gd_bh
);
4758 for (i
= 0, blocks_freed
= 0; i
< count
; i
++) {
4759 BUFFER_TRACE(bitmap_bh
, "clear bit");
4760 if (!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
)) {
4761 ext4_error(sb
, "bit already cleared for block %llu",
4762 (ext4_fsblk_t
)(block
+ i
));
4763 BUFFER_TRACE(bitmap_bh
, "bit already cleared");
4769 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
4774 * need to update group_info->bb_free and bitmap
4775 * with group lock held. generate_buddy look at
4776 * them with group lock_held
4778 ext4_lock_group(sb
, block_group
);
4779 mb_clear_bits(bitmap_bh
->b_data
, bit
, count
);
4780 mb_free_blocks(NULL
, &e4b
, bit
, count
);
4781 blk_free_count
= blocks_freed
+ ext4_free_blks_count(sb
, desc
);
4782 ext4_free_blks_set(sb
, desc
, blk_free_count
);
4783 desc
->bg_checksum
= ext4_group_desc_csum(sbi
, block_group
, desc
);
4784 ext4_unlock_group(sb
, block_group
);
4785 percpu_counter_add(&sbi
->s_freeblocks_counter
, blocks_freed
);
4787 if (sbi
->s_log_groups_per_flex
) {
4788 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
4789 atomic_add(blocks_freed
,
4790 &sbi
->s_flex_groups
[flex_group
].free_blocks
);
4793 ext4_mb_unload_buddy(&e4b
);
4795 /* We dirtied the bitmap block */
4796 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
4797 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
4799 /* And the group descriptor block */
4800 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
4801 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
4807 ext4_std_error(sb
, err
);
4812 * ext4_trim_extent -- function to TRIM one single free extent in the group
4813 * @sb: super block for the file system
4814 * @start: starting block of the free extent in the alloc. group
4815 * @count: number of blocks to TRIM
4816 * @group: alloc. group we are working with
4817 * @e4b: ext4 buddy for the group
4819 * Trim "count" blocks starting at "start" in the "group". To assure that no
4820 * one will allocate those blocks, mark it as used in buddy bitmap. This must
4821 * be called with under the group lock.
4823 static void ext4_trim_extent(struct super_block
*sb
, int start
, int count
,
4824 ext4_group_t group
, struct ext4_buddy
*e4b
)
4826 struct ext4_free_extent ex
;
4828 trace_ext4_trim_extent(sb
, group
, start
, count
);
4830 assert_spin_locked(ext4_group_lock_ptr(sb
, group
));
4832 ex
.fe_start
= start
;
4833 ex
.fe_group
= group
;
4837 * Mark blocks used, so no one can reuse them while
4840 mb_mark_used(e4b
, &ex
);
4841 ext4_unlock_group(sb
, group
);
4842 ext4_issue_discard(sb
, group
, start
, count
);
4843 ext4_lock_group(sb
, group
);
4844 mb_free_blocks(NULL
, e4b
, start
, ex
.fe_len
);
4848 * ext4_trim_all_free -- function to trim all free space in alloc. group
4849 * @sb: super block for file system
4850 * @group: group to be trimmed
4851 * @start: first group block to examine
4852 * @max: last group block to examine
4853 * @minblocks: minimum extent block count
4855 * ext4_trim_all_free walks through group's buddy bitmap searching for free
4856 * extents. When the free block is found, ext4_trim_extent is called to TRIM
4860 * ext4_trim_all_free walks through group's block bitmap searching for free
4861 * extents. When the free extent is found, mark it as used in group buddy
4862 * bitmap. Then issue a TRIM command on this extent and free the extent in
4863 * the group buddy bitmap. This is done until whole group is scanned.
4865 static ext4_grpblk_t
4866 ext4_trim_all_free(struct super_block
*sb
, ext4_group_t group
,
4867 ext4_grpblk_t start
, ext4_grpblk_t max
,
4868 ext4_grpblk_t minblocks
)
4871 ext4_grpblk_t next
, count
= 0, free_count
= 0;
4872 struct ext4_buddy e4b
;
4875 trace_ext4_trim_all_free(sb
, group
, start
, max
);
4877 ret
= ext4_mb_load_buddy(sb
, group
, &e4b
);
4879 ext4_error(sb
, "Error in loading buddy "
4880 "information for %u", group
);
4883 bitmap
= e4b
.bd_bitmap
;
4885 ext4_lock_group(sb
, group
);
4886 if (EXT4_MB_GRP_WAS_TRIMMED(e4b
.bd_info
) &&
4887 minblocks
>= atomic_read(&EXT4_SB(sb
)->s_last_trim_minblks
))
4890 start
= (e4b
.bd_info
->bb_first_free
> start
) ?
4891 e4b
.bd_info
->bb_first_free
: start
;
4893 while (start
< max
) {
4894 start
= mb_find_next_zero_bit(bitmap
, max
, start
);
4897 next
= mb_find_next_bit(bitmap
, max
, start
);
4899 if ((next
- start
) >= minblocks
) {
4900 ext4_trim_extent(sb
, start
,
4901 next
- start
, group
, &e4b
);
4902 count
+= next
- start
;
4904 free_count
+= next
- start
;
4907 if (fatal_signal_pending(current
)) {
4908 count
= -ERESTARTSYS
;
4912 if (need_resched()) {
4913 ext4_unlock_group(sb
, group
);
4915 ext4_lock_group(sb
, group
);
4918 if ((e4b
.bd_info
->bb_free
- free_count
) < minblocks
)
4923 EXT4_MB_GRP_SET_TRIMMED(e4b
.bd_info
);
4925 ext4_unlock_group(sb
, group
);
4926 ext4_mb_unload_buddy(&e4b
);
4928 ext4_debug("trimmed %d blocks in the group %d\n",
4935 * ext4_trim_fs() -- trim ioctl handle function
4936 * @sb: superblock for filesystem
4937 * @range: fstrim_range structure
4939 * start: First Byte to trim
4940 * len: number of Bytes to trim from start
4941 * minlen: minimum extent length in Bytes
4942 * ext4_trim_fs goes through all allocation groups containing Bytes from
4943 * start to start+len. For each such a group ext4_trim_all_free function
4944 * is invoked to trim all free space.
4946 int ext4_trim_fs(struct super_block
*sb
, struct fstrim_range
*range
)
4948 struct ext4_group_info
*grp
;
4949 ext4_group_t first_group
, last_group
;
4950 ext4_group_t group
, ngroups
= ext4_get_groups_count(sb
);
4951 ext4_grpblk_t cnt
= 0, first_block
, last_block
;
4952 uint64_t start
, len
, minlen
, trimmed
= 0;
4953 ext4_fsblk_t first_data_blk
=
4954 le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
);
4957 start
= range
->start
>> sb
->s_blocksize_bits
;
4958 len
= range
->len
>> sb
->s_blocksize_bits
;
4959 minlen
= range
->minlen
>> sb
->s_blocksize_bits
;
4961 if (unlikely(minlen
> EXT4_BLOCKS_PER_GROUP(sb
)))
4963 if (start
+ len
<= first_data_blk
)
4965 if (start
< first_data_blk
) {
4966 len
-= first_data_blk
- start
;
4967 start
= first_data_blk
;
4970 /* Determine first and last group to examine based on start and len */
4971 ext4_get_group_no_and_offset(sb
, (ext4_fsblk_t
) start
,
4972 &first_group
, &first_block
);
4973 ext4_get_group_no_and_offset(sb
, (ext4_fsblk_t
) (start
+ len
),
4974 &last_group
, &last_block
);
4975 last_group
= (last_group
> ngroups
- 1) ? ngroups
- 1 : last_group
;
4976 last_block
= EXT4_BLOCKS_PER_GROUP(sb
);
4978 if (first_group
> last_group
)
4981 for (group
= first_group
; group
<= last_group
; group
++) {
4982 grp
= ext4_get_group_info(sb
, group
);
4983 /* We only do this if the grp has never been initialized */
4984 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
4985 ret
= ext4_mb_init_group(sb
, group
);
4991 * For all the groups except the last one, last block will
4992 * always be EXT4_BLOCKS_PER_GROUP(sb), so we only need to
4993 * change it for the last group in which case start +
4994 * len < EXT4_BLOCKS_PER_GROUP(sb).
4996 if (first_block
+ len
< EXT4_BLOCKS_PER_GROUP(sb
))
4997 last_block
= first_block
+ len
;
4998 len
-= last_block
- first_block
;
5000 if (grp
->bb_free
>= minlen
) {
5001 cnt
= ext4_trim_all_free(sb
, group
, first_block
,
5002 last_block
, minlen
);
5011 range
->len
= trimmed
* sb
->s_blocksize
;
5014 atomic_set(&EXT4_SB(sb
)->s_last_trim_minblks
, minlen
);