staging:iio:dds:ad9810: allocate chip state with iio_dev and use iio_priv for access.
[linux-2.6/next.git] / mm / memory.c
blob6953d3926e01e8ad1370304064ec2a0e94ad1ebb
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
68 #include "internal.h"
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
79 unsigned long num_physpages;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
87 void * high_memory;
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
101 #else
103 #endif
105 static int __init disable_randmaps(char *s)
107 randomize_va_space = 0;
108 return 1;
110 __setup("norandmaps", disable_randmaps);
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init init_zero_pfn(void)
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
123 core_initcall(init_zero_pfn);
126 #if defined(SPLIT_RSS_COUNTING)
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
130 int i;
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
138 task->rss_stat.events = 0;
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 struct task_struct *task = current;
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
165 long val = 0;
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
171 val = atomic_long_read(&mm->rss_stat.count[member]);
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
176 if (val < 0)
177 return 0;
178 return (unsigned long)val;
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
183 __sync_task_rss_stat(task, mm);
185 #else /* SPLIT_RSS_COUNTING */
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
190 static void check_sync_rss_stat(struct task_struct *task)
194 #endif /* SPLIT_RSS_COUNTING */
196 #ifdef HAVE_GENERIC_MMU_GATHER
198 static int tlb_next_batch(struct mmu_gather *tlb)
200 struct mmu_gather_batch *batch;
202 batch = tlb->active;
203 if (batch->next) {
204 tlb->active = batch->next;
205 return 1;
208 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
209 if (!batch)
210 return 0;
212 batch->next = NULL;
213 batch->nr = 0;
214 batch->max = MAX_GATHER_BATCH;
216 tlb->active->next = batch;
217 tlb->active = batch;
219 return 1;
222 /* tlb_gather_mmu
223 * Called to initialize an (on-stack) mmu_gather structure for page-table
224 * tear-down from @mm. The @fullmm argument is used when @mm is without
225 * users and we're going to destroy the full address space (exit/execve).
227 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
229 tlb->mm = mm;
231 tlb->fullmm = fullmm;
232 tlb->need_flush = 0;
233 tlb->fast_mode = (num_possible_cpus() == 1);
234 tlb->local.next = NULL;
235 tlb->local.nr = 0;
236 tlb->local.max = ARRAY_SIZE(tlb->__pages);
237 tlb->active = &tlb->local;
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
240 tlb->batch = NULL;
241 #endif
244 void tlb_flush_mmu(struct mmu_gather *tlb)
246 struct mmu_gather_batch *batch;
248 if (!tlb->need_flush)
249 return;
250 tlb->need_flush = 0;
251 tlb_flush(tlb);
252 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
253 tlb_table_flush(tlb);
254 #endif
256 if (tlb_fast_mode(tlb))
257 return;
259 for (batch = &tlb->local; batch; batch = batch->next) {
260 free_pages_and_swap_cache(batch->pages, batch->nr);
261 batch->nr = 0;
263 tlb->active = &tlb->local;
266 /* tlb_finish_mmu
267 * Called at the end of the shootdown operation to free up any resources
268 * that were required.
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
272 struct mmu_gather_batch *batch, *next;
274 tlb_flush_mmu(tlb);
276 /* keep the page table cache within bounds */
277 check_pgt_cache();
279 for (batch = tlb->local.next; batch; batch = next) {
280 next = batch->next;
281 free_pages((unsigned long)batch, 0);
283 tlb->local.next = NULL;
286 /* __tlb_remove_page
287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288 * handling the additional races in SMP caused by other CPUs caching valid
289 * mappings in their TLBs. Returns the number of free page slots left.
290 * When out of page slots we must call tlb_flush_mmu().
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
294 struct mmu_gather_batch *batch;
296 tlb->need_flush = 1;
298 if (tlb_fast_mode(tlb)) {
299 free_page_and_swap_cache(page);
300 return 1; /* avoid calling tlb_flush_mmu() */
303 batch = tlb->active;
304 batch->pages[batch->nr++] = page;
305 if (batch->nr == batch->max) {
306 if (!tlb_next_batch(tlb))
307 return 0;
309 VM_BUG_ON(batch->nr > batch->max);
311 return batch->max - batch->nr;
314 #endif /* HAVE_GENERIC_MMU_GATHER */
316 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
319 * See the comment near struct mmu_table_batch.
322 static void tlb_remove_table_smp_sync(void *arg)
324 /* Simply deliver the interrupt */
327 static void tlb_remove_table_one(void *table)
330 * This isn't an RCU grace period and hence the page-tables cannot be
331 * assumed to be actually RCU-freed.
333 * It is however sufficient for software page-table walkers that rely on
334 * IRQ disabling. See the comment near struct mmu_table_batch.
336 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
337 __tlb_remove_table(table);
340 static void tlb_remove_table_rcu(struct rcu_head *head)
342 struct mmu_table_batch *batch;
343 int i;
345 batch = container_of(head, struct mmu_table_batch, rcu);
347 for (i = 0; i < batch->nr; i++)
348 __tlb_remove_table(batch->tables[i]);
350 free_page((unsigned long)batch);
353 void tlb_table_flush(struct mmu_gather *tlb)
355 struct mmu_table_batch **batch = &tlb->batch;
357 if (*batch) {
358 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
359 *batch = NULL;
363 void tlb_remove_table(struct mmu_gather *tlb, void *table)
365 struct mmu_table_batch **batch = &tlb->batch;
367 tlb->need_flush = 1;
370 * When there's less then two users of this mm there cannot be a
371 * concurrent page-table walk.
373 if (atomic_read(&tlb->mm->mm_users) < 2) {
374 __tlb_remove_table(table);
375 return;
378 if (*batch == NULL) {
379 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
380 if (*batch == NULL) {
381 tlb_remove_table_one(table);
382 return;
384 (*batch)->nr = 0;
386 (*batch)->tables[(*batch)->nr++] = table;
387 if ((*batch)->nr == MAX_TABLE_BATCH)
388 tlb_table_flush(tlb);
391 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
394 * If a p?d_bad entry is found while walking page tables, report
395 * the error, before resetting entry to p?d_none. Usually (but
396 * very seldom) called out from the p?d_none_or_clear_bad macros.
399 void pgd_clear_bad(pgd_t *pgd)
401 pgd_ERROR(*pgd);
402 pgd_clear(pgd);
405 void pud_clear_bad(pud_t *pud)
407 pud_ERROR(*pud);
408 pud_clear(pud);
411 void pmd_clear_bad(pmd_t *pmd)
413 pmd_ERROR(*pmd);
414 pmd_clear(pmd);
418 * Note: this doesn't free the actual pages themselves. That
419 * has been handled earlier when unmapping all the memory regions.
421 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
422 unsigned long addr)
424 pgtable_t token = pmd_pgtable(*pmd);
425 pmd_clear(pmd);
426 pte_free_tlb(tlb, token, addr);
427 tlb->mm->nr_ptes--;
430 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
431 unsigned long addr, unsigned long end,
432 unsigned long floor, unsigned long ceiling)
434 pmd_t *pmd;
435 unsigned long next;
436 unsigned long start;
438 start = addr;
439 pmd = pmd_offset(pud, addr);
440 do {
441 next = pmd_addr_end(addr, end);
442 if (pmd_none_or_clear_bad(pmd))
443 continue;
444 free_pte_range(tlb, pmd, addr);
445 } while (pmd++, addr = next, addr != end);
447 start &= PUD_MASK;
448 if (start < floor)
449 return;
450 if (ceiling) {
451 ceiling &= PUD_MASK;
452 if (!ceiling)
453 return;
455 if (end - 1 > ceiling - 1)
456 return;
458 pmd = pmd_offset(pud, start);
459 pud_clear(pud);
460 pmd_free_tlb(tlb, pmd, start);
463 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
464 unsigned long addr, unsigned long end,
465 unsigned long floor, unsigned long ceiling)
467 pud_t *pud;
468 unsigned long next;
469 unsigned long start;
471 start = addr;
472 pud = pud_offset(pgd, addr);
473 do {
474 next = pud_addr_end(addr, end);
475 if (pud_none_or_clear_bad(pud))
476 continue;
477 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
478 } while (pud++, addr = next, addr != end);
480 start &= PGDIR_MASK;
481 if (start < floor)
482 return;
483 if (ceiling) {
484 ceiling &= PGDIR_MASK;
485 if (!ceiling)
486 return;
488 if (end - 1 > ceiling - 1)
489 return;
491 pud = pud_offset(pgd, start);
492 pgd_clear(pgd);
493 pud_free_tlb(tlb, pud, start);
497 * This function frees user-level page tables of a process.
499 * Must be called with pagetable lock held.
501 void free_pgd_range(struct mmu_gather *tlb,
502 unsigned long addr, unsigned long end,
503 unsigned long floor, unsigned long ceiling)
505 pgd_t *pgd;
506 unsigned long next;
509 * The next few lines have given us lots of grief...
511 * Why are we testing PMD* at this top level? Because often
512 * there will be no work to do at all, and we'd prefer not to
513 * go all the way down to the bottom just to discover that.
515 * Why all these "- 1"s? Because 0 represents both the bottom
516 * of the address space and the top of it (using -1 for the
517 * top wouldn't help much: the masks would do the wrong thing).
518 * The rule is that addr 0 and floor 0 refer to the bottom of
519 * the address space, but end 0 and ceiling 0 refer to the top
520 * Comparisons need to use "end - 1" and "ceiling - 1" (though
521 * that end 0 case should be mythical).
523 * Wherever addr is brought up or ceiling brought down, we must
524 * be careful to reject "the opposite 0" before it confuses the
525 * subsequent tests. But what about where end is brought down
526 * by PMD_SIZE below? no, end can't go down to 0 there.
528 * Whereas we round start (addr) and ceiling down, by different
529 * masks at different levels, in order to test whether a table
530 * now has no other vmas using it, so can be freed, we don't
531 * bother to round floor or end up - the tests don't need that.
534 addr &= PMD_MASK;
535 if (addr < floor) {
536 addr += PMD_SIZE;
537 if (!addr)
538 return;
540 if (ceiling) {
541 ceiling &= PMD_MASK;
542 if (!ceiling)
543 return;
545 if (end - 1 > ceiling - 1)
546 end -= PMD_SIZE;
547 if (addr > end - 1)
548 return;
550 pgd = pgd_offset(tlb->mm, addr);
551 do {
552 next = pgd_addr_end(addr, end);
553 if (pgd_none_or_clear_bad(pgd))
554 continue;
555 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
556 } while (pgd++, addr = next, addr != end);
559 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
560 unsigned long floor, unsigned long ceiling)
562 while (vma) {
563 struct vm_area_struct *next = vma->vm_next;
564 unsigned long addr = vma->vm_start;
567 * Hide vma from rmap and truncate_pagecache before freeing
568 * pgtables
570 unlink_anon_vmas(vma);
571 unlink_file_vma(vma);
573 if (is_vm_hugetlb_page(vma)) {
574 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
575 floor, next? next->vm_start: ceiling);
576 } else {
578 * Optimization: gather nearby vmas into one call down
580 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
581 && !is_vm_hugetlb_page(next)) {
582 vma = next;
583 next = vma->vm_next;
584 unlink_anon_vmas(vma);
585 unlink_file_vma(vma);
587 free_pgd_range(tlb, addr, vma->vm_end,
588 floor, next? next->vm_start: ceiling);
590 vma = next;
594 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
595 pmd_t *pmd, unsigned long address)
597 pgtable_t new = pte_alloc_one(mm, address);
598 int wait_split_huge_page;
599 if (!new)
600 return -ENOMEM;
603 * Ensure all pte setup (eg. pte page lock and page clearing) are
604 * visible before the pte is made visible to other CPUs by being
605 * put into page tables.
607 * The other side of the story is the pointer chasing in the page
608 * table walking code (when walking the page table without locking;
609 * ie. most of the time). Fortunately, these data accesses consist
610 * of a chain of data-dependent loads, meaning most CPUs (alpha
611 * being the notable exception) will already guarantee loads are
612 * seen in-order. See the alpha page table accessors for the
613 * smp_read_barrier_depends() barriers in page table walking code.
615 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
617 spin_lock(&mm->page_table_lock);
618 wait_split_huge_page = 0;
619 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
620 mm->nr_ptes++;
621 pmd_populate(mm, pmd, new);
622 new = NULL;
623 } else if (unlikely(pmd_trans_splitting(*pmd)))
624 wait_split_huge_page = 1;
625 spin_unlock(&mm->page_table_lock);
626 if (new)
627 pte_free(mm, new);
628 if (wait_split_huge_page)
629 wait_split_huge_page(vma->anon_vma, pmd);
630 return 0;
633 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
635 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
636 if (!new)
637 return -ENOMEM;
639 smp_wmb(); /* See comment in __pte_alloc */
641 spin_lock(&init_mm.page_table_lock);
642 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
643 pmd_populate_kernel(&init_mm, pmd, new);
644 new = NULL;
645 } else
646 VM_BUG_ON(pmd_trans_splitting(*pmd));
647 spin_unlock(&init_mm.page_table_lock);
648 if (new)
649 pte_free_kernel(&init_mm, new);
650 return 0;
653 static inline void init_rss_vec(int *rss)
655 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
658 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
660 int i;
662 if (current->mm == mm)
663 sync_mm_rss(current, mm);
664 for (i = 0; i < NR_MM_COUNTERS; i++)
665 if (rss[i])
666 add_mm_counter(mm, i, rss[i]);
670 * This function is called to print an error when a bad pte
671 * is found. For example, we might have a PFN-mapped pte in
672 * a region that doesn't allow it.
674 * The calling function must still handle the error.
676 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
677 pte_t pte, struct page *page)
679 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
680 pud_t *pud = pud_offset(pgd, addr);
681 pmd_t *pmd = pmd_offset(pud, addr);
682 struct address_space *mapping;
683 pgoff_t index;
684 static unsigned long resume;
685 static unsigned long nr_shown;
686 static unsigned long nr_unshown;
689 * Allow a burst of 60 reports, then keep quiet for that minute;
690 * or allow a steady drip of one report per second.
692 if (nr_shown == 60) {
693 if (time_before(jiffies, resume)) {
694 nr_unshown++;
695 return;
697 if (nr_unshown) {
698 printk(KERN_ALERT
699 "BUG: Bad page map: %lu messages suppressed\n",
700 nr_unshown);
701 nr_unshown = 0;
703 nr_shown = 0;
705 if (nr_shown++ == 0)
706 resume = jiffies + 60 * HZ;
708 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
709 index = linear_page_index(vma, addr);
711 printk(KERN_ALERT
712 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
713 current->comm,
714 (long long)pte_val(pte), (long long)pmd_val(*pmd));
715 if (page)
716 dump_page(page);
717 printk(KERN_ALERT
718 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
719 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
721 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
723 if (vma->vm_ops)
724 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
725 (unsigned long)vma->vm_ops->fault);
726 if (vma->vm_file && vma->vm_file->f_op)
727 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
728 (unsigned long)vma->vm_file->f_op->mmap);
729 dump_stack();
730 add_taint(TAINT_BAD_PAGE);
733 static inline int is_cow_mapping(vm_flags_t flags)
735 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
738 #ifndef is_zero_pfn
739 static inline int is_zero_pfn(unsigned long pfn)
741 return pfn == zero_pfn;
743 #endif
745 #ifndef my_zero_pfn
746 static inline unsigned long my_zero_pfn(unsigned long addr)
748 return zero_pfn;
750 #endif
753 * vm_normal_page -- This function gets the "struct page" associated with a pte.
755 * "Special" mappings do not wish to be associated with a "struct page" (either
756 * it doesn't exist, or it exists but they don't want to touch it). In this
757 * case, NULL is returned here. "Normal" mappings do have a struct page.
759 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
760 * pte bit, in which case this function is trivial. Secondly, an architecture
761 * may not have a spare pte bit, which requires a more complicated scheme,
762 * described below.
764 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
765 * special mapping (even if there are underlying and valid "struct pages").
766 * COWed pages of a VM_PFNMAP are always normal.
768 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
769 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
770 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
771 * mapping will always honor the rule
773 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
775 * And for normal mappings this is false.
777 * This restricts such mappings to be a linear translation from virtual address
778 * to pfn. To get around this restriction, we allow arbitrary mappings so long
779 * as the vma is not a COW mapping; in that case, we know that all ptes are
780 * special (because none can have been COWed).
783 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
785 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
786 * page" backing, however the difference is that _all_ pages with a struct
787 * page (that is, those where pfn_valid is true) are refcounted and considered
788 * normal pages by the VM. The disadvantage is that pages are refcounted
789 * (which can be slower and simply not an option for some PFNMAP users). The
790 * advantage is that we don't have to follow the strict linearity rule of
791 * PFNMAP mappings in order to support COWable mappings.
794 #ifdef __HAVE_ARCH_PTE_SPECIAL
795 # define HAVE_PTE_SPECIAL 1
796 #else
797 # define HAVE_PTE_SPECIAL 0
798 #endif
799 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
800 pte_t pte)
802 unsigned long pfn = pte_pfn(pte);
804 if (HAVE_PTE_SPECIAL) {
805 if (likely(!pte_special(pte)))
806 goto check_pfn;
807 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
808 return NULL;
809 if (!is_zero_pfn(pfn))
810 print_bad_pte(vma, addr, pte, NULL);
811 return NULL;
814 /* !HAVE_PTE_SPECIAL case follows: */
816 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
817 if (vma->vm_flags & VM_MIXEDMAP) {
818 if (!pfn_valid(pfn))
819 return NULL;
820 goto out;
821 } else {
822 unsigned long off;
823 off = (addr - vma->vm_start) >> PAGE_SHIFT;
824 if (pfn == vma->vm_pgoff + off)
825 return NULL;
826 if (!is_cow_mapping(vma->vm_flags))
827 return NULL;
831 if (is_zero_pfn(pfn))
832 return NULL;
833 check_pfn:
834 if (unlikely(pfn > highest_memmap_pfn)) {
835 print_bad_pte(vma, addr, pte, NULL);
836 return NULL;
840 * NOTE! We still have PageReserved() pages in the page tables.
841 * eg. VDSO mappings can cause them to exist.
843 out:
844 return pfn_to_page(pfn);
848 * copy one vm_area from one task to the other. Assumes the page tables
849 * already present in the new task to be cleared in the whole range
850 * covered by this vma.
853 static inline unsigned long
854 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
855 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
856 unsigned long addr, int *rss)
858 unsigned long vm_flags = vma->vm_flags;
859 pte_t pte = *src_pte;
860 struct page *page;
862 /* pte contains position in swap or file, so copy. */
863 if (unlikely(!pte_present(pte))) {
864 if (!pte_file(pte)) {
865 swp_entry_t entry = pte_to_swp_entry(pte);
867 if (swap_duplicate(entry) < 0)
868 return entry.val;
870 /* make sure dst_mm is on swapoff's mmlist. */
871 if (unlikely(list_empty(&dst_mm->mmlist))) {
872 spin_lock(&mmlist_lock);
873 if (list_empty(&dst_mm->mmlist))
874 list_add(&dst_mm->mmlist,
875 &src_mm->mmlist);
876 spin_unlock(&mmlist_lock);
878 if (likely(!non_swap_entry(entry)))
879 rss[MM_SWAPENTS]++;
880 else if (is_write_migration_entry(entry) &&
881 is_cow_mapping(vm_flags)) {
883 * COW mappings require pages in both parent
884 * and child to be set to read.
886 make_migration_entry_read(&entry);
887 pte = swp_entry_to_pte(entry);
888 set_pte_at(src_mm, addr, src_pte, pte);
891 goto out_set_pte;
895 * If it's a COW mapping, write protect it both
896 * in the parent and the child
898 if (is_cow_mapping(vm_flags)) {
899 ptep_set_wrprotect(src_mm, addr, src_pte);
900 pte = pte_wrprotect(pte);
904 * If it's a shared mapping, mark it clean in
905 * the child
907 if (vm_flags & VM_SHARED)
908 pte = pte_mkclean(pte);
909 pte = pte_mkold(pte);
911 page = vm_normal_page(vma, addr, pte);
912 if (page) {
913 get_page(page);
914 page_dup_rmap(page);
915 if (PageAnon(page))
916 rss[MM_ANONPAGES]++;
917 else
918 rss[MM_FILEPAGES]++;
921 out_set_pte:
922 set_pte_at(dst_mm, addr, dst_pte, pte);
923 return 0;
926 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
927 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
928 unsigned long addr, unsigned long end)
930 pte_t *orig_src_pte, *orig_dst_pte;
931 pte_t *src_pte, *dst_pte;
932 spinlock_t *src_ptl, *dst_ptl;
933 int progress = 0;
934 int rss[NR_MM_COUNTERS];
935 swp_entry_t entry = (swp_entry_t){0};
937 again:
938 init_rss_vec(rss);
940 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
941 if (!dst_pte)
942 return -ENOMEM;
943 src_pte = pte_offset_map(src_pmd, addr);
944 src_ptl = pte_lockptr(src_mm, src_pmd);
945 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
946 orig_src_pte = src_pte;
947 orig_dst_pte = dst_pte;
948 arch_enter_lazy_mmu_mode();
950 do {
952 * We are holding two locks at this point - either of them
953 * could generate latencies in another task on another CPU.
955 if (progress >= 32) {
956 progress = 0;
957 if (need_resched() ||
958 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
959 break;
961 if (pte_none(*src_pte)) {
962 progress++;
963 continue;
965 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
966 vma, addr, rss);
967 if (entry.val)
968 break;
969 progress += 8;
970 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
972 arch_leave_lazy_mmu_mode();
973 spin_unlock(src_ptl);
974 pte_unmap(orig_src_pte);
975 add_mm_rss_vec(dst_mm, rss);
976 pte_unmap_unlock(orig_dst_pte, dst_ptl);
977 cond_resched();
979 if (entry.val) {
980 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
981 return -ENOMEM;
982 progress = 0;
984 if (addr != end)
985 goto again;
986 return 0;
989 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
990 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
991 unsigned long addr, unsigned long end)
993 pmd_t *src_pmd, *dst_pmd;
994 unsigned long next;
996 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
997 if (!dst_pmd)
998 return -ENOMEM;
999 src_pmd = pmd_offset(src_pud, addr);
1000 do {
1001 next = pmd_addr_end(addr, end);
1002 if (pmd_trans_huge(*src_pmd)) {
1003 int err;
1004 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1005 err = copy_huge_pmd(dst_mm, src_mm,
1006 dst_pmd, src_pmd, addr, vma);
1007 if (err == -ENOMEM)
1008 return -ENOMEM;
1009 if (!err)
1010 continue;
1011 /* fall through */
1013 if (pmd_none_or_clear_bad(src_pmd))
1014 continue;
1015 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1016 vma, addr, next))
1017 return -ENOMEM;
1018 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1019 return 0;
1022 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1023 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1024 unsigned long addr, unsigned long end)
1026 pud_t *src_pud, *dst_pud;
1027 unsigned long next;
1029 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1030 if (!dst_pud)
1031 return -ENOMEM;
1032 src_pud = pud_offset(src_pgd, addr);
1033 do {
1034 next = pud_addr_end(addr, end);
1035 if (pud_none_or_clear_bad(src_pud))
1036 continue;
1037 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1038 vma, addr, next))
1039 return -ENOMEM;
1040 } while (dst_pud++, src_pud++, addr = next, addr != end);
1041 return 0;
1044 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1045 struct vm_area_struct *vma)
1047 pgd_t *src_pgd, *dst_pgd;
1048 unsigned long next;
1049 unsigned long addr = vma->vm_start;
1050 unsigned long end = vma->vm_end;
1051 int ret;
1054 * Don't copy ptes where a page fault will fill them correctly.
1055 * Fork becomes much lighter when there are big shared or private
1056 * readonly mappings. The tradeoff is that copy_page_range is more
1057 * efficient than faulting.
1059 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1060 if (!vma->anon_vma)
1061 return 0;
1064 if (is_vm_hugetlb_page(vma))
1065 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1067 if (unlikely(is_pfn_mapping(vma))) {
1069 * We do not free on error cases below as remove_vma
1070 * gets called on error from higher level routine
1072 ret = track_pfn_vma_copy(vma);
1073 if (ret)
1074 return ret;
1078 * We need to invalidate the secondary MMU mappings only when
1079 * there could be a permission downgrade on the ptes of the
1080 * parent mm. And a permission downgrade will only happen if
1081 * is_cow_mapping() returns true.
1083 if (is_cow_mapping(vma->vm_flags))
1084 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1086 ret = 0;
1087 dst_pgd = pgd_offset(dst_mm, addr);
1088 src_pgd = pgd_offset(src_mm, addr);
1089 do {
1090 next = pgd_addr_end(addr, end);
1091 if (pgd_none_or_clear_bad(src_pgd))
1092 continue;
1093 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1094 vma, addr, next))) {
1095 ret = -ENOMEM;
1096 break;
1098 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1100 if (is_cow_mapping(vma->vm_flags))
1101 mmu_notifier_invalidate_range_end(src_mm,
1102 vma->vm_start, end);
1103 return ret;
1106 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1107 struct vm_area_struct *vma, pmd_t *pmd,
1108 unsigned long addr, unsigned long end,
1109 struct zap_details *details)
1111 struct mm_struct *mm = tlb->mm;
1112 int force_flush = 0;
1113 int rss[NR_MM_COUNTERS];
1114 spinlock_t *ptl;
1115 pte_t *pte;
1117 again:
1118 init_rss_vec(rss);
1119 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1120 arch_enter_lazy_mmu_mode();
1121 do {
1122 pte_t ptent = *pte;
1123 if (pte_none(ptent)) {
1124 continue;
1127 if (pte_present(ptent)) {
1128 struct page *page;
1130 page = vm_normal_page(vma, addr, ptent);
1131 if (unlikely(details) && page) {
1133 * unmap_shared_mapping_pages() wants to
1134 * invalidate cache without truncating:
1135 * unmap shared but keep private pages.
1137 if (details->check_mapping &&
1138 details->check_mapping != page->mapping)
1139 continue;
1141 * Each page->index must be checked when
1142 * invalidating or truncating nonlinear.
1144 if (details->nonlinear_vma &&
1145 (page->index < details->first_index ||
1146 page->index > details->last_index))
1147 continue;
1149 ptent = ptep_get_and_clear_full(mm, addr, pte,
1150 tlb->fullmm);
1151 tlb_remove_tlb_entry(tlb, pte, addr);
1152 if (unlikely(!page))
1153 continue;
1154 if (unlikely(details) && details->nonlinear_vma
1155 && linear_page_index(details->nonlinear_vma,
1156 addr) != page->index)
1157 set_pte_at(mm, addr, pte,
1158 pgoff_to_pte(page->index));
1159 if (PageAnon(page))
1160 rss[MM_ANONPAGES]--;
1161 else {
1162 if (pte_dirty(ptent))
1163 set_page_dirty(page);
1164 if (pte_young(ptent) &&
1165 likely(!VM_SequentialReadHint(vma)))
1166 mark_page_accessed(page);
1167 rss[MM_FILEPAGES]--;
1169 page_remove_rmap(page);
1170 if (unlikely(page_mapcount(page) < 0))
1171 print_bad_pte(vma, addr, ptent, page);
1172 force_flush = !__tlb_remove_page(tlb, page);
1173 if (force_flush)
1174 break;
1175 continue;
1178 * If details->check_mapping, we leave swap entries;
1179 * if details->nonlinear_vma, we leave file entries.
1181 if (unlikely(details))
1182 continue;
1183 if (pte_file(ptent)) {
1184 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1185 print_bad_pte(vma, addr, ptent, NULL);
1186 } else {
1187 swp_entry_t entry = pte_to_swp_entry(ptent);
1189 if (!non_swap_entry(entry))
1190 rss[MM_SWAPENTS]--;
1191 if (unlikely(!free_swap_and_cache(entry)))
1192 print_bad_pte(vma, addr, ptent, NULL);
1194 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1195 } while (pte++, addr += PAGE_SIZE, addr != end);
1197 add_mm_rss_vec(mm, rss);
1198 arch_leave_lazy_mmu_mode();
1199 pte_unmap_unlock(pte - 1, ptl);
1202 * mmu_gather ran out of room to batch pages, we break out of
1203 * the PTE lock to avoid doing the potential expensive TLB invalidate
1204 * and page-free while holding it.
1206 if (force_flush) {
1207 force_flush = 0;
1208 tlb_flush_mmu(tlb);
1209 if (addr != end)
1210 goto again;
1213 return addr;
1216 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1217 struct vm_area_struct *vma, pud_t *pud,
1218 unsigned long addr, unsigned long end,
1219 struct zap_details *details)
1221 pmd_t *pmd;
1222 unsigned long next;
1224 pmd = pmd_offset(pud, addr);
1225 do {
1226 next = pmd_addr_end(addr, end);
1227 if (pmd_trans_huge(*pmd)) {
1228 if (next-addr != HPAGE_PMD_SIZE) {
1229 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1230 split_huge_page_pmd(vma->vm_mm, pmd);
1231 } else if (zap_huge_pmd(tlb, vma, pmd))
1232 continue;
1233 /* fall through */
1235 if (pmd_none_or_clear_bad(pmd))
1236 continue;
1237 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1238 cond_resched();
1239 } while (pmd++, addr = next, addr != end);
1241 return addr;
1244 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1245 struct vm_area_struct *vma, pgd_t *pgd,
1246 unsigned long addr, unsigned long end,
1247 struct zap_details *details)
1249 pud_t *pud;
1250 unsigned long next;
1252 pud = pud_offset(pgd, addr);
1253 do {
1254 next = pud_addr_end(addr, end);
1255 if (pud_none_or_clear_bad(pud))
1256 continue;
1257 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1258 } while (pud++, addr = next, addr != end);
1260 return addr;
1263 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1264 struct vm_area_struct *vma,
1265 unsigned long addr, unsigned long end,
1266 struct zap_details *details)
1268 pgd_t *pgd;
1269 unsigned long next;
1271 if (details && !details->check_mapping && !details->nonlinear_vma)
1272 details = NULL;
1274 BUG_ON(addr >= end);
1275 mem_cgroup_uncharge_start();
1276 tlb_start_vma(tlb, vma);
1277 pgd = pgd_offset(vma->vm_mm, addr);
1278 do {
1279 next = pgd_addr_end(addr, end);
1280 if (pgd_none_or_clear_bad(pgd))
1281 continue;
1282 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1283 } while (pgd++, addr = next, addr != end);
1284 tlb_end_vma(tlb, vma);
1285 mem_cgroup_uncharge_end();
1287 return addr;
1290 #ifdef CONFIG_PREEMPT
1291 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1292 #else
1293 /* No preempt: go for improved straight-line efficiency */
1294 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1295 #endif
1298 * unmap_vmas - unmap a range of memory covered by a list of vma's
1299 * @tlbp: address of the caller's struct mmu_gather
1300 * @vma: the starting vma
1301 * @start_addr: virtual address at which to start unmapping
1302 * @end_addr: virtual address at which to end unmapping
1303 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1304 * @details: details of nonlinear truncation or shared cache invalidation
1306 * Returns the end address of the unmapping (restart addr if interrupted).
1308 * Unmap all pages in the vma list.
1310 * We aim to not hold locks for too long (for scheduling latency reasons).
1311 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1312 * return the ending mmu_gather to the caller.
1314 * Only addresses between `start' and `end' will be unmapped.
1316 * The VMA list must be sorted in ascending virtual address order.
1318 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1319 * range after unmap_vmas() returns. So the only responsibility here is to
1320 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1321 * drops the lock and schedules.
1323 unsigned long unmap_vmas(struct mmu_gather *tlb,
1324 struct vm_area_struct *vma, unsigned long start_addr,
1325 unsigned long end_addr, unsigned long *nr_accounted,
1326 struct zap_details *details)
1328 unsigned long start = start_addr;
1329 struct mm_struct *mm = vma->vm_mm;
1331 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1332 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1333 unsigned long end;
1335 start = max(vma->vm_start, start_addr);
1336 if (start >= vma->vm_end)
1337 continue;
1338 end = min(vma->vm_end, end_addr);
1339 if (end <= vma->vm_start)
1340 continue;
1342 if (vma->vm_flags & VM_ACCOUNT)
1343 *nr_accounted += (end - start) >> PAGE_SHIFT;
1345 if (unlikely(is_pfn_mapping(vma)))
1346 untrack_pfn_vma(vma, 0, 0);
1348 while (start != end) {
1349 if (unlikely(is_vm_hugetlb_page(vma))) {
1351 * It is undesirable to test vma->vm_file as it
1352 * should be non-null for valid hugetlb area.
1353 * However, vm_file will be NULL in the error
1354 * cleanup path of do_mmap_pgoff. When
1355 * hugetlbfs ->mmap method fails,
1356 * do_mmap_pgoff() nullifies vma->vm_file
1357 * before calling this function to clean up.
1358 * Since no pte has actually been setup, it is
1359 * safe to do nothing in this case.
1361 if (vma->vm_file)
1362 unmap_hugepage_range(vma, start, end, NULL);
1364 start = end;
1365 } else
1366 start = unmap_page_range(tlb, vma, start, end, details);
1370 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1371 return start; /* which is now the end (or restart) address */
1375 * zap_page_range - remove user pages in a given range
1376 * @vma: vm_area_struct holding the applicable pages
1377 * @address: starting address of pages to zap
1378 * @size: number of bytes to zap
1379 * @details: details of nonlinear truncation or shared cache invalidation
1381 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1382 unsigned long size, struct zap_details *details)
1384 struct mm_struct *mm = vma->vm_mm;
1385 struct mmu_gather tlb;
1386 unsigned long end = address + size;
1387 unsigned long nr_accounted = 0;
1389 lru_add_drain();
1390 tlb_gather_mmu(&tlb, mm, 0);
1391 update_hiwater_rss(mm);
1392 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1393 tlb_finish_mmu(&tlb, address, end);
1394 return end;
1398 * zap_vma_ptes - remove ptes mapping the vma
1399 * @vma: vm_area_struct holding ptes to be zapped
1400 * @address: starting address of pages to zap
1401 * @size: number of bytes to zap
1403 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1405 * The entire address range must be fully contained within the vma.
1407 * Returns 0 if successful.
1409 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1410 unsigned long size)
1412 if (address < vma->vm_start || address + size > vma->vm_end ||
1413 !(vma->vm_flags & VM_PFNMAP))
1414 return -1;
1415 zap_page_range(vma, address, size, NULL);
1416 return 0;
1418 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1421 * follow_page - look up a page descriptor from a user-virtual address
1422 * @vma: vm_area_struct mapping @address
1423 * @address: virtual address to look up
1424 * @flags: flags modifying lookup behaviour
1426 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1428 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1429 * an error pointer if there is a mapping to something not represented
1430 * by a page descriptor (see also vm_normal_page()).
1432 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1433 unsigned int flags)
1435 pgd_t *pgd;
1436 pud_t *pud;
1437 pmd_t *pmd;
1438 pte_t *ptep, pte;
1439 spinlock_t *ptl;
1440 struct page *page;
1441 struct mm_struct *mm = vma->vm_mm;
1443 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1444 if (!IS_ERR(page)) {
1445 BUG_ON(flags & FOLL_GET);
1446 goto out;
1449 page = NULL;
1450 pgd = pgd_offset(mm, address);
1451 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1452 goto no_page_table;
1454 pud = pud_offset(pgd, address);
1455 if (pud_none(*pud))
1456 goto no_page_table;
1457 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1458 BUG_ON(flags & FOLL_GET);
1459 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1460 goto out;
1462 if (unlikely(pud_bad(*pud)))
1463 goto no_page_table;
1465 pmd = pmd_offset(pud, address);
1466 if (pmd_none(*pmd))
1467 goto no_page_table;
1468 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1469 BUG_ON(flags & FOLL_GET);
1470 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1471 goto out;
1473 if (pmd_trans_huge(*pmd)) {
1474 if (flags & FOLL_SPLIT) {
1475 split_huge_page_pmd(mm, pmd);
1476 goto split_fallthrough;
1478 spin_lock(&mm->page_table_lock);
1479 if (likely(pmd_trans_huge(*pmd))) {
1480 if (unlikely(pmd_trans_splitting(*pmd))) {
1481 spin_unlock(&mm->page_table_lock);
1482 wait_split_huge_page(vma->anon_vma, pmd);
1483 } else {
1484 page = follow_trans_huge_pmd(mm, address,
1485 pmd, flags);
1486 spin_unlock(&mm->page_table_lock);
1487 goto out;
1489 } else
1490 spin_unlock(&mm->page_table_lock);
1491 /* fall through */
1493 split_fallthrough:
1494 if (unlikely(pmd_bad(*pmd)))
1495 goto no_page_table;
1497 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1499 pte = *ptep;
1500 if (!pte_present(pte))
1501 goto no_page;
1502 if ((flags & FOLL_WRITE) && !pte_write(pte))
1503 goto unlock;
1505 page = vm_normal_page(vma, address, pte);
1506 if (unlikely(!page)) {
1507 if ((flags & FOLL_DUMP) ||
1508 !is_zero_pfn(pte_pfn(pte)))
1509 goto bad_page;
1510 page = pte_page(pte);
1513 if (flags & FOLL_GET)
1514 get_page(page);
1515 if (flags & FOLL_TOUCH) {
1516 if ((flags & FOLL_WRITE) &&
1517 !pte_dirty(pte) && !PageDirty(page))
1518 set_page_dirty(page);
1520 * pte_mkyoung() would be more correct here, but atomic care
1521 * is needed to avoid losing the dirty bit: it is easier to use
1522 * mark_page_accessed().
1524 mark_page_accessed(page);
1526 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1528 * The preliminary mapping check is mainly to avoid the
1529 * pointless overhead of lock_page on the ZERO_PAGE
1530 * which might bounce very badly if there is contention.
1532 * If the page is already locked, we don't need to
1533 * handle it now - vmscan will handle it later if and
1534 * when it attempts to reclaim the page.
1536 if (page->mapping && trylock_page(page)) {
1537 lru_add_drain(); /* push cached pages to LRU */
1539 * Because we lock page here and migration is
1540 * blocked by the pte's page reference, we need
1541 * only check for file-cache page truncation.
1543 if (page->mapping)
1544 mlock_vma_page(page);
1545 unlock_page(page);
1548 unlock:
1549 pte_unmap_unlock(ptep, ptl);
1550 out:
1551 return page;
1553 bad_page:
1554 pte_unmap_unlock(ptep, ptl);
1555 return ERR_PTR(-EFAULT);
1557 no_page:
1558 pte_unmap_unlock(ptep, ptl);
1559 if (!pte_none(pte))
1560 return page;
1562 no_page_table:
1564 * When core dumping an enormous anonymous area that nobody
1565 * has touched so far, we don't want to allocate unnecessary pages or
1566 * page tables. Return error instead of NULL to skip handle_mm_fault,
1567 * then get_dump_page() will return NULL to leave a hole in the dump.
1568 * But we can only make this optimization where a hole would surely
1569 * be zero-filled if handle_mm_fault() actually did handle it.
1571 if ((flags & FOLL_DUMP) &&
1572 (!vma->vm_ops || !vma->vm_ops->fault))
1573 return ERR_PTR(-EFAULT);
1574 return page;
1577 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1579 return stack_guard_page_start(vma, addr) ||
1580 stack_guard_page_end(vma, addr+PAGE_SIZE);
1584 * __get_user_pages() - pin user pages in memory
1585 * @tsk: task_struct of target task
1586 * @mm: mm_struct of target mm
1587 * @start: starting user address
1588 * @nr_pages: number of pages from start to pin
1589 * @gup_flags: flags modifying pin behaviour
1590 * @pages: array that receives pointers to the pages pinned.
1591 * Should be at least nr_pages long. Or NULL, if caller
1592 * only intends to ensure the pages are faulted in.
1593 * @vmas: array of pointers to vmas corresponding to each page.
1594 * Or NULL if the caller does not require them.
1595 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1597 * Returns number of pages pinned. This may be fewer than the number
1598 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1599 * were pinned, returns -errno. Each page returned must be released
1600 * with a put_page() call when it is finished with. vmas will only
1601 * remain valid while mmap_sem is held.
1603 * Must be called with mmap_sem held for read or write.
1605 * __get_user_pages walks a process's page tables and takes a reference to
1606 * each struct page that each user address corresponds to at a given
1607 * instant. That is, it takes the page that would be accessed if a user
1608 * thread accesses the given user virtual address at that instant.
1610 * This does not guarantee that the page exists in the user mappings when
1611 * __get_user_pages returns, and there may even be a completely different
1612 * page there in some cases (eg. if mmapped pagecache has been invalidated
1613 * and subsequently re faulted). However it does guarantee that the page
1614 * won't be freed completely. And mostly callers simply care that the page
1615 * contains data that was valid *at some point in time*. Typically, an IO
1616 * or similar operation cannot guarantee anything stronger anyway because
1617 * locks can't be held over the syscall boundary.
1619 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1620 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1621 * appropriate) must be called after the page is finished with, and
1622 * before put_page is called.
1624 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1625 * or mmap_sem contention, and if waiting is needed to pin all pages,
1626 * *@nonblocking will be set to 0.
1628 * In most cases, get_user_pages or get_user_pages_fast should be used
1629 * instead of __get_user_pages. __get_user_pages should be used only if
1630 * you need some special @gup_flags.
1632 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1633 unsigned long start, int nr_pages, unsigned int gup_flags,
1634 struct page **pages, struct vm_area_struct **vmas,
1635 int *nonblocking)
1637 int i;
1638 unsigned long vm_flags;
1640 if (nr_pages <= 0)
1641 return 0;
1643 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1646 * Require read or write permissions.
1647 * If FOLL_FORCE is set, we only require the "MAY" flags.
1649 vm_flags = (gup_flags & FOLL_WRITE) ?
1650 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1651 vm_flags &= (gup_flags & FOLL_FORCE) ?
1652 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1653 i = 0;
1655 do {
1656 struct vm_area_struct *vma;
1658 vma = find_extend_vma(mm, start);
1659 if (!vma && in_gate_area(mm, start)) {
1660 unsigned long pg = start & PAGE_MASK;
1661 pgd_t *pgd;
1662 pud_t *pud;
1663 pmd_t *pmd;
1664 pte_t *pte;
1666 /* user gate pages are read-only */
1667 if (gup_flags & FOLL_WRITE)
1668 return i ? : -EFAULT;
1669 if (pg > TASK_SIZE)
1670 pgd = pgd_offset_k(pg);
1671 else
1672 pgd = pgd_offset_gate(mm, pg);
1673 BUG_ON(pgd_none(*pgd));
1674 pud = pud_offset(pgd, pg);
1675 BUG_ON(pud_none(*pud));
1676 pmd = pmd_offset(pud, pg);
1677 if (pmd_none(*pmd))
1678 return i ? : -EFAULT;
1679 VM_BUG_ON(pmd_trans_huge(*pmd));
1680 pte = pte_offset_map(pmd, pg);
1681 if (pte_none(*pte)) {
1682 pte_unmap(pte);
1683 return i ? : -EFAULT;
1685 vma = get_gate_vma(mm);
1686 if (pages) {
1687 struct page *page;
1689 page = vm_normal_page(vma, start, *pte);
1690 if (!page) {
1691 if (!(gup_flags & FOLL_DUMP) &&
1692 is_zero_pfn(pte_pfn(*pte)))
1693 page = pte_page(*pte);
1694 else {
1695 pte_unmap(pte);
1696 return i ? : -EFAULT;
1699 pages[i] = page;
1700 get_page(page);
1702 pte_unmap(pte);
1703 goto next_page;
1706 if (!vma ||
1707 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1708 !(vm_flags & vma->vm_flags))
1709 return i ? : -EFAULT;
1711 if (is_vm_hugetlb_page(vma)) {
1712 i = follow_hugetlb_page(mm, vma, pages, vmas,
1713 &start, &nr_pages, i, gup_flags);
1714 continue;
1717 do {
1718 struct page *page;
1719 unsigned int foll_flags = gup_flags;
1722 * If we have a pending SIGKILL, don't keep faulting
1723 * pages and potentially allocating memory.
1725 if (unlikely(fatal_signal_pending(current)))
1726 return i ? i : -ERESTARTSYS;
1728 cond_resched();
1729 while (!(page = follow_page(vma, start, foll_flags))) {
1730 int ret;
1731 unsigned int fault_flags = 0;
1733 /* For mlock, just skip the stack guard page. */
1734 if (foll_flags & FOLL_MLOCK) {
1735 if (stack_guard_page(vma, start))
1736 goto next_page;
1738 if (foll_flags & FOLL_WRITE)
1739 fault_flags |= FAULT_FLAG_WRITE;
1740 if (nonblocking)
1741 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1742 if (foll_flags & FOLL_NOWAIT)
1743 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1745 ret = handle_mm_fault(mm, vma, start,
1746 fault_flags);
1748 if (ret & VM_FAULT_ERROR) {
1749 if (ret & VM_FAULT_OOM)
1750 return i ? i : -ENOMEM;
1751 if (ret & (VM_FAULT_HWPOISON |
1752 VM_FAULT_HWPOISON_LARGE)) {
1753 if (i)
1754 return i;
1755 else if (gup_flags & FOLL_HWPOISON)
1756 return -EHWPOISON;
1757 else
1758 return -EFAULT;
1760 if (ret & VM_FAULT_SIGBUS)
1761 return i ? i : -EFAULT;
1762 BUG();
1765 if (tsk) {
1766 if (ret & VM_FAULT_MAJOR)
1767 tsk->maj_flt++;
1768 else
1769 tsk->min_flt++;
1772 if (ret & VM_FAULT_RETRY) {
1773 if (nonblocking)
1774 *nonblocking = 0;
1775 return i;
1779 * The VM_FAULT_WRITE bit tells us that
1780 * do_wp_page has broken COW when necessary,
1781 * even if maybe_mkwrite decided not to set
1782 * pte_write. We can thus safely do subsequent
1783 * page lookups as if they were reads. But only
1784 * do so when looping for pte_write is futile:
1785 * in some cases userspace may also be wanting
1786 * to write to the gotten user page, which a
1787 * read fault here might prevent (a readonly
1788 * page might get reCOWed by userspace write).
1790 if ((ret & VM_FAULT_WRITE) &&
1791 !(vma->vm_flags & VM_WRITE))
1792 foll_flags &= ~FOLL_WRITE;
1794 cond_resched();
1796 if (IS_ERR(page))
1797 return i ? i : PTR_ERR(page);
1798 if (pages) {
1799 pages[i] = page;
1801 flush_anon_page(vma, page, start);
1802 flush_dcache_page(page);
1804 next_page:
1805 if (vmas)
1806 vmas[i] = vma;
1807 i++;
1808 start += PAGE_SIZE;
1809 nr_pages--;
1810 } while (nr_pages && start < vma->vm_end);
1811 } while (nr_pages);
1812 return i;
1814 EXPORT_SYMBOL(__get_user_pages);
1817 * get_user_pages() - pin user pages in memory
1818 * @tsk: the task_struct to use for page fault accounting, or
1819 * NULL if faults are not to be recorded.
1820 * @mm: mm_struct of target mm
1821 * @start: starting user address
1822 * @nr_pages: number of pages from start to pin
1823 * @write: whether pages will be written to by the caller
1824 * @force: whether to force write access even if user mapping is
1825 * readonly. This will result in the page being COWed even
1826 * in MAP_SHARED mappings. You do not want this.
1827 * @pages: array that receives pointers to the pages pinned.
1828 * Should be at least nr_pages long. Or NULL, if caller
1829 * only intends to ensure the pages are faulted in.
1830 * @vmas: array of pointers to vmas corresponding to each page.
1831 * Or NULL if the caller does not require them.
1833 * Returns number of pages pinned. This may be fewer than the number
1834 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1835 * were pinned, returns -errno. Each page returned must be released
1836 * with a put_page() call when it is finished with. vmas will only
1837 * remain valid while mmap_sem is held.
1839 * Must be called with mmap_sem held for read or write.
1841 * get_user_pages walks a process's page tables and takes a reference to
1842 * each struct page that each user address corresponds to at a given
1843 * instant. That is, it takes the page that would be accessed if a user
1844 * thread accesses the given user virtual address at that instant.
1846 * This does not guarantee that the page exists in the user mappings when
1847 * get_user_pages returns, and there may even be a completely different
1848 * page there in some cases (eg. if mmapped pagecache has been invalidated
1849 * and subsequently re faulted). However it does guarantee that the page
1850 * won't be freed completely. And mostly callers simply care that the page
1851 * contains data that was valid *at some point in time*. Typically, an IO
1852 * or similar operation cannot guarantee anything stronger anyway because
1853 * locks can't be held over the syscall boundary.
1855 * If write=0, the page must not be written to. If the page is written to,
1856 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1857 * after the page is finished with, and before put_page is called.
1859 * get_user_pages is typically used for fewer-copy IO operations, to get a
1860 * handle on the memory by some means other than accesses via the user virtual
1861 * addresses. The pages may be submitted for DMA to devices or accessed via
1862 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1863 * use the correct cache flushing APIs.
1865 * See also get_user_pages_fast, for performance critical applications.
1867 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1868 unsigned long start, int nr_pages, int write, int force,
1869 struct page **pages, struct vm_area_struct **vmas)
1871 int flags = FOLL_TOUCH;
1873 if (pages)
1874 flags |= FOLL_GET;
1875 if (write)
1876 flags |= FOLL_WRITE;
1877 if (force)
1878 flags |= FOLL_FORCE;
1880 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1881 NULL);
1883 EXPORT_SYMBOL(get_user_pages);
1886 * get_dump_page() - pin user page in memory while writing it to core dump
1887 * @addr: user address
1889 * Returns struct page pointer of user page pinned for dump,
1890 * to be freed afterwards by page_cache_release() or put_page().
1892 * Returns NULL on any kind of failure - a hole must then be inserted into
1893 * the corefile, to preserve alignment with its headers; and also returns
1894 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1895 * allowing a hole to be left in the corefile to save diskspace.
1897 * Called without mmap_sem, but after all other threads have been killed.
1899 #ifdef CONFIG_ELF_CORE
1900 struct page *get_dump_page(unsigned long addr)
1902 struct vm_area_struct *vma;
1903 struct page *page;
1905 if (__get_user_pages(current, current->mm, addr, 1,
1906 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1907 NULL) < 1)
1908 return NULL;
1909 flush_cache_page(vma, addr, page_to_pfn(page));
1910 return page;
1912 #endif /* CONFIG_ELF_CORE */
1914 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1915 spinlock_t **ptl)
1917 pgd_t * pgd = pgd_offset(mm, addr);
1918 pud_t * pud = pud_alloc(mm, pgd, addr);
1919 if (pud) {
1920 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1921 if (pmd) {
1922 VM_BUG_ON(pmd_trans_huge(*pmd));
1923 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1926 return NULL;
1930 * This is the old fallback for page remapping.
1932 * For historical reasons, it only allows reserved pages. Only
1933 * old drivers should use this, and they needed to mark their
1934 * pages reserved for the old functions anyway.
1936 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1937 struct page *page, pgprot_t prot)
1939 struct mm_struct *mm = vma->vm_mm;
1940 int retval;
1941 pte_t *pte;
1942 spinlock_t *ptl;
1944 retval = -EINVAL;
1945 if (PageAnon(page))
1946 goto out;
1947 retval = -ENOMEM;
1948 flush_dcache_page(page);
1949 pte = get_locked_pte(mm, addr, &ptl);
1950 if (!pte)
1951 goto out;
1952 retval = -EBUSY;
1953 if (!pte_none(*pte))
1954 goto out_unlock;
1956 /* Ok, finally just insert the thing.. */
1957 get_page(page);
1958 inc_mm_counter_fast(mm, MM_FILEPAGES);
1959 page_add_file_rmap(page);
1960 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1962 retval = 0;
1963 pte_unmap_unlock(pte, ptl);
1964 return retval;
1965 out_unlock:
1966 pte_unmap_unlock(pte, ptl);
1967 out:
1968 return retval;
1972 * vm_insert_page - insert single page into user vma
1973 * @vma: user vma to map to
1974 * @addr: target user address of this page
1975 * @page: source kernel page
1977 * This allows drivers to insert individual pages they've allocated
1978 * into a user vma.
1980 * The page has to be a nice clean _individual_ kernel allocation.
1981 * If you allocate a compound page, you need to have marked it as
1982 * such (__GFP_COMP), or manually just split the page up yourself
1983 * (see split_page()).
1985 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1986 * took an arbitrary page protection parameter. This doesn't allow
1987 * that. Your vma protection will have to be set up correctly, which
1988 * means that if you want a shared writable mapping, you'd better
1989 * ask for a shared writable mapping!
1991 * The page does not need to be reserved.
1993 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1994 struct page *page)
1996 if (addr < vma->vm_start || addr >= vma->vm_end)
1997 return -EFAULT;
1998 if (!page_count(page))
1999 return -EINVAL;
2000 vma->vm_flags |= VM_INSERTPAGE;
2001 return insert_page(vma, addr, page, vma->vm_page_prot);
2003 EXPORT_SYMBOL(vm_insert_page);
2005 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2006 unsigned long pfn, pgprot_t prot)
2008 struct mm_struct *mm = vma->vm_mm;
2009 int retval;
2010 pte_t *pte, entry;
2011 spinlock_t *ptl;
2013 retval = -ENOMEM;
2014 pte = get_locked_pte(mm, addr, &ptl);
2015 if (!pte)
2016 goto out;
2017 retval = -EBUSY;
2018 if (!pte_none(*pte))
2019 goto out_unlock;
2021 /* Ok, finally just insert the thing.. */
2022 entry = pte_mkspecial(pfn_pte(pfn, prot));
2023 set_pte_at(mm, addr, pte, entry);
2024 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2026 retval = 0;
2027 out_unlock:
2028 pte_unmap_unlock(pte, ptl);
2029 out:
2030 return retval;
2034 * vm_insert_pfn - insert single pfn into user vma
2035 * @vma: user vma to map to
2036 * @addr: target user address of this page
2037 * @pfn: source kernel pfn
2039 * Similar to vm_inert_page, this allows drivers to insert individual pages
2040 * they've allocated into a user vma. Same comments apply.
2042 * This function should only be called from a vm_ops->fault handler, and
2043 * in that case the handler should return NULL.
2045 * vma cannot be a COW mapping.
2047 * As this is called only for pages that do not currently exist, we
2048 * do not need to flush old virtual caches or the TLB.
2050 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2051 unsigned long pfn)
2053 int ret;
2054 pgprot_t pgprot = vma->vm_page_prot;
2056 * Technically, architectures with pte_special can avoid all these
2057 * restrictions (same for remap_pfn_range). However we would like
2058 * consistency in testing and feature parity among all, so we should
2059 * try to keep these invariants in place for everybody.
2061 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2062 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2063 (VM_PFNMAP|VM_MIXEDMAP));
2064 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2065 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2067 if (addr < vma->vm_start || addr >= vma->vm_end)
2068 return -EFAULT;
2069 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2070 return -EINVAL;
2072 ret = insert_pfn(vma, addr, pfn, pgprot);
2074 if (ret)
2075 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2077 return ret;
2079 EXPORT_SYMBOL(vm_insert_pfn);
2081 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2082 unsigned long pfn)
2084 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2086 if (addr < vma->vm_start || addr >= vma->vm_end)
2087 return -EFAULT;
2090 * If we don't have pte special, then we have to use the pfn_valid()
2091 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2092 * refcount the page if pfn_valid is true (hence insert_page rather
2093 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2094 * without pte special, it would there be refcounted as a normal page.
2096 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2097 struct page *page;
2099 page = pfn_to_page(pfn);
2100 return insert_page(vma, addr, page, vma->vm_page_prot);
2102 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2104 EXPORT_SYMBOL(vm_insert_mixed);
2107 * maps a range of physical memory into the requested pages. the old
2108 * mappings are removed. any references to nonexistent pages results
2109 * in null mappings (currently treated as "copy-on-access")
2111 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2112 unsigned long addr, unsigned long end,
2113 unsigned long pfn, pgprot_t prot)
2115 pte_t *pte;
2116 spinlock_t *ptl;
2118 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2119 if (!pte)
2120 return -ENOMEM;
2121 arch_enter_lazy_mmu_mode();
2122 do {
2123 BUG_ON(!pte_none(*pte));
2124 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2125 pfn++;
2126 } while (pte++, addr += PAGE_SIZE, addr != end);
2127 arch_leave_lazy_mmu_mode();
2128 pte_unmap_unlock(pte - 1, ptl);
2129 return 0;
2132 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2133 unsigned long addr, unsigned long end,
2134 unsigned long pfn, pgprot_t prot)
2136 pmd_t *pmd;
2137 unsigned long next;
2139 pfn -= addr >> PAGE_SHIFT;
2140 pmd = pmd_alloc(mm, pud, addr);
2141 if (!pmd)
2142 return -ENOMEM;
2143 VM_BUG_ON(pmd_trans_huge(*pmd));
2144 do {
2145 next = pmd_addr_end(addr, end);
2146 if (remap_pte_range(mm, pmd, addr, next,
2147 pfn + (addr >> PAGE_SHIFT), prot))
2148 return -ENOMEM;
2149 } while (pmd++, addr = next, addr != end);
2150 return 0;
2153 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2154 unsigned long addr, unsigned long end,
2155 unsigned long pfn, pgprot_t prot)
2157 pud_t *pud;
2158 unsigned long next;
2160 pfn -= addr >> PAGE_SHIFT;
2161 pud = pud_alloc(mm, pgd, addr);
2162 if (!pud)
2163 return -ENOMEM;
2164 do {
2165 next = pud_addr_end(addr, end);
2166 if (remap_pmd_range(mm, pud, addr, next,
2167 pfn + (addr >> PAGE_SHIFT), prot))
2168 return -ENOMEM;
2169 } while (pud++, addr = next, addr != end);
2170 return 0;
2174 * remap_pfn_range - remap kernel memory to userspace
2175 * @vma: user vma to map to
2176 * @addr: target user address to start at
2177 * @pfn: physical address of kernel memory
2178 * @size: size of map area
2179 * @prot: page protection flags for this mapping
2181 * Note: this is only safe if the mm semaphore is held when called.
2183 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2184 unsigned long pfn, unsigned long size, pgprot_t prot)
2186 pgd_t *pgd;
2187 unsigned long next;
2188 unsigned long end = addr + PAGE_ALIGN(size);
2189 struct mm_struct *mm = vma->vm_mm;
2190 int err;
2193 * Physically remapped pages are special. Tell the
2194 * rest of the world about it:
2195 * VM_IO tells people not to look at these pages
2196 * (accesses can have side effects).
2197 * VM_RESERVED is specified all over the place, because
2198 * in 2.4 it kept swapout's vma scan off this vma; but
2199 * in 2.6 the LRU scan won't even find its pages, so this
2200 * flag means no more than count its pages in reserved_vm,
2201 * and omit it from core dump, even when VM_IO turned off.
2202 * VM_PFNMAP tells the core MM that the base pages are just
2203 * raw PFN mappings, and do not have a "struct page" associated
2204 * with them.
2206 * There's a horrible special case to handle copy-on-write
2207 * behaviour that some programs depend on. We mark the "original"
2208 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2210 if (addr == vma->vm_start && end == vma->vm_end) {
2211 vma->vm_pgoff = pfn;
2212 vma->vm_flags |= VM_PFN_AT_MMAP;
2213 } else if (is_cow_mapping(vma->vm_flags))
2214 return -EINVAL;
2216 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2218 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2219 if (err) {
2221 * To indicate that track_pfn related cleanup is not
2222 * needed from higher level routine calling unmap_vmas
2224 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2225 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2226 return -EINVAL;
2229 BUG_ON(addr >= end);
2230 pfn -= addr >> PAGE_SHIFT;
2231 pgd = pgd_offset(mm, addr);
2232 flush_cache_range(vma, addr, end);
2233 do {
2234 next = pgd_addr_end(addr, end);
2235 err = remap_pud_range(mm, pgd, addr, next,
2236 pfn + (addr >> PAGE_SHIFT), prot);
2237 if (err)
2238 break;
2239 } while (pgd++, addr = next, addr != end);
2241 if (err)
2242 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2244 return err;
2246 EXPORT_SYMBOL(remap_pfn_range);
2248 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2249 unsigned long addr, unsigned long end,
2250 pte_fn_t fn, void *data)
2252 pte_t *pte;
2253 int err;
2254 pgtable_t token;
2255 spinlock_t *uninitialized_var(ptl);
2257 pte = (mm == &init_mm) ?
2258 pte_alloc_kernel(pmd, addr) :
2259 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2260 if (!pte)
2261 return -ENOMEM;
2263 BUG_ON(pmd_huge(*pmd));
2265 arch_enter_lazy_mmu_mode();
2267 token = pmd_pgtable(*pmd);
2269 do {
2270 err = fn(pte++, token, addr, data);
2271 if (err)
2272 break;
2273 } while (addr += PAGE_SIZE, addr != end);
2275 arch_leave_lazy_mmu_mode();
2277 if (mm != &init_mm)
2278 pte_unmap_unlock(pte-1, ptl);
2279 return err;
2282 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2283 unsigned long addr, unsigned long end,
2284 pte_fn_t fn, void *data)
2286 pmd_t *pmd;
2287 unsigned long next;
2288 int err;
2290 BUG_ON(pud_huge(*pud));
2292 pmd = pmd_alloc(mm, pud, addr);
2293 if (!pmd)
2294 return -ENOMEM;
2295 do {
2296 next = pmd_addr_end(addr, end);
2297 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2298 if (err)
2299 break;
2300 } while (pmd++, addr = next, addr != end);
2301 return err;
2304 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2305 unsigned long addr, unsigned long end,
2306 pte_fn_t fn, void *data)
2308 pud_t *pud;
2309 unsigned long next;
2310 int err;
2312 pud = pud_alloc(mm, pgd, addr);
2313 if (!pud)
2314 return -ENOMEM;
2315 do {
2316 next = pud_addr_end(addr, end);
2317 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2318 if (err)
2319 break;
2320 } while (pud++, addr = next, addr != end);
2321 return err;
2325 * Scan a region of virtual memory, filling in page tables as necessary
2326 * and calling a provided function on each leaf page table.
2328 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2329 unsigned long size, pte_fn_t fn, void *data)
2331 pgd_t *pgd;
2332 unsigned long next;
2333 unsigned long end = addr + size;
2334 int err;
2336 BUG_ON(addr >= end);
2337 pgd = pgd_offset(mm, addr);
2338 do {
2339 next = pgd_addr_end(addr, end);
2340 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2341 if (err)
2342 break;
2343 } while (pgd++, addr = next, addr != end);
2345 return err;
2347 EXPORT_SYMBOL_GPL(apply_to_page_range);
2350 * handle_pte_fault chooses page fault handler according to an entry
2351 * which was read non-atomically. Before making any commitment, on
2352 * those architectures or configurations (e.g. i386 with PAE) which
2353 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2354 * must check under lock before unmapping the pte and proceeding
2355 * (but do_wp_page is only called after already making such a check;
2356 * and do_anonymous_page can safely check later on).
2358 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2359 pte_t *page_table, pte_t orig_pte)
2361 int same = 1;
2362 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2363 if (sizeof(pte_t) > sizeof(unsigned long)) {
2364 spinlock_t *ptl = pte_lockptr(mm, pmd);
2365 spin_lock(ptl);
2366 same = pte_same(*page_table, orig_pte);
2367 spin_unlock(ptl);
2369 #endif
2370 pte_unmap(page_table);
2371 return same;
2374 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2377 * If the source page was a PFN mapping, we don't have
2378 * a "struct page" for it. We do a best-effort copy by
2379 * just copying from the original user address. If that
2380 * fails, we just zero-fill it. Live with it.
2382 if (unlikely(!src)) {
2383 void *kaddr = kmap_atomic(dst, KM_USER0);
2384 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2387 * This really shouldn't fail, because the page is there
2388 * in the page tables. But it might just be unreadable,
2389 * in which case we just give up and fill the result with
2390 * zeroes.
2392 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2393 clear_page(kaddr);
2394 kunmap_atomic(kaddr, KM_USER0);
2395 flush_dcache_page(dst);
2396 } else
2397 copy_user_highpage(dst, src, va, vma);
2401 * This routine handles present pages, when users try to write
2402 * to a shared page. It is done by copying the page to a new address
2403 * and decrementing the shared-page counter for the old page.
2405 * Note that this routine assumes that the protection checks have been
2406 * done by the caller (the low-level page fault routine in most cases).
2407 * Thus we can safely just mark it writable once we've done any necessary
2408 * COW.
2410 * We also mark the page dirty at this point even though the page will
2411 * change only once the write actually happens. This avoids a few races,
2412 * and potentially makes it more efficient.
2414 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2415 * but allow concurrent faults), with pte both mapped and locked.
2416 * We return with mmap_sem still held, but pte unmapped and unlocked.
2418 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2419 unsigned long address, pte_t *page_table, pmd_t *pmd,
2420 spinlock_t *ptl, pte_t orig_pte)
2421 __releases(ptl)
2423 struct page *old_page, *new_page;
2424 pte_t entry;
2425 int ret = 0;
2426 int page_mkwrite = 0;
2427 struct page *dirty_page = NULL;
2429 old_page = vm_normal_page(vma, address, orig_pte);
2430 if (!old_page) {
2432 * VM_MIXEDMAP !pfn_valid() case
2434 * We should not cow pages in a shared writeable mapping.
2435 * Just mark the pages writable as we can't do any dirty
2436 * accounting on raw pfn maps.
2438 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2439 (VM_WRITE|VM_SHARED))
2440 goto reuse;
2441 goto gotten;
2445 * Take out anonymous pages first, anonymous shared vmas are
2446 * not dirty accountable.
2448 if (PageAnon(old_page) && !PageKsm(old_page)) {
2449 if (!trylock_page(old_page)) {
2450 page_cache_get(old_page);
2451 pte_unmap_unlock(page_table, ptl);
2452 lock_page(old_page);
2453 page_table = pte_offset_map_lock(mm, pmd, address,
2454 &ptl);
2455 if (!pte_same(*page_table, orig_pte)) {
2456 unlock_page(old_page);
2457 goto unlock;
2459 page_cache_release(old_page);
2461 if (reuse_swap_page(old_page)) {
2463 * The page is all ours. Move it to our anon_vma so
2464 * the rmap code will not search our parent or siblings.
2465 * Protected against the rmap code by the page lock.
2467 page_move_anon_rmap(old_page, vma, address);
2468 unlock_page(old_page);
2469 goto reuse;
2471 unlock_page(old_page);
2472 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2473 (VM_WRITE|VM_SHARED))) {
2475 * Only catch write-faults on shared writable pages,
2476 * read-only shared pages can get COWed by
2477 * get_user_pages(.write=1, .force=1).
2479 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2480 struct vm_fault vmf;
2481 int tmp;
2483 vmf.virtual_address = (void __user *)(address &
2484 PAGE_MASK);
2485 vmf.pgoff = old_page->index;
2486 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2487 vmf.page = old_page;
2490 * Notify the address space that the page is about to
2491 * become writable so that it can prohibit this or wait
2492 * for the page to get into an appropriate state.
2494 * We do this without the lock held, so that it can
2495 * sleep if it needs to.
2497 page_cache_get(old_page);
2498 pte_unmap_unlock(page_table, ptl);
2500 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2501 if (unlikely(tmp &
2502 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2503 ret = tmp;
2504 goto unwritable_page;
2506 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2507 lock_page(old_page);
2508 if (!old_page->mapping) {
2509 ret = 0; /* retry the fault */
2510 unlock_page(old_page);
2511 goto unwritable_page;
2513 } else
2514 VM_BUG_ON(!PageLocked(old_page));
2517 * Since we dropped the lock we need to revalidate
2518 * the PTE as someone else may have changed it. If
2519 * they did, we just return, as we can count on the
2520 * MMU to tell us if they didn't also make it writable.
2522 page_table = pte_offset_map_lock(mm, pmd, address,
2523 &ptl);
2524 if (!pte_same(*page_table, orig_pte)) {
2525 unlock_page(old_page);
2526 goto unlock;
2529 page_mkwrite = 1;
2531 dirty_page = old_page;
2532 get_page(dirty_page);
2534 reuse:
2535 flush_cache_page(vma, address, pte_pfn(orig_pte));
2536 entry = pte_mkyoung(orig_pte);
2537 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2538 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2539 update_mmu_cache(vma, address, page_table);
2540 pte_unmap_unlock(page_table, ptl);
2541 ret |= VM_FAULT_WRITE;
2543 if (!dirty_page)
2544 return ret;
2547 * Yes, Virginia, this is actually required to prevent a race
2548 * with clear_page_dirty_for_io() from clearing the page dirty
2549 * bit after it clear all dirty ptes, but before a racing
2550 * do_wp_page installs a dirty pte.
2552 * __do_fault is protected similarly.
2554 if (!page_mkwrite) {
2555 wait_on_page_locked(dirty_page);
2556 set_page_dirty_balance(dirty_page, page_mkwrite);
2558 put_page(dirty_page);
2559 if (page_mkwrite) {
2560 struct address_space *mapping = dirty_page->mapping;
2562 set_page_dirty(dirty_page);
2563 unlock_page(dirty_page);
2564 page_cache_release(dirty_page);
2565 if (mapping) {
2567 * Some device drivers do not set page.mapping
2568 * but still dirty their pages
2570 balance_dirty_pages_ratelimited(mapping);
2574 /* file_update_time outside page_lock */
2575 if (vma->vm_file)
2576 file_update_time(vma->vm_file);
2578 return ret;
2582 * Ok, we need to copy. Oh, well..
2584 page_cache_get(old_page);
2585 gotten:
2586 pte_unmap_unlock(page_table, ptl);
2588 if (unlikely(anon_vma_prepare(vma)))
2589 goto oom;
2591 if (is_zero_pfn(pte_pfn(orig_pte))) {
2592 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2593 if (!new_page)
2594 goto oom;
2595 } else {
2596 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2597 if (!new_page)
2598 goto oom;
2599 cow_user_page(new_page, old_page, address, vma);
2601 __SetPageUptodate(new_page);
2603 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2604 goto oom_free_new;
2607 * Re-check the pte - we dropped the lock
2609 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2610 if (likely(pte_same(*page_table, orig_pte))) {
2611 if (old_page) {
2612 if (!PageAnon(old_page)) {
2613 dec_mm_counter_fast(mm, MM_FILEPAGES);
2614 inc_mm_counter_fast(mm, MM_ANONPAGES);
2616 } else
2617 inc_mm_counter_fast(mm, MM_ANONPAGES);
2618 flush_cache_page(vma, address, pte_pfn(orig_pte));
2619 entry = mk_pte(new_page, vma->vm_page_prot);
2620 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2622 * Clear the pte entry and flush it first, before updating the
2623 * pte with the new entry. This will avoid a race condition
2624 * seen in the presence of one thread doing SMC and another
2625 * thread doing COW.
2627 ptep_clear_flush(vma, address, page_table);
2628 page_add_new_anon_rmap(new_page, vma, address);
2630 * We call the notify macro here because, when using secondary
2631 * mmu page tables (such as kvm shadow page tables), we want the
2632 * new page to be mapped directly into the secondary page table.
2634 set_pte_at_notify(mm, address, page_table, entry);
2635 update_mmu_cache(vma, address, page_table);
2636 if (old_page) {
2638 * Only after switching the pte to the new page may
2639 * we remove the mapcount here. Otherwise another
2640 * process may come and find the rmap count decremented
2641 * before the pte is switched to the new page, and
2642 * "reuse" the old page writing into it while our pte
2643 * here still points into it and can be read by other
2644 * threads.
2646 * The critical issue is to order this
2647 * page_remove_rmap with the ptp_clear_flush above.
2648 * Those stores are ordered by (if nothing else,)
2649 * the barrier present in the atomic_add_negative
2650 * in page_remove_rmap.
2652 * Then the TLB flush in ptep_clear_flush ensures that
2653 * no process can access the old page before the
2654 * decremented mapcount is visible. And the old page
2655 * cannot be reused until after the decremented
2656 * mapcount is visible. So transitively, TLBs to
2657 * old page will be flushed before it can be reused.
2659 page_remove_rmap(old_page);
2662 /* Free the old page.. */
2663 new_page = old_page;
2664 ret |= VM_FAULT_WRITE;
2665 } else
2666 mem_cgroup_uncharge_page(new_page);
2668 if (new_page)
2669 page_cache_release(new_page);
2670 unlock:
2671 pte_unmap_unlock(page_table, ptl);
2672 if (old_page) {
2674 * Don't let another task, with possibly unlocked vma,
2675 * keep the mlocked page.
2677 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2678 lock_page(old_page); /* LRU manipulation */
2679 munlock_vma_page(old_page);
2680 unlock_page(old_page);
2682 page_cache_release(old_page);
2684 return ret;
2685 oom_free_new:
2686 page_cache_release(new_page);
2687 oom:
2688 if (old_page) {
2689 if (page_mkwrite) {
2690 unlock_page(old_page);
2691 page_cache_release(old_page);
2693 page_cache_release(old_page);
2695 return VM_FAULT_OOM;
2697 unwritable_page:
2698 page_cache_release(old_page);
2699 return ret;
2702 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2703 unsigned long start_addr, unsigned long end_addr,
2704 struct zap_details *details)
2706 zap_page_range(vma, start_addr, end_addr - start_addr, details);
2709 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2710 struct zap_details *details)
2712 struct vm_area_struct *vma;
2713 struct prio_tree_iter iter;
2714 pgoff_t vba, vea, zba, zea;
2716 vma_prio_tree_foreach(vma, &iter, root,
2717 details->first_index, details->last_index) {
2719 vba = vma->vm_pgoff;
2720 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2721 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2722 zba = details->first_index;
2723 if (zba < vba)
2724 zba = vba;
2725 zea = details->last_index;
2726 if (zea > vea)
2727 zea = vea;
2729 unmap_mapping_range_vma(vma,
2730 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2731 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2732 details);
2736 static inline void unmap_mapping_range_list(struct list_head *head,
2737 struct zap_details *details)
2739 struct vm_area_struct *vma;
2742 * In nonlinear VMAs there is no correspondence between virtual address
2743 * offset and file offset. So we must perform an exhaustive search
2744 * across *all* the pages in each nonlinear VMA, not just the pages
2745 * whose virtual address lies outside the file truncation point.
2747 list_for_each_entry(vma, head, shared.vm_set.list) {
2748 details->nonlinear_vma = vma;
2749 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2754 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2755 * @mapping: the address space containing mmaps to be unmapped.
2756 * @holebegin: byte in first page to unmap, relative to the start of
2757 * the underlying file. This will be rounded down to a PAGE_SIZE
2758 * boundary. Note that this is different from truncate_pagecache(), which
2759 * must keep the partial page. In contrast, we must get rid of
2760 * partial pages.
2761 * @holelen: size of prospective hole in bytes. This will be rounded
2762 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2763 * end of the file.
2764 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2765 * but 0 when invalidating pagecache, don't throw away private data.
2767 void unmap_mapping_range(struct address_space *mapping,
2768 loff_t const holebegin, loff_t const holelen, int even_cows)
2770 struct zap_details details;
2771 pgoff_t hba = holebegin >> PAGE_SHIFT;
2772 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2774 /* Check for overflow. */
2775 if (sizeof(holelen) > sizeof(hlen)) {
2776 long long holeend =
2777 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2778 if (holeend & ~(long long)ULONG_MAX)
2779 hlen = ULONG_MAX - hba + 1;
2782 details.check_mapping = even_cows? NULL: mapping;
2783 details.nonlinear_vma = NULL;
2784 details.first_index = hba;
2785 details.last_index = hba + hlen - 1;
2786 if (details.last_index < details.first_index)
2787 details.last_index = ULONG_MAX;
2790 mutex_lock(&mapping->i_mmap_mutex);
2791 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2792 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2793 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2794 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2795 mutex_unlock(&mapping->i_mmap_mutex);
2797 EXPORT_SYMBOL(unmap_mapping_range);
2799 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2801 struct address_space *mapping = inode->i_mapping;
2804 * If the underlying filesystem is not going to provide
2805 * a way to truncate a range of blocks (punch a hole) -
2806 * we should return failure right now.
2808 if (!inode->i_op->truncate_range)
2809 return -ENOSYS;
2811 mutex_lock(&inode->i_mutex);
2812 down_write(&inode->i_alloc_sem);
2813 unmap_mapping_range(mapping, offset, (end - offset), 1);
2814 truncate_inode_pages_range(mapping, offset, end);
2815 unmap_mapping_range(mapping, offset, (end - offset), 1);
2816 inode->i_op->truncate_range(inode, offset, end);
2817 up_write(&inode->i_alloc_sem);
2818 mutex_unlock(&inode->i_mutex);
2820 return 0;
2824 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2825 * but allow concurrent faults), and pte mapped but not yet locked.
2826 * We return with mmap_sem still held, but pte unmapped and unlocked.
2828 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2829 unsigned long address, pte_t *page_table, pmd_t *pmd,
2830 unsigned int flags, pte_t orig_pte)
2832 spinlock_t *ptl;
2833 struct page *page, *swapcache = NULL;
2834 swp_entry_t entry;
2835 pte_t pte;
2836 int locked;
2837 struct mem_cgroup *ptr;
2838 int exclusive = 0;
2839 int ret = 0;
2841 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2842 goto out;
2844 entry = pte_to_swp_entry(orig_pte);
2845 if (unlikely(non_swap_entry(entry))) {
2846 if (is_migration_entry(entry)) {
2847 migration_entry_wait(mm, pmd, address);
2848 } else if (is_hwpoison_entry(entry)) {
2849 ret = VM_FAULT_HWPOISON;
2850 } else {
2851 print_bad_pte(vma, address, orig_pte, NULL);
2852 ret = VM_FAULT_SIGBUS;
2854 goto out;
2856 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2857 page = lookup_swap_cache(entry);
2858 if (!page) {
2859 grab_swap_token(mm); /* Contend for token _before_ read-in */
2860 page = swapin_readahead(entry,
2861 GFP_HIGHUSER_MOVABLE, vma, address);
2862 if (!page) {
2864 * Back out if somebody else faulted in this pte
2865 * while we released the pte lock.
2867 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2868 if (likely(pte_same(*page_table, orig_pte)))
2869 ret = VM_FAULT_OOM;
2870 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2871 goto unlock;
2874 /* Had to read the page from swap area: Major fault */
2875 ret = VM_FAULT_MAJOR;
2876 count_vm_event(PGMAJFAULT);
2877 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2878 } else if (PageHWPoison(page)) {
2880 * hwpoisoned dirty swapcache pages are kept for killing
2881 * owner processes (which may be unknown at hwpoison time)
2883 ret = VM_FAULT_HWPOISON;
2884 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2885 goto out_release;
2888 locked = lock_page_or_retry(page, mm, flags);
2889 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2890 if (!locked) {
2891 ret |= VM_FAULT_RETRY;
2892 goto out_release;
2896 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2897 * release the swapcache from under us. The page pin, and pte_same
2898 * test below, are not enough to exclude that. Even if it is still
2899 * swapcache, we need to check that the page's swap has not changed.
2901 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2902 goto out_page;
2904 if (ksm_might_need_to_copy(page, vma, address)) {
2905 swapcache = page;
2906 page = ksm_does_need_to_copy(page, vma, address);
2908 if (unlikely(!page)) {
2909 ret = VM_FAULT_OOM;
2910 page = swapcache;
2911 swapcache = NULL;
2912 goto out_page;
2916 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2917 ret = VM_FAULT_OOM;
2918 goto out_page;
2922 * Back out if somebody else already faulted in this pte.
2924 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2925 if (unlikely(!pte_same(*page_table, orig_pte)))
2926 goto out_nomap;
2928 if (unlikely(!PageUptodate(page))) {
2929 ret = VM_FAULT_SIGBUS;
2930 goto out_nomap;
2934 * The page isn't present yet, go ahead with the fault.
2936 * Be careful about the sequence of operations here.
2937 * To get its accounting right, reuse_swap_page() must be called
2938 * while the page is counted on swap but not yet in mapcount i.e.
2939 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2940 * must be called after the swap_free(), or it will never succeed.
2941 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2942 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2943 * in page->private. In this case, a record in swap_cgroup is silently
2944 * discarded at swap_free().
2947 inc_mm_counter_fast(mm, MM_ANONPAGES);
2948 dec_mm_counter_fast(mm, MM_SWAPENTS);
2949 pte = mk_pte(page, vma->vm_page_prot);
2950 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2951 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2952 flags &= ~FAULT_FLAG_WRITE;
2953 ret |= VM_FAULT_WRITE;
2954 exclusive = 1;
2956 flush_icache_page(vma, page);
2957 set_pte_at(mm, address, page_table, pte);
2958 do_page_add_anon_rmap(page, vma, address, exclusive);
2959 /* It's better to call commit-charge after rmap is established */
2960 mem_cgroup_commit_charge_swapin(page, ptr);
2962 swap_free(entry);
2963 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2964 try_to_free_swap(page);
2965 unlock_page(page);
2966 if (swapcache) {
2968 * Hold the lock to avoid the swap entry to be reused
2969 * until we take the PT lock for the pte_same() check
2970 * (to avoid false positives from pte_same). For
2971 * further safety release the lock after the swap_free
2972 * so that the swap count won't change under a
2973 * parallel locked swapcache.
2975 unlock_page(swapcache);
2976 page_cache_release(swapcache);
2979 if (flags & FAULT_FLAG_WRITE) {
2980 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2981 if (ret & VM_FAULT_ERROR)
2982 ret &= VM_FAULT_ERROR;
2983 goto out;
2986 /* No need to invalidate - it was non-present before */
2987 update_mmu_cache(vma, address, page_table);
2988 unlock:
2989 pte_unmap_unlock(page_table, ptl);
2990 out:
2991 return ret;
2992 out_nomap:
2993 mem_cgroup_cancel_charge_swapin(ptr);
2994 pte_unmap_unlock(page_table, ptl);
2995 out_page:
2996 unlock_page(page);
2997 out_release:
2998 page_cache_release(page);
2999 if (swapcache) {
3000 unlock_page(swapcache);
3001 page_cache_release(swapcache);
3003 return ret;
3007 * This is like a special single-page "expand_{down|up}wards()",
3008 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3009 * doesn't hit another vma.
3011 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3013 address &= PAGE_MASK;
3014 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3015 struct vm_area_struct *prev = vma->vm_prev;
3018 * Is there a mapping abutting this one below?
3020 * That's only ok if it's the same stack mapping
3021 * that has gotten split..
3023 if (prev && prev->vm_end == address)
3024 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3026 expand_downwards(vma, address - PAGE_SIZE);
3028 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3029 struct vm_area_struct *next = vma->vm_next;
3031 /* As VM_GROWSDOWN but s/below/above/ */
3032 if (next && next->vm_start == address + PAGE_SIZE)
3033 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3035 expand_upwards(vma, address + PAGE_SIZE);
3037 return 0;
3041 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3042 * but allow concurrent faults), and pte mapped but not yet locked.
3043 * We return with mmap_sem still held, but pte unmapped and unlocked.
3045 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3046 unsigned long address, pte_t *page_table, pmd_t *pmd,
3047 unsigned int flags)
3049 struct page *page;
3050 spinlock_t *ptl;
3051 pte_t entry;
3053 pte_unmap(page_table);
3055 /* Check if we need to add a guard page to the stack */
3056 if (check_stack_guard_page(vma, address) < 0)
3057 return VM_FAULT_SIGBUS;
3059 /* Use the zero-page for reads */
3060 if (!(flags & FAULT_FLAG_WRITE)) {
3061 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3062 vma->vm_page_prot));
3063 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3064 if (!pte_none(*page_table))
3065 goto unlock;
3066 goto setpte;
3069 /* Allocate our own private page. */
3070 if (unlikely(anon_vma_prepare(vma)))
3071 goto oom;
3072 page = alloc_zeroed_user_highpage_movable(vma, address);
3073 if (!page)
3074 goto oom;
3075 __SetPageUptodate(page);
3077 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3078 goto oom_free_page;
3080 entry = mk_pte(page, vma->vm_page_prot);
3081 if (vma->vm_flags & VM_WRITE)
3082 entry = pte_mkwrite(pte_mkdirty(entry));
3084 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3085 if (!pte_none(*page_table))
3086 goto release;
3088 inc_mm_counter_fast(mm, MM_ANONPAGES);
3089 page_add_new_anon_rmap(page, vma, address);
3090 setpte:
3091 set_pte_at(mm, address, page_table, entry);
3093 /* No need to invalidate - it was non-present before */
3094 update_mmu_cache(vma, address, page_table);
3095 unlock:
3096 pte_unmap_unlock(page_table, ptl);
3097 return 0;
3098 release:
3099 mem_cgroup_uncharge_page(page);
3100 page_cache_release(page);
3101 goto unlock;
3102 oom_free_page:
3103 page_cache_release(page);
3104 oom:
3105 return VM_FAULT_OOM;
3109 * __do_fault() tries to create a new page mapping. It aggressively
3110 * tries to share with existing pages, but makes a separate copy if
3111 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3112 * the next page fault.
3114 * As this is called only for pages that do not currently exist, we
3115 * do not need to flush old virtual caches or the TLB.
3117 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3118 * but allow concurrent faults), and pte neither mapped nor locked.
3119 * We return with mmap_sem still held, but pte unmapped and unlocked.
3121 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3122 unsigned long address, pmd_t *pmd,
3123 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3125 pte_t *page_table;
3126 spinlock_t *ptl;
3127 struct page *page;
3128 pte_t entry;
3129 int anon = 0;
3130 int charged = 0;
3131 struct page *dirty_page = NULL;
3132 struct vm_fault vmf;
3133 int ret;
3134 int page_mkwrite = 0;
3136 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3137 vmf.pgoff = pgoff;
3138 vmf.flags = flags;
3139 vmf.page = NULL;
3141 ret = vma->vm_ops->fault(vma, &vmf);
3142 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3143 VM_FAULT_RETRY)))
3144 return ret;
3146 if (unlikely(PageHWPoison(vmf.page))) {
3147 if (ret & VM_FAULT_LOCKED)
3148 unlock_page(vmf.page);
3149 return VM_FAULT_HWPOISON;
3153 * For consistency in subsequent calls, make the faulted page always
3154 * locked.
3156 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3157 lock_page(vmf.page);
3158 else
3159 VM_BUG_ON(!PageLocked(vmf.page));
3162 * Should we do an early C-O-W break?
3164 page = vmf.page;
3165 if (flags & FAULT_FLAG_WRITE) {
3166 if (!(vma->vm_flags & VM_SHARED)) {
3167 anon = 1;
3168 if (unlikely(anon_vma_prepare(vma))) {
3169 ret = VM_FAULT_OOM;
3170 goto out;
3172 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
3173 vma, address);
3174 if (!page) {
3175 ret = VM_FAULT_OOM;
3176 goto out;
3178 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
3179 ret = VM_FAULT_OOM;
3180 page_cache_release(page);
3181 goto out;
3183 charged = 1;
3184 copy_user_highpage(page, vmf.page, address, vma);
3185 __SetPageUptodate(page);
3186 } else {
3188 * If the page will be shareable, see if the backing
3189 * address space wants to know that the page is about
3190 * to become writable
3192 if (vma->vm_ops->page_mkwrite) {
3193 int tmp;
3195 unlock_page(page);
3196 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3197 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3198 if (unlikely(tmp &
3199 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3200 ret = tmp;
3201 goto unwritable_page;
3203 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3204 lock_page(page);
3205 if (!page->mapping) {
3206 ret = 0; /* retry the fault */
3207 unlock_page(page);
3208 goto unwritable_page;
3210 } else
3211 VM_BUG_ON(!PageLocked(page));
3212 page_mkwrite = 1;
3218 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3221 * This silly early PAGE_DIRTY setting removes a race
3222 * due to the bad i386 page protection. But it's valid
3223 * for other architectures too.
3225 * Note that if FAULT_FLAG_WRITE is set, we either now have
3226 * an exclusive copy of the page, or this is a shared mapping,
3227 * so we can make it writable and dirty to avoid having to
3228 * handle that later.
3230 /* Only go through if we didn't race with anybody else... */
3231 if (likely(pte_same(*page_table, orig_pte))) {
3232 flush_icache_page(vma, page);
3233 entry = mk_pte(page, vma->vm_page_prot);
3234 if (flags & FAULT_FLAG_WRITE)
3235 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3236 if (anon) {
3237 inc_mm_counter_fast(mm, MM_ANONPAGES);
3238 page_add_new_anon_rmap(page, vma, address);
3239 } else {
3240 inc_mm_counter_fast(mm, MM_FILEPAGES);
3241 page_add_file_rmap(page);
3242 if (flags & FAULT_FLAG_WRITE) {
3243 dirty_page = page;
3244 get_page(dirty_page);
3247 set_pte_at(mm, address, page_table, entry);
3249 /* no need to invalidate: a not-present page won't be cached */
3250 update_mmu_cache(vma, address, page_table);
3251 } else {
3252 if (charged)
3253 mem_cgroup_uncharge_page(page);
3254 if (anon)
3255 page_cache_release(page);
3256 else
3257 anon = 1; /* no anon but release faulted_page */
3260 pte_unmap_unlock(page_table, ptl);
3262 out:
3263 if (dirty_page) {
3264 struct address_space *mapping = page->mapping;
3266 if (set_page_dirty(dirty_page))
3267 page_mkwrite = 1;
3268 unlock_page(dirty_page);
3269 put_page(dirty_page);
3270 if (page_mkwrite && mapping) {
3272 * Some device drivers do not set page.mapping but still
3273 * dirty their pages
3275 balance_dirty_pages_ratelimited(mapping);
3278 /* file_update_time outside page_lock */
3279 if (vma->vm_file)
3280 file_update_time(vma->vm_file);
3281 } else {
3282 unlock_page(vmf.page);
3283 if (anon)
3284 page_cache_release(vmf.page);
3287 return ret;
3289 unwritable_page:
3290 page_cache_release(page);
3291 return ret;
3294 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3295 unsigned long address, pte_t *page_table, pmd_t *pmd,
3296 unsigned int flags, pte_t orig_pte)
3298 pgoff_t pgoff = (((address & PAGE_MASK)
3299 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3301 pte_unmap(page_table);
3302 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3306 * Fault of a previously existing named mapping. Repopulate the pte
3307 * from the encoded file_pte if possible. This enables swappable
3308 * nonlinear vmas.
3310 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3311 * but allow concurrent faults), and pte mapped but not yet locked.
3312 * We return with mmap_sem still held, but pte unmapped and unlocked.
3314 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3315 unsigned long address, pte_t *page_table, pmd_t *pmd,
3316 unsigned int flags, pte_t orig_pte)
3318 pgoff_t pgoff;
3320 flags |= FAULT_FLAG_NONLINEAR;
3322 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3323 return 0;
3325 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3327 * Page table corrupted: show pte and kill process.
3329 print_bad_pte(vma, address, orig_pte, NULL);
3330 return VM_FAULT_SIGBUS;
3333 pgoff = pte_to_pgoff(orig_pte);
3334 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3338 * These routines also need to handle stuff like marking pages dirty
3339 * and/or accessed for architectures that don't do it in hardware (most
3340 * RISC architectures). The early dirtying is also good on the i386.
3342 * There is also a hook called "update_mmu_cache()" that architectures
3343 * with external mmu caches can use to update those (ie the Sparc or
3344 * PowerPC hashed page tables that act as extended TLBs).
3346 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3347 * but allow concurrent faults), and pte mapped but not yet locked.
3348 * We return with mmap_sem still held, but pte unmapped and unlocked.
3350 int handle_pte_fault(struct mm_struct *mm,
3351 struct vm_area_struct *vma, unsigned long address,
3352 pte_t *pte, pmd_t *pmd, unsigned int flags)
3354 pte_t entry;
3355 spinlock_t *ptl;
3357 entry = *pte;
3358 if (!pte_present(entry)) {
3359 if (pte_none(entry)) {
3360 if (vma->vm_ops) {
3361 if (likely(vma->vm_ops->fault))
3362 return do_linear_fault(mm, vma, address,
3363 pte, pmd, flags, entry);
3365 return do_anonymous_page(mm, vma, address,
3366 pte, pmd, flags);
3368 if (pte_file(entry))
3369 return do_nonlinear_fault(mm, vma, address,
3370 pte, pmd, flags, entry);
3371 return do_swap_page(mm, vma, address,
3372 pte, pmd, flags, entry);
3375 ptl = pte_lockptr(mm, pmd);
3376 spin_lock(ptl);
3377 if (unlikely(!pte_same(*pte, entry)))
3378 goto unlock;
3379 if (flags & FAULT_FLAG_WRITE) {
3380 if (!pte_write(entry))
3381 return do_wp_page(mm, vma, address,
3382 pte, pmd, ptl, entry);
3383 entry = pte_mkdirty(entry);
3385 entry = pte_mkyoung(entry);
3386 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3387 update_mmu_cache(vma, address, pte);
3388 } else {
3390 * This is needed only for protection faults but the arch code
3391 * is not yet telling us if this is a protection fault or not.
3392 * This still avoids useless tlb flushes for .text page faults
3393 * with threads.
3395 if (flags & FAULT_FLAG_WRITE)
3396 flush_tlb_fix_spurious_fault(vma, address);
3398 unlock:
3399 pte_unmap_unlock(pte, ptl);
3400 return 0;
3404 * By the time we get here, we already hold the mm semaphore
3406 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3407 unsigned long address, unsigned int flags)
3409 pgd_t *pgd;
3410 pud_t *pud;
3411 pmd_t *pmd;
3412 pte_t *pte;
3414 __set_current_state(TASK_RUNNING);
3416 count_vm_event(PGFAULT);
3417 mem_cgroup_count_vm_event(mm, PGFAULT);
3419 /* do counter updates before entering really critical section. */
3420 check_sync_rss_stat(current);
3422 if (unlikely(is_vm_hugetlb_page(vma)))
3423 return hugetlb_fault(mm, vma, address, flags);
3425 pgd = pgd_offset(mm, address);
3426 pud = pud_alloc(mm, pgd, address);
3427 if (!pud)
3428 return VM_FAULT_OOM;
3429 pmd = pmd_alloc(mm, pud, address);
3430 if (!pmd)
3431 return VM_FAULT_OOM;
3432 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3433 if (!vma->vm_ops)
3434 return do_huge_pmd_anonymous_page(mm, vma, address,
3435 pmd, flags);
3436 } else {
3437 pmd_t orig_pmd = *pmd;
3438 barrier();
3439 if (pmd_trans_huge(orig_pmd)) {
3440 if (flags & FAULT_FLAG_WRITE &&
3441 !pmd_write(orig_pmd) &&
3442 !pmd_trans_splitting(orig_pmd))
3443 return do_huge_pmd_wp_page(mm, vma, address,
3444 pmd, orig_pmd);
3445 return 0;
3450 * Use __pte_alloc instead of pte_alloc_map, because we can't
3451 * run pte_offset_map on the pmd, if an huge pmd could
3452 * materialize from under us from a different thread.
3454 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3455 return VM_FAULT_OOM;
3456 /* if an huge pmd materialized from under us just retry later */
3457 if (unlikely(pmd_trans_huge(*pmd)))
3458 return 0;
3460 * A regular pmd is established and it can't morph into a huge pmd
3461 * from under us anymore at this point because we hold the mmap_sem
3462 * read mode and khugepaged takes it in write mode. So now it's
3463 * safe to run pte_offset_map().
3465 pte = pte_offset_map(pmd, address);
3467 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3470 #ifndef __PAGETABLE_PUD_FOLDED
3472 * Allocate page upper directory.
3473 * We've already handled the fast-path in-line.
3475 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3477 pud_t *new = pud_alloc_one(mm, address);
3478 if (!new)
3479 return -ENOMEM;
3481 smp_wmb(); /* See comment in __pte_alloc */
3483 spin_lock(&mm->page_table_lock);
3484 if (pgd_present(*pgd)) /* Another has populated it */
3485 pud_free(mm, new);
3486 else
3487 pgd_populate(mm, pgd, new);
3488 spin_unlock(&mm->page_table_lock);
3489 return 0;
3491 #endif /* __PAGETABLE_PUD_FOLDED */
3493 #ifndef __PAGETABLE_PMD_FOLDED
3495 * Allocate page middle directory.
3496 * We've already handled the fast-path in-line.
3498 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3500 pmd_t *new = pmd_alloc_one(mm, address);
3501 if (!new)
3502 return -ENOMEM;
3504 smp_wmb(); /* See comment in __pte_alloc */
3506 spin_lock(&mm->page_table_lock);
3507 #ifndef __ARCH_HAS_4LEVEL_HACK
3508 if (pud_present(*pud)) /* Another has populated it */
3509 pmd_free(mm, new);
3510 else
3511 pud_populate(mm, pud, new);
3512 #else
3513 if (pgd_present(*pud)) /* Another has populated it */
3514 pmd_free(mm, new);
3515 else
3516 pgd_populate(mm, pud, new);
3517 #endif /* __ARCH_HAS_4LEVEL_HACK */
3518 spin_unlock(&mm->page_table_lock);
3519 return 0;
3521 #endif /* __PAGETABLE_PMD_FOLDED */
3523 int make_pages_present(unsigned long addr, unsigned long end)
3525 int ret, len, write;
3526 struct vm_area_struct * vma;
3528 vma = find_vma(current->mm, addr);
3529 if (!vma)
3530 return -ENOMEM;
3532 * We want to touch writable mappings with a write fault in order
3533 * to break COW, except for shared mappings because these don't COW
3534 * and we would not want to dirty them for nothing.
3536 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3537 BUG_ON(addr >= end);
3538 BUG_ON(end > vma->vm_end);
3539 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3540 ret = get_user_pages(current, current->mm, addr,
3541 len, write, 0, NULL, NULL);
3542 if (ret < 0)
3543 return ret;
3544 return ret == len ? 0 : -EFAULT;
3547 #if !defined(__HAVE_ARCH_GATE_AREA)
3549 #if defined(AT_SYSINFO_EHDR)
3550 static struct vm_area_struct gate_vma;
3552 static int __init gate_vma_init(void)
3554 gate_vma.vm_mm = NULL;
3555 gate_vma.vm_start = FIXADDR_USER_START;
3556 gate_vma.vm_end = FIXADDR_USER_END;
3557 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3558 gate_vma.vm_page_prot = __P101;
3560 * Make sure the vDSO gets into every core dump.
3561 * Dumping its contents makes post-mortem fully interpretable later
3562 * without matching up the same kernel and hardware config to see
3563 * what PC values meant.
3565 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3566 return 0;
3568 __initcall(gate_vma_init);
3569 #endif
3571 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3573 #ifdef AT_SYSINFO_EHDR
3574 return &gate_vma;
3575 #else
3576 return NULL;
3577 #endif
3580 int in_gate_area_no_mm(unsigned long addr)
3582 #ifdef AT_SYSINFO_EHDR
3583 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3584 return 1;
3585 #endif
3586 return 0;
3589 #endif /* __HAVE_ARCH_GATE_AREA */
3591 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3592 pte_t **ptepp, spinlock_t **ptlp)
3594 pgd_t *pgd;
3595 pud_t *pud;
3596 pmd_t *pmd;
3597 pte_t *ptep;
3599 pgd = pgd_offset(mm, address);
3600 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3601 goto out;
3603 pud = pud_offset(pgd, address);
3604 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3605 goto out;
3607 pmd = pmd_offset(pud, address);
3608 VM_BUG_ON(pmd_trans_huge(*pmd));
3609 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3610 goto out;
3612 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3613 if (pmd_huge(*pmd))
3614 goto out;
3616 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3617 if (!ptep)
3618 goto out;
3619 if (!pte_present(*ptep))
3620 goto unlock;
3621 *ptepp = ptep;
3622 return 0;
3623 unlock:
3624 pte_unmap_unlock(ptep, *ptlp);
3625 out:
3626 return -EINVAL;
3629 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3630 pte_t **ptepp, spinlock_t **ptlp)
3632 int res;
3634 /* (void) is needed to make gcc happy */
3635 (void) __cond_lock(*ptlp,
3636 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3637 return res;
3641 * follow_pfn - look up PFN at a user virtual address
3642 * @vma: memory mapping
3643 * @address: user virtual address
3644 * @pfn: location to store found PFN
3646 * Only IO mappings and raw PFN mappings are allowed.
3648 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3650 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3651 unsigned long *pfn)
3653 int ret = -EINVAL;
3654 spinlock_t *ptl;
3655 pte_t *ptep;
3657 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3658 return ret;
3660 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3661 if (ret)
3662 return ret;
3663 *pfn = pte_pfn(*ptep);
3664 pte_unmap_unlock(ptep, ptl);
3665 return 0;
3667 EXPORT_SYMBOL(follow_pfn);
3669 #ifdef CONFIG_HAVE_IOREMAP_PROT
3670 int follow_phys(struct vm_area_struct *vma,
3671 unsigned long address, unsigned int flags,
3672 unsigned long *prot, resource_size_t *phys)
3674 int ret = -EINVAL;
3675 pte_t *ptep, pte;
3676 spinlock_t *ptl;
3678 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3679 goto out;
3681 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3682 goto out;
3683 pte = *ptep;
3685 if ((flags & FOLL_WRITE) && !pte_write(pte))
3686 goto unlock;
3688 *prot = pgprot_val(pte_pgprot(pte));
3689 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3691 ret = 0;
3692 unlock:
3693 pte_unmap_unlock(ptep, ptl);
3694 out:
3695 return ret;
3698 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3699 void *buf, int len, int write)
3701 resource_size_t phys_addr;
3702 unsigned long prot = 0;
3703 void __iomem *maddr;
3704 int offset = addr & (PAGE_SIZE-1);
3706 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3707 return -EINVAL;
3709 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3710 if (write)
3711 memcpy_toio(maddr + offset, buf, len);
3712 else
3713 memcpy_fromio(buf, maddr + offset, len);
3714 iounmap(maddr);
3716 return len;
3718 #endif
3721 * Access another process' address space as given in mm. If non-NULL, use the
3722 * given task for page fault accounting.
3724 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3725 unsigned long addr, void *buf, int len, int write)
3727 struct vm_area_struct *vma;
3728 void *old_buf = buf;
3730 down_read(&mm->mmap_sem);
3731 /* ignore errors, just check how much was successfully transferred */
3732 while (len) {
3733 int bytes, ret, offset;
3734 void *maddr;
3735 struct page *page = NULL;
3737 ret = get_user_pages(tsk, mm, addr, 1,
3738 write, 1, &page, &vma);
3739 if (ret <= 0) {
3741 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3742 * we can access using slightly different code.
3744 #ifdef CONFIG_HAVE_IOREMAP_PROT
3745 vma = find_vma(mm, addr);
3746 if (!vma || vma->vm_start > addr)
3747 break;
3748 if (vma->vm_ops && vma->vm_ops->access)
3749 ret = vma->vm_ops->access(vma, addr, buf,
3750 len, write);
3751 if (ret <= 0)
3752 #endif
3753 break;
3754 bytes = ret;
3755 } else {
3756 bytes = len;
3757 offset = addr & (PAGE_SIZE-1);
3758 if (bytes > PAGE_SIZE-offset)
3759 bytes = PAGE_SIZE-offset;
3761 maddr = kmap(page);
3762 if (write) {
3763 copy_to_user_page(vma, page, addr,
3764 maddr + offset, buf, bytes);
3765 set_page_dirty_lock(page);
3766 } else {
3767 copy_from_user_page(vma, page, addr,
3768 buf, maddr + offset, bytes);
3770 kunmap(page);
3771 page_cache_release(page);
3773 len -= bytes;
3774 buf += bytes;
3775 addr += bytes;
3777 up_read(&mm->mmap_sem);
3779 return buf - old_buf;
3783 * access_remote_vm - access another process' address space
3784 * @mm: the mm_struct of the target address space
3785 * @addr: start address to access
3786 * @buf: source or destination buffer
3787 * @len: number of bytes to transfer
3788 * @write: whether the access is a write
3790 * The caller must hold a reference on @mm.
3792 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3793 void *buf, int len, int write)
3795 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3799 * Access another process' address space.
3800 * Source/target buffer must be kernel space,
3801 * Do not walk the page table directly, use get_user_pages
3803 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3804 void *buf, int len, int write)
3806 struct mm_struct *mm;
3807 int ret;
3809 mm = get_task_mm(tsk);
3810 if (!mm)
3811 return 0;
3813 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3814 mmput(mm);
3816 return ret;
3820 * Print the name of a VMA.
3822 void print_vma_addr(char *prefix, unsigned long ip)
3824 struct mm_struct *mm = current->mm;
3825 struct vm_area_struct *vma;
3828 * Do not print if we are in atomic
3829 * contexts (in exception stacks, etc.):
3831 if (preempt_count())
3832 return;
3834 down_read(&mm->mmap_sem);
3835 vma = find_vma(mm, ip);
3836 if (vma && vma->vm_file) {
3837 struct file *f = vma->vm_file;
3838 char *buf = (char *)__get_free_page(GFP_KERNEL);
3839 if (buf) {
3840 char *p, *s;
3842 p = d_path(&f->f_path, buf, PAGE_SIZE);
3843 if (IS_ERR(p))
3844 p = "?";
3845 s = strrchr(p, '/');
3846 if (s)
3847 p = s+1;
3848 printk("%s%s[%lx+%lx]", prefix, p,
3849 vma->vm_start,
3850 vma->vm_end - vma->vm_start);
3851 free_page((unsigned long)buf);
3854 up_read(&current->mm->mmap_sem);
3857 #ifdef CONFIG_PROVE_LOCKING
3858 void might_fault(void)
3861 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3862 * holding the mmap_sem, this is safe because kernel memory doesn't
3863 * get paged out, therefore we'll never actually fault, and the
3864 * below annotations will generate false positives.
3866 if (segment_eq(get_fs(), KERNEL_DS))
3867 return;
3869 might_sleep();
3871 * it would be nicer only to annotate paths which are not under
3872 * pagefault_disable, however that requires a larger audit and
3873 * providing helpers like get_user_atomic.
3875 if (!in_atomic() && current->mm)
3876 might_lock_read(&current->mm->mmap_sem);
3878 EXPORT_SYMBOL(might_fault);
3879 #endif
3881 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3882 static void clear_gigantic_page(struct page *page,
3883 unsigned long addr,
3884 unsigned int pages_per_huge_page)
3886 int i;
3887 struct page *p = page;
3889 might_sleep();
3890 for (i = 0; i < pages_per_huge_page;
3891 i++, p = mem_map_next(p, page, i)) {
3892 cond_resched();
3893 clear_user_highpage(p, addr + i * PAGE_SIZE);
3896 void clear_huge_page(struct page *page,
3897 unsigned long addr, unsigned int pages_per_huge_page)
3899 int i;
3901 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3902 clear_gigantic_page(page, addr, pages_per_huge_page);
3903 return;
3906 might_sleep();
3907 for (i = 0; i < pages_per_huge_page; i++) {
3908 cond_resched();
3909 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3913 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3914 unsigned long addr,
3915 struct vm_area_struct *vma,
3916 unsigned int pages_per_huge_page)
3918 int i;
3919 struct page *dst_base = dst;
3920 struct page *src_base = src;
3922 for (i = 0; i < pages_per_huge_page; ) {
3923 cond_resched();
3924 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3926 i++;
3927 dst = mem_map_next(dst, dst_base, i);
3928 src = mem_map_next(src, src_base, i);
3932 void copy_user_huge_page(struct page *dst, struct page *src,
3933 unsigned long addr, struct vm_area_struct *vma,
3934 unsigned int pages_per_huge_page)
3936 int i;
3938 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3939 copy_user_gigantic_page(dst, src, addr, vma,
3940 pages_per_huge_page);
3941 return;
3944 might_sleep();
3945 for (i = 0; i < pages_per_huge_page; i++) {
3946 cond_resched();
3947 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3950 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */