Add linux-next specific files for 20110831
[linux-2.6/next.git] / kernel / events / core.c
blob115d701a2c362dc80a4a0b2796a4c51597cf717c
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
40 #include "internal.h"
42 #include <asm/irq_regs.h>
44 struct remote_function_call {
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
51 static void remote_function(void *data)
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
62 tfc->ret = tfc->func(tfc->info);
65 /**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
78 static int
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
81 struct remote_function_call data = {
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
91 return data.ret;
94 /**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
99 * Calls the function @func on the remote cpu.
101 * returns: @func return value or -ENXIO when the cpu is offline
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
105 struct remote_function_call data = {
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
112 smp_call_function_single(cpu, remote_function, &data, 1);
114 return data.ret;
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
121 enum event_type_t {
122 EVENT_FLEXIBLE = 0x1,
123 EVENT_PINNED = 0x2,
124 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
128 * perf_sched_events : >0 events exist
129 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
131 struct jump_label_key perf_sched_events __read_mostly;
132 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
134 static atomic_t nr_mmap_events __read_mostly;
135 static atomic_t nr_comm_events __read_mostly;
136 static atomic_t nr_task_events __read_mostly;
138 static LIST_HEAD(pmus);
139 static DEFINE_MUTEX(pmus_lock);
140 static struct srcu_struct pmus_srcu;
143 * perf event paranoia level:
144 * -1 - not paranoid at all
145 * 0 - disallow raw tracepoint access for unpriv
146 * 1 - disallow cpu events for unpriv
147 * 2 - disallow kernel profiling for unpriv
149 int sysctl_perf_event_paranoid __read_mostly = 1;
151 /* Minimum for 512 kiB + 1 user control page */
152 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
155 * max perf event sample rate
157 #define DEFAULT_MAX_SAMPLE_RATE 100000
158 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
159 static int max_samples_per_tick __read_mostly =
160 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
162 int perf_proc_update_handler(struct ctl_table *table, int write,
163 void __user *buffer, size_t *lenp,
164 loff_t *ppos)
166 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
168 if (ret || !write)
169 return ret;
171 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
173 return 0;
176 static atomic64_t perf_event_id;
178 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
179 enum event_type_t event_type);
181 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
182 enum event_type_t event_type,
183 struct task_struct *task);
185 static void update_context_time(struct perf_event_context *ctx);
186 static u64 perf_event_time(struct perf_event *event);
188 void __weak perf_event_print_debug(void) { }
190 extern __weak const char *perf_pmu_name(void)
192 return "pmu";
195 static inline u64 perf_clock(void)
197 return local_clock();
200 static inline struct perf_cpu_context *
201 __get_cpu_context(struct perf_event_context *ctx)
203 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
206 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
207 struct perf_event_context *ctx)
209 raw_spin_lock(&cpuctx->ctx.lock);
210 if (ctx)
211 raw_spin_lock(&ctx->lock);
214 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
215 struct perf_event_context *ctx)
217 if (ctx)
218 raw_spin_unlock(&ctx->lock);
219 raw_spin_unlock(&cpuctx->ctx.lock);
222 #ifdef CONFIG_CGROUP_PERF
225 * Must ensure cgroup is pinned (css_get) before calling
226 * this function. In other words, we cannot call this function
227 * if there is no cgroup event for the current CPU context.
229 static inline struct perf_cgroup *
230 perf_cgroup_from_task(struct task_struct *task)
232 return container_of(task_subsys_state(task, perf_subsys_id),
233 struct perf_cgroup, css);
236 static inline bool
237 perf_cgroup_match(struct perf_event *event)
239 struct perf_event_context *ctx = event->ctx;
240 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
242 return !event->cgrp || event->cgrp == cpuctx->cgrp;
245 static inline void perf_get_cgroup(struct perf_event *event)
247 css_get(&event->cgrp->css);
250 static inline void perf_put_cgroup(struct perf_event *event)
252 css_put(&event->cgrp->css);
255 static inline void perf_detach_cgroup(struct perf_event *event)
257 perf_put_cgroup(event);
258 event->cgrp = NULL;
261 static inline int is_cgroup_event(struct perf_event *event)
263 return event->cgrp != NULL;
266 static inline u64 perf_cgroup_event_time(struct perf_event *event)
268 struct perf_cgroup_info *t;
270 t = per_cpu_ptr(event->cgrp->info, event->cpu);
271 return t->time;
274 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
276 struct perf_cgroup_info *info;
277 u64 now;
279 now = perf_clock();
281 info = this_cpu_ptr(cgrp->info);
283 info->time += now - info->timestamp;
284 info->timestamp = now;
287 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
289 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
290 if (cgrp_out)
291 __update_cgrp_time(cgrp_out);
294 static inline void update_cgrp_time_from_event(struct perf_event *event)
296 struct perf_cgroup *cgrp;
299 * ensure we access cgroup data only when needed and
300 * when we know the cgroup is pinned (css_get)
302 if (!is_cgroup_event(event))
303 return;
305 cgrp = perf_cgroup_from_task(current);
307 * Do not update time when cgroup is not active
309 if (cgrp == event->cgrp)
310 __update_cgrp_time(event->cgrp);
313 static inline void
314 perf_cgroup_set_timestamp(struct task_struct *task,
315 struct perf_event_context *ctx)
317 struct perf_cgroup *cgrp;
318 struct perf_cgroup_info *info;
321 * ctx->lock held by caller
322 * ensure we do not access cgroup data
323 * unless we have the cgroup pinned (css_get)
325 if (!task || !ctx->nr_cgroups)
326 return;
328 cgrp = perf_cgroup_from_task(task);
329 info = this_cpu_ptr(cgrp->info);
330 info->timestamp = ctx->timestamp;
333 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
334 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
337 * reschedule events based on the cgroup constraint of task.
339 * mode SWOUT : schedule out everything
340 * mode SWIN : schedule in based on cgroup for next
342 void perf_cgroup_switch(struct task_struct *task, int mode)
344 struct perf_cpu_context *cpuctx;
345 struct pmu *pmu;
346 unsigned long flags;
349 * disable interrupts to avoid geting nr_cgroup
350 * changes via __perf_event_disable(). Also
351 * avoids preemption.
353 local_irq_save(flags);
356 * we reschedule only in the presence of cgroup
357 * constrained events.
359 rcu_read_lock();
361 list_for_each_entry_rcu(pmu, &pmus, entry) {
362 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
365 * perf_cgroup_events says at least one
366 * context on this CPU has cgroup events.
368 * ctx->nr_cgroups reports the number of cgroup
369 * events for a context.
371 if (cpuctx->ctx.nr_cgroups > 0) {
372 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
373 perf_pmu_disable(cpuctx->ctx.pmu);
375 if (mode & PERF_CGROUP_SWOUT) {
376 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
378 * must not be done before ctxswout due
379 * to event_filter_match() in event_sched_out()
381 cpuctx->cgrp = NULL;
384 if (mode & PERF_CGROUP_SWIN) {
385 WARN_ON_ONCE(cpuctx->cgrp);
386 /* set cgrp before ctxsw in to
387 * allow event_filter_match() to not
388 * have to pass task around
390 cpuctx->cgrp = perf_cgroup_from_task(task);
391 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
393 perf_pmu_enable(cpuctx->ctx.pmu);
394 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
398 rcu_read_unlock();
400 local_irq_restore(flags);
403 static inline void perf_cgroup_sched_out(struct task_struct *task)
405 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
408 static inline void perf_cgroup_sched_in(struct task_struct *task)
410 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
413 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
414 struct perf_event_attr *attr,
415 struct perf_event *group_leader)
417 struct perf_cgroup *cgrp;
418 struct cgroup_subsys_state *css;
419 struct file *file;
420 int ret = 0, fput_needed;
422 file = fget_light(fd, &fput_needed);
423 if (!file)
424 return -EBADF;
426 css = cgroup_css_from_dir(file, perf_subsys_id);
427 if (IS_ERR(css)) {
428 ret = PTR_ERR(css);
429 goto out;
432 cgrp = container_of(css, struct perf_cgroup, css);
433 event->cgrp = cgrp;
435 /* must be done before we fput() the file */
436 perf_get_cgroup(event);
439 * all events in a group must monitor
440 * the same cgroup because a task belongs
441 * to only one perf cgroup at a time
443 if (group_leader && group_leader->cgrp != cgrp) {
444 perf_detach_cgroup(event);
445 ret = -EINVAL;
447 out:
448 fput_light(file, fput_needed);
449 return ret;
452 static inline void
453 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
455 struct perf_cgroup_info *t;
456 t = per_cpu_ptr(event->cgrp->info, event->cpu);
457 event->shadow_ctx_time = now - t->timestamp;
460 static inline void
461 perf_cgroup_defer_enabled(struct perf_event *event)
464 * when the current task's perf cgroup does not match
465 * the event's, we need to remember to call the
466 * perf_mark_enable() function the first time a task with
467 * a matching perf cgroup is scheduled in.
469 if (is_cgroup_event(event) && !perf_cgroup_match(event))
470 event->cgrp_defer_enabled = 1;
473 static inline void
474 perf_cgroup_mark_enabled(struct perf_event *event,
475 struct perf_event_context *ctx)
477 struct perf_event *sub;
478 u64 tstamp = perf_event_time(event);
480 if (!event->cgrp_defer_enabled)
481 return;
483 event->cgrp_defer_enabled = 0;
485 event->tstamp_enabled = tstamp - event->total_time_enabled;
486 list_for_each_entry(sub, &event->sibling_list, group_entry) {
487 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
488 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
489 sub->cgrp_defer_enabled = 0;
493 #else /* !CONFIG_CGROUP_PERF */
495 static inline bool
496 perf_cgroup_match(struct perf_event *event)
498 return true;
501 static inline void perf_detach_cgroup(struct perf_event *event)
504 static inline int is_cgroup_event(struct perf_event *event)
506 return 0;
509 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
511 return 0;
514 static inline void update_cgrp_time_from_event(struct perf_event *event)
518 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
522 static inline void perf_cgroup_sched_out(struct task_struct *task)
526 static inline void perf_cgroup_sched_in(struct task_struct *task)
530 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
531 struct perf_event_attr *attr,
532 struct perf_event *group_leader)
534 return -EINVAL;
537 static inline void
538 perf_cgroup_set_timestamp(struct task_struct *task,
539 struct perf_event_context *ctx)
543 void
544 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
548 static inline void
549 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
553 static inline u64 perf_cgroup_event_time(struct perf_event *event)
555 return 0;
558 static inline void
559 perf_cgroup_defer_enabled(struct perf_event *event)
563 static inline void
564 perf_cgroup_mark_enabled(struct perf_event *event,
565 struct perf_event_context *ctx)
568 #endif
570 void perf_pmu_disable(struct pmu *pmu)
572 int *count = this_cpu_ptr(pmu->pmu_disable_count);
573 if (!(*count)++)
574 pmu->pmu_disable(pmu);
577 void perf_pmu_enable(struct pmu *pmu)
579 int *count = this_cpu_ptr(pmu->pmu_disable_count);
580 if (!--(*count))
581 pmu->pmu_enable(pmu);
584 static DEFINE_PER_CPU(struct list_head, rotation_list);
587 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
588 * because they're strictly cpu affine and rotate_start is called with IRQs
589 * disabled, while rotate_context is called from IRQ context.
591 static void perf_pmu_rotate_start(struct pmu *pmu)
593 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
594 struct list_head *head = &__get_cpu_var(rotation_list);
596 WARN_ON(!irqs_disabled());
598 if (list_empty(&cpuctx->rotation_list))
599 list_add(&cpuctx->rotation_list, head);
602 static void get_ctx(struct perf_event_context *ctx)
604 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
607 static void put_ctx(struct perf_event_context *ctx)
609 if (atomic_dec_and_test(&ctx->refcount)) {
610 if (ctx->parent_ctx)
611 put_ctx(ctx->parent_ctx);
612 if (ctx->task)
613 put_task_struct(ctx->task);
614 kfree_rcu(ctx, rcu_head);
618 static void unclone_ctx(struct perf_event_context *ctx)
620 if (ctx->parent_ctx) {
621 put_ctx(ctx->parent_ctx);
622 ctx->parent_ctx = NULL;
626 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
629 * only top level events have the pid namespace they were created in
631 if (event->parent)
632 event = event->parent;
634 return task_tgid_nr_ns(p, event->ns);
637 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
640 * only top level events have the pid namespace they were created in
642 if (event->parent)
643 event = event->parent;
645 return task_pid_nr_ns(p, event->ns);
649 * If we inherit events we want to return the parent event id
650 * to userspace.
652 static u64 primary_event_id(struct perf_event *event)
654 u64 id = event->id;
656 if (event->parent)
657 id = event->parent->id;
659 return id;
663 * Get the perf_event_context for a task and lock it.
664 * This has to cope with with the fact that until it is locked,
665 * the context could get moved to another task.
667 static struct perf_event_context *
668 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
670 struct perf_event_context *ctx;
672 rcu_read_lock();
673 retry:
674 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
675 if (ctx) {
677 * If this context is a clone of another, it might
678 * get swapped for another underneath us by
679 * perf_event_task_sched_out, though the
680 * rcu_read_lock() protects us from any context
681 * getting freed. Lock the context and check if it
682 * got swapped before we could get the lock, and retry
683 * if so. If we locked the right context, then it
684 * can't get swapped on us any more.
686 raw_spin_lock_irqsave(&ctx->lock, *flags);
687 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
688 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
689 goto retry;
692 if (!atomic_inc_not_zero(&ctx->refcount)) {
693 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
694 ctx = NULL;
697 rcu_read_unlock();
698 return ctx;
702 * Get the context for a task and increment its pin_count so it
703 * can't get swapped to another task. This also increments its
704 * reference count so that the context can't get freed.
706 static struct perf_event_context *
707 perf_pin_task_context(struct task_struct *task, int ctxn)
709 struct perf_event_context *ctx;
710 unsigned long flags;
712 ctx = perf_lock_task_context(task, ctxn, &flags);
713 if (ctx) {
714 ++ctx->pin_count;
715 raw_spin_unlock_irqrestore(&ctx->lock, flags);
717 return ctx;
720 static void perf_unpin_context(struct perf_event_context *ctx)
722 unsigned long flags;
724 raw_spin_lock_irqsave(&ctx->lock, flags);
725 --ctx->pin_count;
726 raw_spin_unlock_irqrestore(&ctx->lock, flags);
730 * Update the record of the current time in a context.
732 static void update_context_time(struct perf_event_context *ctx)
734 u64 now = perf_clock();
736 ctx->time += now - ctx->timestamp;
737 ctx->timestamp = now;
740 static u64 perf_event_time(struct perf_event *event)
742 struct perf_event_context *ctx = event->ctx;
744 if (is_cgroup_event(event))
745 return perf_cgroup_event_time(event);
747 return ctx ? ctx->time : 0;
751 * Update the total_time_enabled and total_time_running fields for a event.
752 * The caller of this function needs to hold the ctx->lock.
754 static void update_event_times(struct perf_event *event)
756 struct perf_event_context *ctx = event->ctx;
757 u64 run_end;
759 if (event->state < PERF_EVENT_STATE_INACTIVE ||
760 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
761 return;
763 * in cgroup mode, time_enabled represents
764 * the time the event was enabled AND active
765 * tasks were in the monitored cgroup. This is
766 * independent of the activity of the context as
767 * there may be a mix of cgroup and non-cgroup events.
769 * That is why we treat cgroup events differently
770 * here.
772 if (is_cgroup_event(event))
773 run_end = perf_event_time(event);
774 else if (ctx->is_active)
775 run_end = ctx->time;
776 else
777 run_end = event->tstamp_stopped;
779 event->total_time_enabled = run_end - event->tstamp_enabled;
781 if (event->state == PERF_EVENT_STATE_INACTIVE)
782 run_end = event->tstamp_stopped;
783 else
784 run_end = perf_event_time(event);
786 event->total_time_running = run_end - event->tstamp_running;
791 * Update total_time_enabled and total_time_running for all events in a group.
793 static void update_group_times(struct perf_event *leader)
795 struct perf_event *event;
797 update_event_times(leader);
798 list_for_each_entry(event, &leader->sibling_list, group_entry)
799 update_event_times(event);
802 static struct list_head *
803 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
805 if (event->attr.pinned)
806 return &ctx->pinned_groups;
807 else
808 return &ctx->flexible_groups;
812 * Add a event from the lists for its context.
813 * Must be called with ctx->mutex and ctx->lock held.
815 static void
816 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
818 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
819 event->attach_state |= PERF_ATTACH_CONTEXT;
822 * If we're a stand alone event or group leader, we go to the context
823 * list, group events are kept attached to the group so that
824 * perf_group_detach can, at all times, locate all siblings.
826 if (event->group_leader == event) {
827 struct list_head *list;
829 if (is_software_event(event))
830 event->group_flags |= PERF_GROUP_SOFTWARE;
832 list = ctx_group_list(event, ctx);
833 list_add_tail(&event->group_entry, list);
836 if (is_cgroup_event(event))
837 ctx->nr_cgroups++;
839 list_add_rcu(&event->event_entry, &ctx->event_list);
840 if (!ctx->nr_events)
841 perf_pmu_rotate_start(ctx->pmu);
842 ctx->nr_events++;
843 if (event->attr.inherit_stat)
844 ctx->nr_stat++;
848 * Called at perf_event creation and when events are attached/detached from a
849 * group.
851 static void perf_event__read_size(struct perf_event *event)
853 int entry = sizeof(u64); /* value */
854 int size = 0;
855 int nr = 1;
857 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
858 size += sizeof(u64);
860 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
861 size += sizeof(u64);
863 if (event->attr.read_format & PERF_FORMAT_ID)
864 entry += sizeof(u64);
866 if (event->attr.read_format & PERF_FORMAT_GROUP) {
867 nr += event->group_leader->nr_siblings;
868 size += sizeof(u64);
871 size += entry * nr;
872 event->read_size = size;
875 static void perf_event__header_size(struct perf_event *event)
877 struct perf_sample_data *data;
878 u64 sample_type = event->attr.sample_type;
879 u16 size = 0;
881 perf_event__read_size(event);
883 if (sample_type & PERF_SAMPLE_IP)
884 size += sizeof(data->ip);
886 if (sample_type & PERF_SAMPLE_ADDR)
887 size += sizeof(data->addr);
889 if (sample_type & PERF_SAMPLE_PERIOD)
890 size += sizeof(data->period);
892 if (sample_type & PERF_SAMPLE_READ)
893 size += event->read_size;
895 event->header_size = size;
898 static void perf_event__id_header_size(struct perf_event *event)
900 struct perf_sample_data *data;
901 u64 sample_type = event->attr.sample_type;
902 u16 size = 0;
904 if (sample_type & PERF_SAMPLE_TID)
905 size += sizeof(data->tid_entry);
907 if (sample_type & PERF_SAMPLE_TIME)
908 size += sizeof(data->time);
910 if (sample_type & PERF_SAMPLE_ID)
911 size += sizeof(data->id);
913 if (sample_type & PERF_SAMPLE_STREAM_ID)
914 size += sizeof(data->stream_id);
916 if (sample_type & PERF_SAMPLE_CPU)
917 size += sizeof(data->cpu_entry);
919 event->id_header_size = size;
922 static void perf_group_attach(struct perf_event *event)
924 struct perf_event *group_leader = event->group_leader, *pos;
927 * We can have double attach due to group movement in perf_event_open.
929 if (event->attach_state & PERF_ATTACH_GROUP)
930 return;
932 event->attach_state |= PERF_ATTACH_GROUP;
934 if (group_leader == event)
935 return;
937 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
938 !is_software_event(event))
939 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
941 list_add_tail(&event->group_entry, &group_leader->sibling_list);
942 group_leader->nr_siblings++;
944 perf_event__header_size(group_leader);
946 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
947 perf_event__header_size(pos);
951 * Remove a event from the lists for its context.
952 * Must be called with ctx->mutex and ctx->lock held.
954 static void
955 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
957 struct perf_cpu_context *cpuctx;
959 * We can have double detach due to exit/hot-unplug + close.
961 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
962 return;
964 event->attach_state &= ~PERF_ATTACH_CONTEXT;
966 if (is_cgroup_event(event)) {
967 ctx->nr_cgroups--;
968 cpuctx = __get_cpu_context(ctx);
970 * if there are no more cgroup events
971 * then cler cgrp to avoid stale pointer
972 * in update_cgrp_time_from_cpuctx()
974 if (!ctx->nr_cgroups)
975 cpuctx->cgrp = NULL;
978 ctx->nr_events--;
979 if (event->attr.inherit_stat)
980 ctx->nr_stat--;
982 list_del_rcu(&event->event_entry);
984 if (event->group_leader == event)
985 list_del_init(&event->group_entry);
987 update_group_times(event);
990 * If event was in error state, then keep it
991 * that way, otherwise bogus counts will be
992 * returned on read(). The only way to get out
993 * of error state is by explicit re-enabling
994 * of the event
996 if (event->state > PERF_EVENT_STATE_OFF)
997 event->state = PERF_EVENT_STATE_OFF;
1000 static void perf_group_detach(struct perf_event *event)
1002 struct perf_event *sibling, *tmp;
1003 struct list_head *list = NULL;
1006 * We can have double detach due to exit/hot-unplug + close.
1008 if (!(event->attach_state & PERF_ATTACH_GROUP))
1009 return;
1011 event->attach_state &= ~PERF_ATTACH_GROUP;
1014 * If this is a sibling, remove it from its group.
1016 if (event->group_leader != event) {
1017 list_del_init(&event->group_entry);
1018 event->group_leader->nr_siblings--;
1019 goto out;
1022 if (!list_empty(&event->group_entry))
1023 list = &event->group_entry;
1026 * If this was a group event with sibling events then
1027 * upgrade the siblings to singleton events by adding them
1028 * to whatever list we are on.
1030 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1031 if (list)
1032 list_move_tail(&sibling->group_entry, list);
1033 sibling->group_leader = sibling;
1035 /* Inherit group flags from the previous leader */
1036 sibling->group_flags = event->group_flags;
1039 out:
1040 perf_event__header_size(event->group_leader);
1042 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1043 perf_event__header_size(tmp);
1046 static inline int
1047 event_filter_match(struct perf_event *event)
1049 return (event->cpu == -1 || event->cpu == smp_processor_id())
1050 && perf_cgroup_match(event);
1053 static void
1054 event_sched_out(struct perf_event *event,
1055 struct perf_cpu_context *cpuctx,
1056 struct perf_event_context *ctx)
1058 u64 tstamp = perf_event_time(event);
1059 u64 delta;
1061 * An event which could not be activated because of
1062 * filter mismatch still needs to have its timings
1063 * maintained, otherwise bogus information is return
1064 * via read() for time_enabled, time_running:
1066 if (event->state == PERF_EVENT_STATE_INACTIVE
1067 && !event_filter_match(event)) {
1068 delta = tstamp - event->tstamp_stopped;
1069 event->tstamp_running += delta;
1070 event->tstamp_stopped = tstamp;
1073 if (event->state != PERF_EVENT_STATE_ACTIVE)
1074 return;
1076 event->state = PERF_EVENT_STATE_INACTIVE;
1077 if (event->pending_disable) {
1078 event->pending_disable = 0;
1079 event->state = PERF_EVENT_STATE_OFF;
1081 event->tstamp_stopped = tstamp;
1082 event->pmu->del(event, 0);
1083 event->oncpu = -1;
1085 if (!is_software_event(event))
1086 cpuctx->active_oncpu--;
1087 ctx->nr_active--;
1088 if (event->attr.exclusive || !cpuctx->active_oncpu)
1089 cpuctx->exclusive = 0;
1092 static void
1093 group_sched_out(struct perf_event *group_event,
1094 struct perf_cpu_context *cpuctx,
1095 struct perf_event_context *ctx)
1097 struct perf_event *event;
1098 int state = group_event->state;
1100 event_sched_out(group_event, cpuctx, ctx);
1103 * Schedule out siblings (if any):
1105 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1106 event_sched_out(event, cpuctx, ctx);
1108 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1109 cpuctx->exclusive = 0;
1113 * Cross CPU call to remove a performance event
1115 * We disable the event on the hardware level first. After that we
1116 * remove it from the context list.
1118 static int __perf_remove_from_context(void *info)
1120 struct perf_event *event = info;
1121 struct perf_event_context *ctx = event->ctx;
1122 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1124 raw_spin_lock(&ctx->lock);
1125 event_sched_out(event, cpuctx, ctx);
1126 list_del_event(event, ctx);
1127 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1128 ctx->is_active = 0;
1129 cpuctx->task_ctx = NULL;
1131 raw_spin_unlock(&ctx->lock);
1133 return 0;
1138 * Remove the event from a task's (or a CPU's) list of events.
1140 * CPU events are removed with a smp call. For task events we only
1141 * call when the task is on a CPU.
1143 * If event->ctx is a cloned context, callers must make sure that
1144 * every task struct that event->ctx->task could possibly point to
1145 * remains valid. This is OK when called from perf_release since
1146 * that only calls us on the top-level context, which can't be a clone.
1147 * When called from perf_event_exit_task, it's OK because the
1148 * context has been detached from its task.
1150 static void perf_remove_from_context(struct perf_event *event)
1152 struct perf_event_context *ctx = event->ctx;
1153 struct task_struct *task = ctx->task;
1155 lockdep_assert_held(&ctx->mutex);
1157 if (!task) {
1159 * Per cpu events are removed via an smp call and
1160 * the removal is always successful.
1162 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1163 return;
1166 retry:
1167 if (!task_function_call(task, __perf_remove_from_context, event))
1168 return;
1170 raw_spin_lock_irq(&ctx->lock);
1172 * If we failed to find a running task, but find the context active now
1173 * that we've acquired the ctx->lock, retry.
1175 if (ctx->is_active) {
1176 raw_spin_unlock_irq(&ctx->lock);
1177 goto retry;
1181 * Since the task isn't running, its safe to remove the event, us
1182 * holding the ctx->lock ensures the task won't get scheduled in.
1184 list_del_event(event, ctx);
1185 raw_spin_unlock_irq(&ctx->lock);
1189 * Cross CPU call to disable a performance event
1191 static int __perf_event_disable(void *info)
1193 struct perf_event *event = info;
1194 struct perf_event_context *ctx = event->ctx;
1195 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1198 * If this is a per-task event, need to check whether this
1199 * event's task is the current task on this cpu.
1201 * Can trigger due to concurrent perf_event_context_sched_out()
1202 * flipping contexts around.
1204 if (ctx->task && cpuctx->task_ctx != ctx)
1205 return -EINVAL;
1207 raw_spin_lock(&ctx->lock);
1210 * If the event is on, turn it off.
1211 * If it is in error state, leave it in error state.
1213 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1214 update_context_time(ctx);
1215 update_cgrp_time_from_event(event);
1216 update_group_times(event);
1217 if (event == event->group_leader)
1218 group_sched_out(event, cpuctx, ctx);
1219 else
1220 event_sched_out(event, cpuctx, ctx);
1221 event->state = PERF_EVENT_STATE_OFF;
1224 raw_spin_unlock(&ctx->lock);
1226 return 0;
1230 * Disable a event.
1232 * If event->ctx is a cloned context, callers must make sure that
1233 * every task struct that event->ctx->task could possibly point to
1234 * remains valid. This condition is satisifed when called through
1235 * perf_event_for_each_child or perf_event_for_each because they
1236 * hold the top-level event's child_mutex, so any descendant that
1237 * goes to exit will block in sync_child_event.
1238 * When called from perf_pending_event it's OK because event->ctx
1239 * is the current context on this CPU and preemption is disabled,
1240 * hence we can't get into perf_event_task_sched_out for this context.
1242 void perf_event_disable(struct perf_event *event)
1244 struct perf_event_context *ctx = event->ctx;
1245 struct task_struct *task = ctx->task;
1247 if (!task) {
1249 * Disable the event on the cpu that it's on
1251 cpu_function_call(event->cpu, __perf_event_disable, event);
1252 return;
1255 retry:
1256 if (!task_function_call(task, __perf_event_disable, event))
1257 return;
1259 raw_spin_lock_irq(&ctx->lock);
1261 * If the event is still active, we need to retry the cross-call.
1263 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1264 raw_spin_unlock_irq(&ctx->lock);
1266 * Reload the task pointer, it might have been changed by
1267 * a concurrent perf_event_context_sched_out().
1269 task = ctx->task;
1270 goto retry;
1274 * Since we have the lock this context can't be scheduled
1275 * in, so we can change the state safely.
1277 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1278 update_group_times(event);
1279 event->state = PERF_EVENT_STATE_OFF;
1281 raw_spin_unlock_irq(&ctx->lock);
1284 static void perf_set_shadow_time(struct perf_event *event,
1285 struct perf_event_context *ctx,
1286 u64 tstamp)
1289 * use the correct time source for the time snapshot
1291 * We could get by without this by leveraging the
1292 * fact that to get to this function, the caller
1293 * has most likely already called update_context_time()
1294 * and update_cgrp_time_xx() and thus both timestamp
1295 * are identical (or very close). Given that tstamp is,
1296 * already adjusted for cgroup, we could say that:
1297 * tstamp - ctx->timestamp
1298 * is equivalent to
1299 * tstamp - cgrp->timestamp.
1301 * Then, in perf_output_read(), the calculation would
1302 * work with no changes because:
1303 * - event is guaranteed scheduled in
1304 * - no scheduled out in between
1305 * - thus the timestamp would be the same
1307 * But this is a bit hairy.
1309 * So instead, we have an explicit cgroup call to remain
1310 * within the time time source all along. We believe it
1311 * is cleaner and simpler to understand.
1313 if (is_cgroup_event(event))
1314 perf_cgroup_set_shadow_time(event, tstamp);
1315 else
1316 event->shadow_ctx_time = tstamp - ctx->timestamp;
1319 #define MAX_INTERRUPTS (~0ULL)
1321 static void perf_log_throttle(struct perf_event *event, int enable);
1323 static int
1324 event_sched_in(struct perf_event *event,
1325 struct perf_cpu_context *cpuctx,
1326 struct perf_event_context *ctx)
1328 u64 tstamp = perf_event_time(event);
1330 if (event->state <= PERF_EVENT_STATE_OFF)
1331 return 0;
1333 event->state = PERF_EVENT_STATE_ACTIVE;
1334 event->oncpu = smp_processor_id();
1337 * Unthrottle events, since we scheduled we might have missed several
1338 * ticks already, also for a heavily scheduling task there is little
1339 * guarantee it'll get a tick in a timely manner.
1341 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1342 perf_log_throttle(event, 1);
1343 event->hw.interrupts = 0;
1347 * The new state must be visible before we turn it on in the hardware:
1349 smp_wmb();
1351 if (event->pmu->add(event, PERF_EF_START)) {
1352 event->state = PERF_EVENT_STATE_INACTIVE;
1353 event->oncpu = -1;
1354 return -EAGAIN;
1357 event->tstamp_running += tstamp - event->tstamp_stopped;
1359 perf_set_shadow_time(event, ctx, tstamp);
1361 if (!is_software_event(event))
1362 cpuctx->active_oncpu++;
1363 ctx->nr_active++;
1365 if (event->attr.exclusive)
1366 cpuctx->exclusive = 1;
1368 return 0;
1371 static int
1372 group_sched_in(struct perf_event *group_event,
1373 struct perf_cpu_context *cpuctx,
1374 struct perf_event_context *ctx)
1376 struct perf_event *event, *partial_group = NULL;
1377 struct pmu *pmu = group_event->pmu;
1378 u64 now = ctx->time;
1379 bool simulate = false;
1381 if (group_event->state == PERF_EVENT_STATE_OFF)
1382 return 0;
1384 pmu->start_txn(pmu);
1386 if (event_sched_in(group_event, cpuctx, ctx)) {
1387 pmu->cancel_txn(pmu);
1388 return -EAGAIN;
1392 * Schedule in siblings as one group (if any):
1394 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1395 if (event_sched_in(event, cpuctx, ctx)) {
1396 partial_group = event;
1397 goto group_error;
1401 if (!pmu->commit_txn(pmu))
1402 return 0;
1404 group_error:
1406 * Groups can be scheduled in as one unit only, so undo any
1407 * partial group before returning:
1408 * The events up to the failed event are scheduled out normally,
1409 * tstamp_stopped will be updated.
1411 * The failed events and the remaining siblings need to have
1412 * their timings updated as if they had gone thru event_sched_in()
1413 * and event_sched_out(). This is required to get consistent timings
1414 * across the group. This also takes care of the case where the group
1415 * could never be scheduled by ensuring tstamp_stopped is set to mark
1416 * the time the event was actually stopped, such that time delta
1417 * calculation in update_event_times() is correct.
1419 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1420 if (event == partial_group)
1421 simulate = true;
1423 if (simulate) {
1424 event->tstamp_running += now - event->tstamp_stopped;
1425 event->tstamp_stopped = now;
1426 } else {
1427 event_sched_out(event, cpuctx, ctx);
1430 event_sched_out(group_event, cpuctx, ctx);
1432 pmu->cancel_txn(pmu);
1434 return -EAGAIN;
1438 * Work out whether we can put this event group on the CPU now.
1440 static int group_can_go_on(struct perf_event *event,
1441 struct perf_cpu_context *cpuctx,
1442 int can_add_hw)
1445 * Groups consisting entirely of software events can always go on.
1447 if (event->group_flags & PERF_GROUP_SOFTWARE)
1448 return 1;
1450 * If an exclusive group is already on, no other hardware
1451 * events can go on.
1453 if (cpuctx->exclusive)
1454 return 0;
1456 * If this group is exclusive and there are already
1457 * events on the CPU, it can't go on.
1459 if (event->attr.exclusive && cpuctx->active_oncpu)
1460 return 0;
1462 * Otherwise, try to add it if all previous groups were able
1463 * to go on.
1465 return can_add_hw;
1468 static void add_event_to_ctx(struct perf_event *event,
1469 struct perf_event_context *ctx)
1471 u64 tstamp = perf_event_time(event);
1473 list_add_event(event, ctx);
1474 perf_group_attach(event);
1475 event->tstamp_enabled = tstamp;
1476 event->tstamp_running = tstamp;
1477 event->tstamp_stopped = tstamp;
1480 static void task_ctx_sched_out(struct perf_event_context *ctx);
1481 static void
1482 ctx_sched_in(struct perf_event_context *ctx,
1483 struct perf_cpu_context *cpuctx,
1484 enum event_type_t event_type,
1485 struct task_struct *task);
1487 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1488 struct perf_event_context *ctx,
1489 struct task_struct *task)
1491 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1492 if (ctx)
1493 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1494 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1495 if (ctx)
1496 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1500 * Cross CPU call to install and enable a performance event
1502 * Must be called with ctx->mutex held
1504 static int __perf_install_in_context(void *info)
1506 struct perf_event *event = info;
1507 struct perf_event_context *ctx = event->ctx;
1508 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1509 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1510 struct task_struct *task = current;
1512 perf_ctx_lock(cpuctx, task_ctx);
1513 perf_pmu_disable(cpuctx->ctx.pmu);
1516 * If there was an active task_ctx schedule it out.
1518 if (task_ctx)
1519 task_ctx_sched_out(task_ctx);
1522 * If the context we're installing events in is not the
1523 * active task_ctx, flip them.
1525 if (ctx->task && task_ctx != ctx) {
1526 if (task_ctx)
1527 raw_spin_unlock(&task_ctx->lock);
1528 raw_spin_lock(&ctx->lock);
1529 task_ctx = ctx;
1532 if (task_ctx) {
1533 cpuctx->task_ctx = task_ctx;
1534 task = task_ctx->task;
1537 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1539 update_context_time(ctx);
1541 * update cgrp time only if current cgrp
1542 * matches event->cgrp. Must be done before
1543 * calling add_event_to_ctx()
1545 update_cgrp_time_from_event(event);
1547 add_event_to_ctx(event, ctx);
1550 * Schedule everything back in
1552 perf_event_sched_in(cpuctx, task_ctx, task);
1554 perf_pmu_enable(cpuctx->ctx.pmu);
1555 perf_ctx_unlock(cpuctx, task_ctx);
1557 return 0;
1561 * Attach a performance event to a context
1563 * First we add the event to the list with the hardware enable bit
1564 * in event->hw_config cleared.
1566 * If the event is attached to a task which is on a CPU we use a smp
1567 * call to enable it in the task context. The task might have been
1568 * scheduled away, but we check this in the smp call again.
1570 static void
1571 perf_install_in_context(struct perf_event_context *ctx,
1572 struct perf_event *event,
1573 int cpu)
1575 struct task_struct *task = ctx->task;
1577 lockdep_assert_held(&ctx->mutex);
1579 event->ctx = ctx;
1581 if (!task) {
1583 * Per cpu events are installed via an smp call and
1584 * the install is always successful.
1586 cpu_function_call(cpu, __perf_install_in_context, event);
1587 return;
1590 retry:
1591 if (!task_function_call(task, __perf_install_in_context, event))
1592 return;
1594 raw_spin_lock_irq(&ctx->lock);
1596 * If we failed to find a running task, but find the context active now
1597 * that we've acquired the ctx->lock, retry.
1599 if (ctx->is_active) {
1600 raw_spin_unlock_irq(&ctx->lock);
1601 goto retry;
1605 * Since the task isn't running, its safe to add the event, us holding
1606 * the ctx->lock ensures the task won't get scheduled in.
1608 add_event_to_ctx(event, ctx);
1609 raw_spin_unlock_irq(&ctx->lock);
1613 * Put a event into inactive state and update time fields.
1614 * Enabling the leader of a group effectively enables all
1615 * the group members that aren't explicitly disabled, so we
1616 * have to update their ->tstamp_enabled also.
1617 * Note: this works for group members as well as group leaders
1618 * since the non-leader members' sibling_lists will be empty.
1620 static void __perf_event_mark_enabled(struct perf_event *event,
1621 struct perf_event_context *ctx)
1623 struct perf_event *sub;
1624 u64 tstamp = perf_event_time(event);
1626 event->state = PERF_EVENT_STATE_INACTIVE;
1627 event->tstamp_enabled = tstamp - event->total_time_enabled;
1628 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1629 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1630 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1635 * Cross CPU call to enable a performance event
1637 static int __perf_event_enable(void *info)
1639 struct perf_event *event = info;
1640 struct perf_event_context *ctx = event->ctx;
1641 struct perf_event *leader = event->group_leader;
1642 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1643 int err;
1645 if (WARN_ON_ONCE(!ctx->is_active))
1646 return -EINVAL;
1648 raw_spin_lock(&ctx->lock);
1649 update_context_time(ctx);
1651 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1652 goto unlock;
1655 * set current task's cgroup time reference point
1657 perf_cgroup_set_timestamp(current, ctx);
1659 __perf_event_mark_enabled(event, ctx);
1661 if (!event_filter_match(event)) {
1662 if (is_cgroup_event(event))
1663 perf_cgroup_defer_enabled(event);
1664 goto unlock;
1668 * If the event is in a group and isn't the group leader,
1669 * then don't put it on unless the group is on.
1671 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1672 goto unlock;
1674 if (!group_can_go_on(event, cpuctx, 1)) {
1675 err = -EEXIST;
1676 } else {
1677 if (event == leader)
1678 err = group_sched_in(event, cpuctx, ctx);
1679 else
1680 err = event_sched_in(event, cpuctx, ctx);
1683 if (err) {
1685 * If this event can't go on and it's part of a
1686 * group, then the whole group has to come off.
1688 if (leader != event)
1689 group_sched_out(leader, cpuctx, ctx);
1690 if (leader->attr.pinned) {
1691 update_group_times(leader);
1692 leader->state = PERF_EVENT_STATE_ERROR;
1696 unlock:
1697 raw_spin_unlock(&ctx->lock);
1699 return 0;
1703 * Enable a event.
1705 * If event->ctx is a cloned context, callers must make sure that
1706 * every task struct that event->ctx->task could possibly point to
1707 * remains valid. This condition is satisfied when called through
1708 * perf_event_for_each_child or perf_event_for_each as described
1709 * for perf_event_disable.
1711 void perf_event_enable(struct perf_event *event)
1713 struct perf_event_context *ctx = event->ctx;
1714 struct task_struct *task = ctx->task;
1716 if (!task) {
1718 * Enable the event on the cpu that it's on
1720 cpu_function_call(event->cpu, __perf_event_enable, event);
1721 return;
1724 raw_spin_lock_irq(&ctx->lock);
1725 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1726 goto out;
1729 * If the event is in error state, clear that first.
1730 * That way, if we see the event in error state below, we
1731 * know that it has gone back into error state, as distinct
1732 * from the task having been scheduled away before the
1733 * cross-call arrived.
1735 if (event->state == PERF_EVENT_STATE_ERROR)
1736 event->state = PERF_EVENT_STATE_OFF;
1738 retry:
1739 if (!ctx->is_active) {
1740 __perf_event_mark_enabled(event, ctx);
1741 goto out;
1744 raw_spin_unlock_irq(&ctx->lock);
1746 if (!task_function_call(task, __perf_event_enable, event))
1747 return;
1749 raw_spin_lock_irq(&ctx->lock);
1752 * If the context is active and the event is still off,
1753 * we need to retry the cross-call.
1755 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1757 * task could have been flipped by a concurrent
1758 * perf_event_context_sched_out()
1760 task = ctx->task;
1761 goto retry;
1764 out:
1765 raw_spin_unlock_irq(&ctx->lock);
1768 int perf_event_refresh(struct perf_event *event, int refresh)
1771 * not supported on inherited events
1773 if (event->attr.inherit || !is_sampling_event(event))
1774 return -EINVAL;
1776 atomic_add(refresh, &event->event_limit);
1777 perf_event_enable(event);
1779 return 0;
1781 EXPORT_SYMBOL_GPL(perf_event_refresh);
1783 static void ctx_sched_out(struct perf_event_context *ctx,
1784 struct perf_cpu_context *cpuctx,
1785 enum event_type_t event_type)
1787 struct perf_event *event;
1788 int is_active = ctx->is_active;
1790 ctx->is_active &= ~event_type;
1791 if (likely(!ctx->nr_events))
1792 return;
1794 update_context_time(ctx);
1795 update_cgrp_time_from_cpuctx(cpuctx);
1796 if (!ctx->nr_active)
1797 return;
1799 perf_pmu_disable(ctx->pmu);
1800 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1801 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1802 group_sched_out(event, cpuctx, ctx);
1805 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1806 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1807 group_sched_out(event, cpuctx, ctx);
1809 perf_pmu_enable(ctx->pmu);
1813 * Test whether two contexts are equivalent, i.e. whether they
1814 * have both been cloned from the same version of the same context
1815 * and they both have the same number of enabled events.
1816 * If the number of enabled events is the same, then the set
1817 * of enabled events should be the same, because these are both
1818 * inherited contexts, therefore we can't access individual events
1819 * in them directly with an fd; we can only enable/disable all
1820 * events via prctl, or enable/disable all events in a family
1821 * via ioctl, which will have the same effect on both contexts.
1823 static int context_equiv(struct perf_event_context *ctx1,
1824 struct perf_event_context *ctx2)
1826 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1827 && ctx1->parent_gen == ctx2->parent_gen
1828 && !ctx1->pin_count && !ctx2->pin_count;
1831 static void __perf_event_sync_stat(struct perf_event *event,
1832 struct perf_event *next_event)
1834 u64 value;
1836 if (!event->attr.inherit_stat)
1837 return;
1840 * Update the event value, we cannot use perf_event_read()
1841 * because we're in the middle of a context switch and have IRQs
1842 * disabled, which upsets smp_call_function_single(), however
1843 * we know the event must be on the current CPU, therefore we
1844 * don't need to use it.
1846 switch (event->state) {
1847 case PERF_EVENT_STATE_ACTIVE:
1848 event->pmu->read(event);
1849 /* fall-through */
1851 case PERF_EVENT_STATE_INACTIVE:
1852 update_event_times(event);
1853 break;
1855 default:
1856 break;
1860 * In order to keep per-task stats reliable we need to flip the event
1861 * values when we flip the contexts.
1863 value = local64_read(&next_event->count);
1864 value = local64_xchg(&event->count, value);
1865 local64_set(&next_event->count, value);
1867 swap(event->total_time_enabled, next_event->total_time_enabled);
1868 swap(event->total_time_running, next_event->total_time_running);
1871 * Since we swizzled the values, update the user visible data too.
1873 perf_event_update_userpage(event);
1874 perf_event_update_userpage(next_event);
1877 #define list_next_entry(pos, member) \
1878 list_entry(pos->member.next, typeof(*pos), member)
1880 static void perf_event_sync_stat(struct perf_event_context *ctx,
1881 struct perf_event_context *next_ctx)
1883 struct perf_event *event, *next_event;
1885 if (!ctx->nr_stat)
1886 return;
1888 update_context_time(ctx);
1890 event = list_first_entry(&ctx->event_list,
1891 struct perf_event, event_entry);
1893 next_event = list_first_entry(&next_ctx->event_list,
1894 struct perf_event, event_entry);
1896 while (&event->event_entry != &ctx->event_list &&
1897 &next_event->event_entry != &next_ctx->event_list) {
1899 __perf_event_sync_stat(event, next_event);
1901 event = list_next_entry(event, event_entry);
1902 next_event = list_next_entry(next_event, event_entry);
1906 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1907 struct task_struct *next)
1909 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1910 struct perf_event_context *next_ctx;
1911 struct perf_event_context *parent;
1912 struct perf_cpu_context *cpuctx;
1913 int do_switch = 1;
1915 if (likely(!ctx))
1916 return;
1918 cpuctx = __get_cpu_context(ctx);
1919 if (!cpuctx->task_ctx)
1920 return;
1922 rcu_read_lock();
1923 parent = rcu_dereference(ctx->parent_ctx);
1924 next_ctx = next->perf_event_ctxp[ctxn];
1925 if (parent && next_ctx &&
1926 rcu_dereference(next_ctx->parent_ctx) == parent) {
1928 * Looks like the two contexts are clones, so we might be
1929 * able to optimize the context switch. We lock both
1930 * contexts and check that they are clones under the
1931 * lock (including re-checking that neither has been
1932 * uncloned in the meantime). It doesn't matter which
1933 * order we take the locks because no other cpu could
1934 * be trying to lock both of these tasks.
1936 raw_spin_lock(&ctx->lock);
1937 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1938 if (context_equiv(ctx, next_ctx)) {
1940 * XXX do we need a memory barrier of sorts
1941 * wrt to rcu_dereference() of perf_event_ctxp
1943 task->perf_event_ctxp[ctxn] = next_ctx;
1944 next->perf_event_ctxp[ctxn] = ctx;
1945 ctx->task = next;
1946 next_ctx->task = task;
1947 do_switch = 0;
1949 perf_event_sync_stat(ctx, next_ctx);
1951 raw_spin_unlock(&next_ctx->lock);
1952 raw_spin_unlock(&ctx->lock);
1954 rcu_read_unlock();
1956 if (do_switch) {
1957 raw_spin_lock(&ctx->lock);
1958 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1959 cpuctx->task_ctx = NULL;
1960 raw_spin_unlock(&ctx->lock);
1964 #define for_each_task_context_nr(ctxn) \
1965 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1968 * Called from scheduler to remove the events of the current task,
1969 * with interrupts disabled.
1971 * We stop each event and update the event value in event->count.
1973 * This does not protect us against NMI, but disable()
1974 * sets the disabled bit in the control field of event _before_
1975 * accessing the event control register. If a NMI hits, then it will
1976 * not restart the event.
1978 void __perf_event_task_sched_out(struct task_struct *task,
1979 struct task_struct *next)
1981 int ctxn;
1983 for_each_task_context_nr(ctxn)
1984 perf_event_context_sched_out(task, ctxn, next);
1987 * if cgroup events exist on this CPU, then we need
1988 * to check if we have to switch out PMU state.
1989 * cgroup event are system-wide mode only
1991 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
1992 perf_cgroup_sched_out(task);
1995 static void task_ctx_sched_out(struct perf_event_context *ctx)
1997 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1999 if (!cpuctx->task_ctx)
2000 return;
2002 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2003 return;
2005 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2006 cpuctx->task_ctx = NULL;
2010 * Called with IRQs disabled
2012 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2013 enum event_type_t event_type)
2015 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2018 static void
2019 ctx_pinned_sched_in(struct perf_event_context *ctx,
2020 struct perf_cpu_context *cpuctx)
2022 struct perf_event *event;
2024 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2025 if (event->state <= PERF_EVENT_STATE_OFF)
2026 continue;
2027 if (!event_filter_match(event))
2028 continue;
2030 /* may need to reset tstamp_enabled */
2031 if (is_cgroup_event(event))
2032 perf_cgroup_mark_enabled(event, ctx);
2034 if (group_can_go_on(event, cpuctx, 1))
2035 group_sched_in(event, cpuctx, ctx);
2038 * If this pinned group hasn't been scheduled,
2039 * put it in error state.
2041 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2042 update_group_times(event);
2043 event->state = PERF_EVENT_STATE_ERROR;
2048 static void
2049 ctx_flexible_sched_in(struct perf_event_context *ctx,
2050 struct perf_cpu_context *cpuctx)
2052 struct perf_event *event;
2053 int can_add_hw = 1;
2055 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2056 /* Ignore events in OFF or ERROR state */
2057 if (event->state <= PERF_EVENT_STATE_OFF)
2058 continue;
2060 * Listen to the 'cpu' scheduling filter constraint
2061 * of events:
2063 if (!event_filter_match(event))
2064 continue;
2066 /* may need to reset tstamp_enabled */
2067 if (is_cgroup_event(event))
2068 perf_cgroup_mark_enabled(event, ctx);
2070 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2071 if (group_sched_in(event, cpuctx, ctx))
2072 can_add_hw = 0;
2077 static void
2078 ctx_sched_in(struct perf_event_context *ctx,
2079 struct perf_cpu_context *cpuctx,
2080 enum event_type_t event_type,
2081 struct task_struct *task)
2083 u64 now;
2084 int is_active = ctx->is_active;
2086 ctx->is_active |= event_type;
2087 if (likely(!ctx->nr_events))
2088 return;
2090 now = perf_clock();
2091 ctx->timestamp = now;
2092 perf_cgroup_set_timestamp(task, ctx);
2094 * First go through the list and put on any pinned groups
2095 * in order to give them the best chance of going on.
2097 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2098 ctx_pinned_sched_in(ctx, cpuctx);
2100 /* Then walk through the lower prio flexible groups */
2101 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2102 ctx_flexible_sched_in(ctx, cpuctx);
2105 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2106 enum event_type_t event_type,
2107 struct task_struct *task)
2109 struct perf_event_context *ctx = &cpuctx->ctx;
2111 ctx_sched_in(ctx, cpuctx, event_type, task);
2114 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2115 struct task_struct *task)
2117 struct perf_cpu_context *cpuctx;
2119 cpuctx = __get_cpu_context(ctx);
2120 if (cpuctx->task_ctx == ctx)
2121 return;
2123 perf_ctx_lock(cpuctx, ctx);
2124 perf_pmu_disable(ctx->pmu);
2126 * We want to keep the following priority order:
2127 * cpu pinned (that don't need to move), task pinned,
2128 * cpu flexible, task flexible.
2130 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2132 perf_event_sched_in(cpuctx, ctx, task);
2134 cpuctx->task_ctx = ctx;
2136 perf_pmu_enable(ctx->pmu);
2137 perf_ctx_unlock(cpuctx, ctx);
2140 * Since these rotations are per-cpu, we need to ensure the
2141 * cpu-context we got scheduled on is actually rotating.
2143 perf_pmu_rotate_start(ctx->pmu);
2147 * Called from scheduler to add the events of the current task
2148 * with interrupts disabled.
2150 * We restore the event value and then enable it.
2152 * This does not protect us against NMI, but enable()
2153 * sets the enabled bit in the control field of event _before_
2154 * accessing the event control register. If a NMI hits, then it will
2155 * keep the event running.
2157 void __perf_event_task_sched_in(struct task_struct *task)
2159 struct perf_event_context *ctx;
2160 int ctxn;
2162 for_each_task_context_nr(ctxn) {
2163 ctx = task->perf_event_ctxp[ctxn];
2164 if (likely(!ctx))
2165 continue;
2167 perf_event_context_sched_in(ctx, task);
2170 * if cgroup events exist on this CPU, then we need
2171 * to check if we have to switch in PMU state.
2172 * cgroup event are system-wide mode only
2174 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2175 perf_cgroup_sched_in(task);
2178 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2180 u64 frequency = event->attr.sample_freq;
2181 u64 sec = NSEC_PER_SEC;
2182 u64 divisor, dividend;
2184 int count_fls, nsec_fls, frequency_fls, sec_fls;
2186 count_fls = fls64(count);
2187 nsec_fls = fls64(nsec);
2188 frequency_fls = fls64(frequency);
2189 sec_fls = 30;
2192 * We got @count in @nsec, with a target of sample_freq HZ
2193 * the target period becomes:
2195 * @count * 10^9
2196 * period = -------------------
2197 * @nsec * sample_freq
2202 * Reduce accuracy by one bit such that @a and @b converge
2203 * to a similar magnitude.
2205 #define REDUCE_FLS(a, b) \
2206 do { \
2207 if (a##_fls > b##_fls) { \
2208 a >>= 1; \
2209 a##_fls--; \
2210 } else { \
2211 b >>= 1; \
2212 b##_fls--; \
2214 } while (0)
2217 * Reduce accuracy until either term fits in a u64, then proceed with
2218 * the other, so that finally we can do a u64/u64 division.
2220 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2221 REDUCE_FLS(nsec, frequency);
2222 REDUCE_FLS(sec, count);
2225 if (count_fls + sec_fls > 64) {
2226 divisor = nsec * frequency;
2228 while (count_fls + sec_fls > 64) {
2229 REDUCE_FLS(count, sec);
2230 divisor >>= 1;
2233 dividend = count * sec;
2234 } else {
2235 dividend = count * sec;
2237 while (nsec_fls + frequency_fls > 64) {
2238 REDUCE_FLS(nsec, frequency);
2239 dividend >>= 1;
2242 divisor = nsec * frequency;
2245 if (!divisor)
2246 return dividend;
2248 return div64_u64(dividend, divisor);
2251 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2253 struct hw_perf_event *hwc = &event->hw;
2254 s64 period, sample_period;
2255 s64 delta;
2257 period = perf_calculate_period(event, nsec, count);
2259 delta = (s64)(period - hwc->sample_period);
2260 delta = (delta + 7) / 8; /* low pass filter */
2262 sample_period = hwc->sample_period + delta;
2264 if (!sample_period)
2265 sample_period = 1;
2267 hwc->sample_period = sample_period;
2269 if (local64_read(&hwc->period_left) > 8*sample_period) {
2270 event->pmu->stop(event, PERF_EF_UPDATE);
2271 local64_set(&hwc->period_left, 0);
2272 event->pmu->start(event, PERF_EF_RELOAD);
2276 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2278 struct perf_event *event;
2279 struct hw_perf_event *hwc;
2280 u64 interrupts, now;
2281 s64 delta;
2283 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2284 if (event->state != PERF_EVENT_STATE_ACTIVE)
2285 continue;
2287 if (!event_filter_match(event))
2288 continue;
2290 hwc = &event->hw;
2292 interrupts = hwc->interrupts;
2293 hwc->interrupts = 0;
2296 * unthrottle events on the tick
2298 if (interrupts == MAX_INTERRUPTS) {
2299 perf_log_throttle(event, 1);
2300 event->pmu->start(event, 0);
2303 if (!event->attr.freq || !event->attr.sample_freq)
2304 continue;
2306 event->pmu->read(event);
2307 now = local64_read(&event->count);
2308 delta = now - hwc->freq_count_stamp;
2309 hwc->freq_count_stamp = now;
2311 if (delta > 0)
2312 perf_adjust_period(event, period, delta);
2317 * Round-robin a context's events:
2319 static void rotate_ctx(struct perf_event_context *ctx)
2322 * Rotate the first entry last of non-pinned groups. Rotation might be
2323 * disabled by the inheritance code.
2325 if (!ctx->rotate_disable)
2326 list_rotate_left(&ctx->flexible_groups);
2330 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2331 * because they're strictly cpu affine and rotate_start is called with IRQs
2332 * disabled, while rotate_context is called from IRQ context.
2334 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2336 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2337 struct perf_event_context *ctx = NULL;
2338 int rotate = 0, remove = 1;
2340 if (cpuctx->ctx.nr_events) {
2341 remove = 0;
2342 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2343 rotate = 1;
2346 ctx = cpuctx->task_ctx;
2347 if (ctx && ctx->nr_events) {
2348 remove = 0;
2349 if (ctx->nr_events != ctx->nr_active)
2350 rotate = 1;
2353 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2354 perf_pmu_disable(cpuctx->ctx.pmu);
2355 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2356 if (ctx)
2357 perf_ctx_adjust_freq(ctx, interval);
2359 if (!rotate)
2360 goto done;
2362 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2363 if (ctx)
2364 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2366 rotate_ctx(&cpuctx->ctx);
2367 if (ctx)
2368 rotate_ctx(ctx);
2370 perf_event_sched_in(cpuctx, ctx, current);
2372 done:
2373 if (remove)
2374 list_del_init(&cpuctx->rotation_list);
2376 perf_pmu_enable(cpuctx->ctx.pmu);
2377 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2380 void perf_event_task_tick(void)
2382 struct list_head *head = &__get_cpu_var(rotation_list);
2383 struct perf_cpu_context *cpuctx, *tmp;
2385 WARN_ON(!irqs_disabled());
2387 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2388 if (cpuctx->jiffies_interval == 1 ||
2389 !(jiffies % cpuctx->jiffies_interval))
2390 perf_rotate_context(cpuctx);
2394 static int event_enable_on_exec(struct perf_event *event,
2395 struct perf_event_context *ctx)
2397 if (!event->attr.enable_on_exec)
2398 return 0;
2400 event->attr.enable_on_exec = 0;
2401 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2402 return 0;
2404 __perf_event_mark_enabled(event, ctx);
2406 return 1;
2410 * Enable all of a task's events that have been marked enable-on-exec.
2411 * This expects task == current.
2413 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2415 struct perf_event *event;
2416 unsigned long flags;
2417 int enabled = 0;
2418 int ret;
2420 local_irq_save(flags);
2421 if (!ctx || !ctx->nr_events)
2422 goto out;
2425 * We must ctxsw out cgroup events to avoid conflict
2426 * when invoking perf_task_event_sched_in() later on
2427 * in this function. Otherwise we end up trying to
2428 * ctxswin cgroup events which are already scheduled
2429 * in.
2431 perf_cgroup_sched_out(current);
2433 raw_spin_lock(&ctx->lock);
2434 task_ctx_sched_out(ctx);
2436 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2437 ret = event_enable_on_exec(event, ctx);
2438 if (ret)
2439 enabled = 1;
2442 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2443 ret = event_enable_on_exec(event, ctx);
2444 if (ret)
2445 enabled = 1;
2449 * Unclone this context if we enabled any event.
2451 if (enabled)
2452 unclone_ctx(ctx);
2454 raw_spin_unlock(&ctx->lock);
2457 * Also calls ctxswin for cgroup events, if any:
2459 perf_event_context_sched_in(ctx, ctx->task);
2460 out:
2461 local_irq_restore(flags);
2465 * Cross CPU call to read the hardware event
2467 static void __perf_event_read(void *info)
2469 struct perf_event *event = info;
2470 struct perf_event_context *ctx = event->ctx;
2471 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2474 * If this is a task context, we need to check whether it is
2475 * the current task context of this cpu. If not it has been
2476 * scheduled out before the smp call arrived. In that case
2477 * event->count would have been updated to a recent sample
2478 * when the event was scheduled out.
2480 if (ctx->task && cpuctx->task_ctx != ctx)
2481 return;
2483 raw_spin_lock(&ctx->lock);
2484 if (ctx->is_active) {
2485 update_context_time(ctx);
2486 update_cgrp_time_from_event(event);
2488 update_event_times(event);
2489 if (event->state == PERF_EVENT_STATE_ACTIVE)
2490 event->pmu->read(event);
2491 raw_spin_unlock(&ctx->lock);
2494 static inline u64 perf_event_count(struct perf_event *event)
2496 return local64_read(&event->count) + atomic64_read(&event->child_count);
2499 static u64 perf_event_read(struct perf_event *event)
2502 * If event is enabled and currently active on a CPU, update the
2503 * value in the event structure:
2505 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2506 smp_call_function_single(event->oncpu,
2507 __perf_event_read, event, 1);
2508 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2509 struct perf_event_context *ctx = event->ctx;
2510 unsigned long flags;
2512 raw_spin_lock_irqsave(&ctx->lock, flags);
2514 * may read while context is not active
2515 * (e.g., thread is blocked), in that case
2516 * we cannot update context time
2518 if (ctx->is_active) {
2519 update_context_time(ctx);
2520 update_cgrp_time_from_event(event);
2522 update_event_times(event);
2523 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2526 return perf_event_count(event);
2530 * Callchain support
2533 struct callchain_cpus_entries {
2534 struct rcu_head rcu_head;
2535 struct perf_callchain_entry *cpu_entries[0];
2538 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2539 static atomic_t nr_callchain_events;
2540 static DEFINE_MUTEX(callchain_mutex);
2541 struct callchain_cpus_entries *callchain_cpus_entries;
2544 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
2545 struct pt_regs *regs)
2549 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
2550 struct pt_regs *regs)
2554 static void release_callchain_buffers_rcu(struct rcu_head *head)
2556 struct callchain_cpus_entries *entries;
2557 int cpu;
2559 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
2561 for_each_possible_cpu(cpu)
2562 kfree(entries->cpu_entries[cpu]);
2564 kfree(entries);
2567 static void release_callchain_buffers(void)
2569 struct callchain_cpus_entries *entries;
2571 entries = callchain_cpus_entries;
2572 rcu_assign_pointer(callchain_cpus_entries, NULL);
2573 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
2576 static int alloc_callchain_buffers(void)
2578 int cpu;
2579 int size;
2580 struct callchain_cpus_entries *entries;
2583 * We can't use the percpu allocation API for data that can be
2584 * accessed from NMI. Use a temporary manual per cpu allocation
2585 * until that gets sorted out.
2587 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2589 entries = kzalloc(size, GFP_KERNEL);
2590 if (!entries)
2591 return -ENOMEM;
2593 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2595 for_each_possible_cpu(cpu) {
2596 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2597 cpu_to_node(cpu));
2598 if (!entries->cpu_entries[cpu])
2599 goto fail;
2602 rcu_assign_pointer(callchain_cpus_entries, entries);
2604 return 0;
2606 fail:
2607 for_each_possible_cpu(cpu)
2608 kfree(entries->cpu_entries[cpu]);
2609 kfree(entries);
2611 return -ENOMEM;
2614 static int get_callchain_buffers(void)
2616 int err = 0;
2617 int count;
2619 mutex_lock(&callchain_mutex);
2621 count = atomic_inc_return(&nr_callchain_events);
2622 if (WARN_ON_ONCE(count < 1)) {
2623 err = -EINVAL;
2624 goto exit;
2627 if (count > 1) {
2628 /* If the allocation failed, give up */
2629 if (!callchain_cpus_entries)
2630 err = -ENOMEM;
2631 goto exit;
2634 err = alloc_callchain_buffers();
2635 if (err)
2636 release_callchain_buffers();
2637 exit:
2638 mutex_unlock(&callchain_mutex);
2640 return err;
2643 static void put_callchain_buffers(void)
2645 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2646 release_callchain_buffers();
2647 mutex_unlock(&callchain_mutex);
2651 static int get_recursion_context(int *recursion)
2653 int rctx;
2655 if (in_nmi())
2656 rctx = 3;
2657 else if (in_irq())
2658 rctx = 2;
2659 else if (in_softirq())
2660 rctx = 1;
2661 else
2662 rctx = 0;
2664 if (recursion[rctx])
2665 return -1;
2667 recursion[rctx]++;
2668 barrier();
2670 return rctx;
2673 static inline void put_recursion_context(int *recursion, int rctx)
2675 barrier();
2676 recursion[rctx]--;
2679 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2681 int cpu;
2682 struct callchain_cpus_entries *entries;
2684 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2685 if (*rctx == -1)
2686 return NULL;
2688 entries = rcu_dereference(callchain_cpus_entries);
2689 if (!entries)
2690 return NULL;
2692 cpu = smp_processor_id();
2694 return &entries->cpu_entries[cpu][*rctx];
2697 static void
2698 put_callchain_entry(int rctx)
2700 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2703 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2705 int rctx;
2706 struct perf_callchain_entry *entry;
2709 entry = get_callchain_entry(&rctx);
2710 if (rctx == -1)
2711 return NULL;
2713 if (!entry)
2714 goto exit_put;
2716 entry->nr = 0;
2718 if (!user_mode(regs)) {
2719 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2720 perf_callchain_kernel(entry, regs);
2721 if (current->mm)
2722 regs = task_pt_regs(current);
2723 else
2724 regs = NULL;
2727 if (regs) {
2728 perf_callchain_store(entry, PERF_CONTEXT_USER);
2729 perf_callchain_user(entry, regs);
2732 exit_put:
2733 put_callchain_entry(rctx);
2735 return entry;
2739 * Initialize the perf_event context in a task_struct:
2741 static void __perf_event_init_context(struct perf_event_context *ctx)
2743 raw_spin_lock_init(&ctx->lock);
2744 mutex_init(&ctx->mutex);
2745 INIT_LIST_HEAD(&ctx->pinned_groups);
2746 INIT_LIST_HEAD(&ctx->flexible_groups);
2747 INIT_LIST_HEAD(&ctx->event_list);
2748 atomic_set(&ctx->refcount, 1);
2751 static struct perf_event_context *
2752 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2754 struct perf_event_context *ctx;
2756 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2757 if (!ctx)
2758 return NULL;
2760 __perf_event_init_context(ctx);
2761 if (task) {
2762 ctx->task = task;
2763 get_task_struct(task);
2765 ctx->pmu = pmu;
2767 return ctx;
2770 static struct task_struct *
2771 find_lively_task_by_vpid(pid_t vpid)
2773 struct task_struct *task;
2774 int err;
2776 rcu_read_lock();
2777 if (!vpid)
2778 task = current;
2779 else
2780 task = find_task_by_vpid(vpid);
2781 if (task)
2782 get_task_struct(task);
2783 rcu_read_unlock();
2785 if (!task)
2786 return ERR_PTR(-ESRCH);
2788 /* Reuse ptrace permission checks for now. */
2789 err = -EACCES;
2790 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2791 goto errout;
2793 return task;
2794 errout:
2795 put_task_struct(task);
2796 return ERR_PTR(err);
2801 * Returns a matching context with refcount and pincount.
2803 static struct perf_event_context *
2804 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2806 struct perf_event_context *ctx;
2807 struct perf_cpu_context *cpuctx;
2808 unsigned long flags;
2809 int ctxn, err;
2811 if (!task) {
2812 /* Must be root to operate on a CPU event: */
2813 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2814 return ERR_PTR(-EACCES);
2817 * We could be clever and allow to attach a event to an
2818 * offline CPU and activate it when the CPU comes up, but
2819 * that's for later.
2821 if (!cpu_online(cpu))
2822 return ERR_PTR(-ENODEV);
2824 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2825 ctx = &cpuctx->ctx;
2826 get_ctx(ctx);
2827 ++ctx->pin_count;
2829 return ctx;
2832 err = -EINVAL;
2833 ctxn = pmu->task_ctx_nr;
2834 if (ctxn < 0)
2835 goto errout;
2837 retry:
2838 ctx = perf_lock_task_context(task, ctxn, &flags);
2839 if (ctx) {
2840 unclone_ctx(ctx);
2841 ++ctx->pin_count;
2842 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2843 } else {
2844 ctx = alloc_perf_context(pmu, task);
2845 err = -ENOMEM;
2846 if (!ctx)
2847 goto errout;
2849 err = 0;
2850 mutex_lock(&task->perf_event_mutex);
2852 * If it has already passed perf_event_exit_task().
2853 * we must see PF_EXITING, it takes this mutex too.
2855 if (task->flags & PF_EXITING)
2856 err = -ESRCH;
2857 else if (task->perf_event_ctxp[ctxn])
2858 err = -EAGAIN;
2859 else {
2860 get_ctx(ctx);
2861 ++ctx->pin_count;
2862 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2864 mutex_unlock(&task->perf_event_mutex);
2866 if (unlikely(err)) {
2867 put_ctx(ctx);
2869 if (err == -EAGAIN)
2870 goto retry;
2871 goto errout;
2875 return ctx;
2877 errout:
2878 return ERR_PTR(err);
2881 static void perf_event_free_filter(struct perf_event *event);
2883 static void free_event_rcu(struct rcu_head *head)
2885 struct perf_event *event;
2887 event = container_of(head, struct perf_event, rcu_head);
2888 if (event->ns)
2889 put_pid_ns(event->ns);
2890 perf_event_free_filter(event);
2891 kfree(event);
2894 static void ring_buffer_put(struct ring_buffer *rb);
2896 static void free_event(struct perf_event *event)
2898 irq_work_sync(&event->pending);
2900 if (!event->parent) {
2901 if (event->attach_state & PERF_ATTACH_TASK)
2902 jump_label_dec(&perf_sched_events);
2903 if (event->attr.mmap || event->attr.mmap_data)
2904 atomic_dec(&nr_mmap_events);
2905 if (event->attr.comm)
2906 atomic_dec(&nr_comm_events);
2907 if (event->attr.task)
2908 atomic_dec(&nr_task_events);
2909 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2910 put_callchain_buffers();
2911 if (is_cgroup_event(event)) {
2912 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2913 jump_label_dec(&perf_sched_events);
2917 if (event->rb) {
2918 ring_buffer_put(event->rb);
2919 event->rb = NULL;
2922 if (is_cgroup_event(event))
2923 perf_detach_cgroup(event);
2925 if (event->destroy)
2926 event->destroy(event);
2928 if (event->ctx)
2929 put_ctx(event->ctx);
2931 call_rcu(&event->rcu_head, free_event_rcu);
2934 int perf_event_release_kernel(struct perf_event *event)
2936 struct perf_event_context *ctx = event->ctx;
2938 WARN_ON_ONCE(ctx->parent_ctx);
2940 * There are two ways this annotation is useful:
2942 * 1) there is a lock recursion from perf_event_exit_task
2943 * see the comment there.
2945 * 2) there is a lock-inversion with mmap_sem through
2946 * perf_event_read_group(), which takes faults while
2947 * holding ctx->mutex, however this is called after
2948 * the last filedesc died, so there is no possibility
2949 * to trigger the AB-BA case.
2951 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2952 raw_spin_lock_irq(&ctx->lock);
2953 perf_group_detach(event);
2954 raw_spin_unlock_irq(&ctx->lock);
2955 perf_remove_from_context(event);
2956 mutex_unlock(&ctx->mutex);
2958 free_event(event);
2960 return 0;
2962 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2965 * Called when the last reference to the file is gone.
2967 static int perf_release(struct inode *inode, struct file *file)
2969 struct perf_event *event = file->private_data;
2970 struct task_struct *owner;
2972 file->private_data = NULL;
2974 rcu_read_lock();
2975 owner = ACCESS_ONCE(event->owner);
2977 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2978 * !owner it means the list deletion is complete and we can indeed
2979 * free this event, otherwise we need to serialize on
2980 * owner->perf_event_mutex.
2982 smp_read_barrier_depends();
2983 if (owner) {
2985 * Since delayed_put_task_struct() also drops the last
2986 * task reference we can safely take a new reference
2987 * while holding the rcu_read_lock().
2989 get_task_struct(owner);
2991 rcu_read_unlock();
2993 if (owner) {
2994 mutex_lock(&owner->perf_event_mutex);
2996 * We have to re-check the event->owner field, if it is cleared
2997 * we raced with perf_event_exit_task(), acquiring the mutex
2998 * ensured they're done, and we can proceed with freeing the
2999 * event.
3001 if (event->owner)
3002 list_del_init(&event->owner_entry);
3003 mutex_unlock(&owner->perf_event_mutex);
3004 put_task_struct(owner);
3007 return perf_event_release_kernel(event);
3010 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3012 struct perf_event *child;
3013 u64 total = 0;
3015 *enabled = 0;
3016 *running = 0;
3018 mutex_lock(&event->child_mutex);
3019 total += perf_event_read(event);
3020 *enabled += event->total_time_enabled +
3021 atomic64_read(&event->child_total_time_enabled);
3022 *running += event->total_time_running +
3023 atomic64_read(&event->child_total_time_running);
3025 list_for_each_entry(child, &event->child_list, child_list) {
3026 total += perf_event_read(child);
3027 *enabled += child->total_time_enabled;
3028 *running += child->total_time_running;
3030 mutex_unlock(&event->child_mutex);
3032 return total;
3034 EXPORT_SYMBOL_GPL(perf_event_read_value);
3036 static int perf_event_read_group(struct perf_event *event,
3037 u64 read_format, char __user *buf)
3039 struct perf_event *leader = event->group_leader, *sub;
3040 int n = 0, size = 0, ret = -EFAULT;
3041 struct perf_event_context *ctx = leader->ctx;
3042 u64 values[5];
3043 u64 count, enabled, running;
3045 mutex_lock(&ctx->mutex);
3046 count = perf_event_read_value(leader, &enabled, &running);
3048 values[n++] = 1 + leader->nr_siblings;
3049 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3050 values[n++] = enabled;
3051 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3052 values[n++] = running;
3053 values[n++] = count;
3054 if (read_format & PERF_FORMAT_ID)
3055 values[n++] = primary_event_id(leader);
3057 size = n * sizeof(u64);
3059 if (copy_to_user(buf, values, size))
3060 goto unlock;
3062 ret = size;
3064 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3065 n = 0;
3067 values[n++] = perf_event_read_value(sub, &enabled, &running);
3068 if (read_format & PERF_FORMAT_ID)
3069 values[n++] = primary_event_id(sub);
3071 size = n * sizeof(u64);
3073 if (copy_to_user(buf + ret, values, size)) {
3074 ret = -EFAULT;
3075 goto unlock;
3078 ret += size;
3080 unlock:
3081 mutex_unlock(&ctx->mutex);
3083 return ret;
3086 static int perf_event_read_one(struct perf_event *event,
3087 u64 read_format, char __user *buf)
3089 u64 enabled, running;
3090 u64 values[4];
3091 int n = 0;
3093 values[n++] = perf_event_read_value(event, &enabled, &running);
3094 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3095 values[n++] = enabled;
3096 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3097 values[n++] = running;
3098 if (read_format & PERF_FORMAT_ID)
3099 values[n++] = primary_event_id(event);
3101 if (copy_to_user(buf, values, n * sizeof(u64)))
3102 return -EFAULT;
3104 return n * sizeof(u64);
3108 * Read the performance event - simple non blocking version for now
3110 static ssize_t
3111 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3113 u64 read_format = event->attr.read_format;
3114 int ret;
3117 * Return end-of-file for a read on a event that is in
3118 * error state (i.e. because it was pinned but it couldn't be
3119 * scheduled on to the CPU at some point).
3121 if (event->state == PERF_EVENT_STATE_ERROR)
3122 return 0;
3124 if (count < event->read_size)
3125 return -ENOSPC;
3127 WARN_ON_ONCE(event->ctx->parent_ctx);
3128 if (read_format & PERF_FORMAT_GROUP)
3129 ret = perf_event_read_group(event, read_format, buf);
3130 else
3131 ret = perf_event_read_one(event, read_format, buf);
3133 return ret;
3136 static ssize_t
3137 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3139 struct perf_event *event = file->private_data;
3141 return perf_read_hw(event, buf, count);
3144 static unsigned int perf_poll(struct file *file, poll_table *wait)
3146 struct perf_event *event = file->private_data;
3147 struct ring_buffer *rb;
3148 unsigned int events = POLL_HUP;
3150 rcu_read_lock();
3151 rb = rcu_dereference(event->rb);
3152 if (rb)
3153 events = atomic_xchg(&rb->poll, 0);
3154 rcu_read_unlock();
3156 poll_wait(file, &event->waitq, wait);
3158 return events;
3161 static void perf_event_reset(struct perf_event *event)
3163 (void)perf_event_read(event);
3164 local64_set(&event->count, 0);
3165 perf_event_update_userpage(event);
3169 * Holding the top-level event's child_mutex means that any
3170 * descendant process that has inherited this event will block
3171 * in sync_child_event if it goes to exit, thus satisfying the
3172 * task existence requirements of perf_event_enable/disable.
3174 static void perf_event_for_each_child(struct perf_event *event,
3175 void (*func)(struct perf_event *))
3177 struct perf_event *child;
3179 WARN_ON_ONCE(event->ctx->parent_ctx);
3180 mutex_lock(&event->child_mutex);
3181 func(event);
3182 list_for_each_entry(child, &event->child_list, child_list)
3183 func(child);
3184 mutex_unlock(&event->child_mutex);
3187 static void perf_event_for_each(struct perf_event *event,
3188 void (*func)(struct perf_event *))
3190 struct perf_event_context *ctx = event->ctx;
3191 struct perf_event *sibling;
3193 WARN_ON_ONCE(ctx->parent_ctx);
3194 mutex_lock(&ctx->mutex);
3195 event = event->group_leader;
3197 perf_event_for_each_child(event, func);
3198 func(event);
3199 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3200 perf_event_for_each_child(event, func);
3201 mutex_unlock(&ctx->mutex);
3204 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3206 struct perf_event_context *ctx = event->ctx;
3207 int ret = 0;
3208 u64 value;
3210 if (!is_sampling_event(event))
3211 return -EINVAL;
3213 if (copy_from_user(&value, arg, sizeof(value)))
3214 return -EFAULT;
3216 if (!value)
3217 return -EINVAL;
3219 raw_spin_lock_irq(&ctx->lock);
3220 if (event->attr.freq) {
3221 if (value > sysctl_perf_event_sample_rate) {
3222 ret = -EINVAL;
3223 goto unlock;
3226 event->attr.sample_freq = value;
3227 } else {
3228 event->attr.sample_period = value;
3229 event->hw.sample_period = value;
3231 unlock:
3232 raw_spin_unlock_irq(&ctx->lock);
3234 return ret;
3237 static const struct file_operations perf_fops;
3239 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3241 struct file *file;
3243 file = fget_light(fd, fput_needed);
3244 if (!file)
3245 return ERR_PTR(-EBADF);
3247 if (file->f_op != &perf_fops) {
3248 fput_light(file, *fput_needed);
3249 *fput_needed = 0;
3250 return ERR_PTR(-EBADF);
3253 return file->private_data;
3256 static int perf_event_set_output(struct perf_event *event,
3257 struct perf_event *output_event);
3258 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3260 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3262 struct perf_event *event = file->private_data;
3263 void (*func)(struct perf_event *);
3264 u32 flags = arg;
3266 switch (cmd) {
3267 case PERF_EVENT_IOC_ENABLE:
3268 func = perf_event_enable;
3269 break;
3270 case PERF_EVENT_IOC_DISABLE:
3271 func = perf_event_disable;
3272 break;
3273 case PERF_EVENT_IOC_RESET:
3274 func = perf_event_reset;
3275 break;
3277 case PERF_EVENT_IOC_REFRESH:
3278 return perf_event_refresh(event, arg);
3280 case PERF_EVENT_IOC_PERIOD:
3281 return perf_event_period(event, (u64 __user *)arg);
3283 case PERF_EVENT_IOC_SET_OUTPUT:
3285 struct perf_event *output_event = NULL;
3286 int fput_needed = 0;
3287 int ret;
3289 if (arg != -1) {
3290 output_event = perf_fget_light(arg, &fput_needed);
3291 if (IS_ERR(output_event))
3292 return PTR_ERR(output_event);
3295 ret = perf_event_set_output(event, output_event);
3296 if (output_event)
3297 fput_light(output_event->filp, fput_needed);
3299 return ret;
3302 case PERF_EVENT_IOC_SET_FILTER:
3303 return perf_event_set_filter(event, (void __user *)arg);
3305 default:
3306 return -ENOTTY;
3309 if (flags & PERF_IOC_FLAG_GROUP)
3310 perf_event_for_each(event, func);
3311 else
3312 perf_event_for_each_child(event, func);
3314 return 0;
3317 int perf_event_task_enable(void)
3319 struct perf_event *event;
3321 mutex_lock(&current->perf_event_mutex);
3322 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3323 perf_event_for_each_child(event, perf_event_enable);
3324 mutex_unlock(&current->perf_event_mutex);
3326 return 0;
3329 int perf_event_task_disable(void)
3331 struct perf_event *event;
3333 mutex_lock(&current->perf_event_mutex);
3334 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3335 perf_event_for_each_child(event, perf_event_disable);
3336 mutex_unlock(&current->perf_event_mutex);
3338 return 0;
3341 #ifndef PERF_EVENT_INDEX_OFFSET
3342 # define PERF_EVENT_INDEX_OFFSET 0
3343 #endif
3345 static int perf_event_index(struct perf_event *event)
3347 if (event->hw.state & PERF_HES_STOPPED)
3348 return 0;
3350 if (event->state != PERF_EVENT_STATE_ACTIVE)
3351 return 0;
3353 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3356 static void calc_timer_values(struct perf_event *event,
3357 u64 *running,
3358 u64 *enabled)
3360 u64 now, ctx_time;
3362 now = perf_clock();
3363 ctx_time = event->shadow_ctx_time + now;
3364 *enabled = ctx_time - event->tstamp_enabled;
3365 *running = ctx_time - event->tstamp_running;
3369 * Callers need to ensure there can be no nesting of this function, otherwise
3370 * the seqlock logic goes bad. We can not serialize this because the arch
3371 * code calls this from NMI context.
3373 void perf_event_update_userpage(struct perf_event *event)
3375 struct perf_event_mmap_page *userpg;
3376 struct ring_buffer *rb;
3377 u64 enabled, running;
3379 rcu_read_lock();
3381 * compute total_time_enabled, total_time_running
3382 * based on snapshot values taken when the event
3383 * was last scheduled in.
3385 * we cannot simply called update_context_time()
3386 * because of locking issue as we can be called in
3387 * NMI context
3389 calc_timer_values(event, &enabled, &running);
3390 rb = rcu_dereference(event->rb);
3391 if (!rb)
3392 goto unlock;
3394 userpg = rb->user_page;
3397 * Disable preemption so as to not let the corresponding user-space
3398 * spin too long if we get preempted.
3400 preempt_disable();
3401 ++userpg->lock;
3402 barrier();
3403 userpg->index = perf_event_index(event);
3404 userpg->offset = perf_event_count(event);
3405 if (event->state == PERF_EVENT_STATE_ACTIVE)
3406 userpg->offset -= local64_read(&event->hw.prev_count);
3408 userpg->time_enabled = enabled +
3409 atomic64_read(&event->child_total_time_enabled);
3411 userpg->time_running = running +
3412 atomic64_read(&event->child_total_time_running);
3414 barrier();
3415 ++userpg->lock;
3416 preempt_enable();
3417 unlock:
3418 rcu_read_unlock();
3421 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3423 struct perf_event *event = vma->vm_file->private_data;
3424 struct ring_buffer *rb;
3425 int ret = VM_FAULT_SIGBUS;
3427 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3428 if (vmf->pgoff == 0)
3429 ret = 0;
3430 return ret;
3433 rcu_read_lock();
3434 rb = rcu_dereference(event->rb);
3435 if (!rb)
3436 goto unlock;
3438 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3439 goto unlock;
3441 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3442 if (!vmf->page)
3443 goto unlock;
3445 get_page(vmf->page);
3446 vmf->page->mapping = vma->vm_file->f_mapping;
3447 vmf->page->index = vmf->pgoff;
3449 ret = 0;
3450 unlock:
3451 rcu_read_unlock();
3453 return ret;
3456 static void rb_free_rcu(struct rcu_head *rcu_head)
3458 struct ring_buffer *rb;
3460 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3461 rb_free(rb);
3464 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3466 struct ring_buffer *rb;
3468 rcu_read_lock();
3469 rb = rcu_dereference(event->rb);
3470 if (rb) {
3471 if (!atomic_inc_not_zero(&rb->refcount))
3472 rb = NULL;
3474 rcu_read_unlock();
3476 return rb;
3479 static void ring_buffer_put(struct ring_buffer *rb)
3481 if (!atomic_dec_and_test(&rb->refcount))
3482 return;
3484 call_rcu(&rb->rcu_head, rb_free_rcu);
3487 static void perf_mmap_open(struct vm_area_struct *vma)
3489 struct perf_event *event = vma->vm_file->private_data;
3491 atomic_inc(&event->mmap_count);
3494 static void perf_mmap_close(struct vm_area_struct *vma)
3496 struct perf_event *event = vma->vm_file->private_data;
3498 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3499 unsigned long size = perf_data_size(event->rb);
3500 struct user_struct *user = event->mmap_user;
3501 struct ring_buffer *rb = event->rb;
3503 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3504 vma->vm_mm->pinned_vm -= event->mmap_locked;
3505 rcu_assign_pointer(event->rb, NULL);
3506 mutex_unlock(&event->mmap_mutex);
3508 ring_buffer_put(rb);
3509 free_uid(user);
3513 static const struct vm_operations_struct perf_mmap_vmops = {
3514 .open = perf_mmap_open,
3515 .close = perf_mmap_close,
3516 .fault = perf_mmap_fault,
3517 .page_mkwrite = perf_mmap_fault,
3520 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3522 struct perf_event *event = file->private_data;
3523 unsigned long user_locked, user_lock_limit;
3524 struct user_struct *user = current_user();
3525 unsigned long locked, lock_limit;
3526 struct ring_buffer *rb;
3527 unsigned long vma_size;
3528 unsigned long nr_pages;
3529 long user_extra, extra;
3530 int ret = 0, flags = 0;
3533 * Don't allow mmap() of inherited per-task counters. This would
3534 * create a performance issue due to all children writing to the
3535 * same rb.
3537 if (event->cpu == -1 && event->attr.inherit)
3538 return -EINVAL;
3540 if (!(vma->vm_flags & VM_SHARED))
3541 return -EINVAL;
3543 vma_size = vma->vm_end - vma->vm_start;
3544 nr_pages = (vma_size / PAGE_SIZE) - 1;
3547 * If we have rb pages ensure they're a power-of-two number, so we
3548 * can do bitmasks instead of modulo.
3550 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3551 return -EINVAL;
3553 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3554 return -EINVAL;
3556 if (vma->vm_pgoff != 0)
3557 return -EINVAL;
3559 WARN_ON_ONCE(event->ctx->parent_ctx);
3560 mutex_lock(&event->mmap_mutex);
3561 if (event->rb) {
3562 if (event->rb->nr_pages == nr_pages)
3563 atomic_inc(&event->rb->refcount);
3564 else
3565 ret = -EINVAL;
3566 goto unlock;
3569 user_extra = nr_pages + 1;
3570 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3573 * Increase the limit linearly with more CPUs:
3575 user_lock_limit *= num_online_cpus();
3577 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3579 extra = 0;
3580 if (user_locked > user_lock_limit)
3581 extra = user_locked - user_lock_limit;
3583 lock_limit = rlimit(RLIMIT_MEMLOCK);
3584 lock_limit >>= PAGE_SHIFT;
3585 locked = vma->vm_mm->pinned_vm + extra;
3587 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3588 !capable(CAP_IPC_LOCK)) {
3589 ret = -EPERM;
3590 goto unlock;
3593 WARN_ON(event->rb);
3595 if (vma->vm_flags & VM_WRITE)
3596 flags |= RING_BUFFER_WRITABLE;
3598 rb = rb_alloc(nr_pages,
3599 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3600 event->cpu, flags);
3602 if (!rb) {
3603 ret = -ENOMEM;
3604 goto unlock;
3606 rcu_assign_pointer(event->rb, rb);
3608 atomic_long_add(user_extra, &user->locked_vm);
3609 event->mmap_locked = extra;
3610 event->mmap_user = get_current_user();
3611 vma->vm_mm->pinned_vm += event->mmap_locked;
3613 unlock:
3614 if (!ret)
3615 atomic_inc(&event->mmap_count);
3616 mutex_unlock(&event->mmap_mutex);
3618 vma->vm_flags |= VM_RESERVED;
3619 vma->vm_ops = &perf_mmap_vmops;
3621 return ret;
3624 static int perf_fasync(int fd, struct file *filp, int on)
3626 struct inode *inode = filp->f_path.dentry->d_inode;
3627 struct perf_event *event = filp->private_data;
3628 int retval;
3630 mutex_lock(&inode->i_mutex);
3631 retval = fasync_helper(fd, filp, on, &event->fasync);
3632 mutex_unlock(&inode->i_mutex);
3634 if (retval < 0)
3635 return retval;
3637 return 0;
3640 static const struct file_operations perf_fops = {
3641 .llseek = no_llseek,
3642 .release = perf_release,
3643 .read = perf_read,
3644 .poll = perf_poll,
3645 .unlocked_ioctl = perf_ioctl,
3646 .compat_ioctl = perf_ioctl,
3647 .mmap = perf_mmap,
3648 .fasync = perf_fasync,
3652 * Perf event wakeup
3654 * If there's data, ensure we set the poll() state and publish everything
3655 * to user-space before waking everybody up.
3658 void perf_event_wakeup(struct perf_event *event)
3660 wake_up_all(&event->waitq);
3662 if (event->pending_kill) {
3663 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3664 event->pending_kill = 0;
3668 static void perf_pending_event(struct irq_work *entry)
3670 struct perf_event *event = container_of(entry,
3671 struct perf_event, pending);
3673 if (event->pending_disable) {
3674 event->pending_disable = 0;
3675 __perf_event_disable(event);
3678 if (event->pending_wakeup) {
3679 event->pending_wakeup = 0;
3680 perf_event_wakeup(event);
3685 * We assume there is only KVM supporting the callbacks.
3686 * Later on, we might change it to a list if there is
3687 * another virtualization implementation supporting the callbacks.
3689 struct perf_guest_info_callbacks *perf_guest_cbs;
3691 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3693 perf_guest_cbs = cbs;
3694 return 0;
3696 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3698 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3700 perf_guest_cbs = NULL;
3701 return 0;
3703 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3705 static void __perf_event_header__init_id(struct perf_event_header *header,
3706 struct perf_sample_data *data,
3707 struct perf_event *event)
3709 u64 sample_type = event->attr.sample_type;
3711 data->type = sample_type;
3712 header->size += event->id_header_size;
3714 if (sample_type & PERF_SAMPLE_TID) {
3715 /* namespace issues */
3716 data->tid_entry.pid = perf_event_pid(event, current);
3717 data->tid_entry.tid = perf_event_tid(event, current);
3720 if (sample_type & PERF_SAMPLE_TIME)
3721 data->time = perf_clock();
3723 if (sample_type & PERF_SAMPLE_ID)
3724 data->id = primary_event_id(event);
3726 if (sample_type & PERF_SAMPLE_STREAM_ID)
3727 data->stream_id = event->id;
3729 if (sample_type & PERF_SAMPLE_CPU) {
3730 data->cpu_entry.cpu = raw_smp_processor_id();
3731 data->cpu_entry.reserved = 0;
3735 void perf_event_header__init_id(struct perf_event_header *header,
3736 struct perf_sample_data *data,
3737 struct perf_event *event)
3739 if (event->attr.sample_id_all)
3740 __perf_event_header__init_id(header, data, event);
3743 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3744 struct perf_sample_data *data)
3746 u64 sample_type = data->type;
3748 if (sample_type & PERF_SAMPLE_TID)
3749 perf_output_put(handle, data->tid_entry);
3751 if (sample_type & PERF_SAMPLE_TIME)
3752 perf_output_put(handle, data->time);
3754 if (sample_type & PERF_SAMPLE_ID)
3755 perf_output_put(handle, data->id);
3757 if (sample_type & PERF_SAMPLE_STREAM_ID)
3758 perf_output_put(handle, data->stream_id);
3760 if (sample_type & PERF_SAMPLE_CPU)
3761 perf_output_put(handle, data->cpu_entry);
3764 void perf_event__output_id_sample(struct perf_event *event,
3765 struct perf_output_handle *handle,
3766 struct perf_sample_data *sample)
3768 if (event->attr.sample_id_all)
3769 __perf_event__output_id_sample(handle, sample);
3772 static void perf_output_read_one(struct perf_output_handle *handle,
3773 struct perf_event *event,
3774 u64 enabled, u64 running)
3776 u64 read_format = event->attr.read_format;
3777 u64 values[4];
3778 int n = 0;
3780 values[n++] = perf_event_count(event);
3781 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3782 values[n++] = enabled +
3783 atomic64_read(&event->child_total_time_enabled);
3785 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3786 values[n++] = running +
3787 atomic64_read(&event->child_total_time_running);
3789 if (read_format & PERF_FORMAT_ID)
3790 values[n++] = primary_event_id(event);
3792 __output_copy(handle, values, n * sizeof(u64));
3796 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3798 static void perf_output_read_group(struct perf_output_handle *handle,
3799 struct perf_event *event,
3800 u64 enabled, u64 running)
3802 struct perf_event *leader = event->group_leader, *sub;
3803 u64 read_format = event->attr.read_format;
3804 u64 values[5];
3805 int n = 0;
3807 values[n++] = 1 + leader->nr_siblings;
3809 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3810 values[n++] = enabled;
3812 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3813 values[n++] = running;
3815 if (leader != event)
3816 leader->pmu->read(leader);
3818 values[n++] = perf_event_count(leader);
3819 if (read_format & PERF_FORMAT_ID)
3820 values[n++] = primary_event_id(leader);
3822 __output_copy(handle, values, n * sizeof(u64));
3824 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3825 n = 0;
3827 if (sub != event)
3828 sub->pmu->read(sub);
3830 values[n++] = perf_event_count(sub);
3831 if (read_format & PERF_FORMAT_ID)
3832 values[n++] = primary_event_id(sub);
3834 __output_copy(handle, values, n * sizeof(u64));
3838 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3839 PERF_FORMAT_TOTAL_TIME_RUNNING)
3841 static void perf_output_read(struct perf_output_handle *handle,
3842 struct perf_event *event)
3844 u64 enabled = 0, running = 0;
3845 u64 read_format = event->attr.read_format;
3848 * compute total_time_enabled, total_time_running
3849 * based on snapshot values taken when the event
3850 * was last scheduled in.
3852 * we cannot simply called update_context_time()
3853 * because of locking issue as we are called in
3854 * NMI context
3856 if (read_format & PERF_FORMAT_TOTAL_TIMES)
3857 calc_timer_values(event, &enabled, &running);
3859 if (event->attr.read_format & PERF_FORMAT_GROUP)
3860 perf_output_read_group(handle, event, enabled, running);
3861 else
3862 perf_output_read_one(handle, event, enabled, running);
3865 void perf_output_sample(struct perf_output_handle *handle,
3866 struct perf_event_header *header,
3867 struct perf_sample_data *data,
3868 struct perf_event *event)
3870 u64 sample_type = data->type;
3872 perf_output_put(handle, *header);
3874 if (sample_type & PERF_SAMPLE_IP)
3875 perf_output_put(handle, data->ip);
3877 if (sample_type & PERF_SAMPLE_TID)
3878 perf_output_put(handle, data->tid_entry);
3880 if (sample_type & PERF_SAMPLE_TIME)
3881 perf_output_put(handle, data->time);
3883 if (sample_type & PERF_SAMPLE_ADDR)
3884 perf_output_put(handle, data->addr);
3886 if (sample_type & PERF_SAMPLE_ID)
3887 perf_output_put(handle, data->id);
3889 if (sample_type & PERF_SAMPLE_STREAM_ID)
3890 perf_output_put(handle, data->stream_id);
3892 if (sample_type & PERF_SAMPLE_CPU)
3893 perf_output_put(handle, data->cpu_entry);
3895 if (sample_type & PERF_SAMPLE_PERIOD)
3896 perf_output_put(handle, data->period);
3898 if (sample_type & PERF_SAMPLE_READ)
3899 perf_output_read(handle, event);
3901 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3902 if (data->callchain) {
3903 int size = 1;
3905 if (data->callchain)
3906 size += data->callchain->nr;
3908 size *= sizeof(u64);
3910 __output_copy(handle, data->callchain, size);
3911 } else {
3912 u64 nr = 0;
3913 perf_output_put(handle, nr);
3917 if (sample_type & PERF_SAMPLE_RAW) {
3918 if (data->raw) {
3919 perf_output_put(handle, data->raw->size);
3920 __output_copy(handle, data->raw->data,
3921 data->raw->size);
3922 } else {
3923 struct {
3924 u32 size;
3925 u32 data;
3926 } raw = {
3927 .size = sizeof(u32),
3928 .data = 0,
3930 perf_output_put(handle, raw);
3934 if (!event->attr.watermark) {
3935 int wakeup_events = event->attr.wakeup_events;
3937 if (wakeup_events) {
3938 struct ring_buffer *rb = handle->rb;
3939 int events = local_inc_return(&rb->events);
3941 if (events >= wakeup_events) {
3942 local_sub(wakeup_events, &rb->events);
3943 local_inc(&rb->wakeup);
3949 void perf_prepare_sample(struct perf_event_header *header,
3950 struct perf_sample_data *data,
3951 struct perf_event *event,
3952 struct pt_regs *regs)
3954 u64 sample_type = event->attr.sample_type;
3956 header->type = PERF_RECORD_SAMPLE;
3957 header->size = sizeof(*header) + event->header_size;
3959 header->misc = 0;
3960 header->misc |= perf_misc_flags(regs);
3962 __perf_event_header__init_id(header, data, event);
3964 if (sample_type & PERF_SAMPLE_IP)
3965 data->ip = perf_instruction_pointer(regs);
3967 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3968 int size = 1;
3970 data->callchain = perf_callchain(regs);
3972 if (data->callchain)
3973 size += data->callchain->nr;
3975 header->size += size * sizeof(u64);
3978 if (sample_type & PERF_SAMPLE_RAW) {
3979 int size = sizeof(u32);
3981 if (data->raw)
3982 size += data->raw->size;
3983 else
3984 size += sizeof(u32);
3986 WARN_ON_ONCE(size & (sizeof(u64)-1));
3987 header->size += size;
3991 static void perf_event_output(struct perf_event *event,
3992 struct perf_sample_data *data,
3993 struct pt_regs *regs)
3995 struct perf_output_handle handle;
3996 struct perf_event_header header;
3998 /* protect the callchain buffers */
3999 rcu_read_lock();
4001 perf_prepare_sample(&header, data, event, regs);
4003 if (perf_output_begin(&handle, event, header.size))
4004 goto exit;
4006 perf_output_sample(&handle, &header, data, event);
4008 perf_output_end(&handle);
4010 exit:
4011 rcu_read_unlock();
4015 * read event_id
4018 struct perf_read_event {
4019 struct perf_event_header header;
4021 u32 pid;
4022 u32 tid;
4025 static void
4026 perf_event_read_event(struct perf_event *event,
4027 struct task_struct *task)
4029 struct perf_output_handle handle;
4030 struct perf_sample_data sample;
4031 struct perf_read_event read_event = {
4032 .header = {
4033 .type = PERF_RECORD_READ,
4034 .misc = 0,
4035 .size = sizeof(read_event) + event->read_size,
4037 .pid = perf_event_pid(event, task),
4038 .tid = perf_event_tid(event, task),
4040 int ret;
4042 perf_event_header__init_id(&read_event.header, &sample, event);
4043 ret = perf_output_begin(&handle, event, read_event.header.size);
4044 if (ret)
4045 return;
4047 perf_output_put(&handle, read_event);
4048 perf_output_read(&handle, event);
4049 perf_event__output_id_sample(event, &handle, &sample);
4051 perf_output_end(&handle);
4055 * task tracking -- fork/exit
4057 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4060 struct perf_task_event {
4061 struct task_struct *task;
4062 struct perf_event_context *task_ctx;
4064 struct {
4065 struct perf_event_header header;
4067 u32 pid;
4068 u32 ppid;
4069 u32 tid;
4070 u32 ptid;
4071 u64 time;
4072 } event_id;
4075 static void perf_event_task_output(struct perf_event *event,
4076 struct perf_task_event *task_event)
4078 struct perf_output_handle handle;
4079 struct perf_sample_data sample;
4080 struct task_struct *task = task_event->task;
4081 int ret, size = task_event->event_id.header.size;
4083 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4085 ret = perf_output_begin(&handle, event,
4086 task_event->event_id.header.size);
4087 if (ret)
4088 goto out;
4090 task_event->event_id.pid = perf_event_pid(event, task);
4091 task_event->event_id.ppid = perf_event_pid(event, current);
4093 task_event->event_id.tid = perf_event_tid(event, task);
4094 task_event->event_id.ptid = perf_event_tid(event, current);
4096 perf_output_put(&handle, task_event->event_id);
4098 perf_event__output_id_sample(event, &handle, &sample);
4100 perf_output_end(&handle);
4101 out:
4102 task_event->event_id.header.size = size;
4105 static int perf_event_task_match(struct perf_event *event)
4107 if (event->state < PERF_EVENT_STATE_INACTIVE)
4108 return 0;
4110 if (!event_filter_match(event))
4111 return 0;
4113 if (event->attr.comm || event->attr.mmap ||
4114 event->attr.mmap_data || event->attr.task)
4115 return 1;
4117 return 0;
4120 static void perf_event_task_ctx(struct perf_event_context *ctx,
4121 struct perf_task_event *task_event)
4123 struct perf_event *event;
4125 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4126 if (perf_event_task_match(event))
4127 perf_event_task_output(event, task_event);
4131 static void perf_event_task_event(struct perf_task_event *task_event)
4133 struct perf_cpu_context *cpuctx;
4134 struct perf_event_context *ctx;
4135 struct pmu *pmu;
4136 int ctxn;
4138 rcu_read_lock();
4139 list_for_each_entry_rcu(pmu, &pmus, entry) {
4140 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4141 if (cpuctx->active_pmu != pmu)
4142 goto next;
4143 perf_event_task_ctx(&cpuctx->ctx, task_event);
4145 ctx = task_event->task_ctx;
4146 if (!ctx) {
4147 ctxn = pmu->task_ctx_nr;
4148 if (ctxn < 0)
4149 goto next;
4150 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4152 if (ctx)
4153 perf_event_task_ctx(ctx, task_event);
4154 next:
4155 put_cpu_ptr(pmu->pmu_cpu_context);
4157 rcu_read_unlock();
4160 static void perf_event_task(struct task_struct *task,
4161 struct perf_event_context *task_ctx,
4162 int new)
4164 struct perf_task_event task_event;
4166 if (!atomic_read(&nr_comm_events) &&
4167 !atomic_read(&nr_mmap_events) &&
4168 !atomic_read(&nr_task_events))
4169 return;
4171 task_event = (struct perf_task_event){
4172 .task = task,
4173 .task_ctx = task_ctx,
4174 .event_id = {
4175 .header = {
4176 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4177 .misc = 0,
4178 .size = sizeof(task_event.event_id),
4180 /* .pid */
4181 /* .ppid */
4182 /* .tid */
4183 /* .ptid */
4184 .time = perf_clock(),
4188 perf_event_task_event(&task_event);
4191 void perf_event_fork(struct task_struct *task)
4193 perf_event_task(task, NULL, 1);
4197 * comm tracking
4200 struct perf_comm_event {
4201 struct task_struct *task;
4202 char *comm;
4203 int comm_size;
4205 struct {
4206 struct perf_event_header header;
4208 u32 pid;
4209 u32 tid;
4210 } event_id;
4213 static void perf_event_comm_output(struct perf_event *event,
4214 struct perf_comm_event *comm_event)
4216 struct perf_output_handle handle;
4217 struct perf_sample_data sample;
4218 int size = comm_event->event_id.header.size;
4219 int ret;
4221 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4222 ret = perf_output_begin(&handle, event,
4223 comm_event->event_id.header.size);
4225 if (ret)
4226 goto out;
4228 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4229 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4231 perf_output_put(&handle, comm_event->event_id);
4232 __output_copy(&handle, comm_event->comm,
4233 comm_event->comm_size);
4235 perf_event__output_id_sample(event, &handle, &sample);
4237 perf_output_end(&handle);
4238 out:
4239 comm_event->event_id.header.size = size;
4242 static int perf_event_comm_match(struct perf_event *event)
4244 if (event->state < PERF_EVENT_STATE_INACTIVE)
4245 return 0;
4247 if (!event_filter_match(event))
4248 return 0;
4250 if (event->attr.comm)
4251 return 1;
4253 return 0;
4256 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4257 struct perf_comm_event *comm_event)
4259 struct perf_event *event;
4261 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4262 if (perf_event_comm_match(event))
4263 perf_event_comm_output(event, comm_event);
4267 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4269 struct perf_cpu_context *cpuctx;
4270 struct perf_event_context *ctx;
4271 char comm[TASK_COMM_LEN];
4272 unsigned int size;
4273 struct pmu *pmu;
4274 int ctxn;
4276 memset(comm, 0, sizeof(comm));
4277 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4278 size = ALIGN(strlen(comm)+1, sizeof(u64));
4280 comm_event->comm = comm;
4281 comm_event->comm_size = size;
4283 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4284 rcu_read_lock();
4285 list_for_each_entry_rcu(pmu, &pmus, entry) {
4286 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4287 if (cpuctx->active_pmu != pmu)
4288 goto next;
4289 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4291 ctxn = pmu->task_ctx_nr;
4292 if (ctxn < 0)
4293 goto next;
4295 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4296 if (ctx)
4297 perf_event_comm_ctx(ctx, comm_event);
4298 next:
4299 put_cpu_ptr(pmu->pmu_cpu_context);
4301 rcu_read_unlock();
4304 void perf_event_comm(struct task_struct *task)
4306 struct perf_comm_event comm_event;
4307 struct perf_event_context *ctx;
4308 int ctxn;
4310 for_each_task_context_nr(ctxn) {
4311 ctx = task->perf_event_ctxp[ctxn];
4312 if (!ctx)
4313 continue;
4315 perf_event_enable_on_exec(ctx);
4318 if (!atomic_read(&nr_comm_events))
4319 return;
4321 comm_event = (struct perf_comm_event){
4322 .task = task,
4323 /* .comm */
4324 /* .comm_size */
4325 .event_id = {
4326 .header = {
4327 .type = PERF_RECORD_COMM,
4328 .misc = 0,
4329 /* .size */
4331 /* .pid */
4332 /* .tid */
4336 perf_event_comm_event(&comm_event);
4340 * mmap tracking
4343 struct perf_mmap_event {
4344 struct vm_area_struct *vma;
4346 const char *file_name;
4347 int file_size;
4349 struct {
4350 struct perf_event_header header;
4352 u32 pid;
4353 u32 tid;
4354 u64 start;
4355 u64 len;
4356 u64 pgoff;
4357 } event_id;
4360 static void perf_event_mmap_output(struct perf_event *event,
4361 struct perf_mmap_event *mmap_event)
4363 struct perf_output_handle handle;
4364 struct perf_sample_data sample;
4365 int size = mmap_event->event_id.header.size;
4366 int ret;
4368 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4369 ret = perf_output_begin(&handle, event,
4370 mmap_event->event_id.header.size);
4371 if (ret)
4372 goto out;
4374 mmap_event->event_id.pid = perf_event_pid(event, current);
4375 mmap_event->event_id.tid = perf_event_tid(event, current);
4377 perf_output_put(&handle, mmap_event->event_id);
4378 __output_copy(&handle, mmap_event->file_name,
4379 mmap_event->file_size);
4381 perf_event__output_id_sample(event, &handle, &sample);
4383 perf_output_end(&handle);
4384 out:
4385 mmap_event->event_id.header.size = size;
4388 static int perf_event_mmap_match(struct perf_event *event,
4389 struct perf_mmap_event *mmap_event,
4390 int executable)
4392 if (event->state < PERF_EVENT_STATE_INACTIVE)
4393 return 0;
4395 if (!event_filter_match(event))
4396 return 0;
4398 if ((!executable && event->attr.mmap_data) ||
4399 (executable && event->attr.mmap))
4400 return 1;
4402 return 0;
4405 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4406 struct perf_mmap_event *mmap_event,
4407 int executable)
4409 struct perf_event *event;
4411 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4412 if (perf_event_mmap_match(event, mmap_event, executable))
4413 perf_event_mmap_output(event, mmap_event);
4417 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4419 struct perf_cpu_context *cpuctx;
4420 struct perf_event_context *ctx;
4421 struct vm_area_struct *vma = mmap_event->vma;
4422 struct file *file = vma->vm_file;
4423 unsigned int size;
4424 char tmp[16];
4425 char *buf = NULL;
4426 const char *name;
4427 struct pmu *pmu;
4428 int ctxn;
4430 memset(tmp, 0, sizeof(tmp));
4432 if (file) {
4434 * d_path works from the end of the rb backwards, so we
4435 * need to add enough zero bytes after the string to handle
4436 * the 64bit alignment we do later.
4438 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4439 if (!buf) {
4440 name = strncpy(tmp, "//enomem", sizeof(tmp));
4441 goto got_name;
4443 name = d_path(&file->f_path, buf, PATH_MAX);
4444 if (IS_ERR(name)) {
4445 name = strncpy(tmp, "//toolong", sizeof(tmp));
4446 goto got_name;
4448 } else {
4449 if (arch_vma_name(mmap_event->vma)) {
4450 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4451 sizeof(tmp));
4452 goto got_name;
4455 if (!vma->vm_mm) {
4456 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4457 goto got_name;
4458 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4459 vma->vm_end >= vma->vm_mm->brk) {
4460 name = strncpy(tmp, "[heap]", sizeof(tmp));
4461 goto got_name;
4462 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4463 vma->vm_end >= vma->vm_mm->start_stack) {
4464 name = strncpy(tmp, "[stack]", sizeof(tmp));
4465 goto got_name;
4468 name = strncpy(tmp, "//anon", sizeof(tmp));
4469 goto got_name;
4472 got_name:
4473 size = ALIGN(strlen(name)+1, sizeof(u64));
4475 mmap_event->file_name = name;
4476 mmap_event->file_size = size;
4478 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4480 rcu_read_lock();
4481 list_for_each_entry_rcu(pmu, &pmus, entry) {
4482 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4483 if (cpuctx->active_pmu != pmu)
4484 goto next;
4485 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4486 vma->vm_flags & VM_EXEC);
4488 ctxn = pmu->task_ctx_nr;
4489 if (ctxn < 0)
4490 goto next;
4492 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4493 if (ctx) {
4494 perf_event_mmap_ctx(ctx, mmap_event,
4495 vma->vm_flags & VM_EXEC);
4497 next:
4498 put_cpu_ptr(pmu->pmu_cpu_context);
4500 rcu_read_unlock();
4502 kfree(buf);
4505 void perf_event_mmap(struct vm_area_struct *vma)
4507 struct perf_mmap_event mmap_event;
4509 if (!atomic_read(&nr_mmap_events))
4510 return;
4512 mmap_event = (struct perf_mmap_event){
4513 .vma = vma,
4514 /* .file_name */
4515 /* .file_size */
4516 .event_id = {
4517 .header = {
4518 .type = PERF_RECORD_MMAP,
4519 .misc = PERF_RECORD_MISC_USER,
4520 /* .size */
4522 /* .pid */
4523 /* .tid */
4524 .start = vma->vm_start,
4525 .len = vma->vm_end - vma->vm_start,
4526 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4530 perf_event_mmap_event(&mmap_event);
4534 * IRQ throttle logging
4537 static void perf_log_throttle(struct perf_event *event, int enable)
4539 struct perf_output_handle handle;
4540 struct perf_sample_data sample;
4541 int ret;
4543 struct {
4544 struct perf_event_header header;
4545 u64 time;
4546 u64 id;
4547 u64 stream_id;
4548 } throttle_event = {
4549 .header = {
4550 .type = PERF_RECORD_THROTTLE,
4551 .misc = 0,
4552 .size = sizeof(throttle_event),
4554 .time = perf_clock(),
4555 .id = primary_event_id(event),
4556 .stream_id = event->id,
4559 if (enable)
4560 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4562 perf_event_header__init_id(&throttle_event.header, &sample, event);
4564 ret = perf_output_begin(&handle, event,
4565 throttle_event.header.size);
4566 if (ret)
4567 return;
4569 perf_output_put(&handle, throttle_event);
4570 perf_event__output_id_sample(event, &handle, &sample);
4571 perf_output_end(&handle);
4575 * Generic event overflow handling, sampling.
4578 static int __perf_event_overflow(struct perf_event *event,
4579 int throttle, struct perf_sample_data *data,
4580 struct pt_regs *regs)
4582 int events = atomic_read(&event->event_limit);
4583 struct hw_perf_event *hwc = &event->hw;
4584 int ret = 0;
4587 * Non-sampling counters might still use the PMI to fold short
4588 * hardware counters, ignore those.
4590 if (unlikely(!is_sampling_event(event)))
4591 return 0;
4593 if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
4594 if (throttle) {
4595 hwc->interrupts = MAX_INTERRUPTS;
4596 perf_log_throttle(event, 0);
4597 ret = 1;
4599 } else
4600 hwc->interrupts++;
4602 if (event->attr.freq) {
4603 u64 now = perf_clock();
4604 s64 delta = now - hwc->freq_time_stamp;
4606 hwc->freq_time_stamp = now;
4608 if (delta > 0 && delta < 2*TICK_NSEC)
4609 perf_adjust_period(event, delta, hwc->last_period);
4613 * XXX event_limit might not quite work as expected on inherited
4614 * events
4617 event->pending_kill = POLL_IN;
4618 if (events && atomic_dec_and_test(&event->event_limit)) {
4619 ret = 1;
4620 event->pending_kill = POLL_HUP;
4621 event->pending_disable = 1;
4622 irq_work_queue(&event->pending);
4625 if (event->overflow_handler)
4626 event->overflow_handler(event, data, regs);
4627 else
4628 perf_event_output(event, data, regs);
4630 if (event->fasync && event->pending_kill) {
4631 event->pending_wakeup = 1;
4632 irq_work_queue(&event->pending);
4635 return ret;
4638 int perf_event_overflow(struct perf_event *event,
4639 struct perf_sample_data *data,
4640 struct pt_regs *regs)
4642 return __perf_event_overflow(event, 1, data, regs);
4646 * Generic software event infrastructure
4649 struct swevent_htable {
4650 struct swevent_hlist *swevent_hlist;
4651 struct mutex hlist_mutex;
4652 int hlist_refcount;
4654 /* Recursion avoidance in each contexts */
4655 int recursion[PERF_NR_CONTEXTS];
4658 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4661 * We directly increment event->count and keep a second value in
4662 * event->hw.period_left to count intervals. This period event
4663 * is kept in the range [-sample_period, 0] so that we can use the
4664 * sign as trigger.
4667 static u64 perf_swevent_set_period(struct perf_event *event)
4669 struct hw_perf_event *hwc = &event->hw;
4670 u64 period = hwc->last_period;
4671 u64 nr, offset;
4672 s64 old, val;
4674 hwc->last_period = hwc->sample_period;
4676 again:
4677 old = val = local64_read(&hwc->period_left);
4678 if (val < 0)
4679 return 0;
4681 nr = div64_u64(period + val, period);
4682 offset = nr * period;
4683 val -= offset;
4684 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4685 goto again;
4687 return nr;
4690 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4691 struct perf_sample_data *data,
4692 struct pt_regs *regs)
4694 struct hw_perf_event *hwc = &event->hw;
4695 int throttle = 0;
4697 data->period = event->hw.last_period;
4698 if (!overflow)
4699 overflow = perf_swevent_set_period(event);
4701 if (hwc->interrupts == MAX_INTERRUPTS)
4702 return;
4704 for (; overflow; overflow--) {
4705 if (__perf_event_overflow(event, throttle,
4706 data, regs)) {
4708 * We inhibit the overflow from happening when
4709 * hwc->interrupts == MAX_INTERRUPTS.
4711 break;
4713 throttle = 1;
4717 static void perf_swevent_event(struct perf_event *event, u64 nr,
4718 struct perf_sample_data *data,
4719 struct pt_regs *regs)
4721 struct hw_perf_event *hwc = &event->hw;
4723 local64_add(nr, &event->count);
4725 if (!regs)
4726 return;
4728 if (!is_sampling_event(event))
4729 return;
4731 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4732 return perf_swevent_overflow(event, 1, data, regs);
4734 if (local64_add_negative(nr, &hwc->period_left))
4735 return;
4737 perf_swevent_overflow(event, 0, data, regs);
4740 static int perf_exclude_event(struct perf_event *event,
4741 struct pt_regs *regs)
4743 if (event->hw.state & PERF_HES_STOPPED)
4744 return 1;
4746 if (regs) {
4747 if (event->attr.exclude_user && user_mode(regs))
4748 return 1;
4750 if (event->attr.exclude_kernel && !user_mode(regs))
4751 return 1;
4754 return 0;
4757 static int perf_swevent_match(struct perf_event *event,
4758 enum perf_type_id type,
4759 u32 event_id,
4760 struct perf_sample_data *data,
4761 struct pt_regs *regs)
4763 if (event->attr.type != type)
4764 return 0;
4766 if (event->attr.config != event_id)
4767 return 0;
4769 if (perf_exclude_event(event, regs))
4770 return 0;
4772 return 1;
4775 static inline u64 swevent_hash(u64 type, u32 event_id)
4777 u64 val = event_id | (type << 32);
4779 return hash_64(val, SWEVENT_HLIST_BITS);
4782 static inline struct hlist_head *
4783 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4785 u64 hash = swevent_hash(type, event_id);
4787 return &hlist->heads[hash];
4790 /* For the read side: events when they trigger */
4791 static inline struct hlist_head *
4792 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4794 struct swevent_hlist *hlist;
4796 hlist = rcu_dereference(swhash->swevent_hlist);
4797 if (!hlist)
4798 return NULL;
4800 return __find_swevent_head(hlist, type, event_id);
4803 /* For the event head insertion and removal in the hlist */
4804 static inline struct hlist_head *
4805 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4807 struct swevent_hlist *hlist;
4808 u32 event_id = event->attr.config;
4809 u64 type = event->attr.type;
4812 * Event scheduling is always serialized against hlist allocation
4813 * and release. Which makes the protected version suitable here.
4814 * The context lock guarantees that.
4816 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4817 lockdep_is_held(&event->ctx->lock));
4818 if (!hlist)
4819 return NULL;
4821 return __find_swevent_head(hlist, type, event_id);
4824 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4825 u64 nr,
4826 struct perf_sample_data *data,
4827 struct pt_regs *regs)
4829 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4830 struct perf_event *event;
4831 struct hlist_node *node;
4832 struct hlist_head *head;
4834 rcu_read_lock();
4835 head = find_swevent_head_rcu(swhash, type, event_id);
4836 if (!head)
4837 goto end;
4839 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4840 if (perf_swevent_match(event, type, event_id, data, regs))
4841 perf_swevent_event(event, nr, data, regs);
4843 end:
4844 rcu_read_unlock();
4847 int perf_swevent_get_recursion_context(void)
4849 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4851 return get_recursion_context(swhash->recursion);
4853 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4855 inline void perf_swevent_put_recursion_context(int rctx)
4857 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4859 put_recursion_context(swhash->recursion, rctx);
4862 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4864 struct perf_sample_data data;
4865 int rctx;
4867 preempt_disable_notrace();
4868 rctx = perf_swevent_get_recursion_context();
4869 if (rctx < 0)
4870 return;
4872 perf_sample_data_init(&data, addr);
4874 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4876 perf_swevent_put_recursion_context(rctx);
4877 preempt_enable_notrace();
4880 static void perf_swevent_read(struct perf_event *event)
4884 static int perf_swevent_add(struct perf_event *event, int flags)
4886 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4887 struct hw_perf_event *hwc = &event->hw;
4888 struct hlist_head *head;
4890 if (is_sampling_event(event)) {
4891 hwc->last_period = hwc->sample_period;
4892 perf_swevent_set_period(event);
4895 hwc->state = !(flags & PERF_EF_START);
4897 head = find_swevent_head(swhash, event);
4898 if (WARN_ON_ONCE(!head))
4899 return -EINVAL;
4901 hlist_add_head_rcu(&event->hlist_entry, head);
4903 return 0;
4906 static void perf_swevent_del(struct perf_event *event, int flags)
4908 hlist_del_rcu(&event->hlist_entry);
4911 static void perf_swevent_start(struct perf_event *event, int flags)
4913 event->hw.state = 0;
4916 static void perf_swevent_stop(struct perf_event *event, int flags)
4918 event->hw.state = PERF_HES_STOPPED;
4921 /* Deref the hlist from the update side */
4922 static inline struct swevent_hlist *
4923 swevent_hlist_deref(struct swevent_htable *swhash)
4925 return rcu_dereference_protected(swhash->swevent_hlist,
4926 lockdep_is_held(&swhash->hlist_mutex));
4929 static void swevent_hlist_release(struct swevent_htable *swhash)
4931 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4933 if (!hlist)
4934 return;
4936 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4937 kfree_rcu(hlist, rcu_head);
4940 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4942 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4944 mutex_lock(&swhash->hlist_mutex);
4946 if (!--swhash->hlist_refcount)
4947 swevent_hlist_release(swhash);
4949 mutex_unlock(&swhash->hlist_mutex);
4952 static void swevent_hlist_put(struct perf_event *event)
4954 int cpu;
4956 if (event->cpu != -1) {
4957 swevent_hlist_put_cpu(event, event->cpu);
4958 return;
4961 for_each_possible_cpu(cpu)
4962 swevent_hlist_put_cpu(event, cpu);
4965 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4967 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4968 int err = 0;
4970 mutex_lock(&swhash->hlist_mutex);
4972 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4973 struct swevent_hlist *hlist;
4975 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4976 if (!hlist) {
4977 err = -ENOMEM;
4978 goto exit;
4980 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4982 swhash->hlist_refcount++;
4983 exit:
4984 mutex_unlock(&swhash->hlist_mutex);
4986 return err;
4989 static int swevent_hlist_get(struct perf_event *event)
4991 int err;
4992 int cpu, failed_cpu;
4994 if (event->cpu != -1)
4995 return swevent_hlist_get_cpu(event, event->cpu);
4997 get_online_cpus();
4998 for_each_possible_cpu(cpu) {
4999 err = swevent_hlist_get_cpu(event, cpu);
5000 if (err) {
5001 failed_cpu = cpu;
5002 goto fail;
5005 put_online_cpus();
5007 return 0;
5008 fail:
5009 for_each_possible_cpu(cpu) {
5010 if (cpu == failed_cpu)
5011 break;
5012 swevent_hlist_put_cpu(event, cpu);
5015 put_online_cpus();
5016 return err;
5019 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5021 static void sw_perf_event_destroy(struct perf_event *event)
5023 u64 event_id = event->attr.config;
5025 WARN_ON(event->parent);
5027 jump_label_dec(&perf_swevent_enabled[event_id]);
5028 swevent_hlist_put(event);
5031 static int perf_swevent_init(struct perf_event *event)
5033 int event_id = event->attr.config;
5035 if (event->attr.type != PERF_TYPE_SOFTWARE)
5036 return -ENOENT;
5038 switch (event_id) {
5039 case PERF_COUNT_SW_CPU_CLOCK:
5040 case PERF_COUNT_SW_TASK_CLOCK:
5041 return -ENOENT;
5043 default:
5044 break;
5047 if (event_id >= PERF_COUNT_SW_MAX)
5048 return -ENOENT;
5050 if (!event->parent) {
5051 int err;
5053 err = swevent_hlist_get(event);
5054 if (err)
5055 return err;
5057 jump_label_inc(&perf_swevent_enabled[event_id]);
5058 event->destroy = sw_perf_event_destroy;
5061 return 0;
5064 static struct pmu perf_swevent = {
5065 .task_ctx_nr = perf_sw_context,
5067 .event_init = perf_swevent_init,
5068 .add = perf_swevent_add,
5069 .del = perf_swevent_del,
5070 .start = perf_swevent_start,
5071 .stop = perf_swevent_stop,
5072 .read = perf_swevent_read,
5075 #ifdef CONFIG_EVENT_TRACING
5077 static int perf_tp_filter_match(struct perf_event *event,
5078 struct perf_sample_data *data)
5080 void *record = data->raw->data;
5082 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5083 return 1;
5084 return 0;
5087 static int perf_tp_event_match(struct perf_event *event,
5088 struct perf_sample_data *data,
5089 struct pt_regs *regs)
5091 if (event->hw.state & PERF_HES_STOPPED)
5092 return 0;
5094 * All tracepoints are from kernel-space.
5096 if (event->attr.exclude_kernel)
5097 return 0;
5099 if (!perf_tp_filter_match(event, data))
5100 return 0;
5102 return 1;
5105 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5106 struct pt_regs *regs, struct hlist_head *head, int rctx)
5108 struct perf_sample_data data;
5109 struct perf_event *event;
5110 struct hlist_node *node;
5112 struct perf_raw_record raw = {
5113 .size = entry_size,
5114 .data = record,
5117 perf_sample_data_init(&data, addr);
5118 data.raw = &raw;
5120 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5121 if (perf_tp_event_match(event, &data, regs))
5122 perf_swevent_event(event, count, &data, regs);
5125 perf_swevent_put_recursion_context(rctx);
5127 EXPORT_SYMBOL_GPL(perf_tp_event);
5129 static void tp_perf_event_destroy(struct perf_event *event)
5131 perf_trace_destroy(event);
5134 static int perf_tp_event_init(struct perf_event *event)
5136 int err;
5138 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5139 return -ENOENT;
5141 err = perf_trace_init(event);
5142 if (err)
5143 return err;
5145 event->destroy = tp_perf_event_destroy;
5147 return 0;
5150 static struct pmu perf_tracepoint = {
5151 .task_ctx_nr = perf_sw_context,
5153 .event_init = perf_tp_event_init,
5154 .add = perf_trace_add,
5155 .del = perf_trace_del,
5156 .start = perf_swevent_start,
5157 .stop = perf_swevent_stop,
5158 .read = perf_swevent_read,
5161 static inline void perf_tp_register(void)
5163 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5166 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5168 char *filter_str;
5169 int ret;
5171 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5172 return -EINVAL;
5174 filter_str = strndup_user(arg, PAGE_SIZE);
5175 if (IS_ERR(filter_str))
5176 return PTR_ERR(filter_str);
5178 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5180 kfree(filter_str);
5181 return ret;
5184 static void perf_event_free_filter(struct perf_event *event)
5186 ftrace_profile_free_filter(event);
5189 #else
5191 static inline void perf_tp_register(void)
5195 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5197 return -ENOENT;
5200 static void perf_event_free_filter(struct perf_event *event)
5204 #endif /* CONFIG_EVENT_TRACING */
5206 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5207 void perf_bp_event(struct perf_event *bp, void *data)
5209 struct perf_sample_data sample;
5210 struct pt_regs *regs = data;
5212 perf_sample_data_init(&sample, bp->attr.bp_addr);
5214 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5215 perf_swevent_event(bp, 1, &sample, regs);
5217 #endif
5220 * hrtimer based swevent callback
5223 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5225 enum hrtimer_restart ret = HRTIMER_RESTART;
5226 struct perf_sample_data data;
5227 struct pt_regs *regs;
5228 struct perf_event *event;
5229 u64 period;
5231 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5233 if (event->state != PERF_EVENT_STATE_ACTIVE)
5234 return HRTIMER_NORESTART;
5236 event->pmu->read(event);
5238 perf_sample_data_init(&data, 0);
5239 data.period = event->hw.last_period;
5240 regs = get_irq_regs();
5242 if (regs && !perf_exclude_event(event, regs)) {
5243 if (!(event->attr.exclude_idle && current->pid == 0))
5244 if (perf_event_overflow(event, &data, regs))
5245 ret = HRTIMER_NORESTART;
5248 period = max_t(u64, 10000, event->hw.sample_period);
5249 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5251 return ret;
5254 static void perf_swevent_start_hrtimer(struct perf_event *event)
5256 struct hw_perf_event *hwc = &event->hw;
5257 s64 period;
5259 if (!is_sampling_event(event))
5260 return;
5262 period = local64_read(&hwc->period_left);
5263 if (period) {
5264 if (period < 0)
5265 period = 10000;
5267 local64_set(&hwc->period_left, 0);
5268 } else {
5269 period = max_t(u64, 10000, hwc->sample_period);
5271 __hrtimer_start_range_ns(&hwc->hrtimer,
5272 ns_to_ktime(period), 0,
5273 HRTIMER_MODE_REL_PINNED, 0);
5276 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5278 struct hw_perf_event *hwc = &event->hw;
5280 if (is_sampling_event(event)) {
5281 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5282 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5284 hrtimer_cancel(&hwc->hrtimer);
5288 static void perf_swevent_init_hrtimer(struct perf_event *event)
5290 struct hw_perf_event *hwc = &event->hw;
5292 if (!is_sampling_event(event))
5293 return;
5295 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5296 hwc->hrtimer.function = perf_swevent_hrtimer;
5299 * Since hrtimers have a fixed rate, we can do a static freq->period
5300 * mapping and avoid the whole period adjust feedback stuff.
5302 if (event->attr.freq) {
5303 long freq = event->attr.sample_freq;
5305 event->attr.sample_period = NSEC_PER_SEC / freq;
5306 hwc->sample_period = event->attr.sample_period;
5307 local64_set(&hwc->period_left, hwc->sample_period);
5308 event->attr.freq = 0;
5313 * Software event: cpu wall time clock
5316 static void cpu_clock_event_update(struct perf_event *event)
5318 s64 prev;
5319 u64 now;
5321 now = local_clock();
5322 prev = local64_xchg(&event->hw.prev_count, now);
5323 local64_add(now - prev, &event->count);
5326 static void cpu_clock_event_start(struct perf_event *event, int flags)
5328 local64_set(&event->hw.prev_count, local_clock());
5329 perf_swevent_start_hrtimer(event);
5332 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5334 perf_swevent_cancel_hrtimer(event);
5335 cpu_clock_event_update(event);
5338 static int cpu_clock_event_add(struct perf_event *event, int flags)
5340 if (flags & PERF_EF_START)
5341 cpu_clock_event_start(event, flags);
5343 return 0;
5346 static void cpu_clock_event_del(struct perf_event *event, int flags)
5348 cpu_clock_event_stop(event, flags);
5351 static void cpu_clock_event_read(struct perf_event *event)
5353 cpu_clock_event_update(event);
5356 static int cpu_clock_event_init(struct perf_event *event)
5358 if (event->attr.type != PERF_TYPE_SOFTWARE)
5359 return -ENOENT;
5361 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5362 return -ENOENT;
5364 perf_swevent_init_hrtimer(event);
5366 return 0;
5369 static struct pmu perf_cpu_clock = {
5370 .task_ctx_nr = perf_sw_context,
5372 .event_init = cpu_clock_event_init,
5373 .add = cpu_clock_event_add,
5374 .del = cpu_clock_event_del,
5375 .start = cpu_clock_event_start,
5376 .stop = cpu_clock_event_stop,
5377 .read = cpu_clock_event_read,
5381 * Software event: task time clock
5384 static void task_clock_event_update(struct perf_event *event, u64 now)
5386 u64 prev;
5387 s64 delta;
5389 prev = local64_xchg(&event->hw.prev_count, now);
5390 delta = now - prev;
5391 local64_add(delta, &event->count);
5394 static void task_clock_event_start(struct perf_event *event, int flags)
5396 local64_set(&event->hw.prev_count, event->ctx->time);
5397 perf_swevent_start_hrtimer(event);
5400 static void task_clock_event_stop(struct perf_event *event, int flags)
5402 perf_swevent_cancel_hrtimer(event);
5403 task_clock_event_update(event, event->ctx->time);
5406 static int task_clock_event_add(struct perf_event *event, int flags)
5408 if (flags & PERF_EF_START)
5409 task_clock_event_start(event, flags);
5411 return 0;
5414 static void task_clock_event_del(struct perf_event *event, int flags)
5416 task_clock_event_stop(event, PERF_EF_UPDATE);
5419 static void task_clock_event_read(struct perf_event *event)
5421 u64 now = perf_clock();
5422 u64 delta = now - event->ctx->timestamp;
5423 u64 time = event->ctx->time + delta;
5425 task_clock_event_update(event, time);
5428 static int task_clock_event_init(struct perf_event *event)
5430 if (event->attr.type != PERF_TYPE_SOFTWARE)
5431 return -ENOENT;
5433 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5434 return -ENOENT;
5436 perf_swevent_init_hrtimer(event);
5438 return 0;
5441 static struct pmu perf_task_clock = {
5442 .task_ctx_nr = perf_sw_context,
5444 .event_init = task_clock_event_init,
5445 .add = task_clock_event_add,
5446 .del = task_clock_event_del,
5447 .start = task_clock_event_start,
5448 .stop = task_clock_event_stop,
5449 .read = task_clock_event_read,
5452 static void perf_pmu_nop_void(struct pmu *pmu)
5456 static int perf_pmu_nop_int(struct pmu *pmu)
5458 return 0;
5461 static void perf_pmu_start_txn(struct pmu *pmu)
5463 perf_pmu_disable(pmu);
5466 static int perf_pmu_commit_txn(struct pmu *pmu)
5468 perf_pmu_enable(pmu);
5469 return 0;
5472 static void perf_pmu_cancel_txn(struct pmu *pmu)
5474 perf_pmu_enable(pmu);
5478 * Ensures all contexts with the same task_ctx_nr have the same
5479 * pmu_cpu_context too.
5481 static void *find_pmu_context(int ctxn)
5483 struct pmu *pmu;
5485 if (ctxn < 0)
5486 return NULL;
5488 list_for_each_entry(pmu, &pmus, entry) {
5489 if (pmu->task_ctx_nr == ctxn)
5490 return pmu->pmu_cpu_context;
5493 return NULL;
5496 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5498 int cpu;
5500 for_each_possible_cpu(cpu) {
5501 struct perf_cpu_context *cpuctx;
5503 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5505 if (cpuctx->active_pmu == old_pmu)
5506 cpuctx->active_pmu = pmu;
5510 static void free_pmu_context(struct pmu *pmu)
5512 struct pmu *i;
5514 mutex_lock(&pmus_lock);
5516 * Like a real lame refcount.
5518 list_for_each_entry(i, &pmus, entry) {
5519 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5520 update_pmu_context(i, pmu);
5521 goto out;
5525 free_percpu(pmu->pmu_cpu_context);
5526 out:
5527 mutex_unlock(&pmus_lock);
5529 static struct idr pmu_idr;
5531 static ssize_t
5532 type_show(struct device *dev, struct device_attribute *attr, char *page)
5534 struct pmu *pmu = dev_get_drvdata(dev);
5536 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5539 static struct device_attribute pmu_dev_attrs[] = {
5540 __ATTR_RO(type),
5541 __ATTR_NULL,
5544 static int pmu_bus_running;
5545 static struct bus_type pmu_bus = {
5546 .name = "event_source",
5547 .dev_attrs = pmu_dev_attrs,
5550 static void pmu_dev_release(struct device *dev)
5552 kfree(dev);
5555 static int pmu_dev_alloc(struct pmu *pmu)
5557 int ret = -ENOMEM;
5559 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5560 if (!pmu->dev)
5561 goto out;
5563 device_initialize(pmu->dev);
5564 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5565 if (ret)
5566 goto free_dev;
5568 dev_set_drvdata(pmu->dev, pmu);
5569 pmu->dev->bus = &pmu_bus;
5570 pmu->dev->release = pmu_dev_release;
5571 ret = device_add(pmu->dev);
5572 if (ret)
5573 goto free_dev;
5575 out:
5576 return ret;
5578 free_dev:
5579 put_device(pmu->dev);
5580 goto out;
5583 static struct lock_class_key cpuctx_mutex;
5584 static struct lock_class_key cpuctx_lock;
5586 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5588 int cpu, ret;
5590 mutex_lock(&pmus_lock);
5591 ret = -ENOMEM;
5592 pmu->pmu_disable_count = alloc_percpu(int);
5593 if (!pmu->pmu_disable_count)
5594 goto unlock;
5596 pmu->type = -1;
5597 if (!name)
5598 goto skip_type;
5599 pmu->name = name;
5601 if (type < 0) {
5602 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5603 if (!err)
5604 goto free_pdc;
5606 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5607 if (err) {
5608 ret = err;
5609 goto free_pdc;
5612 pmu->type = type;
5614 if (pmu_bus_running) {
5615 ret = pmu_dev_alloc(pmu);
5616 if (ret)
5617 goto free_idr;
5620 skip_type:
5621 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5622 if (pmu->pmu_cpu_context)
5623 goto got_cpu_context;
5625 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5626 if (!pmu->pmu_cpu_context)
5627 goto free_dev;
5629 for_each_possible_cpu(cpu) {
5630 struct perf_cpu_context *cpuctx;
5632 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5633 __perf_event_init_context(&cpuctx->ctx);
5634 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5635 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5636 cpuctx->ctx.type = cpu_context;
5637 cpuctx->ctx.pmu = pmu;
5638 cpuctx->jiffies_interval = 1;
5639 INIT_LIST_HEAD(&cpuctx->rotation_list);
5640 cpuctx->active_pmu = pmu;
5643 got_cpu_context:
5644 if (!pmu->start_txn) {
5645 if (pmu->pmu_enable) {
5647 * If we have pmu_enable/pmu_disable calls, install
5648 * transaction stubs that use that to try and batch
5649 * hardware accesses.
5651 pmu->start_txn = perf_pmu_start_txn;
5652 pmu->commit_txn = perf_pmu_commit_txn;
5653 pmu->cancel_txn = perf_pmu_cancel_txn;
5654 } else {
5655 pmu->start_txn = perf_pmu_nop_void;
5656 pmu->commit_txn = perf_pmu_nop_int;
5657 pmu->cancel_txn = perf_pmu_nop_void;
5661 if (!pmu->pmu_enable) {
5662 pmu->pmu_enable = perf_pmu_nop_void;
5663 pmu->pmu_disable = perf_pmu_nop_void;
5666 list_add_rcu(&pmu->entry, &pmus);
5667 ret = 0;
5668 unlock:
5669 mutex_unlock(&pmus_lock);
5671 return ret;
5673 free_dev:
5674 device_del(pmu->dev);
5675 put_device(pmu->dev);
5677 free_idr:
5678 if (pmu->type >= PERF_TYPE_MAX)
5679 idr_remove(&pmu_idr, pmu->type);
5681 free_pdc:
5682 free_percpu(pmu->pmu_disable_count);
5683 goto unlock;
5686 void perf_pmu_unregister(struct pmu *pmu)
5688 mutex_lock(&pmus_lock);
5689 list_del_rcu(&pmu->entry);
5690 mutex_unlock(&pmus_lock);
5693 * We dereference the pmu list under both SRCU and regular RCU, so
5694 * synchronize against both of those.
5696 synchronize_srcu(&pmus_srcu);
5697 synchronize_rcu();
5699 free_percpu(pmu->pmu_disable_count);
5700 if (pmu->type >= PERF_TYPE_MAX)
5701 idr_remove(&pmu_idr, pmu->type);
5702 device_del(pmu->dev);
5703 put_device(pmu->dev);
5704 free_pmu_context(pmu);
5707 struct pmu *perf_init_event(struct perf_event *event)
5709 struct pmu *pmu = NULL;
5710 int idx;
5711 int ret;
5713 idx = srcu_read_lock(&pmus_srcu);
5715 rcu_read_lock();
5716 pmu = idr_find(&pmu_idr, event->attr.type);
5717 rcu_read_unlock();
5718 if (pmu) {
5719 ret = pmu->event_init(event);
5720 if (ret)
5721 pmu = ERR_PTR(ret);
5722 goto unlock;
5725 list_for_each_entry_rcu(pmu, &pmus, entry) {
5726 ret = pmu->event_init(event);
5727 if (!ret)
5728 goto unlock;
5730 if (ret != -ENOENT) {
5731 pmu = ERR_PTR(ret);
5732 goto unlock;
5735 pmu = ERR_PTR(-ENOENT);
5736 unlock:
5737 srcu_read_unlock(&pmus_srcu, idx);
5739 return pmu;
5743 * Allocate and initialize a event structure
5745 static struct perf_event *
5746 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5747 struct task_struct *task,
5748 struct perf_event *group_leader,
5749 struct perf_event *parent_event,
5750 perf_overflow_handler_t overflow_handler,
5751 void *context)
5753 struct pmu *pmu;
5754 struct perf_event *event;
5755 struct hw_perf_event *hwc;
5756 long err;
5758 if ((unsigned)cpu >= nr_cpu_ids) {
5759 if (!task || cpu != -1)
5760 return ERR_PTR(-EINVAL);
5763 event = kzalloc(sizeof(*event), GFP_KERNEL);
5764 if (!event)
5765 return ERR_PTR(-ENOMEM);
5768 * Single events are their own group leaders, with an
5769 * empty sibling list:
5771 if (!group_leader)
5772 group_leader = event;
5774 mutex_init(&event->child_mutex);
5775 INIT_LIST_HEAD(&event->child_list);
5777 INIT_LIST_HEAD(&event->group_entry);
5778 INIT_LIST_HEAD(&event->event_entry);
5779 INIT_LIST_HEAD(&event->sibling_list);
5780 init_waitqueue_head(&event->waitq);
5781 init_irq_work(&event->pending, perf_pending_event);
5783 mutex_init(&event->mmap_mutex);
5785 event->cpu = cpu;
5786 event->attr = *attr;
5787 event->group_leader = group_leader;
5788 event->pmu = NULL;
5789 event->oncpu = -1;
5791 event->parent = parent_event;
5793 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5794 event->id = atomic64_inc_return(&perf_event_id);
5796 event->state = PERF_EVENT_STATE_INACTIVE;
5798 if (task) {
5799 event->attach_state = PERF_ATTACH_TASK;
5800 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5802 * hw_breakpoint is a bit difficult here..
5804 if (attr->type == PERF_TYPE_BREAKPOINT)
5805 event->hw.bp_target = task;
5806 #endif
5809 if (!overflow_handler && parent_event) {
5810 overflow_handler = parent_event->overflow_handler;
5811 context = parent_event->overflow_handler_context;
5814 event->overflow_handler = overflow_handler;
5815 event->overflow_handler_context = context;
5817 if (attr->disabled)
5818 event->state = PERF_EVENT_STATE_OFF;
5820 pmu = NULL;
5822 hwc = &event->hw;
5823 hwc->sample_period = attr->sample_period;
5824 if (attr->freq && attr->sample_freq)
5825 hwc->sample_period = 1;
5826 hwc->last_period = hwc->sample_period;
5828 local64_set(&hwc->period_left, hwc->sample_period);
5831 * we currently do not support PERF_FORMAT_GROUP on inherited events
5833 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5834 goto done;
5836 pmu = perf_init_event(event);
5838 done:
5839 err = 0;
5840 if (!pmu)
5841 err = -EINVAL;
5842 else if (IS_ERR(pmu))
5843 err = PTR_ERR(pmu);
5845 if (err) {
5846 if (event->ns)
5847 put_pid_ns(event->ns);
5848 kfree(event);
5849 return ERR_PTR(err);
5852 event->pmu = pmu;
5854 if (!event->parent) {
5855 if (event->attach_state & PERF_ATTACH_TASK)
5856 jump_label_inc(&perf_sched_events);
5857 if (event->attr.mmap || event->attr.mmap_data)
5858 atomic_inc(&nr_mmap_events);
5859 if (event->attr.comm)
5860 atomic_inc(&nr_comm_events);
5861 if (event->attr.task)
5862 atomic_inc(&nr_task_events);
5863 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5864 err = get_callchain_buffers();
5865 if (err) {
5866 free_event(event);
5867 return ERR_PTR(err);
5872 return event;
5875 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5876 struct perf_event_attr *attr)
5878 u32 size;
5879 int ret;
5881 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5882 return -EFAULT;
5885 * zero the full structure, so that a short copy will be nice.
5887 memset(attr, 0, sizeof(*attr));
5889 ret = get_user(size, &uattr->size);
5890 if (ret)
5891 return ret;
5893 if (size > PAGE_SIZE) /* silly large */
5894 goto err_size;
5896 if (!size) /* abi compat */
5897 size = PERF_ATTR_SIZE_VER0;
5899 if (size < PERF_ATTR_SIZE_VER0)
5900 goto err_size;
5903 * If we're handed a bigger struct than we know of,
5904 * ensure all the unknown bits are 0 - i.e. new
5905 * user-space does not rely on any kernel feature
5906 * extensions we dont know about yet.
5908 if (size > sizeof(*attr)) {
5909 unsigned char __user *addr;
5910 unsigned char __user *end;
5911 unsigned char val;
5913 addr = (void __user *)uattr + sizeof(*attr);
5914 end = (void __user *)uattr + size;
5916 for (; addr < end; addr++) {
5917 ret = get_user(val, addr);
5918 if (ret)
5919 return ret;
5920 if (val)
5921 goto err_size;
5923 size = sizeof(*attr);
5926 ret = copy_from_user(attr, uattr, size);
5927 if (ret)
5928 return -EFAULT;
5930 if (attr->__reserved_1)
5931 return -EINVAL;
5933 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5934 return -EINVAL;
5936 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5937 return -EINVAL;
5939 out:
5940 return ret;
5942 err_size:
5943 put_user(sizeof(*attr), &uattr->size);
5944 ret = -E2BIG;
5945 goto out;
5948 static int
5949 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5951 struct ring_buffer *rb = NULL, *old_rb = NULL;
5952 int ret = -EINVAL;
5954 if (!output_event)
5955 goto set;
5957 /* don't allow circular references */
5958 if (event == output_event)
5959 goto out;
5962 * Don't allow cross-cpu buffers
5964 if (output_event->cpu != event->cpu)
5965 goto out;
5968 * If its not a per-cpu rb, it must be the same task.
5970 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5971 goto out;
5973 set:
5974 mutex_lock(&event->mmap_mutex);
5975 /* Can't redirect output if we've got an active mmap() */
5976 if (atomic_read(&event->mmap_count))
5977 goto unlock;
5979 if (output_event) {
5980 /* get the rb we want to redirect to */
5981 rb = ring_buffer_get(output_event);
5982 if (!rb)
5983 goto unlock;
5986 old_rb = event->rb;
5987 rcu_assign_pointer(event->rb, rb);
5988 ret = 0;
5989 unlock:
5990 mutex_unlock(&event->mmap_mutex);
5992 if (old_rb)
5993 ring_buffer_put(old_rb);
5994 out:
5995 return ret;
5999 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6001 * @attr_uptr: event_id type attributes for monitoring/sampling
6002 * @pid: target pid
6003 * @cpu: target cpu
6004 * @group_fd: group leader event fd
6006 SYSCALL_DEFINE5(perf_event_open,
6007 struct perf_event_attr __user *, attr_uptr,
6008 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6010 struct perf_event *group_leader = NULL, *output_event = NULL;
6011 struct perf_event *event, *sibling;
6012 struct perf_event_attr attr;
6013 struct perf_event_context *ctx;
6014 struct file *event_file = NULL;
6015 struct file *group_file = NULL;
6016 struct task_struct *task = NULL;
6017 struct pmu *pmu;
6018 int event_fd;
6019 int move_group = 0;
6020 int fput_needed = 0;
6021 int err;
6023 /* for future expandability... */
6024 if (flags & ~PERF_FLAG_ALL)
6025 return -EINVAL;
6027 err = perf_copy_attr(attr_uptr, &attr);
6028 if (err)
6029 return err;
6031 if (!attr.exclude_kernel) {
6032 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6033 return -EACCES;
6036 if (attr.freq) {
6037 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6038 return -EINVAL;
6042 * In cgroup mode, the pid argument is used to pass the fd
6043 * opened to the cgroup directory in cgroupfs. The cpu argument
6044 * designates the cpu on which to monitor threads from that
6045 * cgroup.
6047 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6048 return -EINVAL;
6050 event_fd = get_unused_fd_flags(O_RDWR);
6051 if (event_fd < 0)
6052 return event_fd;
6054 if (group_fd != -1) {
6055 group_leader = perf_fget_light(group_fd, &fput_needed);
6056 if (IS_ERR(group_leader)) {
6057 err = PTR_ERR(group_leader);
6058 goto err_fd;
6060 group_file = group_leader->filp;
6061 if (flags & PERF_FLAG_FD_OUTPUT)
6062 output_event = group_leader;
6063 if (flags & PERF_FLAG_FD_NO_GROUP)
6064 group_leader = NULL;
6067 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6068 task = find_lively_task_by_vpid(pid);
6069 if (IS_ERR(task)) {
6070 err = PTR_ERR(task);
6071 goto err_group_fd;
6075 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6076 NULL, NULL);
6077 if (IS_ERR(event)) {
6078 err = PTR_ERR(event);
6079 goto err_task;
6082 if (flags & PERF_FLAG_PID_CGROUP) {
6083 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6084 if (err)
6085 goto err_alloc;
6087 * one more event:
6088 * - that has cgroup constraint on event->cpu
6089 * - that may need work on context switch
6091 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6092 jump_label_inc(&perf_sched_events);
6096 * Special case software events and allow them to be part of
6097 * any hardware group.
6099 pmu = event->pmu;
6101 if (group_leader &&
6102 (is_software_event(event) != is_software_event(group_leader))) {
6103 if (is_software_event(event)) {
6105 * If event and group_leader are not both a software
6106 * event, and event is, then group leader is not.
6108 * Allow the addition of software events to !software
6109 * groups, this is safe because software events never
6110 * fail to schedule.
6112 pmu = group_leader->pmu;
6113 } else if (is_software_event(group_leader) &&
6114 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6116 * In case the group is a pure software group, and we
6117 * try to add a hardware event, move the whole group to
6118 * the hardware context.
6120 move_group = 1;
6125 * Get the target context (task or percpu):
6127 ctx = find_get_context(pmu, task, cpu);
6128 if (IS_ERR(ctx)) {
6129 err = PTR_ERR(ctx);
6130 goto err_alloc;
6133 if (task) {
6134 put_task_struct(task);
6135 task = NULL;
6139 * Look up the group leader (we will attach this event to it):
6141 if (group_leader) {
6142 err = -EINVAL;
6145 * Do not allow a recursive hierarchy (this new sibling
6146 * becoming part of another group-sibling):
6148 if (group_leader->group_leader != group_leader)
6149 goto err_context;
6151 * Do not allow to attach to a group in a different
6152 * task or CPU context:
6154 if (move_group) {
6155 if (group_leader->ctx->type != ctx->type)
6156 goto err_context;
6157 } else {
6158 if (group_leader->ctx != ctx)
6159 goto err_context;
6163 * Only a group leader can be exclusive or pinned
6165 if (attr.exclusive || attr.pinned)
6166 goto err_context;
6169 if (output_event) {
6170 err = perf_event_set_output(event, output_event);
6171 if (err)
6172 goto err_context;
6175 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6176 if (IS_ERR(event_file)) {
6177 err = PTR_ERR(event_file);
6178 goto err_context;
6181 if (move_group) {
6182 struct perf_event_context *gctx = group_leader->ctx;
6184 mutex_lock(&gctx->mutex);
6185 perf_remove_from_context(group_leader);
6186 list_for_each_entry(sibling, &group_leader->sibling_list,
6187 group_entry) {
6188 perf_remove_from_context(sibling);
6189 put_ctx(gctx);
6191 mutex_unlock(&gctx->mutex);
6192 put_ctx(gctx);
6195 event->filp = event_file;
6196 WARN_ON_ONCE(ctx->parent_ctx);
6197 mutex_lock(&ctx->mutex);
6199 if (move_group) {
6200 perf_install_in_context(ctx, group_leader, cpu);
6201 get_ctx(ctx);
6202 list_for_each_entry(sibling, &group_leader->sibling_list,
6203 group_entry) {
6204 perf_install_in_context(ctx, sibling, cpu);
6205 get_ctx(ctx);
6209 perf_install_in_context(ctx, event, cpu);
6210 ++ctx->generation;
6211 perf_unpin_context(ctx);
6212 mutex_unlock(&ctx->mutex);
6214 event->owner = current;
6216 mutex_lock(&current->perf_event_mutex);
6217 list_add_tail(&event->owner_entry, &current->perf_event_list);
6218 mutex_unlock(&current->perf_event_mutex);
6221 * Precalculate sample_data sizes
6223 perf_event__header_size(event);
6224 perf_event__id_header_size(event);
6227 * Drop the reference on the group_event after placing the
6228 * new event on the sibling_list. This ensures destruction
6229 * of the group leader will find the pointer to itself in
6230 * perf_group_detach().
6232 fput_light(group_file, fput_needed);
6233 fd_install(event_fd, event_file);
6234 return event_fd;
6236 err_context:
6237 perf_unpin_context(ctx);
6238 put_ctx(ctx);
6239 err_alloc:
6240 free_event(event);
6241 err_task:
6242 if (task)
6243 put_task_struct(task);
6244 err_group_fd:
6245 fput_light(group_file, fput_needed);
6246 err_fd:
6247 put_unused_fd(event_fd);
6248 return err;
6252 * perf_event_create_kernel_counter
6254 * @attr: attributes of the counter to create
6255 * @cpu: cpu in which the counter is bound
6256 * @task: task to profile (NULL for percpu)
6258 struct perf_event *
6259 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6260 struct task_struct *task,
6261 perf_overflow_handler_t overflow_handler,
6262 void *context)
6264 struct perf_event_context *ctx;
6265 struct perf_event *event;
6266 int err;
6269 * Get the target context (task or percpu):
6272 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6273 overflow_handler, context);
6274 if (IS_ERR(event)) {
6275 err = PTR_ERR(event);
6276 goto err;
6279 ctx = find_get_context(event->pmu, task, cpu);
6280 if (IS_ERR(ctx)) {
6281 err = PTR_ERR(ctx);
6282 goto err_free;
6285 event->filp = NULL;
6286 WARN_ON_ONCE(ctx->parent_ctx);
6287 mutex_lock(&ctx->mutex);
6288 perf_install_in_context(ctx, event, cpu);
6289 ++ctx->generation;
6290 perf_unpin_context(ctx);
6291 mutex_unlock(&ctx->mutex);
6293 return event;
6295 err_free:
6296 free_event(event);
6297 err:
6298 return ERR_PTR(err);
6300 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6302 static void sync_child_event(struct perf_event *child_event,
6303 struct task_struct *child)
6305 struct perf_event *parent_event = child_event->parent;
6306 u64 child_val;
6308 if (child_event->attr.inherit_stat)
6309 perf_event_read_event(child_event, child);
6311 child_val = perf_event_count(child_event);
6314 * Add back the child's count to the parent's count:
6316 atomic64_add(child_val, &parent_event->child_count);
6317 atomic64_add(child_event->total_time_enabled,
6318 &parent_event->child_total_time_enabled);
6319 atomic64_add(child_event->total_time_running,
6320 &parent_event->child_total_time_running);
6323 * Remove this event from the parent's list
6325 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6326 mutex_lock(&parent_event->child_mutex);
6327 list_del_init(&child_event->child_list);
6328 mutex_unlock(&parent_event->child_mutex);
6331 * Release the parent event, if this was the last
6332 * reference to it.
6334 fput(parent_event->filp);
6337 static void
6338 __perf_event_exit_task(struct perf_event *child_event,
6339 struct perf_event_context *child_ctx,
6340 struct task_struct *child)
6342 if (child_event->parent) {
6343 raw_spin_lock_irq(&child_ctx->lock);
6344 perf_group_detach(child_event);
6345 raw_spin_unlock_irq(&child_ctx->lock);
6348 perf_remove_from_context(child_event);
6351 * It can happen that the parent exits first, and has events
6352 * that are still around due to the child reference. These
6353 * events need to be zapped.
6355 if (child_event->parent) {
6356 sync_child_event(child_event, child);
6357 free_event(child_event);
6361 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6363 struct perf_event *child_event, *tmp;
6364 struct perf_event_context *child_ctx;
6365 unsigned long flags;
6367 if (likely(!child->perf_event_ctxp[ctxn])) {
6368 perf_event_task(child, NULL, 0);
6369 return;
6372 local_irq_save(flags);
6374 * We can't reschedule here because interrupts are disabled,
6375 * and either child is current or it is a task that can't be
6376 * scheduled, so we are now safe from rescheduling changing
6377 * our context.
6379 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6382 * Take the context lock here so that if find_get_context is
6383 * reading child->perf_event_ctxp, we wait until it has
6384 * incremented the context's refcount before we do put_ctx below.
6386 raw_spin_lock(&child_ctx->lock);
6387 task_ctx_sched_out(child_ctx);
6388 child->perf_event_ctxp[ctxn] = NULL;
6390 * If this context is a clone; unclone it so it can't get
6391 * swapped to another process while we're removing all
6392 * the events from it.
6394 unclone_ctx(child_ctx);
6395 update_context_time(child_ctx);
6396 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6399 * Report the task dead after unscheduling the events so that we
6400 * won't get any samples after PERF_RECORD_EXIT. We can however still
6401 * get a few PERF_RECORD_READ events.
6403 perf_event_task(child, child_ctx, 0);
6406 * We can recurse on the same lock type through:
6408 * __perf_event_exit_task()
6409 * sync_child_event()
6410 * fput(parent_event->filp)
6411 * perf_release()
6412 * mutex_lock(&ctx->mutex)
6414 * But since its the parent context it won't be the same instance.
6416 mutex_lock(&child_ctx->mutex);
6418 again:
6419 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6420 group_entry)
6421 __perf_event_exit_task(child_event, child_ctx, child);
6423 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6424 group_entry)
6425 __perf_event_exit_task(child_event, child_ctx, child);
6428 * If the last event was a group event, it will have appended all
6429 * its siblings to the list, but we obtained 'tmp' before that which
6430 * will still point to the list head terminating the iteration.
6432 if (!list_empty(&child_ctx->pinned_groups) ||
6433 !list_empty(&child_ctx->flexible_groups))
6434 goto again;
6436 mutex_unlock(&child_ctx->mutex);
6438 put_ctx(child_ctx);
6442 * When a child task exits, feed back event values to parent events.
6444 void perf_event_exit_task(struct task_struct *child)
6446 struct perf_event *event, *tmp;
6447 int ctxn;
6449 mutex_lock(&child->perf_event_mutex);
6450 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6451 owner_entry) {
6452 list_del_init(&event->owner_entry);
6455 * Ensure the list deletion is visible before we clear
6456 * the owner, closes a race against perf_release() where
6457 * we need to serialize on the owner->perf_event_mutex.
6459 smp_wmb();
6460 event->owner = NULL;
6462 mutex_unlock(&child->perf_event_mutex);
6464 for_each_task_context_nr(ctxn)
6465 perf_event_exit_task_context(child, ctxn);
6468 static void perf_free_event(struct perf_event *event,
6469 struct perf_event_context *ctx)
6471 struct perf_event *parent = event->parent;
6473 if (WARN_ON_ONCE(!parent))
6474 return;
6476 mutex_lock(&parent->child_mutex);
6477 list_del_init(&event->child_list);
6478 mutex_unlock(&parent->child_mutex);
6480 fput(parent->filp);
6482 perf_group_detach(event);
6483 list_del_event(event, ctx);
6484 free_event(event);
6488 * free an unexposed, unused context as created by inheritance by
6489 * perf_event_init_task below, used by fork() in case of fail.
6491 void perf_event_free_task(struct task_struct *task)
6493 struct perf_event_context *ctx;
6494 struct perf_event *event, *tmp;
6495 int ctxn;
6497 for_each_task_context_nr(ctxn) {
6498 ctx = task->perf_event_ctxp[ctxn];
6499 if (!ctx)
6500 continue;
6502 mutex_lock(&ctx->mutex);
6503 again:
6504 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6505 group_entry)
6506 perf_free_event(event, ctx);
6508 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6509 group_entry)
6510 perf_free_event(event, ctx);
6512 if (!list_empty(&ctx->pinned_groups) ||
6513 !list_empty(&ctx->flexible_groups))
6514 goto again;
6516 mutex_unlock(&ctx->mutex);
6518 put_ctx(ctx);
6522 void perf_event_delayed_put(struct task_struct *task)
6524 int ctxn;
6526 for_each_task_context_nr(ctxn)
6527 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6531 * inherit a event from parent task to child task:
6533 static struct perf_event *
6534 inherit_event(struct perf_event *parent_event,
6535 struct task_struct *parent,
6536 struct perf_event_context *parent_ctx,
6537 struct task_struct *child,
6538 struct perf_event *group_leader,
6539 struct perf_event_context *child_ctx)
6541 struct perf_event *child_event;
6542 unsigned long flags;
6545 * Instead of creating recursive hierarchies of events,
6546 * we link inherited events back to the original parent,
6547 * which has a filp for sure, which we use as the reference
6548 * count:
6550 if (parent_event->parent)
6551 parent_event = parent_event->parent;
6553 child_event = perf_event_alloc(&parent_event->attr,
6554 parent_event->cpu,
6555 child,
6556 group_leader, parent_event,
6557 NULL, NULL);
6558 if (IS_ERR(child_event))
6559 return child_event;
6560 get_ctx(child_ctx);
6563 * Make the child state follow the state of the parent event,
6564 * not its attr.disabled bit. We hold the parent's mutex,
6565 * so we won't race with perf_event_{en, dis}able_family.
6567 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6568 child_event->state = PERF_EVENT_STATE_INACTIVE;
6569 else
6570 child_event->state = PERF_EVENT_STATE_OFF;
6572 if (parent_event->attr.freq) {
6573 u64 sample_period = parent_event->hw.sample_period;
6574 struct hw_perf_event *hwc = &child_event->hw;
6576 hwc->sample_period = sample_period;
6577 hwc->last_period = sample_period;
6579 local64_set(&hwc->period_left, sample_period);
6582 child_event->ctx = child_ctx;
6583 child_event->overflow_handler = parent_event->overflow_handler;
6584 child_event->overflow_handler_context
6585 = parent_event->overflow_handler_context;
6588 * Precalculate sample_data sizes
6590 perf_event__header_size(child_event);
6591 perf_event__id_header_size(child_event);
6594 * Link it up in the child's context:
6596 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6597 add_event_to_ctx(child_event, child_ctx);
6598 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6601 * Get a reference to the parent filp - we will fput it
6602 * when the child event exits. This is safe to do because
6603 * we are in the parent and we know that the filp still
6604 * exists and has a nonzero count:
6606 atomic_long_inc(&parent_event->filp->f_count);
6609 * Link this into the parent event's child list
6611 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6612 mutex_lock(&parent_event->child_mutex);
6613 list_add_tail(&child_event->child_list, &parent_event->child_list);
6614 mutex_unlock(&parent_event->child_mutex);
6616 return child_event;
6619 static int inherit_group(struct perf_event *parent_event,
6620 struct task_struct *parent,
6621 struct perf_event_context *parent_ctx,
6622 struct task_struct *child,
6623 struct perf_event_context *child_ctx)
6625 struct perf_event *leader;
6626 struct perf_event *sub;
6627 struct perf_event *child_ctr;
6629 leader = inherit_event(parent_event, parent, parent_ctx,
6630 child, NULL, child_ctx);
6631 if (IS_ERR(leader))
6632 return PTR_ERR(leader);
6633 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6634 child_ctr = inherit_event(sub, parent, parent_ctx,
6635 child, leader, child_ctx);
6636 if (IS_ERR(child_ctr))
6637 return PTR_ERR(child_ctr);
6639 return 0;
6642 static int
6643 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6644 struct perf_event_context *parent_ctx,
6645 struct task_struct *child, int ctxn,
6646 int *inherited_all)
6648 int ret;
6649 struct perf_event_context *child_ctx;
6651 if (!event->attr.inherit) {
6652 *inherited_all = 0;
6653 return 0;
6656 child_ctx = child->perf_event_ctxp[ctxn];
6657 if (!child_ctx) {
6659 * This is executed from the parent task context, so
6660 * inherit events that have been marked for cloning.
6661 * First allocate and initialize a context for the
6662 * child.
6665 child_ctx = alloc_perf_context(event->pmu, child);
6666 if (!child_ctx)
6667 return -ENOMEM;
6669 child->perf_event_ctxp[ctxn] = child_ctx;
6672 ret = inherit_group(event, parent, parent_ctx,
6673 child, child_ctx);
6675 if (ret)
6676 *inherited_all = 0;
6678 return ret;
6682 * Initialize the perf_event context in task_struct
6684 int perf_event_init_context(struct task_struct *child, int ctxn)
6686 struct perf_event_context *child_ctx, *parent_ctx;
6687 struct perf_event_context *cloned_ctx;
6688 struct perf_event *event;
6689 struct task_struct *parent = current;
6690 int inherited_all = 1;
6691 unsigned long flags;
6692 int ret = 0;
6694 if (likely(!parent->perf_event_ctxp[ctxn]))
6695 return 0;
6698 * If the parent's context is a clone, pin it so it won't get
6699 * swapped under us.
6701 parent_ctx = perf_pin_task_context(parent, ctxn);
6704 * No need to check if parent_ctx != NULL here; since we saw
6705 * it non-NULL earlier, the only reason for it to become NULL
6706 * is if we exit, and since we're currently in the middle of
6707 * a fork we can't be exiting at the same time.
6711 * Lock the parent list. No need to lock the child - not PID
6712 * hashed yet and not running, so nobody can access it.
6714 mutex_lock(&parent_ctx->mutex);
6717 * We dont have to disable NMIs - we are only looking at
6718 * the list, not manipulating it:
6720 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6721 ret = inherit_task_group(event, parent, parent_ctx,
6722 child, ctxn, &inherited_all);
6723 if (ret)
6724 break;
6728 * We can't hold ctx->lock when iterating the ->flexible_group list due
6729 * to allocations, but we need to prevent rotation because
6730 * rotate_ctx() will change the list from interrupt context.
6732 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6733 parent_ctx->rotate_disable = 1;
6734 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6736 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6737 ret = inherit_task_group(event, parent, parent_ctx,
6738 child, ctxn, &inherited_all);
6739 if (ret)
6740 break;
6743 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6744 parent_ctx->rotate_disable = 0;
6746 child_ctx = child->perf_event_ctxp[ctxn];
6748 if (child_ctx && inherited_all) {
6750 * Mark the child context as a clone of the parent
6751 * context, or of whatever the parent is a clone of.
6753 * Note that if the parent is a clone, the holding of
6754 * parent_ctx->lock avoids it from being uncloned.
6756 cloned_ctx = parent_ctx->parent_ctx;
6757 if (cloned_ctx) {
6758 child_ctx->parent_ctx = cloned_ctx;
6759 child_ctx->parent_gen = parent_ctx->parent_gen;
6760 } else {
6761 child_ctx->parent_ctx = parent_ctx;
6762 child_ctx->parent_gen = parent_ctx->generation;
6764 get_ctx(child_ctx->parent_ctx);
6767 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6768 mutex_unlock(&parent_ctx->mutex);
6770 perf_unpin_context(parent_ctx);
6771 put_ctx(parent_ctx);
6773 return ret;
6777 * Initialize the perf_event context in task_struct
6779 int perf_event_init_task(struct task_struct *child)
6781 int ctxn, ret;
6783 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6784 mutex_init(&child->perf_event_mutex);
6785 INIT_LIST_HEAD(&child->perf_event_list);
6787 for_each_task_context_nr(ctxn) {
6788 ret = perf_event_init_context(child, ctxn);
6789 if (ret)
6790 return ret;
6793 return 0;
6796 static void __init perf_event_init_all_cpus(void)
6798 struct swevent_htable *swhash;
6799 int cpu;
6801 for_each_possible_cpu(cpu) {
6802 swhash = &per_cpu(swevent_htable, cpu);
6803 mutex_init(&swhash->hlist_mutex);
6804 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6808 static void __cpuinit perf_event_init_cpu(int cpu)
6810 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6812 mutex_lock(&swhash->hlist_mutex);
6813 if (swhash->hlist_refcount > 0) {
6814 struct swevent_hlist *hlist;
6816 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6817 WARN_ON(!hlist);
6818 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6820 mutex_unlock(&swhash->hlist_mutex);
6823 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6824 static void perf_pmu_rotate_stop(struct pmu *pmu)
6826 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6828 WARN_ON(!irqs_disabled());
6830 list_del_init(&cpuctx->rotation_list);
6833 static void __perf_event_exit_context(void *__info)
6835 struct perf_event_context *ctx = __info;
6836 struct perf_event *event, *tmp;
6838 perf_pmu_rotate_stop(ctx->pmu);
6840 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6841 __perf_remove_from_context(event);
6842 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6843 __perf_remove_from_context(event);
6846 static void perf_event_exit_cpu_context(int cpu)
6848 struct perf_event_context *ctx;
6849 struct pmu *pmu;
6850 int idx;
6852 idx = srcu_read_lock(&pmus_srcu);
6853 list_for_each_entry_rcu(pmu, &pmus, entry) {
6854 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6856 mutex_lock(&ctx->mutex);
6857 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6858 mutex_unlock(&ctx->mutex);
6860 srcu_read_unlock(&pmus_srcu, idx);
6863 static void perf_event_exit_cpu(int cpu)
6865 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6867 mutex_lock(&swhash->hlist_mutex);
6868 swevent_hlist_release(swhash);
6869 mutex_unlock(&swhash->hlist_mutex);
6871 perf_event_exit_cpu_context(cpu);
6873 #else
6874 static inline void perf_event_exit_cpu(int cpu) { }
6875 #endif
6877 static int
6878 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6880 int cpu;
6882 for_each_online_cpu(cpu)
6883 perf_event_exit_cpu(cpu);
6885 return NOTIFY_OK;
6889 * Run the perf reboot notifier at the very last possible moment so that
6890 * the generic watchdog code runs as long as possible.
6892 static struct notifier_block perf_reboot_notifier = {
6893 .notifier_call = perf_reboot,
6894 .priority = INT_MIN,
6897 static int __cpuinit
6898 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6900 unsigned int cpu = (long)hcpu;
6902 switch (action & ~CPU_TASKS_FROZEN) {
6904 case CPU_UP_PREPARE:
6905 case CPU_DOWN_FAILED:
6906 perf_event_init_cpu(cpu);
6907 break;
6909 case CPU_UP_CANCELED:
6910 case CPU_DOWN_PREPARE:
6911 perf_event_exit_cpu(cpu);
6912 break;
6914 default:
6915 break;
6918 return NOTIFY_OK;
6921 void __init perf_event_init(void)
6923 int ret;
6925 idr_init(&pmu_idr);
6927 perf_event_init_all_cpus();
6928 init_srcu_struct(&pmus_srcu);
6929 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6930 perf_pmu_register(&perf_cpu_clock, NULL, -1);
6931 perf_pmu_register(&perf_task_clock, NULL, -1);
6932 perf_tp_register();
6933 perf_cpu_notifier(perf_cpu_notify);
6934 register_reboot_notifier(&perf_reboot_notifier);
6936 ret = init_hw_breakpoint();
6937 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6940 static int __init perf_event_sysfs_init(void)
6942 struct pmu *pmu;
6943 int ret;
6945 mutex_lock(&pmus_lock);
6947 ret = bus_register(&pmu_bus);
6948 if (ret)
6949 goto unlock;
6951 list_for_each_entry(pmu, &pmus, entry) {
6952 if (!pmu->name || pmu->type < 0)
6953 continue;
6955 ret = pmu_dev_alloc(pmu);
6956 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6958 pmu_bus_running = 1;
6959 ret = 0;
6961 unlock:
6962 mutex_unlock(&pmus_lock);
6964 return ret;
6966 device_initcall(perf_event_sysfs_init);
6968 #ifdef CONFIG_CGROUP_PERF
6969 static struct cgroup_subsys_state *perf_cgroup_create(
6970 struct cgroup_subsys *ss, struct cgroup *cont)
6972 struct perf_cgroup *jc;
6974 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
6975 if (!jc)
6976 return ERR_PTR(-ENOMEM);
6978 jc->info = alloc_percpu(struct perf_cgroup_info);
6979 if (!jc->info) {
6980 kfree(jc);
6981 return ERR_PTR(-ENOMEM);
6984 return &jc->css;
6987 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
6988 struct cgroup *cont)
6990 struct perf_cgroup *jc;
6991 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
6992 struct perf_cgroup, css);
6993 free_percpu(jc->info);
6994 kfree(jc);
6997 static int __perf_cgroup_move(void *info)
6999 struct task_struct *task = info;
7000 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7001 return 0;
7004 static void
7005 perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
7007 task_function_call(task, __perf_cgroup_move, task);
7010 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7011 struct cgroup *old_cgrp, struct task_struct *task)
7014 * cgroup_exit() is called in the copy_process() failure path.
7015 * Ignore this case since the task hasn't ran yet, this avoids
7016 * trying to poke a half freed task state from generic code.
7018 if (!(task->flags & PF_EXITING))
7019 return;
7021 perf_cgroup_attach_task(cgrp, task);
7024 struct cgroup_subsys perf_subsys = {
7025 .name = "perf_event",
7026 .subsys_id = perf_subsys_id,
7027 .create = perf_cgroup_create,
7028 .destroy = perf_cgroup_destroy,
7029 .exit = perf_cgroup_exit,
7030 .attach_task = perf_cgroup_attach_task,
7032 #endif /* CONFIG_CGROUP_PERF */