Add linux-next specific files for 20110831
[linux-2.6/next.git] / kernel / fork.c
blobb5a0689a0b4b4b5c1cc17af40a91f1bda2161594
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/export.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/module.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/ksm.h>
54 #include <linux/acct.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/freezer.h>
58 #include <linux/delayacct.h>
59 #include <linux/taskstats_kern.h>
60 #include <linux/random.h>
61 #include <linux/tty.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 #include <linux/oom.h>
69 #include <linux/khugepaged.h>
71 #include <asm/pgtable.h>
72 #include <asm/pgalloc.h>
73 #include <asm/uaccess.h>
74 #include <asm/mmu_context.h>
75 #include <asm/cacheflush.h>
76 #include <asm/tlbflush.h>
78 #include <trace/events/sched.h>
81 * Protected counters by write_lock_irq(&tasklist_lock)
83 unsigned long total_forks; /* Handle normal Linux uptimes. */
84 int nr_threads; /* The idle threads do not count.. */
86 int max_threads; /* tunable limit on nr_threads */
88 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
90 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
92 #ifdef CONFIG_PROVE_RCU
93 int lockdep_tasklist_lock_is_held(void)
95 return lockdep_is_held(&tasklist_lock);
97 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
98 #endif /* #ifdef CONFIG_PROVE_RCU */
100 int nr_processes(void)
102 int cpu;
103 int total = 0;
105 for_each_possible_cpu(cpu)
106 total += per_cpu(process_counts, cpu);
108 return total;
111 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
112 # define alloc_task_struct_node(node) \
113 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
114 # define free_task_struct(tsk) \
115 kmem_cache_free(task_struct_cachep, (tsk))
116 static struct kmem_cache *task_struct_cachep;
117 #endif
119 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
120 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
121 int node)
123 #ifdef CONFIG_DEBUG_STACK_USAGE
124 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
125 #else
126 gfp_t mask = GFP_KERNEL;
127 #endif
128 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
130 return page ? page_address(page) : NULL;
133 static inline void free_thread_info(struct thread_info *ti)
135 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
137 #endif
139 /* SLAB cache for signal_struct structures (tsk->signal) */
140 static struct kmem_cache *signal_cachep;
142 /* SLAB cache for sighand_struct structures (tsk->sighand) */
143 struct kmem_cache *sighand_cachep;
145 /* SLAB cache for files_struct structures (tsk->files) */
146 struct kmem_cache *files_cachep;
148 /* SLAB cache for fs_struct structures (tsk->fs) */
149 struct kmem_cache *fs_cachep;
151 /* SLAB cache for vm_area_struct structures */
152 struct kmem_cache *vm_area_cachep;
154 /* SLAB cache for mm_struct structures (tsk->mm) */
155 static struct kmem_cache *mm_cachep;
157 static void account_kernel_stack(struct thread_info *ti, int account)
159 struct zone *zone = page_zone(virt_to_page(ti));
161 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
164 void free_task(struct task_struct *tsk)
166 prop_local_destroy_single(&tsk->dirties);
167 account_kernel_stack(tsk->stack, -1);
168 free_thread_info(tsk->stack);
169 rt_mutex_debug_task_free(tsk);
170 ftrace_graph_exit_task(tsk);
171 free_task_struct(tsk);
173 EXPORT_SYMBOL(free_task);
175 static inline void free_signal_struct(struct signal_struct *sig)
177 taskstats_tgid_free(sig);
178 sched_autogroup_exit(sig);
179 kmem_cache_free(signal_cachep, sig);
182 static inline void put_signal_struct(struct signal_struct *sig)
184 if (atomic_dec_and_test(&sig->sigcnt))
185 free_signal_struct(sig);
188 void __put_task_struct(struct task_struct *tsk)
190 WARN_ON(!tsk->exit_state);
191 WARN_ON(atomic_read(&tsk->usage));
192 WARN_ON(tsk == current);
194 exit_creds(tsk);
195 delayacct_tsk_free(tsk);
196 put_signal_struct(tsk->signal);
198 if (!profile_handoff_task(tsk))
199 free_task(tsk);
201 EXPORT_SYMBOL_GPL(__put_task_struct);
204 * macro override instead of weak attribute alias, to workaround
205 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
207 #ifndef arch_task_cache_init
208 #define arch_task_cache_init()
209 #endif
211 void __init fork_init(unsigned long mempages)
213 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
214 #ifndef ARCH_MIN_TASKALIGN
215 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
216 #endif
217 /* create a slab on which task_structs can be allocated */
218 task_struct_cachep =
219 kmem_cache_create("task_struct", sizeof(struct task_struct),
220 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
221 #endif
223 /* do the arch specific task caches init */
224 arch_task_cache_init();
227 * The default maximum number of threads is set to a safe
228 * value: the thread structures can take up at most half
229 * of memory.
231 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
234 * we need to allow at least 20 threads to boot a system
236 if (max_threads < 20)
237 max_threads = 20;
239 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
240 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
241 init_task.signal->rlim[RLIMIT_SIGPENDING] =
242 init_task.signal->rlim[RLIMIT_NPROC];
245 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
246 struct task_struct *src)
248 *dst = *src;
249 return 0;
252 static struct task_struct *dup_task_struct(struct task_struct *orig)
254 struct task_struct *tsk;
255 struct thread_info *ti;
256 unsigned long *stackend;
257 int node = tsk_fork_get_node(orig);
258 int err;
260 prepare_to_copy(orig);
262 tsk = alloc_task_struct_node(node);
263 if (!tsk)
264 return NULL;
266 ti = alloc_thread_info_node(tsk, node);
267 if (!ti) {
268 free_task_struct(tsk);
269 return NULL;
272 err = arch_dup_task_struct(tsk, orig);
273 if (err)
274 goto out;
276 tsk->stack = ti;
278 err = prop_local_init_single(&tsk->dirties);
279 if (err)
280 goto out;
282 setup_thread_stack(tsk, orig);
283 clear_user_return_notifier(tsk);
284 clear_tsk_need_resched(tsk);
285 stackend = end_of_stack(tsk);
286 *stackend = STACK_END_MAGIC; /* for overflow detection */
288 #ifdef CONFIG_CC_STACKPROTECTOR
289 tsk->stack_canary = get_random_int();
290 #endif
293 * One for us, one for whoever does the "release_task()" (usually
294 * parent)
296 atomic_set(&tsk->usage, 2);
297 #ifdef CONFIG_BLK_DEV_IO_TRACE
298 tsk->btrace_seq = 0;
299 #endif
300 tsk->splice_pipe = NULL;
302 account_kernel_stack(ti, 1);
304 return tsk;
306 out:
307 free_thread_info(ti);
308 free_task_struct(tsk);
309 return NULL;
312 #ifdef CONFIG_MMU
313 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
315 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
316 struct rb_node **rb_link, *rb_parent;
317 int retval;
318 unsigned long charge;
319 struct mempolicy *pol;
321 down_write(&oldmm->mmap_sem);
322 flush_cache_dup_mm(oldmm);
324 * Not linked in yet - no deadlock potential:
326 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
328 mm->locked_vm = 0;
329 mm->mmap = NULL;
330 mm->mmap_cache = NULL;
331 mm->free_area_cache = oldmm->mmap_base;
332 mm->cached_hole_size = ~0UL;
333 mm->map_count = 0;
334 cpumask_clear(mm_cpumask(mm));
335 mm->mm_rb = RB_ROOT;
336 rb_link = &mm->mm_rb.rb_node;
337 rb_parent = NULL;
338 pprev = &mm->mmap;
339 retval = ksm_fork(mm, oldmm);
340 if (retval)
341 goto out;
342 retval = khugepaged_fork(mm, oldmm);
343 if (retval)
344 goto out;
346 prev = NULL;
347 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
348 struct file *file;
350 if (mpnt->vm_flags & VM_DONTCOPY) {
351 long pages = vma_pages(mpnt);
352 mm->total_vm -= pages;
353 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
354 -pages);
355 continue;
357 charge = 0;
358 if (mpnt->vm_flags & VM_ACCOUNT) {
359 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
360 if (security_vm_enough_memory(len))
361 goto fail_nomem;
362 charge = len;
364 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
365 if (!tmp)
366 goto fail_nomem;
367 *tmp = *mpnt;
368 INIT_LIST_HEAD(&tmp->anon_vma_chain);
369 pol = mpol_dup(vma_policy(mpnt));
370 retval = PTR_ERR(pol);
371 if (IS_ERR(pol))
372 goto fail_nomem_policy;
373 vma_set_policy(tmp, pol);
374 tmp->vm_mm = mm;
375 if (anon_vma_fork(tmp, mpnt))
376 goto fail_nomem_anon_vma_fork;
377 tmp->vm_flags &= ~VM_LOCKED;
378 tmp->vm_next = tmp->vm_prev = NULL;
379 file = tmp->vm_file;
380 if (file) {
381 struct inode *inode = file->f_path.dentry->d_inode;
382 struct address_space *mapping = file->f_mapping;
384 get_file(file);
385 if (tmp->vm_flags & VM_DENYWRITE)
386 atomic_dec(&inode->i_writecount);
387 mutex_lock(&mapping->i_mmap_mutex);
388 if (tmp->vm_flags & VM_SHARED)
389 mapping->i_mmap_writable++;
390 flush_dcache_mmap_lock(mapping);
391 /* insert tmp into the share list, just after mpnt */
392 vma_prio_tree_add(tmp, mpnt);
393 flush_dcache_mmap_unlock(mapping);
394 mutex_unlock(&mapping->i_mmap_mutex);
398 * Clear hugetlb-related page reserves for children. This only
399 * affects MAP_PRIVATE mappings. Faults generated by the child
400 * are not guaranteed to succeed, even if read-only
402 if (is_vm_hugetlb_page(tmp))
403 reset_vma_resv_huge_pages(tmp);
406 * Link in the new vma and copy the page table entries.
408 *pprev = tmp;
409 pprev = &tmp->vm_next;
410 tmp->vm_prev = prev;
411 prev = tmp;
413 __vma_link_rb(mm, tmp, rb_link, rb_parent);
414 rb_link = &tmp->vm_rb.rb_right;
415 rb_parent = &tmp->vm_rb;
417 mm->map_count++;
418 retval = copy_page_range(mm, oldmm, mpnt);
420 if (tmp->vm_ops && tmp->vm_ops->open)
421 tmp->vm_ops->open(tmp);
423 if (retval)
424 goto out;
426 /* a new mm has just been created */
427 arch_dup_mmap(oldmm, mm);
428 retval = 0;
429 out:
430 up_write(&mm->mmap_sem);
431 flush_tlb_mm(oldmm);
432 up_write(&oldmm->mmap_sem);
433 return retval;
434 fail_nomem_anon_vma_fork:
435 mpol_put(pol);
436 fail_nomem_policy:
437 kmem_cache_free(vm_area_cachep, tmp);
438 fail_nomem:
439 retval = -ENOMEM;
440 vm_unacct_memory(charge);
441 goto out;
444 static inline int mm_alloc_pgd(struct mm_struct *mm)
446 mm->pgd = pgd_alloc(mm);
447 if (unlikely(!mm->pgd))
448 return -ENOMEM;
449 return 0;
452 static inline void mm_free_pgd(struct mm_struct *mm)
454 pgd_free(mm, mm->pgd);
456 #else
457 #define dup_mmap(mm, oldmm) (0)
458 #define mm_alloc_pgd(mm) (0)
459 #define mm_free_pgd(mm)
460 #endif /* CONFIG_MMU */
462 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
464 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
465 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
467 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
469 static int __init coredump_filter_setup(char *s)
471 default_dump_filter =
472 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
473 MMF_DUMP_FILTER_MASK;
474 return 1;
477 __setup("coredump_filter=", coredump_filter_setup);
479 #include <linux/init_task.h>
481 static void mm_init_aio(struct mm_struct *mm)
483 #ifdef CONFIG_AIO
484 spin_lock_init(&mm->ioctx_lock);
485 INIT_HLIST_HEAD(&mm->ioctx_list);
486 #endif
489 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
491 atomic_set(&mm->mm_users, 1);
492 atomic_set(&mm->mm_count, 1);
493 init_rwsem(&mm->mmap_sem);
494 INIT_LIST_HEAD(&mm->mmlist);
495 mm->flags = (current->mm) ?
496 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
497 mm->core_state = NULL;
498 mm->nr_ptes = 0;
499 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
500 spin_lock_init(&mm->page_table_lock);
501 mm->free_area_cache = TASK_UNMAPPED_BASE;
502 mm->cached_hole_size = ~0UL;
503 mm_init_aio(mm);
504 mm_init_owner(mm, p);
505 atomic_set(&mm->oom_disable_count, 0);
507 if (likely(!mm_alloc_pgd(mm))) {
508 mm->def_flags = 0;
509 mmu_notifier_mm_init(mm);
510 return mm;
513 free_mm(mm);
514 return NULL;
518 * Allocate and initialize an mm_struct.
520 struct mm_struct *mm_alloc(void)
522 struct mm_struct *mm;
524 mm = allocate_mm();
525 if (!mm)
526 return NULL;
528 memset(mm, 0, sizeof(*mm));
529 mm_init_cpumask(mm);
530 return mm_init(mm, current);
534 * Called when the last reference to the mm
535 * is dropped: either by a lazy thread or by
536 * mmput. Free the page directory and the mm.
538 void __mmdrop(struct mm_struct *mm)
540 BUG_ON(mm == &init_mm);
541 mm_free_pgd(mm);
542 destroy_context(mm);
543 mmu_notifier_mm_destroy(mm);
544 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
545 VM_BUG_ON(mm->pmd_huge_pte);
546 #endif
547 free_mm(mm);
549 EXPORT_SYMBOL_GPL(__mmdrop);
552 * Decrement the use count and release all resources for an mm.
554 void mmput(struct mm_struct *mm)
556 might_sleep();
558 if (atomic_dec_and_test(&mm->mm_users)) {
559 exit_aio(mm);
560 ksm_exit(mm);
561 khugepaged_exit(mm); /* must run before exit_mmap */
562 exit_mmap(mm);
563 set_mm_exe_file(mm, NULL);
564 if (!list_empty(&mm->mmlist)) {
565 spin_lock(&mmlist_lock);
566 list_del(&mm->mmlist);
567 spin_unlock(&mmlist_lock);
569 put_swap_token(mm);
570 if (mm->binfmt)
571 module_put(mm->binfmt->module);
572 mmdrop(mm);
575 EXPORT_SYMBOL_GPL(mmput);
578 * We added or removed a vma mapping the executable. The vmas are only mapped
579 * during exec and are not mapped with the mmap system call.
580 * Callers must hold down_write() on the mm's mmap_sem for these
582 void added_exe_file_vma(struct mm_struct *mm)
584 mm->num_exe_file_vmas++;
587 void removed_exe_file_vma(struct mm_struct *mm)
589 mm->num_exe_file_vmas--;
590 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
591 fput(mm->exe_file);
592 mm->exe_file = NULL;
597 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
599 if (new_exe_file)
600 get_file(new_exe_file);
601 if (mm->exe_file)
602 fput(mm->exe_file);
603 mm->exe_file = new_exe_file;
604 mm->num_exe_file_vmas = 0;
607 struct file *get_mm_exe_file(struct mm_struct *mm)
609 struct file *exe_file;
611 /* We need mmap_sem to protect against races with removal of
612 * VM_EXECUTABLE vmas */
613 down_read(&mm->mmap_sem);
614 exe_file = mm->exe_file;
615 if (exe_file)
616 get_file(exe_file);
617 up_read(&mm->mmap_sem);
618 return exe_file;
621 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
623 /* It's safe to write the exe_file pointer without exe_file_lock because
624 * this is called during fork when the task is not yet in /proc */
625 newmm->exe_file = get_mm_exe_file(oldmm);
629 * get_task_mm - acquire a reference to the task's mm
631 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
632 * this kernel workthread has transiently adopted a user mm with use_mm,
633 * to do its AIO) is not set and if so returns a reference to it, after
634 * bumping up the use count. User must release the mm via mmput()
635 * after use. Typically used by /proc and ptrace.
637 struct mm_struct *get_task_mm(struct task_struct *task)
639 struct mm_struct *mm;
641 task_lock(task);
642 mm = task->mm;
643 if (mm) {
644 if (task->flags & PF_KTHREAD)
645 mm = NULL;
646 else
647 atomic_inc(&mm->mm_users);
649 task_unlock(task);
650 return mm;
652 EXPORT_SYMBOL_GPL(get_task_mm);
654 static void complete_vfork_done(struct task_struct *tsk)
656 struct completion *vfork;
658 task_lock(tsk);
659 vfork = tsk->vfork_done;
660 if (likely(vfork)) {
661 tsk->vfork_done = NULL;
662 complete(vfork);
664 task_unlock(tsk);
667 static int wait_for_vfork_done(struct task_struct *child,
668 struct completion *vfork)
670 int killed;
672 freezer_do_not_count();
673 killed = wait_for_completion_killable(vfork);
674 freezer_count();
676 if (killed) {
677 task_lock(child);
678 child->vfork_done = NULL;
679 task_unlock(child);
682 put_task_struct(child);
683 return killed;
686 /* Please note the differences between mmput and mm_release.
687 * mmput is called whenever we stop holding onto a mm_struct,
688 * error success whatever.
690 * mm_release is called after a mm_struct has been removed
691 * from the current process.
693 * This difference is important for error handling, when we
694 * only half set up a mm_struct for a new process and need to restore
695 * the old one. Because we mmput the new mm_struct before
696 * restoring the old one. . .
697 * Eric Biederman 10 January 1998
699 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
701 /* Get rid of any futexes when releasing the mm */
702 #ifdef CONFIG_FUTEX
703 if (unlikely(tsk->robust_list)) {
704 exit_robust_list(tsk);
705 tsk->robust_list = NULL;
707 #ifdef CONFIG_COMPAT
708 if (unlikely(tsk->compat_robust_list)) {
709 compat_exit_robust_list(tsk);
710 tsk->compat_robust_list = NULL;
712 #endif
713 if (unlikely(!list_empty(&tsk->pi_state_list)))
714 exit_pi_state_list(tsk);
715 #endif
717 /* Get rid of any cached register state */
718 deactivate_mm(tsk, mm);
720 if (tsk->vfork_done)
721 complete_vfork_done(tsk);
724 * If we're exiting normally, clear a user-space tid field if
725 * requested. We leave this alone when dying by signal, to leave
726 * the value intact in a core dump, and to save the unnecessary
727 * trouble, say, a killed vfork parent shouldn't touch this mm.
728 * Userland only wants this done for a sys_exit.
730 if (tsk->clear_child_tid) {
731 if (!(tsk->flags & PF_SIGNALED) &&
732 atomic_read(&mm->mm_users) > 1) {
734 * We don't check the error code - if userspace has
735 * not set up a proper pointer then tough luck.
737 put_user(0, tsk->clear_child_tid);
738 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
739 1, NULL, NULL, 0);
741 tsk->clear_child_tid = NULL;
746 * Allocate a new mm structure and copy contents from the
747 * mm structure of the passed in task structure.
749 struct mm_struct *dup_mm(struct task_struct *tsk)
751 struct mm_struct *mm, *oldmm = current->mm;
752 int err;
754 if (!oldmm)
755 return NULL;
757 mm = allocate_mm();
758 if (!mm)
759 goto fail_nomem;
761 memcpy(mm, oldmm, sizeof(*mm));
762 mm_init_cpumask(mm);
764 /* Initializing for Swap token stuff */
765 mm->token_priority = 0;
766 mm->last_interval = 0;
768 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
769 mm->pmd_huge_pte = NULL;
770 #endif
772 if (!mm_init(mm, tsk))
773 goto fail_nomem;
775 if (init_new_context(tsk, mm))
776 goto fail_nocontext;
778 dup_mm_exe_file(oldmm, mm);
780 err = dup_mmap(mm, oldmm);
781 if (err)
782 goto free_pt;
784 mm->hiwater_rss = get_mm_rss(mm);
785 mm->hiwater_vm = mm->total_vm;
787 if (mm->binfmt && !try_module_get(mm->binfmt->module))
788 goto free_pt;
790 return mm;
792 free_pt:
793 /* don't put binfmt in mmput, we haven't got module yet */
794 mm->binfmt = NULL;
795 mmput(mm);
797 fail_nomem:
798 return NULL;
800 fail_nocontext:
802 * If init_new_context() failed, we cannot use mmput() to free the mm
803 * because it calls destroy_context()
805 mm_free_pgd(mm);
806 free_mm(mm);
807 return NULL;
810 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
812 struct mm_struct *mm, *oldmm;
813 int retval;
815 tsk->min_flt = tsk->maj_flt = 0;
816 tsk->nvcsw = tsk->nivcsw = 0;
817 #ifdef CONFIG_DETECT_HUNG_TASK
818 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
819 #endif
821 tsk->mm = NULL;
822 tsk->active_mm = NULL;
825 * Are we cloning a kernel thread?
827 * We need to steal a active VM for that..
829 oldmm = current->mm;
830 if (!oldmm)
831 return 0;
833 if (clone_flags & CLONE_VM) {
834 atomic_inc(&oldmm->mm_users);
835 mm = oldmm;
836 goto good_mm;
839 retval = -ENOMEM;
840 mm = dup_mm(tsk);
841 if (!mm)
842 goto fail_nomem;
844 good_mm:
845 /* Initializing for Swap token stuff */
846 mm->token_priority = 0;
847 mm->last_interval = 0;
848 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
849 atomic_inc(&mm->oom_disable_count);
851 tsk->mm = mm;
852 tsk->active_mm = mm;
853 return 0;
855 fail_nomem:
856 return retval;
859 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
861 struct fs_struct *fs = current->fs;
862 if (clone_flags & CLONE_FS) {
863 /* tsk->fs is already what we want */
864 spin_lock(&fs->lock);
865 if (fs->in_exec) {
866 spin_unlock(&fs->lock);
867 return -EAGAIN;
869 fs->users++;
870 spin_unlock(&fs->lock);
871 return 0;
873 tsk->fs = copy_fs_struct(fs);
874 if (!tsk->fs)
875 return -ENOMEM;
876 return 0;
879 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
881 struct files_struct *oldf, *newf;
882 int error = 0;
885 * A background process may not have any files ...
887 oldf = current->files;
888 if (!oldf)
889 goto out;
891 if (clone_flags & CLONE_FILES) {
892 atomic_inc(&oldf->count);
893 goto out;
896 newf = dup_fd(oldf, &error);
897 if (!newf)
898 goto out;
900 tsk->files = newf;
901 error = 0;
902 out:
903 return error;
906 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
908 #ifdef CONFIG_BLOCK
909 struct io_context *ioc = current->io_context;
911 if (!ioc)
912 return 0;
914 * Share io context with parent, if CLONE_IO is set
916 if (clone_flags & CLONE_IO) {
917 tsk->io_context = ioc_task_link(ioc);
918 if (unlikely(!tsk->io_context))
919 return -ENOMEM;
920 } else if (ioprio_valid(ioc->ioprio)) {
921 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
922 if (unlikely(!tsk->io_context))
923 return -ENOMEM;
925 tsk->io_context->ioprio = ioc->ioprio;
927 #endif
928 return 0;
931 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
933 struct sighand_struct *sig;
935 if (clone_flags & CLONE_SIGHAND) {
936 atomic_inc(&current->sighand->count);
937 return 0;
939 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
940 rcu_assign_pointer(tsk->sighand, sig);
941 if (!sig)
942 return -ENOMEM;
943 atomic_set(&sig->count, 1);
944 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
945 return 0;
948 void __cleanup_sighand(struct sighand_struct *sighand)
950 if (atomic_dec_and_test(&sighand->count))
951 kmem_cache_free(sighand_cachep, sighand);
956 * Initialize POSIX timer handling for a thread group.
958 static void posix_cpu_timers_init_group(struct signal_struct *sig)
960 unsigned long cpu_limit;
962 /* Thread group counters. */
963 thread_group_cputime_init(sig);
965 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
966 if (cpu_limit != RLIM_INFINITY) {
967 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
968 sig->cputimer.running = 1;
971 /* The timer lists. */
972 INIT_LIST_HEAD(&sig->cpu_timers[0]);
973 INIT_LIST_HEAD(&sig->cpu_timers[1]);
974 INIT_LIST_HEAD(&sig->cpu_timers[2]);
977 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
979 struct signal_struct *sig;
981 if (clone_flags & CLONE_THREAD)
982 return 0;
984 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
985 tsk->signal = sig;
986 if (!sig)
987 return -ENOMEM;
989 sig->nr_threads = 1;
990 atomic_set(&sig->live, 1);
991 atomic_set(&sig->sigcnt, 1);
992 init_waitqueue_head(&sig->wait_chldexit);
993 if (clone_flags & CLONE_NEWPID)
994 sig->flags |= SIGNAL_UNKILLABLE;
995 sig->curr_target = tsk;
996 init_sigpending(&sig->shared_pending);
997 INIT_LIST_HEAD(&sig->posix_timers);
999 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1000 sig->real_timer.function = it_real_fn;
1002 task_lock(current->group_leader);
1003 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1004 task_unlock(current->group_leader);
1006 posix_cpu_timers_init_group(sig);
1008 tty_audit_fork(sig);
1009 sched_autogroup_fork(sig);
1011 #ifdef CONFIG_CGROUPS
1012 init_rwsem(&sig->threadgroup_fork_lock);
1013 #endif
1015 sig->oom_adj = current->signal->oom_adj;
1016 sig->oom_score_adj = current->signal->oom_score_adj;
1017 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1019 mutex_init(&sig->cred_guard_mutex);
1021 return 0;
1024 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1026 unsigned long new_flags = p->flags;
1028 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1029 new_flags |= PF_FORKNOEXEC;
1030 p->flags = new_flags;
1033 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1035 current->clear_child_tid = tidptr;
1037 return task_pid_vnr(current);
1040 static void rt_mutex_init_task(struct task_struct *p)
1042 raw_spin_lock_init(&p->pi_lock);
1043 #ifdef CONFIG_RT_MUTEXES
1044 plist_head_init(&p->pi_waiters);
1045 p->pi_blocked_on = NULL;
1046 #endif
1049 #ifdef CONFIG_MM_OWNER
1050 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1052 mm->owner = p;
1054 #endif /* CONFIG_MM_OWNER */
1057 * Initialize POSIX timer handling for a single task.
1059 static void posix_cpu_timers_init(struct task_struct *tsk)
1061 tsk->cputime_expires.prof_exp = cputime_zero;
1062 tsk->cputime_expires.virt_exp = cputime_zero;
1063 tsk->cputime_expires.sched_exp = 0;
1064 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1065 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1066 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1070 * This creates a new process as a copy of the old one,
1071 * but does not actually start it yet.
1073 * It copies the registers, and all the appropriate
1074 * parts of the process environment (as per the clone
1075 * flags). The actual kick-off is left to the caller.
1077 static struct task_struct *copy_process(unsigned long clone_flags,
1078 unsigned long stack_start,
1079 struct pt_regs *regs,
1080 unsigned long stack_size,
1081 int __user *child_tidptr,
1082 struct pid *pid,
1083 int trace)
1085 int retval;
1086 struct task_struct *p;
1087 int cgroup_callbacks_done = 0;
1089 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1090 return ERR_PTR(-EINVAL);
1093 * Thread groups must share signals as well, and detached threads
1094 * can only be started up within the thread group.
1096 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1097 return ERR_PTR(-EINVAL);
1100 * Shared signal handlers imply shared VM. By way of the above,
1101 * thread groups also imply shared VM. Blocking this case allows
1102 * for various simplifications in other code.
1104 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1105 return ERR_PTR(-EINVAL);
1108 * Siblings of global init remain as zombies on exit since they are
1109 * not reaped by their parent (swapper). To solve this and to avoid
1110 * multi-rooted process trees, prevent global and container-inits
1111 * from creating siblings.
1113 if ((clone_flags & CLONE_PARENT) &&
1114 current->signal->flags & SIGNAL_UNKILLABLE)
1115 return ERR_PTR(-EINVAL);
1117 retval = security_task_create(clone_flags);
1118 if (retval)
1119 goto fork_out;
1121 retval = -ENOMEM;
1122 p = dup_task_struct(current);
1123 if (!p)
1124 goto fork_out;
1126 ftrace_graph_init_task(p);
1128 rt_mutex_init_task(p);
1130 #ifdef CONFIG_PROVE_LOCKING
1131 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1132 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1133 #endif
1134 retval = -EAGAIN;
1135 if (atomic_read(&p->real_cred->user->processes) >=
1136 task_rlimit(p, RLIMIT_NPROC)) {
1137 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1138 p->real_cred->user != INIT_USER)
1139 goto bad_fork_free;
1141 current->flags &= ~PF_NPROC_EXCEEDED;
1143 retval = copy_creds(p, clone_flags);
1144 if (retval < 0)
1145 goto bad_fork_free;
1148 * If multiple threads are within copy_process(), then this check
1149 * triggers too late. This doesn't hurt, the check is only there
1150 * to stop root fork bombs.
1152 retval = -EAGAIN;
1153 if (nr_threads >= max_threads)
1154 goto bad_fork_cleanup_count;
1156 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1157 goto bad_fork_cleanup_count;
1159 p->did_exec = 0;
1160 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1161 copy_flags(clone_flags, p);
1162 INIT_LIST_HEAD(&p->children);
1163 INIT_LIST_HEAD(&p->sibling);
1164 rcu_copy_process(p);
1165 p->vfork_done = NULL;
1166 spin_lock_init(&p->alloc_lock);
1168 init_sigpending(&p->pending);
1170 p->utime = cputime_zero;
1171 p->stime = cputime_zero;
1172 p->gtime = cputime_zero;
1173 p->utimescaled = cputime_zero;
1174 p->stimescaled = cputime_zero;
1175 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1176 p->prev_utime = cputime_zero;
1177 p->prev_stime = cputime_zero;
1178 #endif
1179 #if defined(SPLIT_RSS_COUNTING)
1180 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1181 #endif
1183 p->default_timer_slack_ns = current->timer_slack_ns;
1185 task_io_accounting_init(&p->ioac);
1186 acct_clear_integrals(p);
1188 posix_cpu_timers_init(p);
1190 do_posix_clock_monotonic_gettime(&p->start_time);
1191 p->real_start_time = p->start_time;
1192 monotonic_to_bootbased(&p->real_start_time);
1193 p->io_context = NULL;
1194 p->audit_context = NULL;
1195 if (clone_flags & CLONE_THREAD)
1196 threadgroup_fork_read_lock(current);
1197 cgroup_fork(p);
1198 #ifdef CONFIG_NUMA
1199 p->mempolicy = mpol_dup(p->mempolicy);
1200 if (IS_ERR(p->mempolicy)) {
1201 retval = PTR_ERR(p->mempolicy);
1202 p->mempolicy = NULL;
1203 goto bad_fork_cleanup_cgroup;
1205 mpol_fix_fork_child_flag(p);
1206 #endif
1207 #ifdef CONFIG_CPUSETS
1208 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1209 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1210 #endif
1211 #ifdef CONFIG_TRACE_IRQFLAGS
1212 p->irq_events = 0;
1213 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1214 p->hardirqs_enabled = 1;
1215 #else
1216 p->hardirqs_enabled = 0;
1217 #endif
1218 p->hardirq_enable_ip = 0;
1219 p->hardirq_enable_event = 0;
1220 p->hardirq_disable_ip = _THIS_IP_;
1221 p->hardirq_disable_event = 0;
1222 p->softirqs_enabled = 1;
1223 p->softirq_enable_ip = _THIS_IP_;
1224 p->softirq_enable_event = 0;
1225 p->softirq_disable_ip = 0;
1226 p->softirq_disable_event = 0;
1227 p->hardirq_context = 0;
1228 p->softirq_context = 0;
1229 #endif
1230 #ifdef CONFIG_LOCKDEP
1231 p->lockdep_depth = 0; /* no locks held yet */
1232 p->curr_chain_key = 0;
1233 p->lockdep_recursion = 0;
1234 #endif
1236 #ifdef CONFIG_DEBUG_MUTEXES
1237 p->blocked_on = NULL; /* not blocked yet */
1238 #endif
1239 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1240 p->memcg_batch.do_batch = 0;
1241 p->memcg_batch.memcg = NULL;
1242 #endif
1244 /* Perform scheduler related setup. Assign this task to a CPU. */
1245 sched_fork(p);
1247 retval = perf_event_init_task(p);
1248 if (retval)
1249 goto bad_fork_cleanup_policy;
1250 retval = audit_alloc(p);
1251 if (retval)
1252 goto bad_fork_cleanup_policy;
1253 /* copy all the process information */
1254 retval = copy_semundo(clone_flags, p);
1255 if (retval)
1256 goto bad_fork_cleanup_audit;
1257 retval = copy_files(clone_flags, p);
1258 if (retval)
1259 goto bad_fork_cleanup_semundo;
1260 retval = copy_fs(clone_flags, p);
1261 if (retval)
1262 goto bad_fork_cleanup_files;
1263 retval = copy_sighand(clone_flags, p);
1264 if (retval)
1265 goto bad_fork_cleanup_fs;
1266 retval = copy_signal(clone_flags, p);
1267 if (retval)
1268 goto bad_fork_cleanup_sighand;
1269 retval = copy_mm(clone_flags, p);
1270 if (retval)
1271 goto bad_fork_cleanup_signal;
1272 retval = copy_namespaces(clone_flags, p);
1273 if (retval)
1274 goto bad_fork_cleanup_mm;
1275 retval = copy_io(clone_flags, p);
1276 if (retval)
1277 goto bad_fork_cleanup_namespaces;
1278 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1279 if (retval)
1280 goto bad_fork_cleanup_io;
1282 if (pid != &init_struct_pid) {
1283 retval = -ENOMEM;
1284 pid = alloc_pid(p->nsproxy->pid_ns);
1285 if (!pid)
1286 goto bad_fork_cleanup_io;
1289 p->pid = pid_nr(pid);
1290 p->tgid = p->pid;
1291 if (clone_flags & CLONE_THREAD)
1292 p->tgid = current->tgid;
1294 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1296 * Clear TID on mm_release()?
1298 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1299 #ifdef CONFIG_BLOCK
1300 p->plug = NULL;
1301 #endif
1302 #ifdef CONFIG_FUTEX
1303 p->robust_list = NULL;
1304 #ifdef CONFIG_COMPAT
1305 p->compat_robust_list = NULL;
1306 #endif
1307 INIT_LIST_HEAD(&p->pi_state_list);
1308 p->pi_state_cache = NULL;
1309 #endif
1311 * sigaltstack should be cleared when sharing the same VM
1313 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1314 p->sas_ss_sp = p->sas_ss_size = 0;
1317 * Syscall tracing and stepping should be turned off in the
1318 * child regardless of CLONE_PTRACE.
1320 user_disable_single_step(p);
1321 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1322 #ifdef TIF_SYSCALL_EMU
1323 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1324 #endif
1325 clear_all_latency_tracing(p);
1327 /* ok, now we should be set up.. */
1328 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1329 p->pdeath_signal = 0;
1330 p->exit_state = 0;
1333 * Ok, make it visible to the rest of the system.
1334 * We dont wake it up yet.
1336 p->group_leader = p;
1337 INIT_LIST_HEAD(&p->thread_group);
1339 /* Now that the task is set up, run cgroup callbacks if
1340 * necessary. We need to run them before the task is visible
1341 * on the tasklist. */
1342 cgroup_fork_callbacks(p);
1343 cgroup_callbacks_done = 1;
1345 /* Need tasklist lock for parent etc handling! */
1346 write_lock_irq(&tasklist_lock);
1348 /* CLONE_PARENT re-uses the old parent */
1349 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1350 p->real_parent = current->real_parent;
1351 p->parent_exec_id = current->parent_exec_id;
1352 } else {
1353 p->real_parent = current;
1354 p->parent_exec_id = current->self_exec_id;
1357 spin_lock(&current->sighand->siglock);
1360 * Process group and session signals need to be delivered to just the
1361 * parent before the fork or both the parent and the child after the
1362 * fork. Restart if a signal comes in before we add the new process to
1363 * it's process group.
1364 * A fatal signal pending means that current will exit, so the new
1365 * thread can't slip out of an OOM kill (or normal SIGKILL).
1367 recalc_sigpending();
1368 if (signal_pending(current)) {
1369 spin_unlock(&current->sighand->siglock);
1370 write_unlock_irq(&tasklist_lock);
1371 retval = -ERESTARTNOINTR;
1372 goto bad_fork_free_pid;
1375 if (clone_flags & CLONE_THREAD) {
1376 current->signal->nr_threads++;
1377 atomic_inc(&current->signal->live);
1378 atomic_inc(&current->signal->sigcnt);
1379 p->group_leader = current->group_leader;
1380 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1383 if (likely(p->pid)) {
1384 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1386 if (thread_group_leader(p)) {
1387 if (is_child_reaper(pid))
1388 p->nsproxy->pid_ns->child_reaper = p;
1390 p->signal->leader_pid = pid;
1391 p->signal->tty = tty_kref_get(current->signal->tty);
1392 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1393 attach_pid(p, PIDTYPE_SID, task_session(current));
1394 list_add_tail(&p->sibling, &p->real_parent->children);
1395 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1396 __this_cpu_inc(process_counts);
1398 attach_pid(p, PIDTYPE_PID, pid);
1399 nr_threads++;
1402 total_forks++;
1403 spin_unlock(&current->sighand->siglock);
1404 write_unlock_irq(&tasklist_lock);
1405 proc_fork_connector(p);
1406 cgroup_post_fork(p);
1407 if (clone_flags & CLONE_THREAD)
1408 threadgroup_fork_read_unlock(current);
1409 perf_event_fork(p);
1410 return p;
1412 bad_fork_free_pid:
1413 if (pid != &init_struct_pid)
1414 free_pid(pid);
1415 bad_fork_cleanup_io:
1416 if (p->io_context)
1417 exit_io_context(p);
1418 bad_fork_cleanup_namespaces:
1419 exit_task_namespaces(p);
1420 bad_fork_cleanup_mm:
1421 if (p->mm) {
1422 task_lock(p);
1423 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1424 atomic_dec(&p->mm->oom_disable_count);
1425 task_unlock(p);
1426 mmput(p->mm);
1428 bad_fork_cleanup_signal:
1429 if (!(clone_flags & CLONE_THREAD))
1430 free_signal_struct(p->signal);
1431 bad_fork_cleanup_sighand:
1432 __cleanup_sighand(p->sighand);
1433 bad_fork_cleanup_fs:
1434 exit_fs(p); /* blocking */
1435 bad_fork_cleanup_files:
1436 exit_files(p); /* blocking */
1437 bad_fork_cleanup_semundo:
1438 exit_sem(p);
1439 bad_fork_cleanup_audit:
1440 audit_free(p);
1441 bad_fork_cleanup_policy:
1442 perf_event_free_task(p);
1443 #ifdef CONFIG_NUMA
1444 mpol_put(p->mempolicy);
1445 bad_fork_cleanup_cgroup:
1446 #endif
1447 if (clone_flags & CLONE_THREAD)
1448 threadgroup_fork_read_unlock(current);
1449 cgroup_exit(p, cgroup_callbacks_done);
1450 delayacct_tsk_free(p);
1451 module_put(task_thread_info(p)->exec_domain->module);
1452 bad_fork_cleanup_count:
1453 atomic_dec(&p->cred->user->processes);
1454 exit_creds(p);
1455 bad_fork_free:
1456 free_task(p);
1457 fork_out:
1458 return ERR_PTR(retval);
1461 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1463 memset(regs, 0, sizeof(struct pt_regs));
1464 return regs;
1467 static inline void init_idle_pids(struct pid_link *links)
1469 enum pid_type type;
1471 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1472 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1473 links[type].pid = &init_struct_pid;
1477 struct task_struct * __cpuinit fork_idle(int cpu)
1479 struct task_struct *task;
1480 struct pt_regs regs;
1482 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1483 &init_struct_pid, 0);
1484 if (!IS_ERR(task)) {
1485 init_idle_pids(task->pids);
1486 init_idle(task, cpu);
1489 return task;
1493 * Ok, this is the main fork-routine.
1495 * It copies the process, and if successful kick-starts
1496 * it and waits for it to finish using the VM if required.
1498 long do_fork(unsigned long clone_flags,
1499 unsigned long stack_start,
1500 struct pt_regs *regs,
1501 unsigned long stack_size,
1502 int __user *parent_tidptr,
1503 int __user *child_tidptr)
1505 struct task_struct *p;
1506 int trace = 0;
1507 long nr;
1510 * Do some preliminary argument and permissions checking before we
1511 * actually start allocating stuff
1513 if (clone_flags & CLONE_NEWUSER) {
1514 if (clone_flags & CLONE_THREAD)
1515 return -EINVAL;
1516 /* hopefully this check will go away when userns support is
1517 * complete
1519 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1520 !capable(CAP_SETGID))
1521 return -EPERM;
1525 * Determine whether and which event to report to ptracer. When
1526 * called from kernel_thread or CLONE_UNTRACED is explicitly
1527 * requested, no event is reported; otherwise, report if the event
1528 * for the type of forking is enabled.
1530 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1531 if (clone_flags & CLONE_VFORK)
1532 trace = PTRACE_EVENT_VFORK;
1533 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1534 trace = PTRACE_EVENT_CLONE;
1535 else
1536 trace = PTRACE_EVENT_FORK;
1538 if (likely(!ptrace_event_enabled(current, trace)))
1539 trace = 0;
1542 p = copy_process(clone_flags, stack_start, regs, stack_size,
1543 child_tidptr, NULL, trace);
1545 * Do this prior waking up the new thread - the thread pointer
1546 * might get invalid after that point, if the thread exits quickly.
1548 if (!IS_ERR(p)) {
1549 struct completion vfork;
1551 trace_sched_process_fork(current, p);
1553 nr = task_pid_vnr(p);
1555 if (clone_flags & CLONE_PARENT_SETTID)
1556 put_user(nr, parent_tidptr);
1558 if (clone_flags & CLONE_VFORK) {
1559 p->vfork_done = &vfork;
1560 init_completion(&vfork);
1561 get_task_struct(p);
1564 audit_finish_fork(p);
1565 wake_up_new_task(p);
1567 /* forking complete and child started to run, tell ptracer */
1568 if (unlikely(trace))
1569 ptrace_event(trace, nr);
1571 if (clone_flags & CLONE_VFORK) {
1572 if (!wait_for_vfork_done(p, &vfork))
1573 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1575 } else {
1576 nr = PTR_ERR(p);
1578 return nr;
1581 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1582 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1583 #endif
1585 static void sighand_ctor(void *data)
1587 struct sighand_struct *sighand = data;
1589 spin_lock_init(&sighand->siglock);
1590 init_waitqueue_head(&sighand->signalfd_wqh);
1593 void __init proc_caches_init(void)
1595 sighand_cachep = kmem_cache_create("sighand_cache",
1596 sizeof(struct sighand_struct), 0,
1597 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1598 SLAB_NOTRACK, sighand_ctor);
1599 signal_cachep = kmem_cache_create("signal_cache",
1600 sizeof(struct signal_struct), 0,
1601 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1602 files_cachep = kmem_cache_create("files_cache",
1603 sizeof(struct files_struct), 0,
1604 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1605 fs_cachep = kmem_cache_create("fs_cache",
1606 sizeof(struct fs_struct), 0,
1607 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1609 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1610 * whole struct cpumask for the OFFSTACK case. We could change
1611 * this to *only* allocate as much of it as required by the
1612 * maximum number of CPU's we can ever have. The cpumask_allocation
1613 * is at the end of the structure, exactly for that reason.
1615 mm_cachep = kmem_cache_create("mm_struct",
1616 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1617 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1618 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1619 mmap_init();
1620 nsproxy_cache_init();
1624 * Check constraints on flags passed to the unshare system call.
1626 static int check_unshare_flags(unsigned long unshare_flags)
1628 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1629 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1630 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1631 return -EINVAL;
1633 * Not implemented, but pretend it works if there is nothing to
1634 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1635 * needs to unshare vm.
1637 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1638 /* FIXME: get_task_mm() increments ->mm_users */
1639 if (atomic_read(&current->mm->mm_users) > 1)
1640 return -EINVAL;
1643 return 0;
1647 * Unshare the filesystem structure if it is being shared
1649 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1651 struct fs_struct *fs = current->fs;
1653 if (!(unshare_flags & CLONE_FS) || !fs)
1654 return 0;
1656 /* don't need lock here; in the worst case we'll do useless copy */
1657 if (fs->users == 1)
1658 return 0;
1660 *new_fsp = copy_fs_struct(fs);
1661 if (!*new_fsp)
1662 return -ENOMEM;
1664 return 0;
1668 * Unshare file descriptor table if it is being shared
1670 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1672 struct files_struct *fd = current->files;
1673 int error = 0;
1675 if ((unshare_flags & CLONE_FILES) &&
1676 (fd && atomic_read(&fd->count) > 1)) {
1677 *new_fdp = dup_fd(fd, &error);
1678 if (!*new_fdp)
1679 return error;
1682 return 0;
1686 * unshare allows a process to 'unshare' part of the process
1687 * context which was originally shared using clone. copy_*
1688 * functions used by do_fork() cannot be used here directly
1689 * because they modify an inactive task_struct that is being
1690 * constructed. Here we are modifying the current, active,
1691 * task_struct.
1693 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1695 struct fs_struct *fs, *new_fs = NULL;
1696 struct files_struct *fd, *new_fd = NULL;
1697 struct nsproxy *new_nsproxy = NULL;
1698 int do_sysvsem = 0;
1699 int err;
1701 err = check_unshare_flags(unshare_flags);
1702 if (err)
1703 goto bad_unshare_out;
1706 * If unsharing namespace, must also unshare filesystem information.
1708 if (unshare_flags & CLONE_NEWNS)
1709 unshare_flags |= CLONE_FS;
1711 * CLONE_NEWIPC must also detach from the undolist: after switching
1712 * to a new ipc namespace, the semaphore arrays from the old
1713 * namespace are unreachable.
1715 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1716 do_sysvsem = 1;
1717 err = unshare_fs(unshare_flags, &new_fs);
1718 if (err)
1719 goto bad_unshare_out;
1720 err = unshare_fd(unshare_flags, &new_fd);
1721 if (err)
1722 goto bad_unshare_cleanup_fs;
1723 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1724 if (err)
1725 goto bad_unshare_cleanup_fd;
1727 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1728 if (do_sysvsem) {
1730 * CLONE_SYSVSEM is equivalent to sys_exit().
1732 exit_sem(current);
1735 if (new_nsproxy) {
1736 switch_task_namespaces(current, new_nsproxy);
1737 new_nsproxy = NULL;
1740 task_lock(current);
1742 if (new_fs) {
1743 fs = current->fs;
1744 spin_lock(&fs->lock);
1745 current->fs = new_fs;
1746 if (--fs->users)
1747 new_fs = NULL;
1748 else
1749 new_fs = fs;
1750 spin_unlock(&fs->lock);
1753 if (new_fd) {
1754 fd = current->files;
1755 current->files = new_fd;
1756 new_fd = fd;
1759 task_unlock(current);
1762 if (new_nsproxy)
1763 put_nsproxy(new_nsproxy);
1765 bad_unshare_cleanup_fd:
1766 if (new_fd)
1767 put_files_struct(new_fd);
1769 bad_unshare_cleanup_fs:
1770 if (new_fs)
1771 free_fs_struct(new_fs);
1773 bad_unshare_out:
1774 return err;
1778 * Helper to unshare the files of the current task.
1779 * We don't want to expose copy_files internals to
1780 * the exec layer of the kernel.
1783 int unshare_files(struct files_struct **displaced)
1785 struct task_struct *task = current;
1786 struct files_struct *copy = NULL;
1787 int error;
1789 error = unshare_fd(CLONE_FILES, &copy);
1790 if (error || !copy) {
1791 *displaced = NULL;
1792 return error;
1794 *displaced = task->files;
1795 task_lock(task);
1796 task->files = copy;
1797 task_unlock(task);
1798 return 0;