Add linux-next specific files for 20110831
[linux-2.6/next.git] / net / sctp / associola.c
blob152b5b3c3fffa978ae0d725d182f9aa54c8a9cf6
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
8 * This file is part of the SCTP kernel implementation
10 * This module provides the abstraction for an SCTP association.
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <lksctp-developers@lists.sourceforge.net>
33 * Or submit a bug report through the following website:
34 * http://www.sf.net/projects/lksctp
36 * Written or modified by:
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Karl Knutson <karl@athena.chicago.il.us>
39 * Jon Grimm <jgrimm@us.ibm.com>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Hui Huang <hui.huang@nokia.com>
42 * Sridhar Samudrala <sri@us.ibm.com>
43 * Daisy Chang <daisyc@us.ibm.com>
44 * Ryan Layer <rmlayer@us.ibm.com>
45 * Kevin Gao <kevin.gao@intel.com>
47 * Any bugs reported given to us we will try to fix... any fixes shared will
48 * be incorporated into the next SCTP release.
51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
53 #include <linux/types.h>
54 #include <linux/fcntl.h>
55 #include <linux/poll.h>
56 #include <linux/init.h>
58 #include <linux/slab.h>
59 #include <linux/in.h>
60 #include <net/ipv6.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
64 /* Forward declarations for internal functions. */
65 static void sctp_assoc_bh_rcv(struct work_struct *work);
66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
67 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
69 /* Keep track of the new idr low so that we don't re-use association id
70 * numbers too fast. It is protected by they idr spin lock is in the
71 * range of 1 - INT_MAX.
73 static u32 idr_low = 1;
76 /* 1st Level Abstractions. */
78 /* Initialize a new association from provided memory. */
79 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
80 const struct sctp_endpoint *ep,
81 const struct sock *sk,
82 sctp_scope_t scope,
83 gfp_t gfp)
85 struct sctp_sock *sp;
86 int i;
87 sctp_paramhdr_t *p;
88 int err;
90 /* Retrieve the SCTP per socket area. */
91 sp = sctp_sk((struct sock *)sk);
93 /* Discarding const is appropriate here. */
94 asoc->ep = (struct sctp_endpoint *)ep;
95 sctp_endpoint_hold(asoc->ep);
97 /* Hold the sock. */
98 asoc->base.sk = (struct sock *)sk;
99 sock_hold(asoc->base.sk);
101 /* Initialize the common base substructure. */
102 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
104 /* Initialize the object handling fields. */
105 atomic_set(&asoc->base.refcnt, 1);
106 asoc->base.dead = 0;
107 asoc->base.malloced = 0;
109 /* Initialize the bind addr area. */
110 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
112 asoc->state = SCTP_STATE_CLOSED;
114 /* Set these values from the socket values, a conversion between
115 * millsecons to seconds/microseconds must also be done.
117 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
118 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
119 * 1000;
120 asoc->frag_point = 0;
121 asoc->user_frag = sp->user_frag;
123 /* Set the association max_retrans and RTO values from the
124 * socket values.
126 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
127 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
128 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
129 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
131 asoc->overall_error_count = 0;
133 /* Initialize the association's heartbeat interval based on the
134 * sock configured value.
136 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
138 /* Initialize path max retrans value. */
139 asoc->pathmaxrxt = sp->pathmaxrxt;
141 /* Initialize default path MTU. */
142 asoc->pathmtu = sp->pathmtu;
144 /* Set association default SACK delay */
145 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
146 asoc->sackfreq = sp->sackfreq;
148 /* Set the association default flags controlling
149 * Heartbeat, SACK delay, and Path MTU Discovery.
151 asoc->param_flags = sp->param_flags;
153 /* Initialize the maximum mumber of new data packets that can be sent
154 * in a burst.
156 asoc->max_burst = sp->max_burst;
158 /* initialize association timers */
159 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
160 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
161 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
162 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
163 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
164 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
166 /* sctpimpguide Section 2.12.2
167 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
168 * recommended value of 5 times 'RTO.Max'.
170 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
171 = 5 * asoc->rto_max;
173 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
174 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
175 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
176 (unsigned long)sp->autoclose * HZ;
178 /* Initializes the timers */
179 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
180 setup_timer(&asoc->timers[i], sctp_timer_events[i],
181 (unsigned long)asoc);
183 /* Pull default initialization values from the sock options.
184 * Note: This assumes that the values have already been
185 * validated in the sock.
187 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
188 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
189 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
191 asoc->max_init_timeo =
192 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
194 /* Allocate storage for the ssnmap after the inbound and outbound
195 * streams have been negotiated during Init.
197 asoc->ssnmap = NULL;
199 /* Set the local window size for receive.
200 * This is also the rcvbuf space per association.
201 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
202 * 1500 bytes in one SCTP packet.
204 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
205 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
206 else
207 asoc->rwnd = sk->sk_rcvbuf/2;
209 asoc->a_rwnd = asoc->rwnd;
211 asoc->rwnd_over = 0;
212 asoc->rwnd_press = 0;
214 /* Use my own max window until I learn something better. */
215 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
217 /* Set the sndbuf size for transmit. */
218 asoc->sndbuf_used = 0;
220 /* Initialize the receive memory counter */
221 atomic_set(&asoc->rmem_alloc, 0);
223 init_waitqueue_head(&asoc->wait);
225 asoc->c.my_vtag = sctp_generate_tag(ep);
226 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */
227 asoc->c.peer_vtag = 0;
228 asoc->c.my_ttag = 0;
229 asoc->c.peer_ttag = 0;
230 asoc->c.my_port = ep->base.bind_addr.port;
232 asoc->c.initial_tsn = sctp_generate_tsn(ep);
234 asoc->next_tsn = asoc->c.initial_tsn;
236 asoc->ctsn_ack_point = asoc->next_tsn - 1;
237 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
238 asoc->highest_sacked = asoc->ctsn_ack_point;
239 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
240 asoc->unack_data = 0;
242 /* ADDIP Section 4.1 Asconf Chunk Procedures
244 * When an endpoint has an ASCONF signaled change to be sent to the
245 * remote endpoint it should do the following:
246 * ...
247 * A2) a serial number should be assigned to the chunk. The serial
248 * number SHOULD be a monotonically increasing number. The serial
249 * numbers SHOULD be initialized at the start of the
250 * association to the same value as the initial TSN.
252 asoc->addip_serial = asoc->c.initial_tsn;
254 INIT_LIST_HEAD(&asoc->addip_chunk_list);
255 INIT_LIST_HEAD(&asoc->asconf_ack_list);
257 /* Make an empty list of remote transport addresses. */
258 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
259 asoc->peer.transport_count = 0;
261 /* RFC 2960 5.1 Normal Establishment of an Association
263 * After the reception of the first data chunk in an
264 * association the endpoint must immediately respond with a
265 * sack to acknowledge the data chunk. Subsequent
266 * acknowledgements should be done as described in Section
267 * 6.2.
269 * [We implement this by telling a new association that it
270 * already received one packet.]
272 asoc->peer.sack_needed = 1;
273 asoc->peer.sack_cnt = 0;
275 /* Assume that the peer will tell us if he recognizes ASCONF
276 * as part of INIT exchange.
277 * The sctp_addip_noauth option is there for backward compatibilty
278 * and will revert old behavior.
280 asoc->peer.asconf_capable = 0;
281 if (sctp_addip_noauth)
282 asoc->peer.asconf_capable = 1;
283 asoc->asconf_addr_del_pending = NULL;
284 asoc->src_out_of_asoc_ok = 0;
285 asoc->new_transport = NULL;
287 /* Create an input queue. */
288 sctp_inq_init(&asoc->base.inqueue);
289 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
291 /* Create an output queue. */
292 sctp_outq_init(asoc, &asoc->outqueue);
294 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
295 goto fail_init;
297 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
299 asoc->need_ecne = 0;
301 asoc->assoc_id = 0;
303 /* Assume that peer would support both address types unless we are
304 * told otherwise.
306 asoc->peer.ipv4_address = 1;
307 if (asoc->base.sk->sk_family == PF_INET6)
308 asoc->peer.ipv6_address = 1;
309 INIT_LIST_HEAD(&asoc->asocs);
311 asoc->autoclose = sp->autoclose;
313 asoc->default_stream = sp->default_stream;
314 asoc->default_ppid = sp->default_ppid;
315 asoc->default_flags = sp->default_flags;
316 asoc->default_context = sp->default_context;
317 asoc->default_timetolive = sp->default_timetolive;
318 asoc->default_rcv_context = sp->default_rcv_context;
320 /* AUTH related initializations */
321 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
322 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
323 if (err)
324 goto fail_init;
326 asoc->active_key_id = ep->active_key_id;
327 asoc->asoc_shared_key = NULL;
329 asoc->default_hmac_id = 0;
330 /* Save the hmacs and chunks list into this association */
331 if (ep->auth_hmacs_list)
332 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
333 ntohs(ep->auth_hmacs_list->param_hdr.length));
334 if (ep->auth_chunk_list)
335 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
336 ntohs(ep->auth_chunk_list->param_hdr.length));
338 /* Get the AUTH random number for this association */
339 p = (sctp_paramhdr_t *)asoc->c.auth_random;
340 p->type = SCTP_PARAM_RANDOM;
341 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
342 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
344 return asoc;
346 fail_init:
347 sctp_endpoint_put(asoc->ep);
348 sock_put(asoc->base.sk);
349 return NULL;
352 /* Allocate and initialize a new association */
353 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
354 const struct sock *sk,
355 sctp_scope_t scope,
356 gfp_t gfp)
358 struct sctp_association *asoc;
360 asoc = t_new(struct sctp_association, gfp);
361 if (!asoc)
362 goto fail;
364 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
365 goto fail_init;
367 asoc->base.malloced = 1;
368 SCTP_DBG_OBJCNT_INC(assoc);
369 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
371 return asoc;
373 fail_init:
374 kfree(asoc);
375 fail:
376 return NULL;
379 /* Free this association if possible. There may still be users, so
380 * the actual deallocation may be delayed.
382 void sctp_association_free(struct sctp_association *asoc)
384 struct sock *sk = asoc->base.sk;
385 struct sctp_transport *transport;
386 struct list_head *pos, *temp;
387 int i;
389 /* Only real associations count against the endpoint, so
390 * don't bother for if this is a temporary association.
392 if (!asoc->temp) {
393 list_del(&asoc->asocs);
395 /* Decrement the backlog value for a TCP-style listening
396 * socket.
398 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
399 sk->sk_ack_backlog--;
402 /* Mark as dead, so other users can know this structure is
403 * going away.
405 asoc->base.dead = 1;
407 /* Dispose of any data lying around in the outqueue. */
408 sctp_outq_free(&asoc->outqueue);
410 /* Dispose of any pending messages for the upper layer. */
411 sctp_ulpq_free(&asoc->ulpq);
413 /* Dispose of any pending chunks on the inqueue. */
414 sctp_inq_free(&asoc->base.inqueue);
416 sctp_tsnmap_free(&asoc->peer.tsn_map);
418 /* Free ssnmap storage. */
419 sctp_ssnmap_free(asoc->ssnmap);
421 /* Clean up the bound address list. */
422 sctp_bind_addr_free(&asoc->base.bind_addr);
424 /* Do we need to go through all of our timers and
425 * delete them? To be safe we will try to delete all, but we
426 * should be able to go through and make a guess based
427 * on our state.
429 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
430 if (timer_pending(&asoc->timers[i]) &&
431 del_timer(&asoc->timers[i]))
432 sctp_association_put(asoc);
435 /* Free peer's cached cookie. */
436 kfree(asoc->peer.cookie);
437 kfree(asoc->peer.peer_random);
438 kfree(asoc->peer.peer_chunks);
439 kfree(asoc->peer.peer_hmacs);
441 /* Release the transport structures. */
442 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
443 transport = list_entry(pos, struct sctp_transport, transports);
444 list_del(pos);
445 sctp_transport_free(transport);
448 asoc->peer.transport_count = 0;
450 sctp_asconf_queue_teardown(asoc);
452 /* Free pending address space being deleted */
453 if (asoc->asconf_addr_del_pending != NULL)
454 kfree(asoc->asconf_addr_del_pending);
456 /* AUTH - Free the endpoint shared keys */
457 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
459 /* AUTH - Free the association shared key */
460 sctp_auth_key_put(asoc->asoc_shared_key);
462 sctp_association_put(asoc);
465 /* Cleanup and free up an association. */
466 static void sctp_association_destroy(struct sctp_association *asoc)
468 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
470 sctp_endpoint_put(asoc->ep);
471 sock_put(asoc->base.sk);
473 if (asoc->assoc_id != 0) {
474 spin_lock_bh(&sctp_assocs_id_lock);
475 idr_remove(&sctp_assocs_id, asoc->assoc_id);
476 spin_unlock_bh(&sctp_assocs_id_lock);
479 WARN_ON(atomic_read(&asoc->rmem_alloc));
481 if (asoc->base.malloced) {
482 kfree(asoc);
483 SCTP_DBG_OBJCNT_DEC(assoc);
487 /* Change the primary destination address for the peer. */
488 void sctp_assoc_set_primary(struct sctp_association *asoc,
489 struct sctp_transport *transport)
491 int changeover = 0;
493 /* it's a changeover only if we already have a primary path
494 * that we are changing
496 if (asoc->peer.primary_path != NULL &&
497 asoc->peer.primary_path != transport)
498 changeover = 1 ;
500 asoc->peer.primary_path = transport;
502 /* Set a default msg_name for events. */
503 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
504 sizeof(union sctp_addr));
506 /* If the primary path is changing, assume that the
507 * user wants to use this new path.
509 if ((transport->state == SCTP_ACTIVE) ||
510 (transport->state == SCTP_UNKNOWN))
511 asoc->peer.active_path = transport;
514 * SFR-CACC algorithm:
515 * Upon the receipt of a request to change the primary
516 * destination address, on the data structure for the new
517 * primary destination, the sender MUST do the following:
519 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
520 * to this destination address earlier. The sender MUST set
521 * CYCLING_CHANGEOVER to indicate that this switch is a
522 * double switch to the same destination address.
524 * Really, only bother is we have data queued or outstanding on
525 * the association.
527 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
528 return;
530 if (transport->cacc.changeover_active)
531 transport->cacc.cycling_changeover = changeover;
533 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
534 * a changeover has occurred.
536 transport->cacc.changeover_active = changeover;
538 /* 3) The sender MUST store the next TSN to be sent in
539 * next_tsn_at_change.
541 transport->cacc.next_tsn_at_change = asoc->next_tsn;
544 /* Remove a transport from an association. */
545 void sctp_assoc_rm_peer(struct sctp_association *asoc,
546 struct sctp_transport *peer)
548 struct list_head *pos;
549 struct sctp_transport *transport;
551 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
552 " port: %d\n",
553 asoc,
554 (&peer->ipaddr),
555 ntohs(peer->ipaddr.v4.sin_port));
557 /* If we are to remove the current retran_path, update it
558 * to the next peer before removing this peer from the list.
560 if (asoc->peer.retran_path == peer)
561 sctp_assoc_update_retran_path(asoc);
563 /* Remove this peer from the list. */
564 list_del(&peer->transports);
566 /* Get the first transport of asoc. */
567 pos = asoc->peer.transport_addr_list.next;
568 transport = list_entry(pos, struct sctp_transport, transports);
570 /* Update any entries that match the peer to be deleted. */
571 if (asoc->peer.primary_path == peer)
572 sctp_assoc_set_primary(asoc, transport);
573 if (asoc->peer.active_path == peer)
574 asoc->peer.active_path = transport;
575 if (asoc->peer.retran_path == peer)
576 asoc->peer.retran_path = transport;
577 if (asoc->peer.last_data_from == peer)
578 asoc->peer.last_data_from = transport;
580 /* If we remove the transport an INIT was last sent to, set it to
581 * NULL. Combined with the update of the retran path above, this
582 * will cause the next INIT to be sent to the next available
583 * transport, maintaining the cycle.
585 if (asoc->init_last_sent_to == peer)
586 asoc->init_last_sent_to = NULL;
588 /* If we remove the transport an SHUTDOWN was last sent to, set it
589 * to NULL. Combined with the update of the retran path above, this
590 * will cause the next SHUTDOWN to be sent to the next available
591 * transport, maintaining the cycle.
593 if (asoc->shutdown_last_sent_to == peer)
594 asoc->shutdown_last_sent_to = NULL;
596 /* If we remove the transport an ASCONF was last sent to, set it to
597 * NULL.
599 if (asoc->addip_last_asconf &&
600 asoc->addip_last_asconf->transport == peer)
601 asoc->addip_last_asconf->transport = NULL;
603 /* If we have something on the transmitted list, we have to
604 * save it off. The best place is the active path.
606 if (!list_empty(&peer->transmitted)) {
607 struct sctp_transport *active = asoc->peer.active_path;
608 struct sctp_chunk *ch;
610 /* Reset the transport of each chunk on this list */
611 list_for_each_entry(ch, &peer->transmitted,
612 transmitted_list) {
613 ch->transport = NULL;
614 ch->rtt_in_progress = 0;
617 list_splice_tail_init(&peer->transmitted,
618 &active->transmitted);
620 /* Start a T3 timer here in case it wasn't running so
621 * that these migrated packets have a chance to get
622 * retrnasmitted.
624 if (!timer_pending(&active->T3_rtx_timer))
625 if (!mod_timer(&active->T3_rtx_timer,
626 jiffies + active->rto))
627 sctp_transport_hold(active);
630 asoc->peer.transport_count--;
632 sctp_transport_free(peer);
635 /* Add a transport address to an association. */
636 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
637 const union sctp_addr *addr,
638 const gfp_t gfp,
639 const int peer_state)
641 struct sctp_transport *peer;
642 struct sctp_sock *sp;
643 unsigned short port;
645 sp = sctp_sk(asoc->base.sk);
647 /* AF_INET and AF_INET6 share common port field. */
648 port = ntohs(addr->v4.sin_port);
650 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
651 " port: %d state:%d\n",
652 asoc,
653 addr,
654 port,
655 peer_state);
657 /* Set the port if it has not been set yet. */
658 if (0 == asoc->peer.port)
659 asoc->peer.port = port;
661 /* Check to see if this is a duplicate. */
662 peer = sctp_assoc_lookup_paddr(asoc, addr);
663 if (peer) {
664 /* An UNKNOWN state is only set on transports added by
665 * user in sctp_connectx() call. Such transports should be
666 * considered CONFIRMED per RFC 4960, Section 5.4.
668 if (peer->state == SCTP_UNKNOWN) {
669 peer->state = SCTP_ACTIVE;
671 return peer;
674 peer = sctp_transport_new(addr, gfp);
675 if (!peer)
676 return NULL;
678 sctp_transport_set_owner(peer, asoc);
680 /* Initialize the peer's heartbeat interval based on the
681 * association configured value.
683 peer->hbinterval = asoc->hbinterval;
685 /* Set the path max_retrans. */
686 peer->pathmaxrxt = asoc->pathmaxrxt;
688 /* Initialize the peer's SACK delay timeout based on the
689 * association configured value.
691 peer->sackdelay = asoc->sackdelay;
692 peer->sackfreq = asoc->sackfreq;
694 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
695 * based on association setting.
697 peer->param_flags = asoc->param_flags;
699 sctp_transport_route(peer, NULL, sp);
701 /* Initialize the pmtu of the transport. */
702 if (peer->param_flags & SPP_PMTUD_DISABLE) {
703 if (asoc->pathmtu)
704 peer->pathmtu = asoc->pathmtu;
705 else
706 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
709 /* If this is the first transport addr on this association,
710 * initialize the association PMTU to the peer's PMTU.
711 * If not and the current association PMTU is higher than the new
712 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
714 if (asoc->pathmtu)
715 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
716 else
717 asoc->pathmtu = peer->pathmtu;
719 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
720 "%d\n", asoc, asoc->pathmtu);
721 peer->pmtu_pending = 0;
723 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
725 /* The asoc->peer.port might not be meaningful yet, but
726 * initialize the packet structure anyway.
728 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
729 asoc->peer.port);
731 /* 7.2.1 Slow-Start
733 * o The initial cwnd before DATA transmission or after a sufficiently
734 * long idle period MUST be set to
735 * min(4*MTU, max(2*MTU, 4380 bytes))
737 * o The initial value of ssthresh MAY be arbitrarily high
738 * (for example, implementations MAY use the size of the
739 * receiver advertised window).
741 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
743 /* At this point, we may not have the receiver's advertised window,
744 * so initialize ssthresh to the default value and it will be set
745 * later when we process the INIT.
747 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
749 peer->partial_bytes_acked = 0;
750 peer->flight_size = 0;
751 peer->burst_limited = 0;
753 /* Set the transport's RTO.initial value */
754 peer->rto = asoc->rto_initial;
756 /* Set the peer's active state. */
757 peer->state = peer_state;
759 /* Attach the remote transport to our asoc. */
760 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
761 asoc->peer.transport_count++;
763 /* If we do not yet have a primary path, set one. */
764 if (!asoc->peer.primary_path) {
765 sctp_assoc_set_primary(asoc, peer);
766 asoc->peer.retran_path = peer;
769 if (asoc->peer.active_path == asoc->peer.retran_path &&
770 peer->state != SCTP_UNCONFIRMED) {
771 asoc->peer.retran_path = peer;
774 return peer;
777 /* Delete a transport address from an association. */
778 void sctp_assoc_del_peer(struct sctp_association *asoc,
779 const union sctp_addr *addr)
781 struct list_head *pos;
782 struct list_head *temp;
783 struct sctp_transport *transport;
785 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
786 transport = list_entry(pos, struct sctp_transport, transports);
787 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
788 /* Do book keeping for removing the peer and free it. */
789 sctp_assoc_rm_peer(asoc, transport);
790 break;
795 /* Lookup a transport by address. */
796 struct sctp_transport *sctp_assoc_lookup_paddr(
797 const struct sctp_association *asoc,
798 const union sctp_addr *address)
800 struct sctp_transport *t;
802 /* Cycle through all transports searching for a peer address. */
804 list_for_each_entry(t, &asoc->peer.transport_addr_list,
805 transports) {
806 if (sctp_cmp_addr_exact(address, &t->ipaddr))
807 return t;
810 return NULL;
813 /* Remove all transports except a give one */
814 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
815 struct sctp_transport *primary)
817 struct sctp_transport *temp;
818 struct sctp_transport *t;
820 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
821 transports) {
822 /* if the current transport is not the primary one, delete it */
823 if (t != primary)
824 sctp_assoc_rm_peer(asoc, t);
828 /* Engage in transport control operations.
829 * Mark the transport up or down and send a notification to the user.
830 * Select and update the new active and retran paths.
832 void sctp_assoc_control_transport(struct sctp_association *asoc,
833 struct sctp_transport *transport,
834 sctp_transport_cmd_t command,
835 sctp_sn_error_t error)
837 struct sctp_transport *t = NULL;
838 struct sctp_transport *first;
839 struct sctp_transport *second;
840 struct sctp_ulpevent *event;
841 struct sockaddr_storage addr;
842 int spc_state = 0;
844 /* Record the transition on the transport. */
845 switch (command) {
846 case SCTP_TRANSPORT_UP:
847 /* If we are moving from UNCONFIRMED state due
848 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
849 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
851 if (SCTP_UNCONFIRMED == transport->state &&
852 SCTP_HEARTBEAT_SUCCESS == error)
853 spc_state = SCTP_ADDR_CONFIRMED;
854 else
855 spc_state = SCTP_ADDR_AVAILABLE;
856 transport->state = SCTP_ACTIVE;
857 break;
859 case SCTP_TRANSPORT_DOWN:
860 /* If the transport was never confirmed, do not transition it
861 * to inactive state. Also, release the cached route since
862 * there may be a better route next time.
864 if (transport->state != SCTP_UNCONFIRMED)
865 transport->state = SCTP_INACTIVE;
866 else {
867 dst_release(transport->dst);
868 transport->dst = NULL;
871 spc_state = SCTP_ADDR_UNREACHABLE;
872 break;
874 default:
875 return;
878 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
879 * user.
881 memset(&addr, 0, sizeof(struct sockaddr_storage));
882 memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len);
883 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
884 0, spc_state, error, GFP_ATOMIC);
885 if (event)
886 sctp_ulpq_tail_event(&asoc->ulpq, event);
888 /* Select new active and retran paths. */
890 /* Look for the two most recently used active transports.
892 * This code produces the wrong ordering whenever jiffies
893 * rolls over, but we still get usable transports, so we don't
894 * worry about it.
896 first = NULL; second = NULL;
898 list_for_each_entry(t, &asoc->peer.transport_addr_list,
899 transports) {
901 if ((t->state == SCTP_INACTIVE) ||
902 (t->state == SCTP_UNCONFIRMED))
903 continue;
904 if (!first || t->last_time_heard > first->last_time_heard) {
905 second = first;
906 first = t;
908 if (!second || t->last_time_heard > second->last_time_heard)
909 second = t;
912 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
914 * By default, an endpoint should always transmit to the
915 * primary path, unless the SCTP user explicitly specifies the
916 * destination transport address (and possibly source
917 * transport address) to use.
919 * [If the primary is active but not most recent, bump the most
920 * recently used transport.]
922 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
923 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
924 first != asoc->peer.primary_path) {
925 second = first;
926 first = asoc->peer.primary_path;
929 /* If we failed to find a usable transport, just camp on the
930 * primary, even if it is inactive.
932 if (!first) {
933 first = asoc->peer.primary_path;
934 second = asoc->peer.primary_path;
937 /* Set the active and retran transports. */
938 asoc->peer.active_path = first;
939 asoc->peer.retran_path = second;
942 /* Hold a reference to an association. */
943 void sctp_association_hold(struct sctp_association *asoc)
945 atomic_inc(&asoc->base.refcnt);
948 /* Release a reference to an association and cleanup
949 * if there are no more references.
951 void sctp_association_put(struct sctp_association *asoc)
953 if (atomic_dec_and_test(&asoc->base.refcnt))
954 sctp_association_destroy(asoc);
957 /* Allocate the next TSN, Transmission Sequence Number, for the given
958 * association.
960 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
962 /* From Section 1.6 Serial Number Arithmetic:
963 * Transmission Sequence Numbers wrap around when they reach
964 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
965 * after transmitting TSN = 2*32 - 1 is TSN = 0.
967 __u32 retval = asoc->next_tsn;
968 asoc->next_tsn++;
969 asoc->unack_data++;
971 return retval;
974 /* Compare two addresses to see if they match. Wildcard addresses
975 * only match themselves.
977 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
978 const union sctp_addr *ss2)
980 struct sctp_af *af;
982 af = sctp_get_af_specific(ss1->sa.sa_family);
983 if (unlikely(!af))
984 return 0;
986 return af->cmp_addr(ss1, ss2);
989 /* Return an ecne chunk to get prepended to a packet.
990 * Note: We are sly and return a shared, prealloced chunk. FIXME:
991 * No we don't, but we could/should.
993 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
995 struct sctp_chunk *chunk;
997 /* Send ECNE if needed.
998 * Not being able to allocate a chunk here is not deadly.
1000 if (asoc->need_ecne)
1001 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
1002 else
1003 chunk = NULL;
1005 return chunk;
1009 * Find which transport this TSN was sent on.
1011 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
1012 __u32 tsn)
1014 struct sctp_transport *active;
1015 struct sctp_transport *match;
1016 struct sctp_transport *transport;
1017 struct sctp_chunk *chunk;
1018 __be32 key = htonl(tsn);
1020 match = NULL;
1023 * FIXME: In general, find a more efficient data structure for
1024 * searching.
1028 * The general strategy is to search each transport's transmitted
1029 * list. Return which transport this TSN lives on.
1031 * Let's be hopeful and check the active_path first.
1032 * Another optimization would be to know if there is only one
1033 * outbound path and not have to look for the TSN at all.
1037 active = asoc->peer.active_path;
1039 list_for_each_entry(chunk, &active->transmitted,
1040 transmitted_list) {
1042 if (key == chunk->subh.data_hdr->tsn) {
1043 match = active;
1044 goto out;
1048 /* If not found, go search all the other transports. */
1049 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1050 transports) {
1052 if (transport == active)
1053 break;
1054 list_for_each_entry(chunk, &transport->transmitted,
1055 transmitted_list) {
1056 if (key == chunk->subh.data_hdr->tsn) {
1057 match = transport;
1058 goto out;
1062 out:
1063 return match;
1066 /* Is this the association we are looking for? */
1067 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1068 const union sctp_addr *laddr,
1069 const union sctp_addr *paddr)
1071 struct sctp_transport *transport;
1073 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1074 (htons(asoc->peer.port) == paddr->v4.sin_port)) {
1075 transport = sctp_assoc_lookup_paddr(asoc, paddr);
1076 if (!transport)
1077 goto out;
1079 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1080 sctp_sk(asoc->base.sk)))
1081 goto out;
1083 transport = NULL;
1085 out:
1086 return transport;
1089 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
1090 static void sctp_assoc_bh_rcv(struct work_struct *work)
1092 struct sctp_association *asoc =
1093 container_of(work, struct sctp_association,
1094 base.inqueue.immediate);
1095 struct sctp_endpoint *ep;
1096 struct sctp_chunk *chunk;
1097 struct sctp_inq *inqueue;
1098 int state;
1099 sctp_subtype_t subtype;
1100 int error = 0;
1102 /* The association should be held so we should be safe. */
1103 ep = asoc->ep;
1105 inqueue = &asoc->base.inqueue;
1106 sctp_association_hold(asoc);
1107 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1108 state = asoc->state;
1109 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1111 /* SCTP-AUTH, Section 6.3:
1112 * The receiver has a list of chunk types which it expects
1113 * to be received only after an AUTH-chunk. This list has
1114 * been sent to the peer during the association setup. It
1115 * MUST silently discard these chunks if they are not placed
1116 * after an AUTH chunk in the packet.
1118 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1119 continue;
1121 /* Remember where the last DATA chunk came from so we
1122 * know where to send the SACK.
1124 if (sctp_chunk_is_data(chunk))
1125 asoc->peer.last_data_from = chunk->transport;
1126 else
1127 SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
1129 if (chunk->transport)
1130 chunk->transport->last_time_heard = jiffies;
1132 /* Run through the state machine. */
1133 error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
1134 state, ep, asoc, chunk, GFP_ATOMIC);
1136 /* Check to see if the association is freed in response to
1137 * the incoming chunk. If so, get out of the while loop.
1139 if (asoc->base.dead)
1140 break;
1142 /* If there is an error on chunk, discard this packet. */
1143 if (error && chunk)
1144 chunk->pdiscard = 1;
1146 sctp_association_put(asoc);
1149 /* This routine moves an association from its old sk to a new sk. */
1150 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1152 struct sctp_sock *newsp = sctp_sk(newsk);
1153 struct sock *oldsk = assoc->base.sk;
1155 /* Delete the association from the old endpoint's list of
1156 * associations.
1158 list_del_init(&assoc->asocs);
1160 /* Decrement the backlog value for a TCP-style socket. */
1161 if (sctp_style(oldsk, TCP))
1162 oldsk->sk_ack_backlog--;
1164 /* Release references to the old endpoint and the sock. */
1165 sctp_endpoint_put(assoc->ep);
1166 sock_put(assoc->base.sk);
1168 /* Get a reference to the new endpoint. */
1169 assoc->ep = newsp->ep;
1170 sctp_endpoint_hold(assoc->ep);
1172 /* Get a reference to the new sock. */
1173 assoc->base.sk = newsk;
1174 sock_hold(assoc->base.sk);
1176 /* Add the association to the new endpoint's list of associations. */
1177 sctp_endpoint_add_asoc(newsp->ep, assoc);
1180 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1181 void sctp_assoc_update(struct sctp_association *asoc,
1182 struct sctp_association *new)
1184 struct sctp_transport *trans;
1185 struct list_head *pos, *temp;
1187 /* Copy in new parameters of peer. */
1188 asoc->c = new->c;
1189 asoc->peer.rwnd = new->peer.rwnd;
1190 asoc->peer.sack_needed = new->peer.sack_needed;
1191 asoc->peer.i = new->peer.i;
1192 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1193 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1195 /* Remove any peer addresses not present in the new association. */
1196 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1197 trans = list_entry(pos, struct sctp_transport, transports);
1198 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1199 sctp_assoc_rm_peer(asoc, trans);
1200 continue;
1203 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1204 sctp_transport_reset(trans);
1207 /* If the case is A (association restart), use
1208 * initial_tsn as next_tsn. If the case is B, use
1209 * current next_tsn in case data sent to peer
1210 * has been discarded and needs retransmission.
1212 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1213 asoc->next_tsn = new->next_tsn;
1214 asoc->ctsn_ack_point = new->ctsn_ack_point;
1215 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1217 /* Reinitialize SSN for both local streams
1218 * and peer's streams.
1220 sctp_ssnmap_clear(asoc->ssnmap);
1222 /* Flush the ULP reassembly and ordered queue.
1223 * Any data there will now be stale and will
1224 * cause problems.
1226 sctp_ulpq_flush(&asoc->ulpq);
1228 /* reset the overall association error count so
1229 * that the restarted association doesn't get torn
1230 * down on the next retransmission timer.
1232 asoc->overall_error_count = 0;
1234 } else {
1235 /* Add any peer addresses from the new association. */
1236 list_for_each_entry(trans, &new->peer.transport_addr_list,
1237 transports) {
1238 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1239 sctp_assoc_add_peer(asoc, &trans->ipaddr,
1240 GFP_ATOMIC, trans->state);
1243 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1244 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1245 if (!asoc->ssnmap) {
1246 /* Move the ssnmap. */
1247 asoc->ssnmap = new->ssnmap;
1248 new->ssnmap = NULL;
1251 if (!asoc->assoc_id) {
1252 /* get a new association id since we don't have one
1253 * yet.
1255 sctp_assoc_set_id(asoc, GFP_ATOMIC);
1259 /* SCTP-AUTH: Save the peer parameters from the new assocaitions
1260 * and also move the association shared keys over
1262 kfree(asoc->peer.peer_random);
1263 asoc->peer.peer_random = new->peer.peer_random;
1264 new->peer.peer_random = NULL;
1266 kfree(asoc->peer.peer_chunks);
1267 asoc->peer.peer_chunks = new->peer.peer_chunks;
1268 new->peer.peer_chunks = NULL;
1270 kfree(asoc->peer.peer_hmacs);
1271 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1272 new->peer.peer_hmacs = NULL;
1274 sctp_auth_key_put(asoc->asoc_shared_key);
1275 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1278 /* Update the retran path for sending a retransmitted packet.
1279 * Round-robin through the active transports, else round-robin
1280 * through the inactive transports as this is the next best thing
1281 * we can try.
1283 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1285 struct sctp_transport *t, *next;
1286 struct list_head *head = &asoc->peer.transport_addr_list;
1287 struct list_head *pos;
1289 if (asoc->peer.transport_count == 1)
1290 return;
1292 /* Find the next transport in a round-robin fashion. */
1293 t = asoc->peer.retran_path;
1294 pos = &t->transports;
1295 next = NULL;
1297 while (1) {
1298 /* Skip the head. */
1299 if (pos->next == head)
1300 pos = head->next;
1301 else
1302 pos = pos->next;
1304 t = list_entry(pos, struct sctp_transport, transports);
1306 /* We have exhausted the list, but didn't find any
1307 * other active transports. If so, use the next
1308 * transport.
1310 if (t == asoc->peer.retran_path) {
1311 t = next;
1312 break;
1315 /* Try to find an active transport. */
1317 if ((t->state == SCTP_ACTIVE) ||
1318 (t->state == SCTP_UNKNOWN)) {
1319 break;
1320 } else {
1321 /* Keep track of the next transport in case
1322 * we don't find any active transport.
1324 if (t->state != SCTP_UNCONFIRMED && !next)
1325 next = t;
1329 if (t)
1330 asoc->peer.retran_path = t;
1331 else
1332 t = asoc->peer.retran_path;
1334 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1335 " %p addr: ",
1336 " port: %d\n",
1337 asoc,
1338 (&t->ipaddr),
1339 ntohs(t->ipaddr.v4.sin_port));
1342 /* Choose the transport for sending retransmit packet. */
1343 struct sctp_transport *sctp_assoc_choose_alter_transport(
1344 struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1346 /* If this is the first time packet is sent, use the active path,
1347 * else use the retran path. If the last packet was sent over the
1348 * retran path, update the retran path and use it.
1350 if (!last_sent_to)
1351 return asoc->peer.active_path;
1352 else {
1353 if (last_sent_to == asoc->peer.retran_path)
1354 sctp_assoc_update_retran_path(asoc);
1355 return asoc->peer.retran_path;
1359 /* Update the association's pmtu and frag_point by going through all the
1360 * transports. This routine is called when a transport's PMTU has changed.
1362 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1364 struct sctp_transport *t;
1365 __u32 pmtu = 0;
1367 if (!asoc)
1368 return;
1370 /* Get the lowest pmtu of all the transports. */
1371 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1372 transports) {
1373 if (t->pmtu_pending && t->dst) {
1374 sctp_transport_update_pmtu(t, dst_mtu(t->dst));
1375 t->pmtu_pending = 0;
1377 if (!pmtu || (t->pathmtu < pmtu))
1378 pmtu = t->pathmtu;
1381 if (pmtu) {
1382 asoc->pathmtu = pmtu;
1383 asoc->frag_point = sctp_frag_point(asoc, pmtu);
1386 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1387 __func__, asoc, asoc->pathmtu, asoc->frag_point);
1390 /* Should we send a SACK to update our peer? */
1391 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1393 switch (asoc->state) {
1394 case SCTP_STATE_ESTABLISHED:
1395 case SCTP_STATE_SHUTDOWN_PENDING:
1396 case SCTP_STATE_SHUTDOWN_RECEIVED:
1397 case SCTP_STATE_SHUTDOWN_SENT:
1398 if ((asoc->rwnd > asoc->a_rwnd) &&
1399 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1400 (asoc->base.sk->sk_rcvbuf >> sctp_rwnd_upd_shift),
1401 asoc->pathmtu)))
1402 return 1;
1403 break;
1404 default:
1405 break;
1407 return 0;
1410 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1411 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len)
1413 struct sctp_chunk *sack;
1414 struct timer_list *timer;
1416 if (asoc->rwnd_over) {
1417 if (asoc->rwnd_over >= len) {
1418 asoc->rwnd_over -= len;
1419 } else {
1420 asoc->rwnd += (len - asoc->rwnd_over);
1421 asoc->rwnd_over = 0;
1423 } else {
1424 asoc->rwnd += len;
1427 /* If we had window pressure, start recovering it
1428 * once our rwnd had reached the accumulated pressure
1429 * threshold. The idea is to recover slowly, but up
1430 * to the initial advertised window.
1432 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1433 int change = min(asoc->pathmtu, asoc->rwnd_press);
1434 asoc->rwnd += change;
1435 asoc->rwnd_press -= change;
1438 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1439 "- %u\n", __func__, asoc, len, asoc->rwnd,
1440 asoc->rwnd_over, asoc->a_rwnd);
1442 /* Send a window update SACK if the rwnd has increased by at least the
1443 * minimum of the association's PMTU and half of the receive buffer.
1444 * The algorithm used is similar to the one described in
1445 * Section 4.2.3.3 of RFC 1122.
1447 if (sctp_peer_needs_update(asoc)) {
1448 asoc->a_rwnd = asoc->rwnd;
1449 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1450 "rwnd: %u a_rwnd: %u\n", __func__,
1451 asoc, asoc->rwnd, asoc->a_rwnd);
1452 sack = sctp_make_sack(asoc);
1453 if (!sack)
1454 return;
1456 asoc->peer.sack_needed = 0;
1458 sctp_outq_tail(&asoc->outqueue, sack);
1460 /* Stop the SACK timer. */
1461 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1462 if (timer_pending(timer) && del_timer(timer))
1463 sctp_association_put(asoc);
1467 /* Decrease asoc's rwnd by len. */
1468 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len)
1470 int rx_count;
1471 int over = 0;
1473 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1474 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1476 if (asoc->ep->rcvbuf_policy)
1477 rx_count = atomic_read(&asoc->rmem_alloc);
1478 else
1479 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1481 /* If we've reached or overflowed our receive buffer, announce
1482 * a 0 rwnd if rwnd would still be positive. Store the
1483 * the pottential pressure overflow so that the window can be restored
1484 * back to original value.
1486 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1487 over = 1;
1489 if (asoc->rwnd >= len) {
1490 asoc->rwnd -= len;
1491 if (over) {
1492 asoc->rwnd_press += asoc->rwnd;
1493 asoc->rwnd = 0;
1495 } else {
1496 asoc->rwnd_over = len - asoc->rwnd;
1497 asoc->rwnd = 0;
1499 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n",
1500 __func__, asoc, len, asoc->rwnd,
1501 asoc->rwnd_over, asoc->rwnd_press);
1504 /* Build the bind address list for the association based on info from the
1505 * local endpoint and the remote peer.
1507 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1508 sctp_scope_t scope, gfp_t gfp)
1510 int flags;
1512 /* Use scoping rules to determine the subset of addresses from
1513 * the endpoint.
1515 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1516 if (asoc->peer.ipv4_address)
1517 flags |= SCTP_ADDR4_PEERSUPP;
1518 if (asoc->peer.ipv6_address)
1519 flags |= SCTP_ADDR6_PEERSUPP;
1521 return sctp_bind_addr_copy(&asoc->base.bind_addr,
1522 &asoc->ep->base.bind_addr,
1523 scope, gfp, flags);
1526 /* Build the association's bind address list from the cookie. */
1527 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1528 struct sctp_cookie *cookie,
1529 gfp_t gfp)
1531 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1532 int var_size3 = cookie->raw_addr_list_len;
1533 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1535 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1536 asoc->ep->base.bind_addr.port, gfp);
1539 /* Lookup laddr in the bind address list of an association. */
1540 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1541 const union sctp_addr *laddr)
1543 int found = 0;
1545 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1546 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1547 sctp_sk(asoc->base.sk)))
1548 found = 1;
1550 return found;
1553 /* Set an association id for a given association */
1554 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1556 int assoc_id;
1557 int error = 0;
1559 /* If the id is already assigned, keep it. */
1560 if (asoc->assoc_id)
1561 return error;
1562 retry:
1563 if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp)))
1564 return -ENOMEM;
1566 spin_lock_bh(&sctp_assocs_id_lock);
1567 error = idr_get_new_above(&sctp_assocs_id, (void *)asoc,
1568 idr_low, &assoc_id);
1569 if (!error) {
1570 idr_low = assoc_id + 1;
1571 if (idr_low == INT_MAX)
1572 idr_low = 1;
1574 spin_unlock_bh(&sctp_assocs_id_lock);
1575 if (error == -EAGAIN)
1576 goto retry;
1577 else if (error)
1578 return error;
1580 asoc->assoc_id = (sctp_assoc_t) assoc_id;
1581 return error;
1584 /* Free the ASCONF queue */
1585 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1587 struct sctp_chunk *asconf;
1588 struct sctp_chunk *tmp;
1590 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1591 list_del_init(&asconf->list);
1592 sctp_chunk_free(asconf);
1596 /* Free asconf_ack cache */
1597 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1599 struct sctp_chunk *ack;
1600 struct sctp_chunk *tmp;
1602 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1603 transmitted_list) {
1604 list_del_init(&ack->transmitted_list);
1605 sctp_chunk_free(ack);
1609 /* Clean up the ASCONF_ACK queue */
1610 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1612 struct sctp_chunk *ack;
1613 struct sctp_chunk *tmp;
1615 /* We can remove all the entries from the queue up to
1616 * the "Peer-Sequence-Number".
1618 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1619 transmitted_list) {
1620 if (ack->subh.addip_hdr->serial ==
1621 htonl(asoc->peer.addip_serial))
1622 break;
1624 list_del_init(&ack->transmitted_list);
1625 sctp_chunk_free(ack);
1629 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1630 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1631 const struct sctp_association *asoc,
1632 __be32 serial)
1634 struct sctp_chunk *ack;
1636 /* Walk through the list of cached ASCONF-ACKs and find the
1637 * ack chunk whose serial number matches that of the request.
1639 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1640 if (ack->subh.addip_hdr->serial == serial) {
1641 sctp_chunk_hold(ack);
1642 return ack;
1646 return NULL;
1649 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1651 /* Free any cached ASCONF_ACK chunk. */
1652 sctp_assoc_free_asconf_acks(asoc);
1654 /* Free the ASCONF queue. */
1655 sctp_assoc_free_asconf_queue(asoc);
1657 /* Free any cached ASCONF chunk. */
1658 if (asoc->addip_last_asconf)
1659 sctp_chunk_free(asoc->addip_last_asconf);