Add linux-next specific files for 20110831
[linux-2.6/next.git] / mm / page_cgroup.c
blob6bdc67dbbc28920c36d0511057071d7229f58e39
1 #include <linux/mm.h>
2 #include <linux/mmzone.h>
3 #include <linux/bootmem.h>
4 #include <linux/bit_spinlock.h>
5 #include <linux/page_cgroup.h>
6 #include <linux/hash.h>
7 #include <linux/slab.h>
8 #include <linux/memory.h>
9 #include <linux/vmalloc.h>
10 #include <linux/cgroup.h>
11 #include <linux/swapops.h>
12 #include <linux/kmemleak.h>
14 static void __meminit init_page_cgroup(struct page_cgroup *pc, unsigned long id)
16 pc->flags = 0;
17 set_page_cgroup_array_id(pc, id);
18 pc->mem_cgroup = NULL;
19 INIT_LIST_HEAD(&pc->lru);
21 static unsigned long total_usage;
23 #if !defined(CONFIG_SPARSEMEM)
26 void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
28 pgdat->node_page_cgroup = NULL;
31 struct page_cgroup *lookup_page_cgroup(struct page *page)
33 unsigned long pfn = page_to_pfn(page);
34 unsigned long offset;
35 struct page_cgroup *base;
37 base = NODE_DATA(page_to_nid(page))->node_page_cgroup;
38 if (unlikely(!base))
39 return NULL;
41 offset = pfn - NODE_DATA(page_to_nid(page))->node_start_pfn;
42 return base + offset;
45 struct page *lookup_cgroup_page(struct page_cgroup *pc)
47 unsigned long pfn;
48 struct page *page;
49 pg_data_t *pgdat;
51 pgdat = NODE_DATA(page_cgroup_array_id(pc));
52 pfn = pc - pgdat->node_page_cgroup + pgdat->node_start_pfn;
53 page = pfn_to_page(pfn);
54 VM_BUG_ON(pc != lookup_page_cgroup(page));
55 return page;
58 static int __init alloc_node_page_cgroup(int nid)
60 struct page_cgroup *base, *pc;
61 unsigned long table_size;
62 unsigned long start_pfn, nr_pages, index;
64 start_pfn = NODE_DATA(nid)->node_start_pfn;
65 nr_pages = NODE_DATA(nid)->node_spanned_pages;
67 if (!nr_pages)
68 return 0;
70 table_size = sizeof(struct page_cgroup) * nr_pages;
72 base = __alloc_bootmem_node_nopanic(NODE_DATA(nid),
73 table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
74 if (!base)
75 return -ENOMEM;
76 for (index = 0; index < nr_pages; index++) {
77 pc = base + index;
78 init_page_cgroup(pc, nid);
80 NODE_DATA(nid)->node_page_cgroup = base;
81 total_usage += table_size;
82 return 0;
85 void __init page_cgroup_init_flatmem(void)
88 int nid, fail;
90 if (mem_cgroup_disabled())
91 return;
93 for_each_online_node(nid) {
94 fail = alloc_node_page_cgroup(nid);
95 if (fail)
96 goto fail;
98 printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
99 printk(KERN_INFO "please try 'cgroup_disable=memory' option if you"
100 " don't want memory cgroups\n");
101 return;
102 fail:
103 printk(KERN_CRIT "allocation of page_cgroup failed.\n");
104 printk(KERN_CRIT "please try 'cgroup_disable=memory' boot option\n");
105 panic("Out of memory");
108 #else /* CONFIG_FLAT_NODE_MEM_MAP */
110 struct page_cgroup *lookup_page_cgroup(struct page *page)
112 unsigned long pfn = page_to_pfn(page);
113 struct mem_section *section = __pfn_to_section(pfn);
115 if (!section->page_cgroup)
116 return NULL;
117 return section->page_cgroup + pfn;
120 struct page *lookup_cgroup_page(struct page_cgroup *pc)
122 struct mem_section *section;
123 struct page *page;
124 unsigned long nr;
126 nr = page_cgroup_array_id(pc);
127 section = __nr_to_section(nr);
128 page = pfn_to_page(pc - section->page_cgroup);
129 VM_BUG_ON(pc != lookup_page_cgroup(page));
130 return page;
133 static void *__meminit alloc_page_cgroup(size_t size, int nid)
135 void *addr = NULL;
137 addr = alloc_pages_exact_nid(nid, size, GFP_KERNEL | __GFP_NOWARN);
138 if (addr)
139 return addr;
141 if (node_state(nid, N_HIGH_MEMORY))
142 addr = vmalloc_node(size, nid);
143 else
144 addr = vmalloc(size);
146 return addr;
149 #ifdef CONFIG_MEMORY_HOTPLUG
150 static void free_page_cgroup(void *addr)
152 if (is_vmalloc_addr(addr)) {
153 vfree(addr);
154 } else {
155 struct page *page = virt_to_page(addr);
156 size_t table_size =
157 sizeof(struct page_cgroup) * PAGES_PER_SECTION;
159 BUG_ON(PageReserved(page));
160 free_pages_exact(addr, table_size);
163 #endif
165 static int __meminit init_section_page_cgroup(unsigned long pfn, int nid)
167 struct page_cgroup *base, *pc;
168 struct mem_section *section;
169 unsigned long table_size;
170 unsigned long nr;
171 int index;
173 nr = pfn_to_section_nr(pfn);
174 section = __nr_to_section(nr);
176 if (section->page_cgroup)
177 return 0;
179 table_size = sizeof(struct page_cgroup) * PAGES_PER_SECTION;
180 base = alloc_page_cgroup(table_size, nid);
183 * The value stored in section->page_cgroup is (base - pfn)
184 * and it does not point to the memory block allocated above,
185 * causing kmemleak false positives.
187 kmemleak_not_leak(base);
189 if (!base) {
190 printk(KERN_ERR "page cgroup allocation failure\n");
191 return -ENOMEM;
194 for (index = 0; index < PAGES_PER_SECTION; index++) {
195 pc = base + index;
196 init_page_cgroup(pc, nr);
199 * The passed "pfn" may not be aligned to SECTION. For the calculation
200 * we need to apply a mask.
202 pfn &= PAGE_SECTION_MASK;
203 section->page_cgroup = base - pfn;
204 total_usage += table_size;
205 return 0;
207 #ifdef CONFIG_MEMORY_HOTPLUG
208 void __free_page_cgroup(unsigned long pfn)
210 struct mem_section *ms;
211 struct page_cgroup *base;
213 ms = __pfn_to_section(pfn);
214 if (!ms || !ms->page_cgroup)
215 return;
216 base = ms->page_cgroup + pfn;
217 free_page_cgroup(base);
218 ms->page_cgroup = NULL;
221 int __meminit online_page_cgroup(unsigned long start_pfn,
222 unsigned long nr_pages,
223 int nid)
225 unsigned long start, end, pfn;
226 int fail = 0;
228 start = SECTION_ALIGN_DOWN(start_pfn);
229 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
231 if (nid == -1) {
233 * In this case, "nid" already exists and contains valid memory.
234 * "start_pfn" passed to us is a pfn which is an arg for
235 * online__pages(), and start_pfn should exist.
237 nid = pfn_to_nid(start_pfn);
238 VM_BUG_ON(!node_state(nid, N_ONLINE));
241 for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
242 if (!pfn_present(pfn))
243 continue;
244 fail = init_section_page_cgroup(pfn, nid);
246 if (!fail)
247 return 0;
249 /* rollback */
250 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
251 __free_page_cgroup(pfn);
253 return -ENOMEM;
256 int __meminit offline_page_cgroup(unsigned long start_pfn,
257 unsigned long nr_pages, int nid)
259 unsigned long start, end, pfn;
261 start = SECTION_ALIGN_DOWN(start_pfn);
262 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
264 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
265 __free_page_cgroup(pfn);
266 return 0;
270 static int __meminit page_cgroup_callback(struct notifier_block *self,
271 unsigned long action, void *arg)
273 struct memory_notify *mn = arg;
274 int ret = 0;
275 switch (action) {
276 case MEM_GOING_ONLINE:
277 ret = online_page_cgroup(mn->start_pfn,
278 mn->nr_pages, mn->status_change_nid);
279 break;
280 case MEM_OFFLINE:
281 offline_page_cgroup(mn->start_pfn,
282 mn->nr_pages, mn->status_change_nid);
283 break;
284 case MEM_CANCEL_ONLINE:
285 case MEM_GOING_OFFLINE:
286 break;
287 case MEM_ONLINE:
288 case MEM_CANCEL_OFFLINE:
289 break;
292 return notifier_from_errno(ret);
295 #endif
297 void __init page_cgroup_init(void)
299 unsigned long pfn;
300 int nid;
302 if (mem_cgroup_disabled())
303 return;
305 for_each_node_state(nid, N_HIGH_MEMORY) {
306 unsigned long start_pfn, end_pfn;
308 start_pfn = node_start_pfn(nid);
309 end_pfn = node_end_pfn(nid);
311 * start_pfn and end_pfn may not be aligned to SECTION and the
312 * page->flags of out of node pages are not initialized. So we
313 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
315 for (pfn = start_pfn;
316 pfn < end_pfn;
317 pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
319 if (!pfn_valid(pfn))
320 continue;
322 * Nodes's pfns can be overlapping.
323 * We know some arch can have a nodes layout such as
324 * -------------pfn-------------->
325 * N0 | N1 | N2 | N0 | N1 | N2|....
327 if (pfn_to_nid(pfn) != nid)
328 continue;
329 if (init_section_page_cgroup(pfn, nid))
330 goto oom;
333 hotplug_memory_notifier(page_cgroup_callback, 0);
334 printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
335 printk(KERN_INFO "please try 'cgroup_disable=memory' option if you "
336 "don't want memory cgroups\n");
337 return;
338 oom:
339 printk(KERN_CRIT "try 'cgroup_disable=memory' boot option\n");
340 panic("Out of memory");
343 void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
345 return;
348 #endif
351 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
353 static DEFINE_MUTEX(swap_cgroup_mutex);
354 struct swap_cgroup_ctrl {
355 struct page **map;
356 unsigned long length;
357 spinlock_t lock;
360 struct swap_cgroup_ctrl swap_cgroup_ctrl[MAX_SWAPFILES];
362 struct swap_cgroup {
363 unsigned short id;
365 #define SC_PER_PAGE (PAGE_SIZE/sizeof(struct swap_cgroup))
366 #define SC_POS_MASK (SC_PER_PAGE - 1)
369 * SwapCgroup implements "lookup" and "exchange" operations.
370 * In typical usage, this swap_cgroup is accessed via memcg's charge/uncharge
371 * against SwapCache. At swap_free(), this is accessed directly from swap.
373 * This means,
374 * - we have no race in "exchange" when we're accessed via SwapCache because
375 * SwapCache(and its swp_entry) is under lock.
376 * - When called via swap_free(), there is no user of this entry and no race.
377 * Then, we don't need lock around "exchange".
379 * TODO: we can push these buffers out to HIGHMEM.
383 * allocate buffer for swap_cgroup.
385 static int swap_cgroup_prepare(int type)
387 struct page *page;
388 struct swap_cgroup_ctrl *ctrl;
389 unsigned long idx, max;
391 ctrl = &swap_cgroup_ctrl[type];
393 for (idx = 0; idx < ctrl->length; idx++) {
394 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
395 if (!page)
396 goto not_enough_page;
397 ctrl->map[idx] = page;
399 return 0;
400 not_enough_page:
401 max = idx;
402 for (idx = 0; idx < max; idx++)
403 __free_page(ctrl->map[idx]);
405 return -ENOMEM;
409 * swap_cgroup_cmpxchg - cmpxchg mem_cgroup's id for this swp_entry.
410 * @end: swap entry to be cmpxchged
411 * @old: old id
412 * @new: new id
414 * Returns old id at success, 0 at failure.
415 * (There is no mem_cgroup using 0 as its id)
417 unsigned short swap_cgroup_cmpxchg(swp_entry_t ent,
418 unsigned short old, unsigned short new)
420 int type = swp_type(ent);
421 unsigned long offset = swp_offset(ent);
422 unsigned long idx = offset / SC_PER_PAGE;
423 unsigned long pos = offset & SC_POS_MASK;
424 struct swap_cgroup_ctrl *ctrl;
425 struct page *mappage;
426 struct swap_cgroup *sc;
427 unsigned long flags;
428 unsigned short retval;
430 ctrl = &swap_cgroup_ctrl[type];
432 mappage = ctrl->map[idx];
433 sc = page_address(mappage);
434 sc += pos;
435 spin_lock_irqsave(&ctrl->lock, flags);
436 retval = sc->id;
437 if (retval == old)
438 sc->id = new;
439 else
440 retval = 0;
441 spin_unlock_irqrestore(&ctrl->lock, flags);
442 return retval;
446 * swap_cgroup_record - record mem_cgroup for this swp_entry.
447 * @ent: swap entry to be recorded into
448 * @mem: mem_cgroup to be recorded
450 * Returns old value at success, 0 at failure.
451 * (Of course, old value can be 0.)
453 unsigned short swap_cgroup_record(swp_entry_t ent, unsigned short id)
455 int type = swp_type(ent);
456 unsigned long offset = swp_offset(ent);
457 unsigned long idx = offset / SC_PER_PAGE;
458 unsigned long pos = offset & SC_POS_MASK;
459 struct swap_cgroup_ctrl *ctrl;
460 struct page *mappage;
461 struct swap_cgroup *sc;
462 unsigned short old;
463 unsigned long flags;
465 ctrl = &swap_cgroup_ctrl[type];
467 mappage = ctrl->map[idx];
468 sc = page_address(mappage);
469 sc += pos;
470 spin_lock_irqsave(&ctrl->lock, flags);
471 old = sc->id;
472 sc->id = id;
473 spin_unlock_irqrestore(&ctrl->lock, flags);
475 return old;
479 * lookup_swap_cgroup - lookup mem_cgroup tied to swap entry
480 * @ent: swap entry to be looked up.
482 * Returns CSS ID of mem_cgroup at success. 0 at failure. (0 is invalid ID)
484 unsigned short lookup_swap_cgroup(swp_entry_t ent)
486 int type = swp_type(ent);
487 unsigned long offset = swp_offset(ent);
488 unsigned long idx = offset / SC_PER_PAGE;
489 unsigned long pos = offset & SC_POS_MASK;
490 struct swap_cgroup_ctrl *ctrl;
491 struct page *mappage;
492 struct swap_cgroup *sc;
493 unsigned short ret;
495 ctrl = &swap_cgroup_ctrl[type];
496 mappage = ctrl->map[idx];
497 sc = page_address(mappage);
498 sc += pos;
499 ret = sc->id;
500 return ret;
503 int swap_cgroup_swapon(int type, unsigned long max_pages)
505 void *array;
506 unsigned long array_size;
507 unsigned long length;
508 struct swap_cgroup_ctrl *ctrl;
510 if (!do_swap_account)
511 return 0;
513 length = DIV_ROUND_UP(max_pages, SC_PER_PAGE);
514 array_size = length * sizeof(void *);
516 array = vzalloc(array_size);
517 if (!array)
518 goto nomem;
520 ctrl = &swap_cgroup_ctrl[type];
521 mutex_lock(&swap_cgroup_mutex);
522 ctrl->length = length;
523 ctrl->map = array;
524 spin_lock_init(&ctrl->lock);
525 if (swap_cgroup_prepare(type)) {
526 /* memory shortage */
527 ctrl->map = NULL;
528 ctrl->length = 0;
529 mutex_unlock(&swap_cgroup_mutex);
530 vfree(array);
531 goto nomem;
533 mutex_unlock(&swap_cgroup_mutex);
535 return 0;
536 nomem:
537 printk(KERN_INFO "couldn't allocate enough memory for swap_cgroup.\n");
538 printk(KERN_INFO
539 "swap_cgroup can be disabled by swapaccount=0 boot option\n");
540 return -ENOMEM;
543 void swap_cgroup_swapoff(int type)
545 struct page **map;
546 unsigned long i, length;
547 struct swap_cgroup_ctrl *ctrl;
549 if (!do_swap_account)
550 return;
552 mutex_lock(&swap_cgroup_mutex);
553 ctrl = &swap_cgroup_ctrl[type];
554 map = ctrl->map;
555 length = ctrl->length;
556 ctrl->map = NULL;
557 ctrl->length = 0;
558 mutex_unlock(&swap_cgroup_mutex);
560 if (map) {
561 for (i = 0; i < length; i++) {
562 struct page *page = map[i];
563 if (page)
564 __free_page(page);
566 vfree(map);
570 #endif