4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
10 * 10Apr2002 Andrew Morton
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
40 * Sleep at most 200ms at a time in balance_dirty_pages().
42 #define MAX_PAUSE max(HZ/5, 1)
45 * Estimate write bandwidth at 200ms intervals.
47 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
50 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
51 * will look to see if it needs to force writeback or throttling.
53 static long ratelimit_pages
= 32;
56 * When balance_dirty_pages decides that the caller needs to perform some
57 * non-background writeback, this is how many pages it will attempt to write.
58 * It should be somewhat larger than dirtied pages to ensure that reasonably
59 * large amounts of I/O are submitted.
61 static inline long sync_writeback_pages(unsigned long dirtied
)
63 if (dirtied
< ratelimit_pages
)
64 dirtied
= ratelimit_pages
;
66 return dirtied
+ dirtied
/ 2;
69 /* The following parameters are exported via /proc/sys/vm */
72 * Start background writeback (via writeback threads) at this percentage
74 int dirty_background_ratio
= 10;
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
80 unsigned long dirty_background_bytes
;
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
86 int vm_highmem_is_dirtyable
;
89 * The generator of dirty data starts writeback at this percentage
91 int vm_dirty_ratio
= 20;
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
97 unsigned long vm_dirty_bytes
;
100 * The interval between `kupdate'-style writebacks
102 unsigned int dirty_writeback_interval
= 5 * 100; /* centiseconds */
105 * The longest time for which data is allowed to remain dirty
107 unsigned int dirty_expire_interval
= 30 * 100; /* centiseconds */
110 * Flag that makes the machine dump writes/reads and block dirtyings.
115 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
116 * a full sync is triggered after this time elapses without any disk activity.
120 EXPORT_SYMBOL(laptop_mode
);
122 /* End of sysctl-exported parameters */
124 unsigned long global_dirty_limit
;
127 * Scale the writeback cache size proportional to the relative writeout speeds.
129 * We do this by keeping a floating proportion between BDIs, based on page
130 * writeback completions [end_page_writeback()]. Those devices that write out
131 * pages fastest will get the larger share, while the slower will get a smaller
134 * We use page writeout completions because we are interested in getting rid of
135 * dirty pages. Having them written out is the primary goal.
137 * We introduce a concept of time, a period over which we measure these events,
138 * because demand can/will vary over time. The length of this period itself is
139 * measured in page writeback completions.
142 static struct prop_descriptor vm_completions
;
143 static struct prop_descriptor vm_dirties
;
146 * Work out the current dirty-memory clamping and background writeout
149 * The main aim here is to lower them aggressively if there is a lot of mapped
150 * memory around. To avoid stressing page reclaim with lots of unreclaimable
151 * pages. It is better to clamp down on writers than to start swapping, and
152 * performing lots of scanning.
154 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
156 * We don't permit the clamping level to fall below 5% - that is getting rather
159 * We make sure that the background writeout level is below the adjusted
162 static unsigned long highmem_dirtyable_memory(unsigned long total
)
164 #ifdef CONFIG_HIGHMEM
168 for_each_node_state(node
, N_HIGH_MEMORY
) {
170 &NODE_DATA(node
)->node_zones
[ZONE_HIGHMEM
];
172 x
+= zone_page_state(z
, NR_FREE_PAGES
) +
173 zone_reclaimable_pages(z
);
176 * Make sure that the number of highmem pages is never larger
177 * than the number of the total dirtyable memory. This can only
178 * occur in very strange VM situations but we want to make sure
179 * that this does not occur.
181 return min(x
, total
);
188 * determine_dirtyable_memory - amount of memory that may be used
190 * Returns the numebr of pages that can currently be freed and used
191 * by the kernel for direct mappings.
193 static unsigned long determine_dirtyable_memory(void)
197 x
= global_page_state(NR_FREE_PAGES
) + global_reclaimable_pages();
199 if (!vm_highmem_is_dirtyable
)
200 x
-= highmem_dirtyable_memory(x
);
202 return x
+ 1; /* Ensure that we never return 0 */
206 * couple the period to the dirty_ratio:
208 * period/2 ~ roundup_pow_of_two(dirty limit)
210 static int calc_period_shift(void)
212 unsigned long dirty_total
;
215 dirty_total
= vm_dirty_bytes
/ PAGE_SIZE
;
217 dirty_total
= (vm_dirty_ratio
* determine_dirtyable_memory()) /
219 return 2 + ilog2(dirty_total
- 1);
223 * update the period when the dirty threshold changes.
225 static void update_completion_period(void)
227 int shift
= calc_period_shift();
228 prop_change_shift(&vm_completions
, shift
);
229 prop_change_shift(&vm_dirties
, shift
);
232 int dirty_background_ratio_handler(struct ctl_table
*table
, int write
,
233 void __user
*buffer
, size_t *lenp
,
238 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
239 if (ret
== 0 && write
)
240 dirty_background_bytes
= 0;
244 int dirty_background_bytes_handler(struct ctl_table
*table
, int write
,
245 void __user
*buffer
, size_t *lenp
,
250 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
251 if (ret
== 0 && write
)
252 dirty_background_ratio
= 0;
256 int dirty_ratio_handler(struct ctl_table
*table
, int write
,
257 void __user
*buffer
, size_t *lenp
,
260 int old_ratio
= vm_dirty_ratio
;
263 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
264 if (ret
== 0 && write
&& vm_dirty_ratio
!= old_ratio
) {
265 update_completion_period();
271 int dirty_bytes_handler(struct ctl_table
*table
, int write
,
272 void __user
*buffer
, size_t *lenp
,
275 unsigned long old_bytes
= vm_dirty_bytes
;
278 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
279 if (ret
== 0 && write
&& vm_dirty_bytes
!= old_bytes
) {
280 update_completion_period();
287 * Increment the BDI's writeout completion count and the global writeout
288 * completion count. Called from test_clear_page_writeback().
290 static inline void __bdi_writeout_inc(struct backing_dev_info
*bdi
)
292 __inc_bdi_stat(bdi
, BDI_WRITTEN
);
293 __prop_inc_percpu_max(&vm_completions
, &bdi
->completions
,
297 void bdi_writeout_inc(struct backing_dev_info
*bdi
)
301 local_irq_save(flags
);
302 __bdi_writeout_inc(bdi
);
303 local_irq_restore(flags
);
305 EXPORT_SYMBOL_GPL(bdi_writeout_inc
);
307 void task_dirty_inc(struct task_struct
*tsk
)
309 prop_inc_single(&vm_dirties
, &tsk
->dirties
);
313 * Obtain an accurate fraction of the BDI's portion.
315 static void bdi_writeout_fraction(struct backing_dev_info
*bdi
,
316 long *numerator
, long *denominator
)
318 prop_fraction_percpu(&vm_completions
, &bdi
->completions
,
319 numerator
, denominator
);
322 static inline void task_dirties_fraction(struct task_struct
*tsk
,
323 long *numerator
, long *denominator
)
325 prop_fraction_single(&vm_dirties
, &tsk
->dirties
,
326 numerator
, denominator
);
330 * task_dirty_limit - scale down dirty throttling threshold for one task
332 * task specific dirty limit:
334 * dirty -= (dirty/8) * p_{t}
336 * To protect light/slow dirtying tasks from heavier/fast ones, we start
337 * throttling individual tasks before reaching the bdi dirty limit.
338 * Relatively low thresholds will be allocated to heavy dirtiers. So when
339 * dirty pages grow large, heavy dirtiers will be throttled first, which will
340 * effectively curb the growth of dirty pages. Light dirtiers with high enough
341 * dirty threshold may never get throttled.
343 #define TASK_LIMIT_FRACTION 8
344 static unsigned long task_dirty_limit(struct task_struct
*tsk
,
345 unsigned long bdi_dirty
)
347 long numerator
, denominator
;
348 unsigned long dirty
= bdi_dirty
;
349 u64 inv
= dirty
/ TASK_LIMIT_FRACTION
;
351 task_dirties_fraction(tsk
, &numerator
, &denominator
);
353 do_div(inv
, denominator
);
357 return max(dirty
, bdi_dirty
/2);
360 /* Minimum limit for any task */
361 static unsigned long task_min_dirty_limit(unsigned long bdi_dirty
)
363 return bdi_dirty
- bdi_dirty
/ TASK_LIMIT_FRACTION
;
369 static unsigned int bdi_min_ratio
;
371 int bdi_set_min_ratio(struct backing_dev_info
*bdi
, unsigned int min_ratio
)
375 spin_lock_bh(&bdi_lock
);
376 if (min_ratio
> bdi
->max_ratio
) {
379 min_ratio
-= bdi
->min_ratio
;
380 if (bdi_min_ratio
+ min_ratio
< 100) {
381 bdi_min_ratio
+= min_ratio
;
382 bdi
->min_ratio
+= min_ratio
;
387 spin_unlock_bh(&bdi_lock
);
392 int bdi_set_max_ratio(struct backing_dev_info
*bdi
, unsigned max_ratio
)
399 spin_lock_bh(&bdi_lock
);
400 if (bdi
->min_ratio
> max_ratio
) {
403 bdi
->max_ratio
= max_ratio
;
404 bdi
->max_prop_frac
= (PROP_FRAC_BASE
* max_ratio
) / 100;
406 spin_unlock_bh(&bdi_lock
);
410 EXPORT_SYMBOL(bdi_set_max_ratio
);
412 static unsigned long hard_dirty_limit(unsigned long thresh
)
414 return max(thresh
, global_dirty_limit
);
418 * global_dirty_limits - background-writeback and dirty-throttling thresholds
420 * Calculate the dirty thresholds based on sysctl parameters
421 * - vm.dirty_background_ratio or vm.dirty_background_bytes
422 * - vm.dirty_ratio or vm.dirty_bytes
423 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
426 void global_dirty_limits(unsigned long *pbackground
, unsigned long *pdirty
)
428 unsigned long background
;
430 unsigned long uninitialized_var(available_memory
);
431 struct task_struct
*tsk
;
433 if (!vm_dirty_bytes
|| !dirty_background_bytes
)
434 available_memory
= determine_dirtyable_memory();
437 dirty
= DIV_ROUND_UP(vm_dirty_bytes
, PAGE_SIZE
);
439 dirty
= (vm_dirty_ratio
* available_memory
) / 100;
441 if (dirty_background_bytes
)
442 background
= DIV_ROUND_UP(dirty_background_bytes
, PAGE_SIZE
);
444 background
= (dirty_background_ratio
* available_memory
) / 100;
446 if (background
>= dirty
)
447 background
= dirty
/ 2;
449 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
)) {
450 background
+= background
/ 4;
453 *pbackground
= background
;
455 trace_global_dirty_state(background
, dirty
);
459 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
460 * @bdi: the backing_dev_info to query
461 * @dirty: global dirty limit in pages
463 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
464 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
465 * And the "limit" in the name is not seriously taken as hard limit in
466 * balance_dirty_pages().
468 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
469 * - starving fast devices
470 * - piling up dirty pages (that will take long time to sync) on slow devices
472 * The bdi's share of dirty limit will be adapting to its throughput and
473 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
475 unsigned long bdi_dirty_limit(struct backing_dev_info
*bdi
, unsigned long dirty
)
478 long numerator
, denominator
;
481 * Calculate this BDI's share of the dirty ratio.
483 bdi_writeout_fraction(bdi
, &numerator
, &denominator
);
485 bdi_dirty
= (dirty
* (100 - bdi_min_ratio
)) / 100;
486 bdi_dirty
*= numerator
;
487 do_div(bdi_dirty
, denominator
);
489 bdi_dirty
+= (dirty
* bdi
->min_ratio
) / 100;
490 if (bdi_dirty
> (dirty
* bdi
->max_ratio
) / 100)
491 bdi_dirty
= dirty
* bdi
->max_ratio
/ 100;
496 static void bdi_update_write_bandwidth(struct backing_dev_info
*bdi
,
497 unsigned long elapsed
,
498 unsigned long written
)
500 const unsigned long period
= roundup_pow_of_two(3 * HZ
);
501 unsigned long avg
= bdi
->avg_write_bandwidth
;
502 unsigned long old
= bdi
->write_bandwidth
;
506 * bw = written * HZ / elapsed
508 * bw * elapsed + write_bandwidth * (period - elapsed)
509 * write_bandwidth = ---------------------------------------------------
512 bw
= written
- bdi
->written_stamp
;
514 if (unlikely(elapsed
> period
)) {
519 bw
+= (u64
)bdi
->write_bandwidth
* (period
- elapsed
);
520 bw
>>= ilog2(period
);
523 * one more level of smoothing, for filtering out sudden spikes
525 if (avg
> old
&& old
>= (unsigned long)bw
)
526 avg
-= (avg
- old
) >> 3;
528 if (avg
< old
&& old
<= (unsigned long)bw
)
529 avg
+= (old
- avg
) >> 3;
532 bdi
->write_bandwidth
= bw
;
533 bdi
->avg_write_bandwidth
= avg
;
537 * The global dirtyable memory and dirty threshold could be suddenly knocked
538 * down by a large amount (eg. on the startup of KVM in a swapless system).
539 * This may throw the system into deep dirty exceeded state and throttle
540 * heavy/light dirtiers alike. To retain good responsiveness, maintain
541 * global_dirty_limit for tracking slowly down to the knocked down dirty
544 static void update_dirty_limit(unsigned long thresh
, unsigned long dirty
)
546 unsigned long limit
= global_dirty_limit
;
549 * Follow up in one step.
551 if (limit
< thresh
) {
557 * Follow down slowly. Use the higher one as the target, because thresh
558 * may drop below dirty. This is exactly the reason to introduce
559 * global_dirty_limit which is guaranteed to lie above the dirty pages.
561 thresh
= max(thresh
, dirty
);
562 if (limit
> thresh
) {
563 limit
-= (limit
- thresh
) >> 5;
568 global_dirty_limit
= limit
;
571 static void global_update_bandwidth(unsigned long thresh
,
575 static DEFINE_SPINLOCK(dirty_lock
);
576 static unsigned long update_time
;
579 * check locklessly first to optimize away locking for the most time
581 if (time_before(now
, update_time
+ BANDWIDTH_INTERVAL
))
584 spin_lock(&dirty_lock
);
585 if (time_after_eq(now
, update_time
+ BANDWIDTH_INTERVAL
)) {
586 update_dirty_limit(thresh
, dirty
);
589 spin_unlock(&dirty_lock
);
592 void __bdi_update_bandwidth(struct backing_dev_info
*bdi
,
593 unsigned long thresh
,
595 unsigned long bdi_thresh
,
596 unsigned long bdi_dirty
,
597 unsigned long start_time
)
599 unsigned long now
= jiffies
;
600 unsigned long elapsed
= now
- bdi
->bw_time_stamp
;
601 unsigned long written
;
604 * rate-limit, only update once every 200ms.
606 if (elapsed
< BANDWIDTH_INTERVAL
)
609 written
= percpu_counter_read(&bdi
->bdi_stat
[BDI_WRITTEN
]);
612 * Skip quiet periods when disk bandwidth is under-utilized.
613 * (at least 1s idle time between two flusher runs)
615 if (elapsed
> HZ
&& time_before(bdi
->bw_time_stamp
, start_time
))
619 global_update_bandwidth(thresh
, dirty
, now
);
621 bdi_update_write_bandwidth(bdi
, elapsed
, written
);
624 bdi
->written_stamp
= written
;
625 bdi
->bw_time_stamp
= now
;
628 static void bdi_update_bandwidth(struct backing_dev_info
*bdi
,
629 unsigned long thresh
,
631 unsigned long bdi_thresh
,
632 unsigned long bdi_dirty
,
633 unsigned long start_time
)
635 if (time_is_after_eq_jiffies(bdi
->bw_time_stamp
+ BANDWIDTH_INTERVAL
))
637 spin_lock(&bdi
->wb
.list_lock
);
638 __bdi_update_bandwidth(bdi
, thresh
, dirty
, bdi_thresh
, bdi_dirty
,
640 spin_unlock(&bdi
->wb
.list_lock
);
644 * balance_dirty_pages() must be called by processes which are generating dirty
645 * data. It looks at the number of dirty pages in the machine and will force
646 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
647 * If we're over `background_thresh' then the writeback threads are woken to
648 * perform some writeout.
650 static void balance_dirty_pages(struct address_space
*mapping
,
651 unsigned long write_chunk
)
653 unsigned long nr_reclaimable
, bdi_nr_reclaimable
;
654 unsigned long nr_dirty
; /* = file_dirty + writeback + unstable_nfs */
655 unsigned long bdi_dirty
;
656 unsigned long background_thresh
;
657 unsigned long dirty_thresh
;
658 unsigned long bdi_thresh
;
659 unsigned long task_bdi_thresh
;
660 unsigned long min_task_bdi_thresh
;
661 unsigned long pages_written
= 0;
662 unsigned long pause
= 1;
663 bool dirty_exceeded
= false;
664 bool clear_dirty_exceeded
= true;
665 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
666 unsigned long start_time
= jiffies
;
669 nr_reclaimable
= global_page_state(NR_FILE_DIRTY
) +
670 global_page_state(NR_UNSTABLE_NFS
);
671 nr_dirty
= nr_reclaimable
+ global_page_state(NR_WRITEBACK
);
673 global_dirty_limits(&background_thresh
, &dirty_thresh
);
676 * Throttle it only when the background writeback cannot
677 * catch-up. This avoids (excessively) small writeouts
678 * when the bdi limits are ramping up.
680 if (nr_dirty
<= (background_thresh
+ dirty_thresh
) / 2)
683 bdi_thresh
= bdi_dirty_limit(bdi
, dirty_thresh
);
684 min_task_bdi_thresh
= task_min_dirty_limit(bdi_thresh
);
685 task_bdi_thresh
= task_dirty_limit(current
, bdi_thresh
);
688 * In order to avoid the stacked BDI deadlock we need
689 * to ensure we accurately count the 'dirty' pages when
690 * the threshold is low.
692 * Otherwise it would be possible to get thresh+n pages
693 * reported dirty, even though there are thresh-m pages
694 * actually dirty; with m+n sitting in the percpu
697 if (task_bdi_thresh
< 2 * bdi_stat_error(bdi
)) {
698 bdi_nr_reclaimable
= bdi_stat_sum(bdi
, BDI_RECLAIMABLE
);
699 bdi_dirty
= bdi_nr_reclaimable
+
700 bdi_stat_sum(bdi
, BDI_WRITEBACK
);
702 bdi_nr_reclaimable
= bdi_stat(bdi
, BDI_RECLAIMABLE
);
703 bdi_dirty
= bdi_nr_reclaimable
+
704 bdi_stat(bdi
, BDI_WRITEBACK
);
708 * The bdi thresh is somehow "soft" limit derived from the
709 * global "hard" limit. The former helps to prevent heavy IO
710 * bdi or process from holding back light ones; The latter is
711 * the last resort safeguard.
713 dirty_exceeded
= (bdi_dirty
> task_bdi_thresh
) ||
714 (nr_dirty
> dirty_thresh
);
715 clear_dirty_exceeded
= (bdi_dirty
<= min_task_bdi_thresh
) &&
716 (nr_dirty
<= dirty_thresh
);
721 if (!bdi
->dirty_exceeded
)
722 bdi
->dirty_exceeded
= 1;
724 bdi_update_bandwidth(bdi
, dirty_thresh
, nr_dirty
,
725 bdi_thresh
, bdi_dirty
, start_time
);
727 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
728 * Unstable writes are a feature of certain networked
729 * filesystems (i.e. NFS) in which data may have been
730 * written to the server's write cache, but has not yet
731 * been flushed to permanent storage.
732 * Only move pages to writeback if this bdi is over its
733 * threshold otherwise wait until the disk writes catch
736 trace_balance_dirty_start(bdi
);
737 if (bdi_nr_reclaimable
> task_bdi_thresh
) {
738 pages_written
+= writeback_inodes_wb(&bdi
->wb
,
740 trace_balance_dirty_written(bdi
, pages_written
);
741 if (pages_written
>= write_chunk
)
742 break; /* We've done our duty */
744 __set_current_state(TASK_UNINTERRUPTIBLE
);
745 io_schedule_timeout(pause
);
746 trace_balance_dirty_wait(bdi
);
748 dirty_thresh
= hard_dirty_limit(dirty_thresh
);
750 * max-pause area. If dirty exceeded but still within this
751 * area, no need to sleep for more than 200ms: (a) 8 pages per
752 * 200ms is typically more than enough to curb heavy dirtiers;
753 * (b) the pause time limit makes the dirtiers more responsive.
755 if (nr_dirty
< dirty_thresh
&&
756 bdi_dirty
< (task_bdi_thresh
+ bdi_thresh
) / 2 &&
757 time_after(jiffies
, start_time
+ MAX_PAUSE
))
761 * Increase the delay for each loop, up to our previous
762 * default of taking a 100ms nap.
769 /* Clear dirty_exceeded flag only when no task can exceed the limit */
770 if (clear_dirty_exceeded
&& bdi
->dirty_exceeded
)
771 bdi
->dirty_exceeded
= 0;
773 if (writeback_in_progress(bdi
))
777 * In laptop mode, we wait until hitting the higher threshold before
778 * starting background writeout, and then write out all the way down
779 * to the lower threshold. So slow writers cause minimal disk activity.
781 * In normal mode, we start background writeout at the lower
782 * background_thresh, to keep the amount of dirty memory low.
784 if ((laptop_mode
&& pages_written
) ||
785 (!laptop_mode
&& (nr_reclaimable
> background_thresh
)))
786 bdi_start_background_writeback(bdi
);
789 void set_page_dirty_balance(struct page
*page
, int page_mkwrite
)
791 if (set_page_dirty(page
) || page_mkwrite
) {
792 struct address_space
*mapping
= page_mapping(page
);
795 balance_dirty_pages_ratelimited(mapping
);
799 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits
) = 0;
802 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
803 * @mapping: address_space which was dirtied
804 * @nr_pages_dirtied: number of pages which the caller has just dirtied
806 * Processes which are dirtying memory should call in here once for each page
807 * which was newly dirtied. The function will periodically check the system's
808 * dirty state and will initiate writeback if needed.
810 * On really big machines, get_writeback_state is expensive, so try to avoid
811 * calling it too often (ratelimiting). But once we're over the dirty memory
812 * limit we decrease the ratelimiting by a lot, to prevent individual processes
813 * from overshooting the limit by (ratelimit_pages) each.
815 void balance_dirty_pages_ratelimited_nr(struct address_space
*mapping
,
816 unsigned long nr_pages_dirtied
)
818 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
819 unsigned long ratelimit
;
822 if (!bdi_cap_account_dirty(bdi
))
825 ratelimit
= ratelimit_pages
;
826 if (mapping
->backing_dev_info
->dirty_exceeded
)
830 * Check the rate limiting. Also, we do not want to throttle real-time
831 * tasks in balance_dirty_pages(). Period.
834 p
= &__get_cpu_var(bdp_ratelimits
);
835 *p
+= nr_pages_dirtied
;
836 if (unlikely(*p
>= ratelimit
)) {
837 ratelimit
= sync_writeback_pages(*p
);
840 balance_dirty_pages(mapping
, ratelimit
);
845 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr
);
847 void throttle_vm_writeout(gfp_t gfp_mask
)
849 unsigned long background_thresh
;
850 unsigned long dirty_thresh
;
853 global_dirty_limits(&background_thresh
, &dirty_thresh
);
856 * Boost the allowable dirty threshold a bit for page
857 * allocators so they don't get DoS'ed by heavy writers
859 dirty_thresh
+= dirty_thresh
/ 10; /* wheeee... */
861 if (global_page_state(NR_UNSTABLE_NFS
) +
862 global_page_state(NR_WRITEBACK
) <= dirty_thresh
)
864 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
867 * The caller might hold locks which can prevent IO completion
868 * or progress in the filesystem. So we cannot just sit here
869 * waiting for IO to complete.
871 if ((gfp_mask
& (__GFP_FS
|__GFP_IO
)) != (__GFP_FS
|__GFP_IO
))
877 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
879 int dirty_writeback_centisecs_handler(ctl_table
*table
, int write
,
880 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
882 proc_dointvec(table
, write
, buffer
, length
, ppos
);
883 bdi_arm_supers_timer();
888 void laptop_mode_timer_fn(unsigned long data
)
890 struct request_queue
*q
= (struct request_queue
*)data
;
891 int nr_pages
= global_page_state(NR_FILE_DIRTY
) +
892 global_page_state(NR_UNSTABLE_NFS
);
895 * We want to write everything out, not just down to the dirty
898 if (bdi_has_dirty_io(&q
->backing_dev_info
))
899 bdi_start_writeback(&q
->backing_dev_info
, nr_pages
);
903 * We've spun up the disk and we're in laptop mode: schedule writeback
904 * of all dirty data a few seconds from now. If the flush is already scheduled
905 * then push it back - the user is still using the disk.
907 void laptop_io_completion(struct backing_dev_info
*info
)
909 mod_timer(&info
->laptop_mode_wb_timer
, jiffies
+ laptop_mode
);
913 * We're in laptop mode and we've just synced. The sync's writes will have
914 * caused another writeback to be scheduled by laptop_io_completion.
915 * Nothing needs to be written back anymore, so we unschedule the writeback.
917 void laptop_sync_completion(void)
919 struct backing_dev_info
*bdi
;
923 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
)
924 del_timer(&bdi
->laptop_mode_wb_timer
);
931 * If ratelimit_pages is too high then we can get into dirty-data overload
932 * if a large number of processes all perform writes at the same time.
933 * If it is too low then SMP machines will call the (expensive)
934 * get_writeback_state too often.
936 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
937 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
938 * thresholds before writeback cuts in.
940 * But the limit should not be set too high. Because it also controls the
941 * amount of memory which the balance_dirty_pages() caller has to write back.
942 * If this is too large then the caller will block on the IO queue all the
943 * time. So limit it to four megabytes - the balance_dirty_pages() caller
944 * will write six megabyte chunks, max.
947 void writeback_set_ratelimit(void)
949 ratelimit_pages
= vm_total_pages
/ (num_online_cpus() * 32);
950 if (ratelimit_pages
< 16)
951 ratelimit_pages
= 16;
952 if (ratelimit_pages
* PAGE_CACHE_SIZE
> 4096 * 1024)
953 ratelimit_pages
= (4096 * 1024) / PAGE_CACHE_SIZE
;
957 ratelimit_handler(struct notifier_block
*self
, unsigned long u
, void *v
)
959 writeback_set_ratelimit();
963 static struct notifier_block __cpuinitdata ratelimit_nb
= {
964 .notifier_call
= ratelimit_handler
,
969 * Called early on to tune the page writeback dirty limits.
971 * We used to scale dirty pages according to how total memory
972 * related to pages that could be allocated for buffers (by
973 * comparing nr_free_buffer_pages() to vm_total_pages.
975 * However, that was when we used "dirty_ratio" to scale with
976 * all memory, and we don't do that any more. "dirty_ratio"
977 * is now applied to total non-HIGHPAGE memory (by subtracting
978 * totalhigh_pages from vm_total_pages), and as such we can't
979 * get into the old insane situation any more where we had
980 * large amounts of dirty pages compared to a small amount of
981 * non-HIGHMEM memory.
983 * But we might still want to scale the dirty_ratio by how
984 * much memory the box has..
986 void __init
page_writeback_init(void)
990 writeback_set_ratelimit();
991 register_cpu_notifier(&ratelimit_nb
);
993 shift
= calc_period_shift();
994 prop_descriptor_init(&vm_completions
, shift
);
995 prop_descriptor_init(&vm_dirties
, shift
);
999 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1000 * @mapping: address space structure to write
1001 * @start: starting page index
1002 * @end: ending page index (inclusive)
1004 * This function scans the page range from @start to @end (inclusive) and tags
1005 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1006 * that write_cache_pages (or whoever calls this function) will then use
1007 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1008 * used to avoid livelocking of writeback by a process steadily creating new
1009 * dirty pages in the file (thus it is important for this function to be quick
1010 * so that it can tag pages faster than a dirtying process can create them).
1013 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1015 void tag_pages_for_writeback(struct address_space
*mapping
,
1016 pgoff_t start
, pgoff_t end
)
1018 #define WRITEBACK_TAG_BATCH 4096
1019 unsigned long tagged
;
1022 spin_lock_irq(&mapping
->tree_lock
);
1023 tagged
= radix_tree_range_tag_if_tagged(&mapping
->page_tree
,
1024 &start
, end
, WRITEBACK_TAG_BATCH
,
1025 PAGECACHE_TAG_DIRTY
, PAGECACHE_TAG_TOWRITE
);
1026 spin_unlock_irq(&mapping
->tree_lock
);
1027 WARN_ON_ONCE(tagged
> WRITEBACK_TAG_BATCH
);
1029 /* We check 'start' to handle wrapping when end == ~0UL */
1030 } while (tagged
>= WRITEBACK_TAG_BATCH
&& start
);
1032 EXPORT_SYMBOL(tag_pages_for_writeback
);
1035 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1036 * @mapping: address space structure to write
1037 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1038 * @writepage: function called for each page
1039 * @data: data passed to writepage function
1041 * If a page is already under I/O, write_cache_pages() skips it, even
1042 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1043 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1044 * and msync() need to guarantee that all the data which was dirty at the time
1045 * the call was made get new I/O started against them. If wbc->sync_mode is
1046 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1047 * existing IO to complete.
1049 * To avoid livelocks (when other process dirties new pages), we first tag
1050 * pages which should be written back with TOWRITE tag and only then start
1051 * writing them. For data-integrity sync we have to be careful so that we do
1052 * not miss some pages (e.g., because some other process has cleared TOWRITE
1053 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1054 * by the process clearing the DIRTY tag (and submitting the page for IO).
1056 int write_cache_pages(struct address_space
*mapping
,
1057 struct writeback_control
*wbc
, writepage_t writepage
,
1062 struct pagevec pvec
;
1064 pgoff_t
uninitialized_var(writeback_index
);
1066 pgoff_t end
; /* Inclusive */
1069 int range_whole
= 0;
1072 pagevec_init(&pvec
, 0);
1073 if (wbc
->range_cyclic
) {
1074 writeback_index
= mapping
->writeback_index
; /* prev offset */
1075 index
= writeback_index
;
1082 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
1083 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
1084 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
1086 cycled
= 1; /* ignore range_cyclic tests */
1088 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
1089 tag
= PAGECACHE_TAG_TOWRITE
;
1091 tag
= PAGECACHE_TAG_DIRTY
;
1093 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
1094 tag_pages_for_writeback(mapping
, index
, end
);
1096 while (!done
&& (index
<= end
)) {
1099 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
1100 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1104 for (i
= 0; i
< nr_pages
; i
++) {
1105 struct page
*page
= pvec
.pages
[i
];
1108 * At this point, the page may be truncated or
1109 * invalidated (changing page->mapping to NULL), or
1110 * even swizzled back from swapper_space to tmpfs file
1111 * mapping. However, page->index will not change
1112 * because we have a reference on the page.
1114 if (page
->index
> end
) {
1116 * can't be range_cyclic (1st pass) because
1117 * end == -1 in that case.
1123 done_index
= page
->index
;
1128 * Page truncated or invalidated. We can freely skip it
1129 * then, even for data integrity operations: the page
1130 * has disappeared concurrently, so there could be no
1131 * real expectation of this data interity operation
1132 * even if there is now a new, dirty page at the same
1133 * pagecache address.
1135 if (unlikely(page
->mapping
!= mapping
)) {
1141 if (!PageDirty(page
)) {
1142 /* someone wrote it for us */
1143 goto continue_unlock
;
1146 if (PageWriteback(page
)) {
1147 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
1148 wait_on_page_writeback(page
);
1150 goto continue_unlock
;
1153 BUG_ON(PageWriteback(page
));
1154 if (!clear_page_dirty_for_io(page
))
1155 goto continue_unlock
;
1157 trace_wbc_writepage(wbc
, mapping
->backing_dev_info
);
1158 ret
= (*writepage
)(page
, wbc
, data
);
1159 if (unlikely(ret
)) {
1160 if (ret
== AOP_WRITEPAGE_ACTIVATE
) {
1165 * done_index is set past this page,
1166 * so media errors will not choke
1167 * background writeout for the entire
1168 * file. This has consequences for
1169 * range_cyclic semantics (ie. it may
1170 * not be suitable for data integrity
1173 done_index
= page
->index
+ 1;
1180 * We stop writing back only if we are not doing
1181 * integrity sync. In case of integrity sync we have to
1182 * keep going until we have written all the pages
1183 * we tagged for writeback prior to entering this loop.
1185 if (--wbc
->nr_to_write
<= 0 &&
1186 wbc
->sync_mode
== WB_SYNC_NONE
) {
1191 pagevec_release(&pvec
);
1194 if (!cycled
&& !done
) {
1197 * We hit the last page and there is more work to be done: wrap
1198 * back to the start of the file
1202 end
= writeback_index
- 1;
1205 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
1206 mapping
->writeback_index
= done_index
;
1210 EXPORT_SYMBOL(write_cache_pages
);
1213 * Function used by generic_writepages to call the real writepage
1214 * function and set the mapping flags on error
1216 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
1219 struct address_space
*mapping
= data
;
1220 int ret
= mapping
->a_ops
->writepage(page
, wbc
);
1221 mapping_set_error(mapping
, ret
);
1226 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1227 * @mapping: address space structure to write
1228 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1230 * This is a library function, which implements the writepages()
1231 * address_space_operation.
1233 int generic_writepages(struct address_space
*mapping
,
1234 struct writeback_control
*wbc
)
1236 struct blk_plug plug
;
1239 /* deal with chardevs and other special file */
1240 if (!mapping
->a_ops
->writepage
)
1243 blk_start_plug(&plug
);
1244 ret
= write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
1245 blk_finish_plug(&plug
);
1249 EXPORT_SYMBOL(generic_writepages
);
1251 int do_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
1255 if (wbc
->nr_to_write
<= 0)
1257 if (mapping
->a_ops
->writepages
)
1258 ret
= mapping
->a_ops
->writepages(mapping
, wbc
);
1260 ret
= generic_writepages(mapping
, wbc
);
1265 * write_one_page - write out a single page and optionally wait on I/O
1266 * @page: the page to write
1267 * @wait: if true, wait on writeout
1269 * The page must be locked by the caller and will be unlocked upon return.
1271 * write_one_page() returns a negative error code if I/O failed.
1273 int write_one_page(struct page
*page
, int wait
)
1275 struct address_space
*mapping
= page
->mapping
;
1277 struct writeback_control wbc
= {
1278 .sync_mode
= WB_SYNC_ALL
,
1282 BUG_ON(!PageLocked(page
));
1285 wait_on_page_writeback(page
);
1287 if (clear_page_dirty_for_io(page
)) {
1288 page_cache_get(page
);
1289 ret
= mapping
->a_ops
->writepage(page
, &wbc
);
1290 if (ret
== 0 && wait
) {
1291 wait_on_page_writeback(page
);
1292 if (PageError(page
))
1295 page_cache_release(page
);
1301 EXPORT_SYMBOL(write_one_page
);
1304 * For address_spaces which do not use buffers nor write back.
1306 int __set_page_dirty_no_writeback(struct page
*page
)
1308 if (!PageDirty(page
))
1309 return !TestSetPageDirty(page
);
1314 * Helper function for set_page_dirty family.
1315 * NOTE: This relies on being atomic wrt interrupts.
1317 void account_page_dirtied(struct page
*page
, struct address_space
*mapping
)
1319 if (mapping_cap_account_dirty(mapping
)) {
1320 __inc_zone_page_state(page
, NR_FILE_DIRTY
);
1321 __inc_zone_page_state(page
, NR_DIRTIED
);
1322 __inc_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
1323 task_dirty_inc(current
);
1324 task_io_account_write(PAGE_CACHE_SIZE
);
1327 EXPORT_SYMBOL(account_page_dirtied
);
1330 * Helper function for set_page_writeback family.
1331 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1334 void account_page_writeback(struct page
*page
)
1336 inc_zone_page_state(page
, NR_WRITEBACK
);
1338 EXPORT_SYMBOL(account_page_writeback
);
1341 * For address_spaces which do not use buffers. Just tag the page as dirty in
1344 * This is also used when a single buffer is being dirtied: we want to set the
1345 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1346 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1348 * Most callers have locked the page, which pins the address_space in memory.
1349 * But zap_pte_range() does not lock the page, however in that case the
1350 * mapping is pinned by the vma's ->vm_file reference.
1352 * We take care to handle the case where the page was truncated from the
1353 * mapping by re-checking page_mapping() inside tree_lock.
1355 int __set_page_dirty_nobuffers(struct page
*page
)
1357 if (!TestSetPageDirty(page
)) {
1358 struct address_space
*mapping
= page_mapping(page
);
1359 struct address_space
*mapping2
;
1364 spin_lock_irq(&mapping
->tree_lock
);
1365 mapping2
= page_mapping(page
);
1366 if (mapping2
) { /* Race with truncate? */
1367 BUG_ON(mapping2
!= mapping
);
1368 WARN_ON_ONCE(!PagePrivate(page
) && !PageUptodate(page
));
1369 account_page_dirtied(page
, mapping
);
1370 radix_tree_tag_set(&mapping
->page_tree
,
1371 page_index(page
), PAGECACHE_TAG_DIRTY
);
1373 spin_unlock_irq(&mapping
->tree_lock
);
1374 if (mapping
->host
) {
1375 /* !PageAnon && !swapper_space */
1376 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1382 EXPORT_SYMBOL(__set_page_dirty_nobuffers
);
1385 * When a writepage implementation decides that it doesn't want to write this
1386 * page for some reason, it should redirty the locked page via
1387 * redirty_page_for_writepage() and it should then unlock the page and return 0
1389 int redirty_page_for_writepage(struct writeback_control
*wbc
, struct page
*page
)
1391 wbc
->pages_skipped
++;
1392 return __set_page_dirty_nobuffers(page
);
1394 EXPORT_SYMBOL(redirty_page_for_writepage
);
1399 * For pages with a mapping this should be done under the page lock
1400 * for the benefit of asynchronous memory errors who prefer a consistent
1401 * dirty state. This rule can be broken in some special cases,
1402 * but should be better not to.
1404 * If the mapping doesn't provide a set_page_dirty a_op, then
1405 * just fall through and assume that it wants buffer_heads.
1407 int set_page_dirty(struct page
*page
)
1409 struct address_space
*mapping
= page_mapping(page
);
1411 if (likely(mapping
)) {
1412 int (*spd
)(struct page
*) = mapping
->a_ops
->set_page_dirty
;
1414 * readahead/lru_deactivate_page could remain
1415 * PG_readahead/PG_reclaim due to race with end_page_writeback
1416 * About readahead, if the page is written, the flags would be
1417 * reset. So no problem.
1418 * About lru_deactivate_page, if the page is redirty, the flag
1419 * will be reset. So no problem. but if the page is used by readahead
1420 * it will confuse readahead and make it restart the size rampup
1421 * process. But it's a trivial problem.
1423 ClearPageReclaim(page
);
1426 spd
= __set_page_dirty_buffers
;
1428 return (*spd
)(page
);
1430 if (!PageDirty(page
)) {
1431 if (!TestSetPageDirty(page
))
1436 EXPORT_SYMBOL(set_page_dirty
);
1439 * set_page_dirty() is racy if the caller has no reference against
1440 * page->mapping->host, and if the page is unlocked. This is because another
1441 * CPU could truncate the page off the mapping and then free the mapping.
1443 * Usually, the page _is_ locked, or the caller is a user-space process which
1444 * holds a reference on the inode by having an open file.
1446 * In other cases, the page should be locked before running set_page_dirty().
1448 int set_page_dirty_lock(struct page
*page
)
1453 ret
= set_page_dirty(page
);
1457 EXPORT_SYMBOL(set_page_dirty_lock
);
1460 * Clear a page's dirty flag, while caring for dirty memory accounting.
1461 * Returns true if the page was previously dirty.
1463 * This is for preparing to put the page under writeout. We leave the page
1464 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1465 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1466 * implementation will run either set_page_writeback() or set_page_dirty(),
1467 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1470 * This incoherency between the page's dirty flag and radix-tree tag is
1471 * unfortunate, but it only exists while the page is locked.
1473 int clear_page_dirty_for_io(struct page
*page
)
1475 struct address_space
*mapping
= page_mapping(page
);
1477 BUG_ON(!PageLocked(page
));
1479 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
1481 * Yes, Virginia, this is indeed insane.
1483 * We use this sequence to make sure that
1484 * (a) we account for dirty stats properly
1485 * (b) we tell the low-level filesystem to
1486 * mark the whole page dirty if it was
1487 * dirty in a pagetable. Only to then
1488 * (c) clean the page again and return 1 to
1489 * cause the writeback.
1491 * This way we avoid all nasty races with the
1492 * dirty bit in multiple places and clearing
1493 * them concurrently from different threads.
1495 * Note! Normally the "set_page_dirty(page)"
1496 * has no effect on the actual dirty bit - since
1497 * that will already usually be set. But we
1498 * need the side effects, and it can help us
1501 * We basically use the page "master dirty bit"
1502 * as a serialization point for all the different
1503 * threads doing their things.
1505 if (page_mkclean(page
))
1506 set_page_dirty(page
);
1508 * We carefully synchronise fault handlers against
1509 * installing a dirty pte and marking the page dirty
1510 * at this point. We do this by having them hold the
1511 * page lock at some point after installing their
1512 * pte, but before marking the page dirty.
1513 * Pages are always locked coming in here, so we get
1514 * the desired exclusion. See mm/memory.c:do_wp_page()
1515 * for more comments.
1517 if (TestClearPageDirty(page
)) {
1518 dec_zone_page_state(page
, NR_FILE_DIRTY
);
1519 dec_bdi_stat(mapping
->backing_dev_info
,
1525 return TestClearPageDirty(page
);
1527 EXPORT_SYMBOL(clear_page_dirty_for_io
);
1529 int test_clear_page_writeback(struct page
*page
)
1531 struct address_space
*mapping
= page_mapping(page
);
1535 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1536 unsigned long flags
;
1538 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1539 ret
= TestClearPageWriteback(page
);
1541 radix_tree_tag_clear(&mapping
->page_tree
,
1543 PAGECACHE_TAG_WRITEBACK
);
1544 if (bdi_cap_account_writeback(bdi
)) {
1545 __dec_bdi_stat(bdi
, BDI_WRITEBACK
);
1546 __bdi_writeout_inc(bdi
);
1549 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1551 ret
= TestClearPageWriteback(page
);
1554 dec_zone_page_state(page
, NR_WRITEBACK
);
1555 inc_zone_page_state(page
, NR_WRITTEN
);
1560 int test_set_page_writeback(struct page
*page
)
1562 struct address_space
*mapping
= page_mapping(page
);
1566 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1567 unsigned long flags
;
1569 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1570 ret
= TestSetPageWriteback(page
);
1572 radix_tree_tag_set(&mapping
->page_tree
,
1574 PAGECACHE_TAG_WRITEBACK
);
1575 if (bdi_cap_account_writeback(bdi
))
1576 __inc_bdi_stat(bdi
, BDI_WRITEBACK
);
1578 if (!PageDirty(page
))
1579 radix_tree_tag_clear(&mapping
->page_tree
,
1581 PAGECACHE_TAG_DIRTY
);
1582 radix_tree_tag_clear(&mapping
->page_tree
,
1584 PAGECACHE_TAG_TOWRITE
);
1585 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1587 ret
= TestSetPageWriteback(page
);
1590 account_page_writeback(page
);
1594 EXPORT_SYMBOL(test_set_page_writeback
);
1597 * Return true if any of the pages in the mapping are marked with the
1600 int mapping_tagged(struct address_space
*mapping
, int tag
)
1602 return radix_tree_tagged(&mapping
->page_tree
, tag
);
1604 EXPORT_SYMBOL(mapping_tagged
);