2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
66 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
67 " Smart Array G2 Series SAS/SATA Controllers");
68 MODULE_VERSION("3.6.20");
69 MODULE_LICENSE("GPL");
71 #include "cciss_cmd.h"
73 #include <linux/cciss_ioctl.h>
75 /* define the PCI info for the cards we can control */
76 static const struct pci_device_id cciss_pci_device_id
[] = {
77 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISS
, 0x0E11, 0x4070},
78 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4080},
79 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4082},
80 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4083},
81 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x4091},
82 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409A},
83 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409B},
84 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409C},
85 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409D},
86 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSA
, 0x103C, 0x3225},
87 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3223},
88 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3234},
89 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3235},
90 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3211},
91 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3212},
92 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3213},
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3214},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3215},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3237},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x323D},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
104 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
105 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
109 MODULE_DEVICE_TABLE(pci
, cciss_pci_device_id
);
111 /* board_id = Subsystem Device ID & Vendor ID
112 * product = Marketing Name for the board
113 * access = Address of the struct of function pointers
115 static struct board_type products
[] = {
116 {0x40700E11, "Smart Array 5300", &SA5_access
},
117 {0x40800E11, "Smart Array 5i", &SA5B_access
},
118 {0x40820E11, "Smart Array 532", &SA5B_access
},
119 {0x40830E11, "Smart Array 5312", &SA5B_access
},
120 {0x409A0E11, "Smart Array 641", &SA5_access
},
121 {0x409B0E11, "Smart Array 642", &SA5_access
},
122 {0x409C0E11, "Smart Array 6400", &SA5_access
},
123 {0x409D0E11, "Smart Array 6400 EM", &SA5_access
},
124 {0x40910E11, "Smart Array 6i", &SA5_access
},
125 {0x3225103C, "Smart Array P600", &SA5_access
},
126 {0x3223103C, "Smart Array P800", &SA5_access
},
127 {0x3234103C, "Smart Array P400", &SA5_access
},
128 {0x3235103C, "Smart Array P400i", &SA5_access
},
129 {0x3211103C, "Smart Array E200i", &SA5_access
},
130 {0x3212103C, "Smart Array E200", &SA5_access
},
131 {0x3213103C, "Smart Array E200i", &SA5_access
},
132 {0x3214103C, "Smart Array E200i", &SA5_access
},
133 {0x3215103C, "Smart Array E200i", &SA5_access
},
134 {0x3237103C, "Smart Array E500", &SA5_access
},
135 {0x323D103C, "Smart Array P700m", &SA5_access
},
136 {0x3241103C, "Smart Array P212", &SA5_access
},
137 {0x3243103C, "Smart Array P410", &SA5_access
},
138 {0x3245103C, "Smart Array P410i", &SA5_access
},
139 {0x3247103C, "Smart Array P411", &SA5_access
},
140 {0x3249103C, "Smart Array P812", &SA5_access
},
141 {0x324A103C, "Smart Array P712m", &SA5_access
},
142 {0x324B103C, "Smart Array P711m", &SA5_access
},
143 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
146 /* How long to wait (in milliseconds) for board to go into simple mode */
147 #define MAX_CONFIG_WAIT 30000
148 #define MAX_IOCTL_CONFIG_WAIT 1000
150 /*define how many times we will try a command because of bus resets */
151 #define MAX_CMD_RETRIES 3
155 /* Originally cciss driver only supports 8 major numbers */
156 #define MAX_CTLR_ORIG 8
158 static ctlr_info_t
*hba
[MAX_CTLR
];
160 static struct task_struct
*cciss_scan_thread
;
161 static DEFINE_MUTEX(scan_mutex
);
162 static LIST_HEAD(scan_q
);
164 static void do_cciss_request(struct request_queue
*q
);
165 static irqreturn_t
do_cciss_intr(int irq
, void *dev_id
);
166 static int cciss_open(struct block_device
*bdev
, fmode_t mode
);
167 static int cciss_release(struct gendisk
*disk
, fmode_t mode
);
168 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
169 unsigned int cmd
, unsigned long arg
);
170 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
);
172 static int cciss_revalidate(struct gendisk
*disk
);
173 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
, int via_ioctl
);
174 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
175 int clear_all
, int via_ioctl
);
177 static void cciss_read_capacity(int ctlr
, int logvol
, int withirq
,
178 sector_t
*total_size
, unsigned int *block_size
);
179 static void cciss_read_capacity_16(int ctlr
, int logvol
, int withirq
,
180 sector_t
*total_size
, unsigned int *block_size
);
181 static void cciss_geometry_inquiry(int ctlr
, int logvol
,
182 int withirq
, sector_t total_size
,
183 unsigned int block_size
, InquiryData_struct
*inq_buff
,
184 drive_info_struct
*drv
);
185 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*, struct pci_dev
*,
187 static void start_io(ctlr_info_t
*h
);
188 static int sendcmd(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
189 __u8 page_code
, unsigned char *scsi3addr
, int cmd_type
);
190 static int sendcmd_withirq(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
191 __u8 page_code
, unsigned char scsi3addr
[],
193 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
195 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
);
197 static void fail_all_cmds(unsigned long ctlr
);
198 static int add_to_scan_list(struct ctlr_info
*h
);
199 static int scan_thread(void *data
);
200 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
);
201 static void cciss_hba_release(struct device
*dev
);
202 static void cciss_device_release(struct device
*dev
);
203 static void cciss_free_gendisk(ctlr_info_t
*h
, int drv_index
);
204 static void cciss_free_drive_info(ctlr_info_t
*h
, int drv_index
);
206 #ifdef CONFIG_PROC_FS
207 static void cciss_procinit(int i
);
209 static void cciss_procinit(int i
)
212 #endif /* CONFIG_PROC_FS */
215 static int cciss_compat_ioctl(struct block_device
*, fmode_t
,
216 unsigned, unsigned long);
219 static const struct block_device_operations cciss_fops
= {
220 .owner
= THIS_MODULE
,
222 .release
= cciss_release
,
223 .locked_ioctl
= cciss_ioctl
,
224 .getgeo
= cciss_getgeo
,
226 .compat_ioctl
= cciss_compat_ioctl
,
228 .revalidate_disk
= cciss_revalidate
,
232 * Enqueuing and dequeuing functions for cmdlists.
234 static inline void addQ(struct hlist_head
*list
, CommandList_struct
*c
)
236 hlist_add_head(&c
->list
, list
);
239 static inline void removeQ(CommandList_struct
*c
)
242 * After kexec/dump some commands might still
243 * be in flight, which the firmware will try
244 * to complete. Resetting the firmware doesn't work
245 * with old fw revisions, so we have to mark
246 * them off as 'stale' to prevent the driver from
249 if (WARN_ON(hlist_unhashed(&c
->list
))) {
250 c
->cmd_type
= CMD_MSG_STALE
;
254 hlist_del_init(&c
->list
);
257 #include "cciss_scsi.c" /* For SCSI tape support */
259 static const char *raid_label
[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
262 #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
264 #ifdef CONFIG_PROC_FS
267 * Report information about this controller.
269 #define ENG_GIG 1000000000
270 #define ENG_GIG_FACTOR (ENG_GIG/512)
271 #define ENGAGE_SCSI "engage scsi"
273 static struct proc_dir_entry
*proc_cciss
;
275 static void cciss_seq_show_header(struct seq_file
*seq
)
277 ctlr_info_t
*h
= seq
->private;
279 seq_printf(seq
, "%s: HP %s Controller\n"
280 "Board ID: 0x%08lx\n"
281 "Firmware Version: %c%c%c%c\n"
283 "Logical drives: %d\n"
284 "Current Q depth: %d\n"
285 "Current # commands on controller: %d\n"
286 "Max Q depth since init: %d\n"
287 "Max # commands on controller since init: %d\n"
288 "Max SG entries since init: %d\n",
291 (unsigned long)h
->board_id
,
292 h
->firm_ver
[0], h
->firm_ver
[1], h
->firm_ver
[2],
293 h
->firm_ver
[3], (unsigned int)h
->intr
[SIMPLE_MODE_INT
],
295 h
->Qdepth
, h
->commands_outstanding
,
296 h
->maxQsinceinit
, h
->max_outstanding
, h
->maxSG
);
298 #ifdef CONFIG_CISS_SCSI_TAPE
299 cciss_seq_tape_report(seq
, h
->ctlr
);
300 #endif /* CONFIG_CISS_SCSI_TAPE */
303 static void *cciss_seq_start(struct seq_file
*seq
, loff_t
*pos
)
305 ctlr_info_t
*h
= seq
->private;
306 unsigned ctlr
= h
->ctlr
;
309 /* prevent displaying bogus info during configuration
310 * or deconfiguration of a logical volume
312 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
313 if (h
->busy_configuring
) {
314 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
315 return ERR_PTR(-EBUSY
);
317 h
->busy_configuring
= 1;
318 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
321 cciss_seq_show_header(seq
);
326 static int cciss_seq_show(struct seq_file
*seq
, void *v
)
328 sector_t vol_sz
, vol_sz_frac
;
329 ctlr_info_t
*h
= seq
->private;
330 unsigned ctlr
= h
->ctlr
;
332 drive_info_struct
*drv
= h
->drv
[*pos
];
334 if (*pos
> h
->highest_lun
)
340 vol_sz
= drv
->nr_blocks
;
341 vol_sz_frac
= sector_div(vol_sz
, ENG_GIG_FACTOR
);
343 sector_div(vol_sz_frac
, ENG_GIG_FACTOR
);
345 if (drv
->raid_level
< 0 || drv
->raid_level
> RAID_UNKNOWN
)
346 drv
->raid_level
= RAID_UNKNOWN
;
347 seq_printf(seq
, "cciss/c%dd%d:"
348 "\t%4u.%02uGB\tRAID %s\n",
349 ctlr
, (int) *pos
, (int)vol_sz
, (int)vol_sz_frac
,
350 raid_label
[drv
->raid_level
]);
354 static void *cciss_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
356 ctlr_info_t
*h
= seq
->private;
358 if (*pos
> h
->highest_lun
)
365 static void cciss_seq_stop(struct seq_file
*seq
, void *v
)
367 ctlr_info_t
*h
= seq
->private;
369 /* Only reset h->busy_configuring if we succeeded in setting
370 * it during cciss_seq_start. */
371 if (v
== ERR_PTR(-EBUSY
))
374 h
->busy_configuring
= 0;
377 static const struct seq_operations cciss_seq_ops
= {
378 .start
= cciss_seq_start
,
379 .show
= cciss_seq_show
,
380 .next
= cciss_seq_next
,
381 .stop
= cciss_seq_stop
,
384 static int cciss_seq_open(struct inode
*inode
, struct file
*file
)
386 int ret
= seq_open(file
, &cciss_seq_ops
);
387 struct seq_file
*seq
= file
->private_data
;
390 seq
->private = PDE(inode
)->data
;
396 cciss_proc_write(struct file
*file
, const char __user
*buf
,
397 size_t length
, loff_t
*ppos
)
402 #ifndef CONFIG_CISS_SCSI_TAPE
406 if (!buf
|| length
> PAGE_SIZE
- 1)
409 buffer
= (char *)__get_free_page(GFP_KERNEL
);
414 if (copy_from_user(buffer
, buf
, length
))
416 buffer
[length
] = '\0';
418 #ifdef CONFIG_CISS_SCSI_TAPE
419 if (strncmp(ENGAGE_SCSI
, buffer
, sizeof ENGAGE_SCSI
- 1) == 0) {
420 struct seq_file
*seq
= file
->private_data
;
421 ctlr_info_t
*h
= seq
->private;
424 rc
= cciss_engage_scsi(h
->ctlr
);
430 #endif /* CONFIG_CISS_SCSI_TAPE */
432 /* might be nice to have "disengage" too, but it's not
433 safely possible. (only 1 module use count, lock issues.) */
436 free_page((unsigned long)buffer
);
440 static const struct file_operations cciss_proc_fops
= {
441 .owner
= THIS_MODULE
,
442 .open
= cciss_seq_open
,
445 .release
= seq_release
,
446 .write
= cciss_proc_write
,
449 static void __devinit
cciss_procinit(int i
)
451 struct proc_dir_entry
*pde
;
453 if (proc_cciss
== NULL
)
454 proc_cciss
= proc_mkdir("driver/cciss", NULL
);
457 pde
= proc_create_data(hba
[i
]->devname
, S_IWUSR
| S_IRUSR
| S_IRGRP
|
459 &cciss_proc_fops
, hba
[i
]);
461 #endif /* CONFIG_PROC_FS */
463 #define MAX_PRODUCT_NAME_LEN 19
465 #define to_hba(n) container_of(n, struct ctlr_info, dev)
466 #define to_drv(n) container_of(n, drive_info_struct, dev)
468 static ssize_t
host_store_rescan(struct device
*dev
,
469 struct device_attribute
*attr
,
470 const char *buf
, size_t count
)
472 struct ctlr_info
*h
= to_hba(dev
);
475 wake_up_process(cciss_scan_thread
);
476 wait_for_completion_interruptible(&h
->scan_wait
);
480 DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
482 static ssize_t
dev_show_unique_id(struct device
*dev
,
483 struct device_attribute
*attr
,
486 drive_info_struct
*drv
= to_drv(dev
);
487 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
492 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
493 if (h
->busy_configuring
)
496 memcpy(sn
, drv
->serial_no
, sizeof(sn
));
497 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
502 return snprintf(buf
, 16 * 2 + 2,
503 "%02X%02X%02X%02X%02X%02X%02X%02X"
504 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
505 sn
[0], sn
[1], sn
[2], sn
[3],
506 sn
[4], sn
[5], sn
[6], sn
[7],
507 sn
[8], sn
[9], sn
[10], sn
[11],
508 sn
[12], sn
[13], sn
[14], sn
[15]);
510 DEVICE_ATTR(unique_id
, S_IRUGO
, dev_show_unique_id
, NULL
);
512 static ssize_t
dev_show_vendor(struct device
*dev
,
513 struct device_attribute
*attr
,
516 drive_info_struct
*drv
= to_drv(dev
);
517 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
518 char vendor
[VENDOR_LEN
+ 1];
522 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
523 if (h
->busy_configuring
)
526 memcpy(vendor
, drv
->vendor
, VENDOR_LEN
+ 1);
527 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
532 return snprintf(buf
, sizeof(vendor
) + 1, "%s\n", drv
->vendor
);
534 DEVICE_ATTR(vendor
, S_IRUGO
, dev_show_vendor
, NULL
);
536 static ssize_t
dev_show_model(struct device
*dev
,
537 struct device_attribute
*attr
,
540 drive_info_struct
*drv
= to_drv(dev
);
541 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
542 char model
[MODEL_LEN
+ 1];
546 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
547 if (h
->busy_configuring
)
550 memcpy(model
, drv
->model
, MODEL_LEN
+ 1);
551 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
556 return snprintf(buf
, sizeof(model
) + 1, "%s\n", drv
->model
);
558 DEVICE_ATTR(model
, S_IRUGO
, dev_show_model
, NULL
);
560 static ssize_t
dev_show_rev(struct device
*dev
,
561 struct device_attribute
*attr
,
564 drive_info_struct
*drv
= to_drv(dev
);
565 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
566 char rev
[REV_LEN
+ 1];
570 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
571 if (h
->busy_configuring
)
574 memcpy(rev
, drv
->rev
, REV_LEN
+ 1);
575 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
580 return snprintf(buf
, sizeof(rev
) + 1, "%s\n", drv
->rev
);
582 DEVICE_ATTR(rev
, S_IRUGO
, dev_show_rev
, NULL
);
584 static ssize_t
cciss_show_lunid(struct device
*dev
,
585 struct device_attribute
*attr
, char *buf
)
587 drive_info_struct
*drv
= to_drv(dev
);
588 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
590 unsigned char lunid
[8];
592 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
593 if (h
->busy_configuring
) {
594 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
598 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
601 memcpy(lunid
, drv
->LunID
, sizeof(lunid
));
602 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
603 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
604 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
605 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
607 DEVICE_ATTR(lunid
, S_IRUGO
, cciss_show_lunid
, NULL
);
609 static ssize_t
cciss_show_raid_level(struct device
*dev
,
610 struct device_attribute
*attr
, char *buf
)
612 drive_info_struct
*drv
= to_drv(dev
);
613 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
617 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
618 if (h
->busy_configuring
) {
619 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
622 raid
= drv
->raid_level
;
623 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
624 if (raid
< 0 || raid
> RAID_UNKNOWN
)
627 return snprintf(buf
, strlen(raid_label
[raid
]) + 7, "RAID %s\n",
630 DEVICE_ATTR(raid_level
, S_IRUGO
, cciss_show_raid_level
, NULL
);
632 static ssize_t
cciss_show_usage_count(struct device
*dev
,
633 struct device_attribute
*attr
, char *buf
)
635 drive_info_struct
*drv
= to_drv(dev
);
636 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
640 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
641 if (h
->busy_configuring
) {
642 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
645 count
= drv
->usage_count
;
646 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
647 return snprintf(buf
, 20, "%d\n", count
);
649 DEVICE_ATTR(usage_count
, S_IRUGO
, cciss_show_usage_count
, NULL
);
651 static struct attribute
*cciss_host_attrs
[] = {
652 &dev_attr_rescan
.attr
,
656 static struct attribute_group cciss_host_attr_group
= {
657 .attrs
= cciss_host_attrs
,
660 static const struct attribute_group
*cciss_host_attr_groups
[] = {
661 &cciss_host_attr_group
,
665 static struct device_type cciss_host_type
= {
666 .name
= "cciss_host",
667 .groups
= cciss_host_attr_groups
,
668 .release
= cciss_hba_release
,
671 static struct attribute
*cciss_dev_attrs
[] = {
672 &dev_attr_unique_id
.attr
,
673 &dev_attr_model
.attr
,
674 &dev_attr_vendor
.attr
,
676 &dev_attr_lunid
.attr
,
677 &dev_attr_raid_level
.attr
,
678 &dev_attr_usage_count
.attr
,
682 static struct attribute_group cciss_dev_attr_group
= {
683 .attrs
= cciss_dev_attrs
,
686 static const struct attribute_group
*cciss_dev_attr_groups
[] = {
687 &cciss_dev_attr_group
,
691 static struct device_type cciss_dev_type
= {
692 .name
= "cciss_device",
693 .groups
= cciss_dev_attr_groups
,
694 .release
= cciss_device_release
,
697 static struct bus_type cciss_bus_type
= {
702 * cciss_hba_release is called when the reference count
703 * of h->dev goes to zero.
705 static void cciss_hba_release(struct device
*dev
)
708 * nothing to do, but need this to avoid a warning
709 * about not having a release handler from lib/kref.c.
714 * Initialize sysfs entry for each controller. This sets up and registers
715 * the 'cciss#' directory for each individual controller under
716 * /sys/bus/pci/devices/<dev>/.
718 static int cciss_create_hba_sysfs_entry(struct ctlr_info
*h
)
720 device_initialize(&h
->dev
);
721 h
->dev
.type
= &cciss_host_type
;
722 h
->dev
.bus
= &cciss_bus_type
;
723 dev_set_name(&h
->dev
, "%s", h
->devname
);
724 h
->dev
.parent
= &h
->pdev
->dev
;
726 return device_add(&h
->dev
);
730 * Remove sysfs entries for an hba.
732 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info
*h
)
735 put_device(&h
->dev
); /* final put. */
738 /* cciss_device_release is called when the reference count
739 * of h->drv[x]dev goes to zero.
741 static void cciss_device_release(struct device
*dev
)
743 drive_info_struct
*drv
= to_drv(dev
);
748 * Initialize sysfs for each logical drive. This sets up and registers
749 * the 'c#d#' directory for each individual logical drive under
750 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
751 * /sys/block/cciss!c#d# to this entry.
753 static long cciss_create_ld_sysfs_entry(struct ctlr_info
*h
,
758 if (h
->drv
[drv_index
]->device_initialized
)
761 dev
= &h
->drv
[drv_index
]->dev
;
762 device_initialize(dev
);
763 dev
->type
= &cciss_dev_type
;
764 dev
->bus
= &cciss_bus_type
;
765 dev_set_name(dev
, "c%dd%d", h
->ctlr
, drv_index
);
766 dev
->parent
= &h
->dev
;
767 h
->drv
[drv_index
]->device_initialized
= 1;
768 return device_add(dev
);
772 * Remove sysfs entries for a logical drive.
774 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info
*h
, int drv_index
,
777 struct device
*dev
= &h
->drv
[drv_index
]->dev
;
779 /* special case for c*d0, we only destroy it on controller exit */
780 if (drv_index
== 0 && !ctlr_exiting
)
784 put_device(dev
); /* the "final" put. */
785 h
->drv
[drv_index
] = NULL
;
789 * For operations that cannot sleep, a command block is allocated at init,
790 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
791 * which ones are free or in use. For operations that can wait for kmalloc
792 * to possible sleep, this routine can be called with get_from_pool set to 0.
793 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
795 static CommandList_struct
*cmd_alloc(ctlr_info_t
*h
, int get_from_pool
)
797 CommandList_struct
*c
;
800 dma_addr_t cmd_dma_handle
, err_dma_handle
;
802 if (!get_from_pool
) {
803 c
= (CommandList_struct
*) pci_alloc_consistent(h
->pdev
,
804 sizeof(CommandList_struct
), &cmd_dma_handle
);
807 memset(c
, 0, sizeof(CommandList_struct
));
811 c
->err_info
= (ErrorInfo_struct
*)
812 pci_alloc_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
815 if (c
->err_info
== NULL
) {
816 pci_free_consistent(h
->pdev
,
817 sizeof(CommandList_struct
), c
, cmd_dma_handle
);
820 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
821 } else { /* get it out of the controllers pool */
824 i
= find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
);
827 } while (test_and_set_bit
828 (i
& (BITS_PER_LONG
- 1),
829 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
)) != 0);
831 printk(KERN_DEBUG
"cciss: using command buffer %d\n", i
);
834 memset(c
, 0, sizeof(CommandList_struct
));
835 cmd_dma_handle
= h
->cmd_pool_dhandle
836 + i
* sizeof(CommandList_struct
);
837 c
->err_info
= h
->errinfo_pool
+ i
;
838 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
839 err_dma_handle
= h
->errinfo_pool_dhandle
840 + i
* sizeof(ErrorInfo_struct
);
846 INIT_HLIST_NODE(&c
->list
);
847 c
->busaddr
= (__u32
) cmd_dma_handle
;
848 temp64
.val
= (__u64
) err_dma_handle
;
849 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
850 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
851 c
->ErrDesc
.Len
= sizeof(ErrorInfo_struct
);
858 * Frees a command block that was previously allocated with cmd_alloc().
860 static void cmd_free(ctlr_info_t
*h
, CommandList_struct
*c
, int got_from_pool
)
865 if (!got_from_pool
) {
866 temp64
.val32
.lower
= c
->ErrDesc
.Addr
.lower
;
867 temp64
.val32
.upper
= c
->ErrDesc
.Addr
.upper
;
868 pci_free_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
869 c
->err_info
, (dma_addr_t
) temp64
.val
);
870 pci_free_consistent(h
->pdev
, sizeof(CommandList_struct
),
871 c
, (dma_addr_t
) c
->busaddr
);
874 clear_bit(i
& (BITS_PER_LONG
- 1),
875 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
880 static inline ctlr_info_t
*get_host(struct gendisk
*disk
)
882 return disk
->queue
->queuedata
;
885 static inline drive_info_struct
*get_drv(struct gendisk
*disk
)
887 return disk
->private_data
;
891 * Open. Make sure the device is really there.
893 static int cciss_open(struct block_device
*bdev
, fmode_t mode
)
895 ctlr_info_t
*host
= get_host(bdev
->bd_disk
);
896 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
899 printk(KERN_DEBUG
"cciss_open %s\n", bdev
->bd_disk
->disk_name
);
900 #endif /* CCISS_DEBUG */
902 if (drv
->busy_configuring
)
905 * Root is allowed to open raw volume zero even if it's not configured
906 * so array config can still work. Root is also allowed to open any
907 * volume that has a LUN ID, so it can issue IOCTL to reread the
908 * disk information. I don't think I really like this
909 * but I'm already using way to many device nodes to claim another one
910 * for "raw controller".
912 if (drv
->heads
== 0) {
913 if (MINOR(bdev
->bd_dev
) != 0) { /* not node 0? */
914 /* if not node 0 make sure it is a partition = 0 */
915 if (MINOR(bdev
->bd_dev
) & 0x0f) {
917 /* if it is, make sure we have a LUN ID */
918 } else if (memcmp(drv
->LunID
, CTLR_LUNID
,
919 sizeof(drv
->LunID
))) {
923 if (!capable(CAP_SYS_ADMIN
))
934 static int cciss_release(struct gendisk
*disk
, fmode_t mode
)
936 ctlr_info_t
*host
= get_host(disk
);
937 drive_info_struct
*drv
= get_drv(disk
);
940 printk(KERN_DEBUG
"cciss_release %s\n", disk
->disk_name
);
941 #endif /* CCISS_DEBUG */
950 static int do_ioctl(struct block_device
*bdev
, fmode_t mode
,
951 unsigned cmd
, unsigned long arg
)
955 ret
= cciss_ioctl(bdev
, mode
, cmd
, arg
);
960 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
961 unsigned cmd
, unsigned long arg
);
962 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
963 unsigned cmd
, unsigned long arg
);
965 static int cciss_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
966 unsigned cmd
, unsigned long arg
)
969 case CCISS_GETPCIINFO
:
970 case CCISS_GETINTINFO
:
971 case CCISS_SETINTINFO
:
972 case CCISS_GETNODENAME
:
973 case CCISS_SETNODENAME
:
974 case CCISS_GETHEARTBEAT
:
975 case CCISS_GETBUSTYPES
:
976 case CCISS_GETFIRMVER
:
977 case CCISS_GETDRIVVER
:
978 case CCISS_REVALIDVOLS
:
979 case CCISS_DEREGDISK
:
980 case CCISS_REGNEWDISK
:
982 case CCISS_RESCANDISK
:
983 case CCISS_GETLUNINFO
:
984 return do_ioctl(bdev
, mode
, cmd
, arg
);
986 case CCISS_PASSTHRU32
:
987 return cciss_ioctl32_passthru(bdev
, mode
, cmd
, arg
);
988 case CCISS_BIG_PASSTHRU32
:
989 return cciss_ioctl32_big_passthru(bdev
, mode
, cmd
, arg
);
996 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
997 unsigned cmd
, unsigned long arg
)
999 IOCTL32_Command_struct __user
*arg32
=
1000 (IOCTL32_Command_struct __user
*) arg
;
1001 IOCTL_Command_struct arg64
;
1002 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
1008 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
1009 sizeof(arg64
.LUN_info
));
1011 copy_from_user(&arg64
.Request
, &arg32
->Request
,
1012 sizeof(arg64
.Request
));
1014 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
1015 sizeof(arg64
.error_info
));
1016 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
1017 err
|= get_user(cp
, &arg32
->buf
);
1018 arg64
.buf
= compat_ptr(cp
);
1019 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
1024 err
= do_ioctl(bdev
, mode
, CCISS_PASSTHRU
, (unsigned long)p
);
1028 copy_in_user(&arg32
->error_info
, &p
->error_info
,
1029 sizeof(arg32
->error_info
));
1035 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
1036 unsigned cmd
, unsigned long arg
)
1038 BIG_IOCTL32_Command_struct __user
*arg32
=
1039 (BIG_IOCTL32_Command_struct __user
*) arg
;
1040 BIG_IOCTL_Command_struct arg64
;
1041 BIG_IOCTL_Command_struct __user
*p
=
1042 compat_alloc_user_space(sizeof(arg64
));
1048 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
1049 sizeof(arg64
.LUN_info
));
1051 copy_from_user(&arg64
.Request
, &arg32
->Request
,
1052 sizeof(arg64
.Request
));
1054 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
1055 sizeof(arg64
.error_info
));
1056 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
1057 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
1058 err
|= get_user(cp
, &arg32
->buf
);
1059 arg64
.buf
= compat_ptr(cp
);
1060 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
1065 err
= do_ioctl(bdev
, mode
, CCISS_BIG_PASSTHRU
, (unsigned long)p
);
1069 copy_in_user(&arg32
->error_info
, &p
->error_info
,
1070 sizeof(arg32
->error_info
));
1077 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
1079 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
1081 if (!drv
->cylinders
)
1084 geo
->heads
= drv
->heads
;
1085 geo
->sectors
= drv
->sectors
;
1086 geo
->cylinders
= drv
->cylinders
;
1090 static void check_ioctl_unit_attention(ctlr_info_t
*host
, CommandList_struct
*c
)
1092 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
1093 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
1094 (void)check_for_unit_attention(host
, c
);
1099 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
1100 unsigned int cmd
, unsigned long arg
)
1102 struct gendisk
*disk
= bdev
->bd_disk
;
1103 ctlr_info_t
*host
= get_host(disk
);
1104 drive_info_struct
*drv
= get_drv(disk
);
1105 int ctlr
= host
->ctlr
;
1106 void __user
*argp
= (void __user
*)arg
;
1109 printk(KERN_DEBUG
"cciss_ioctl: Called with cmd=%x %lx\n", cmd
, arg
);
1110 #endif /* CCISS_DEBUG */
1113 case CCISS_GETPCIINFO
:
1115 cciss_pci_info_struct pciinfo
;
1119 pciinfo
.domain
= pci_domain_nr(host
->pdev
->bus
);
1120 pciinfo
.bus
= host
->pdev
->bus
->number
;
1121 pciinfo
.dev_fn
= host
->pdev
->devfn
;
1122 pciinfo
.board_id
= host
->board_id
;
1124 (argp
, &pciinfo
, sizeof(cciss_pci_info_struct
)))
1128 case CCISS_GETINTINFO
:
1130 cciss_coalint_struct intinfo
;
1134 readl(&host
->cfgtable
->HostWrite
.CoalIntDelay
);
1136 readl(&host
->cfgtable
->HostWrite
.CoalIntCount
);
1138 (argp
, &intinfo
, sizeof(cciss_coalint_struct
)))
1142 case CCISS_SETINTINFO
:
1144 cciss_coalint_struct intinfo
;
1145 unsigned long flags
;
1150 if (!capable(CAP_SYS_ADMIN
))
1153 (&intinfo
, argp
, sizeof(cciss_coalint_struct
)))
1155 if ((intinfo
.delay
== 0) && (intinfo
.count
== 0))
1157 // printk("cciss_ioctl: delay and count cannot be 0\n");
1160 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1161 /* Update the field, and then ring the doorbell */
1162 writel(intinfo
.delay
,
1163 &(host
->cfgtable
->HostWrite
.CoalIntDelay
));
1164 writel(intinfo
.count
,
1165 &(host
->cfgtable
->HostWrite
.CoalIntCount
));
1166 writel(CFGTBL_ChangeReq
, host
->vaddr
+ SA5_DOORBELL
);
1168 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1169 if (!(readl(host
->vaddr
+ SA5_DOORBELL
)
1170 & CFGTBL_ChangeReq
))
1172 /* delay and try again */
1175 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1176 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1180 case CCISS_GETNODENAME
:
1182 NodeName_type NodeName
;
1187 for (i
= 0; i
< 16; i
++)
1189 readb(&host
->cfgtable
->ServerName
[i
]);
1190 if (copy_to_user(argp
, NodeName
, sizeof(NodeName_type
)))
1194 case CCISS_SETNODENAME
:
1196 NodeName_type NodeName
;
1197 unsigned long flags
;
1202 if (!capable(CAP_SYS_ADMIN
))
1206 (NodeName
, argp
, sizeof(NodeName_type
)))
1209 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1211 /* Update the field, and then ring the doorbell */
1212 for (i
= 0; i
< 16; i
++)
1214 &host
->cfgtable
->ServerName
[i
]);
1216 writel(CFGTBL_ChangeReq
, host
->vaddr
+ SA5_DOORBELL
);
1218 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1219 if (!(readl(host
->vaddr
+ SA5_DOORBELL
)
1220 & CFGTBL_ChangeReq
))
1222 /* delay and try again */
1225 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1226 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1231 case CCISS_GETHEARTBEAT
:
1233 Heartbeat_type heartbeat
;
1237 heartbeat
= readl(&host
->cfgtable
->HeartBeat
);
1239 (argp
, &heartbeat
, sizeof(Heartbeat_type
)))
1243 case CCISS_GETBUSTYPES
:
1245 BusTypes_type BusTypes
;
1249 BusTypes
= readl(&host
->cfgtable
->BusTypes
);
1251 (argp
, &BusTypes
, sizeof(BusTypes_type
)))
1255 case CCISS_GETFIRMVER
:
1257 FirmwareVer_type firmware
;
1261 memcpy(firmware
, host
->firm_ver
, 4);
1264 (argp
, firmware
, sizeof(FirmwareVer_type
)))
1268 case CCISS_GETDRIVVER
:
1270 DriverVer_type DriverVer
= DRIVER_VERSION
;
1276 (argp
, &DriverVer
, sizeof(DriverVer_type
)))
1281 case CCISS_DEREGDISK
:
1283 case CCISS_REVALIDVOLS
:
1284 return rebuild_lun_table(host
, 0, 1);
1286 case CCISS_GETLUNINFO
:{
1287 LogvolInfo_struct luninfo
;
1289 memcpy(&luninfo
.LunID
, drv
->LunID
,
1290 sizeof(luninfo
.LunID
));
1291 luninfo
.num_opens
= drv
->usage_count
;
1292 luninfo
.num_parts
= 0;
1293 if (copy_to_user(argp
, &luninfo
,
1294 sizeof(LogvolInfo_struct
)))
1298 case CCISS_PASSTHRU
:
1300 IOCTL_Command_struct iocommand
;
1301 CommandList_struct
*c
;
1304 unsigned long flags
;
1305 DECLARE_COMPLETION_ONSTACK(wait
);
1310 if (!capable(CAP_SYS_RAWIO
))
1314 (&iocommand
, argp
, sizeof(IOCTL_Command_struct
)))
1316 if ((iocommand
.buf_size
< 1) &&
1317 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
1320 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1321 /* Check kmalloc limits */
1322 if (iocommand
.buf_size
> 128000)
1325 if (iocommand
.buf_size
> 0) {
1326 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
1330 if (iocommand
.Request
.Type
.Direction
== XFER_WRITE
) {
1331 /* Copy the data into the buffer we created */
1333 (buff
, iocommand
.buf
, iocommand
.buf_size
)) {
1338 memset(buff
, 0, iocommand
.buf_size
);
1340 if ((c
= cmd_alloc(host
, 0)) == NULL
) {
1344 // Fill in the command type
1345 c
->cmd_type
= CMD_IOCTL_PEND
;
1346 // Fill in Command Header
1347 c
->Header
.ReplyQueue
= 0; // unused in simple mode
1348 if (iocommand
.buf_size
> 0) // buffer to fill
1350 c
->Header
.SGList
= 1;
1351 c
->Header
.SGTotal
= 1;
1352 } else // no buffers to fill
1354 c
->Header
.SGList
= 0;
1355 c
->Header
.SGTotal
= 0;
1357 c
->Header
.LUN
= iocommand
.LUN_info
;
1358 c
->Header
.Tag
.lower
= c
->busaddr
; // use the kernel address the cmd block for tag
1360 // Fill in Request block
1361 c
->Request
= iocommand
.Request
;
1363 // Fill in the scatter gather information
1364 if (iocommand
.buf_size
> 0) {
1365 temp64
.val
= pci_map_single(host
->pdev
, buff
,
1367 PCI_DMA_BIDIRECTIONAL
);
1368 c
->SG
[0].Addr
.lower
= temp64
.val32
.lower
;
1369 c
->SG
[0].Addr
.upper
= temp64
.val32
.upper
;
1370 c
->SG
[0].Len
= iocommand
.buf_size
;
1371 c
->SG
[0].Ext
= 0; // we are not chaining
1375 /* Put the request on the tail of the request queue */
1376 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1377 addQ(&host
->reqQ
, c
);
1380 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1382 wait_for_completion(&wait
);
1384 /* unlock the buffers from DMA */
1385 temp64
.val32
.lower
= c
->SG
[0].Addr
.lower
;
1386 temp64
.val32
.upper
= c
->SG
[0].Addr
.upper
;
1387 pci_unmap_single(host
->pdev
, (dma_addr_t
) temp64
.val
,
1389 PCI_DMA_BIDIRECTIONAL
);
1391 check_ioctl_unit_attention(host
, c
);
1393 /* Copy the error information out */
1394 iocommand
.error_info
= *(c
->err_info
);
1396 (argp
, &iocommand
, sizeof(IOCTL_Command_struct
))) {
1398 cmd_free(host
, c
, 0);
1402 if (iocommand
.Request
.Type
.Direction
== XFER_READ
) {
1403 /* Copy the data out of the buffer we created */
1405 (iocommand
.buf
, buff
, iocommand
.buf_size
)) {
1407 cmd_free(host
, c
, 0);
1412 cmd_free(host
, c
, 0);
1415 case CCISS_BIG_PASSTHRU
:{
1416 BIG_IOCTL_Command_struct
*ioc
;
1417 CommandList_struct
*c
;
1418 unsigned char **buff
= NULL
;
1419 int *buff_size
= NULL
;
1421 unsigned long flags
;
1425 DECLARE_COMPLETION_ONSTACK(wait
);
1428 BYTE __user
*data_ptr
;
1432 if (!capable(CAP_SYS_RAWIO
))
1434 ioc
= (BIG_IOCTL_Command_struct
*)
1435 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
1440 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
1444 if ((ioc
->buf_size
< 1) &&
1445 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
1449 /* Check kmalloc limits using all SGs */
1450 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
1454 if (ioc
->buf_size
> ioc
->malloc_size
* MAXSGENTRIES
) {
1459 kzalloc(MAXSGENTRIES
* sizeof(char *), GFP_KERNEL
);
1464 buff_size
= kmalloc(MAXSGENTRIES
* sizeof(int),
1470 left
= ioc
->buf_size
;
1471 data_ptr
= ioc
->buf
;
1474 ioc
->malloc_size
) ? ioc
->
1476 buff_size
[sg_used
] = sz
;
1477 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
1478 if (buff
[sg_used
] == NULL
) {
1482 if (ioc
->Request
.Type
.Direction
== XFER_WRITE
) {
1484 (buff
[sg_used
], data_ptr
, sz
)) {
1489 memset(buff
[sg_used
], 0, sz
);
1495 if ((c
= cmd_alloc(host
, 0)) == NULL
) {
1499 c
->cmd_type
= CMD_IOCTL_PEND
;
1500 c
->Header
.ReplyQueue
= 0;
1502 if (ioc
->buf_size
> 0) {
1503 c
->Header
.SGList
= sg_used
;
1504 c
->Header
.SGTotal
= sg_used
;
1506 c
->Header
.SGList
= 0;
1507 c
->Header
.SGTotal
= 0;
1509 c
->Header
.LUN
= ioc
->LUN_info
;
1510 c
->Header
.Tag
.lower
= c
->busaddr
;
1512 c
->Request
= ioc
->Request
;
1513 if (ioc
->buf_size
> 0) {
1515 for (i
= 0; i
< sg_used
; i
++) {
1517 pci_map_single(host
->pdev
, buff
[i
],
1519 PCI_DMA_BIDIRECTIONAL
);
1520 c
->SG
[i
].Addr
.lower
=
1522 c
->SG
[i
].Addr
.upper
=
1524 c
->SG
[i
].Len
= buff_size
[i
];
1525 c
->SG
[i
].Ext
= 0; /* we are not chaining */
1529 /* Put the request on the tail of the request queue */
1530 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1531 addQ(&host
->reqQ
, c
);
1534 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1535 wait_for_completion(&wait
);
1536 /* unlock the buffers from DMA */
1537 for (i
= 0; i
< sg_used
; i
++) {
1538 temp64
.val32
.lower
= c
->SG
[i
].Addr
.lower
;
1539 temp64
.val32
.upper
= c
->SG
[i
].Addr
.upper
;
1540 pci_unmap_single(host
->pdev
,
1541 (dma_addr_t
) temp64
.val
, buff_size
[i
],
1542 PCI_DMA_BIDIRECTIONAL
);
1544 check_ioctl_unit_attention(host
, c
);
1545 /* Copy the error information out */
1546 ioc
->error_info
= *(c
->err_info
);
1547 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
1548 cmd_free(host
, c
, 0);
1552 if (ioc
->Request
.Type
.Direction
== XFER_READ
) {
1553 /* Copy the data out of the buffer we created */
1554 BYTE __user
*ptr
= ioc
->buf
;
1555 for (i
= 0; i
< sg_used
; i
++) {
1557 (ptr
, buff
[i
], buff_size
[i
])) {
1558 cmd_free(host
, c
, 0);
1562 ptr
+= buff_size
[i
];
1565 cmd_free(host
, c
, 0);
1569 for (i
= 0; i
< sg_used
; i
++)
1578 /* scsi_cmd_ioctl handles these, below, though some are not */
1579 /* very meaningful for cciss. SG_IO is the main one people want. */
1581 case SG_GET_VERSION_NUM
:
1582 case SG_SET_TIMEOUT
:
1583 case SG_GET_TIMEOUT
:
1584 case SG_GET_RESERVED_SIZE
:
1585 case SG_SET_RESERVED_SIZE
:
1586 case SG_EMULATED_HOST
:
1588 case SCSI_IOCTL_SEND_COMMAND
:
1589 return scsi_cmd_ioctl(disk
->queue
, disk
, mode
, cmd
, argp
);
1591 /* scsi_cmd_ioctl would normally handle these, below, but */
1592 /* they aren't a good fit for cciss, as CD-ROMs are */
1593 /* not supported, and we don't have any bus/target/lun */
1594 /* which we present to the kernel. */
1596 case CDROM_SEND_PACKET
:
1597 case CDROMCLOSETRAY
:
1599 case SCSI_IOCTL_GET_IDLUN
:
1600 case SCSI_IOCTL_GET_BUS_NUMBER
:
1606 static void cciss_check_queues(ctlr_info_t
*h
)
1608 int start_queue
= h
->next_to_run
;
1611 /* check to see if we have maxed out the number of commands that can
1612 * be placed on the queue. If so then exit. We do this check here
1613 * in case the interrupt we serviced was from an ioctl and did not
1614 * free any new commands.
1616 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
)
1619 /* We have room on the queue for more commands. Now we need to queue
1620 * them up. We will also keep track of the next queue to run so
1621 * that every queue gets a chance to be started first.
1623 for (i
= 0; i
< h
->highest_lun
+ 1; i
++) {
1624 int curr_queue
= (start_queue
+ i
) % (h
->highest_lun
+ 1);
1625 /* make sure the disk has been added and the drive is real
1626 * because this can be called from the middle of init_one.
1628 if (!h
->drv
[curr_queue
])
1630 if (!(h
->drv
[curr_queue
]->queue
) ||
1631 !(h
->drv
[curr_queue
]->heads
))
1633 blk_start_queue(h
->gendisk
[curr_queue
]->queue
);
1635 /* check to see if we have maxed out the number of commands
1636 * that can be placed on the queue.
1638 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
) {
1639 if (curr_queue
== start_queue
) {
1641 (start_queue
+ 1) % (h
->highest_lun
+ 1);
1644 h
->next_to_run
= curr_queue
;
1651 static void cciss_softirq_done(struct request
*rq
)
1653 CommandList_struct
*cmd
= rq
->completion_data
;
1654 ctlr_info_t
*h
= hba
[cmd
->ctlr
];
1655 unsigned long flags
;
1659 if (cmd
->Request
.Type
.Direction
== XFER_READ
)
1660 ddir
= PCI_DMA_FROMDEVICE
;
1662 ddir
= PCI_DMA_TODEVICE
;
1664 /* command did not need to be retried */
1665 /* unmap the DMA mapping for all the scatter gather elements */
1666 for (i
= 0; i
< cmd
->Header
.SGList
; i
++) {
1667 temp64
.val32
.lower
= cmd
->SG
[i
].Addr
.lower
;
1668 temp64
.val32
.upper
= cmd
->SG
[i
].Addr
.upper
;
1669 pci_unmap_page(h
->pdev
, temp64
.val
, cmd
->SG
[i
].Len
, ddir
);
1673 printk("Done with %p\n", rq
);
1674 #endif /* CCISS_DEBUG */
1676 /* set the residual count for pc requests */
1677 if (blk_pc_request(rq
))
1678 rq
->resid_len
= cmd
->err_info
->ResidualCnt
;
1680 blk_end_request_all(rq
, (rq
->errors
== 0) ? 0 : -EIO
);
1682 spin_lock_irqsave(&h
->lock
, flags
);
1683 cmd_free(h
, cmd
, 1);
1684 cciss_check_queues(h
);
1685 spin_unlock_irqrestore(&h
->lock
, flags
);
1688 static inline void log_unit_to_scsi3addr(ctlr_info_t
*h
,
1689 unsigned char scsi3addr
[], uint32_t log_unit
)
1691 memcpy(scsi3addr
, h
->drv
[log_unit
]->LunID
,
1692 sizeof(h
->drv
[log_unit
]->LunID
));
1695 /* This function gets the SCSI vendor, model, and revision of a logical drive
1696 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1697 * they cannot be read.
1699 static void cciss_get_device_descr(int ctlr
, int logvol
, int withirq
,
1700 char *vendor
, char *model
, char *rev
)
1703 InquiryData_struct
*inq_buf
;
1704 unsigned char scsi3addr
[8];
1710 inq_buf
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1714 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
1716 rc
= sendcmd_withirq(CISS_INQUIRY
, ctlr
, inq_buf
,
1717 sizeof(InquiryData_struct
), 0,
1718 scsi3addr
, TYPE_CMD
);
1720 rc
= sendcmd(CISS_INQUIRY
, ctlr
, inq_buf
,
1721 sizeof(InquiryData_struct
), 0,
1722 scsi3addr
, TYPE_CMD
);
1724 memcpy(vendor
, &inq_buf
->data_byte
[8], VENDOR_LEN
);
1725 vendor
[VENDOR_LEN
] = '\0';
1726 memcpy(model
, &inq_buf
->data_byte
[16], MODEL_LEN
);
1727 model
[MODEL_LEN
] = '\0';
1728 memcpy(rev
, &inq_buf
->data_byte
[32], REV_LEN
);
1729 rev
[REV_LEN
] = '\0';
1736 /* This function gets the serial number of a logical drive via
1737 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1738 * number cannot be had, for whatever reason, 16 bytes of 0xff
1739 * are returned instead.
1741 static void cciss_get_serial_no(int ctlr
, int logvol
, int withirq
,
1742 unsigned char *serial_no
, int buflen
)
1744 #define PAGE_83_INQ_BYTES 64
1747 unsigned char scsi3addr
[8];
1751 memset(serial_no
, 0xff, buflen
);
1752 buf
= kzalloc(PAGE_83_INQ_BYTES
, GFP_KERNEL
);
1755 memset(serial_no
, 0, buflen
);
1756 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
1758 rc
= sendcmd_withirq(CISS_INQUIRY
, ctlr
, buf
,
1759 PAGE_83_INQ_BYTES
, 0x83, scsi3addr
, TYPE_CMD
);
1761 rc
= sendcmd(CISS_INQUIRY
, ctlr
, buf
,
1762 PAGE_83_INQ_BYTES
, 0x83, scsi3addr
, TYPE_CMD
);
1764 memcpy(serial_no
, &buf
[8], buflen
);
1770 * cciss_add_disk sets up the block device queue for a logical drive
1772 static int cciss_add_disk(ctlr_info_t
*h
, struct gendisk
*disk
,
1775 disk
->queue
= blk_init_queue(do_cciss_request
, &h
->lock
);
1777 goto init_queue_failure
;
1778 sprintf(disk
->disk_name
, "cciss/c%dd%d", h
->ctlr
, drv_index
);
1779 disk
->major
= h
->major
;
1780 disk
->first_minor
= drv_index
<< NWD_SHIFT
;
1781 disk
->fops
= &cciss_fops
;
1782 if (cciss_create_ld_sysfs_entry(h
, drv_index
))
1784 disk
->private_data
= h
->drv
[drv_index
];
1785 disk
->driverfs_dev
= &h
->drv
[drv_index
]->dev
;
1787 /* Set up queue information */
1788 blk_queue_bounce_limit(disk
->queue
, h
->pdev
->dma_mask
);
1790 /* This is a hardware imposed limit. */
1791 blk_queue_max_hw_segments(disk
->queue
, MAXSGENTRIES
);
1793 /* This is a limit in the driver and could be eliminated. */
1794 blk_queue_max_phys_segments(disk
->queue
, MAXSGENTRIES
);
1796 blk_queue_max_sectors(disk
->queue
, h
->cciss_max_sectors
);
1798 blk_queue_softirq_done(disk
->queue
, cciss_softirq_done
);
1800 disk
->queue
->queuedata
= h
;
1802 blk_queue_logical_block_size(disk
->queue
,
1803 h
->drv
[drv_index
]->block_size
);
1805 /* Make sure all queue data is written out before */
1806 /* setting h->drv[drv_index]->queue, as setting this */
1807 /* allows the interrupt handler to start the queue */
1809 h
->drv
[drv_index
]->queue
= disk
->queue
;
1814 blk_cleanup_queue(disk
->queue
);
1820 /* This function will check the usage_count of the drive to be updated/added.
1821 * If the usage_count is zero and it is a heretofore unknown drive, or,
1822 * the drive's capacity, geometry, or serial number has changed,
1823 * then the drive information will be updated and the disk will be
1824 * re-registered with the kernel. If these conditions don't hold,
1825 * then it will be left alone for the next reboot. The exception to this
1826 * is disk 0 which will always be left registered with the kernel since it
1827 * is also the controller node. Any changes to disk 0 will show up on
1830 static void cciss_update_drive_info(int ctlr
, int drv_index
, int first_time
,
1833 ctlr_info_t
*h
= hba
[ctlr
];
1834 struct gendisk
*disk
;
1835 InquiryData_struct
*inq_buff
= NULL
;
1836 unsigned int block_size
;
1837 sector_t total_size
;
1838 unsigned long flags
= 0;
1840 drive_info_struct
*drvinfo
;
1842 /* Get information about the disk and modify the driver structure */
1843 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1844 drvinfo
= kzalloc(sizeof(*drvinfo
), GFP_KERNEL
);
1845 if (inq_buff
== NULL
|| drvinfo
== NULL
)
1848 /* testing to see if 16-byte CDBs are already being used */
1849 if (h
->cciss_read
== CCISS_READ_16
) {
1850 cciss_read_capacity_16(h
->ctlr
, drv_index
, 1,
1851 &total_size
, &block_size
);
1854 cciss_read_capacity(ctlr
, drv_index
, 1,
1855 &total_size
, &block_size
);
1857 /* if read_capacity returns all F's this volume is >2TB */
1858 /* in size so we switch to 16-byte CDB's for all */
1859 /* read/write ops */
1860 if (total_size
== 0xFFFFFFFFULL
) {
1861 cciss_read_capacity_16(ctlr
, drv_index
, 1,
1862 &total_size
, &block_size
);
1863 h
->cciss_read
= CCISS_READ_16
;
1864 h
->cciss_write
= CCISS_WRITE_16
;
1866 h
->cciss_read
= CCISS_READ_10
;
1867 h
->cciss_write
= CCISS_WRITE_10
;
1871 cciss_geometry_inquiry(ctlr
, drv_index
, 1, total_size
, block_size
,
1873 drvinfo
->block_size
= block_size
;
1874 drvinfo
->nr_blocks
= total_size
+ 1;
1876 cciss_get_device_descr(ctlr
, drv_index
, 1, drvinfo
->vendor
,
1877 drvinfo
->model
, drvinfo
->rev
);
1878 cciss_get_serial_no(ctlr
, drv_index
, 1, drvinfo
->serial_no
,
1879 sizeof(drvinfo
->serial_no
));
1880 /* Save the lunid in case we deregister the disk, below. */
1881 memcpy(drvinfo
->LunID
, h
->drv
[drv_index
]->LunID
,
1882 sizeof(drvinfo
->LunID
));
1884 /* Is it the same disk we already know, and nothing's changed? */
1885 if (h
->drv
[drv_index
]->raid_level
!= -1 &&
1886 ((memcmp(drvinfo
->serial_no
,
1887 h
->drv
[drv_index
]->serial_no
, 16) == 0) &&
1888 drvinfo
->block_size
== h
->drv
[drv_index
]->block_size
&&
1889 drvinfo
->nr_blocks
== h
->drv
[drv_index
]->nr_blocks
&&
1890 drvinfo
->heads
== h
->drv
[drv_index
]->heads
&&
1891 drvinfo
->sectors
== h
->drv
[drv_index
]->sectors
&&
1892 drvinfo
->cylinders
== h
->drv
[drv_index
]->cylinders
))
1893 /* The disk is unchanged, nothing to update */
1896 /* If we get here it's not the same disk, or something's changed,
1897 * so we need to * deregister it, and re-register it, if it's not
1899 * If the disk already exists then deregister it before proceeding
1900 * (unless it's the first disk (for the controller node).
1902 if (h
->drv
[drv_index
]->raid_level
!= -1 && drv_index
!= 0) {
1903 printk(KERN_WARNING
"disk %d has changed.\n", drv_index
);
1904 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
1905 h
->drv
[drv_index
]->busy_configuring
= 1;
1906 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
1908 /* deregister_disk sets h->drv[drv_index]->queue = NULL
1909 * which keeps the interrupt handler from starting
1912 ret
= deregister_disk(h
, drv_index
, 0, via_ioctl
);
1915 /* If the disk is in use return */
1919 /* Save the new information from cciss_geometry_inquiry
1920 * and serial number inquiry. If the disk was deregistered
1921 * above, then h->drv[drv_index] will be NULL.
1923 if (h
->drv
[drv_index
] == NULL
) {
1924 drvinfo
->device_initialized
= 0;
1925 h
->drv
[drv_index
] = drvinfo
;
1926 drvinfo
= NULL
; /* so it won't be freed below. */
1928 /* special case for cxd0 */
1929 h
->drv
[drv_index
]->block_size
= drvinfo
->block_size
;
1930 h
->drv
[drv_index
]->nr_blocks
= drvinfo
->nr_blocks
;
1931 h
->drv
[drv_index
]->heads
= drvinfo
->heads
;
1932 h
->drv
[drv_index
]->sectors
= drvinfo
->sectors
;
1933 h
->drv
[drv_index
]->cylinders
= drvinfo
->cylinders
;
1934 h
->drv
[drv_index
]->raid_level
= drvinfo
->raid_level
;
1935 memcpy(h
->drv
[drv_index
]->serial_no
, drvinfo
->serial_no
, 16);
1936 memcpy(h
->drv
[drv_index
]->vendor
, drvinfo
->vendor
,
1938 memcpy(h
->drv
[drv_index
]->model
, drvinfo
->model
, MODEL_LEN
+ 1);
1939 memcpy(h
->drv
[drv_index
]->rev
, drvinfo
->rev
, REV_LEN
+ 1);
1943 disk
= h
->gendisk
[drv_index
];
1944 set_capacity(disk
, h
->drv
[drv_index
]->nr_blocks
);
1946 /* If it's not disk 0 (drv_index != 0)
1947 * or if it was disk 0, but there was previously
1948 * no actual corresponding configured logical drive
1949 * (raid_leve == -1) then we want to update the
1950 * logical drive's information.
1952 if (drv_index
|| first_time
) {
1953 if (cciss_add_disk(h
, disk
, drv_index
) != 0) {
1954 cciss_free_gendisk(h
, drv_index
);
1955 cciss_free_drive_info(h
, drv_index
);
1956 printk(KERN_WARNING
"cciss:%d could not update "
1957 "disk %d\n", h
->ctlr
, drv_index
);
1967 printk(KERN_ERR
"cciss: out of memory\n");
1971 /* This function will find the first index of the controllers drive array
1972 * that has a null drv pointer and allocate the drive info struct and
1973 * will return that index This is where new drives will be added.
1974 * If the index to be returned is greater than the highest_lun index for
1975 * the controller then highest_lun is set * to this new index.
1976 * If there are no available indexes or if tha allocation fails, then -1
1977 * is returned. * "controller_node" is used to know if this is a real
1978 * logical drive, or just the controller node, which determines if this
1979 * counts towards highest_lun.
1981 static int cciss_alloc_drive_info(ctlr_info_t
*h
, int controller_node
)
1984 drive_info_struct
*drv
;
1986 /* Search for an empty slot for our drive info */
1987 for (i
= 0; i
< CISS_MAX_LUN
; i
++) {
1989 /* if not cxd0 case, and it's occupied, skip it. */
1990 if (h
->drv
[i
] && i
!= 0)
1993 * If it's cxd0 case, and drv is alloc'ed already, and a
1994 * disk is configured there, skip it.
1996 if (i
== 0 && h
->drv
[i
] && h
->drv
[i
]->raid_level
!= -1)
2000 * We've found an empty slot. Update highest_lun
2001 * provided this isn't just the fake cxd0 controller node.
2003 if (i
> h
->highest_lun
&& !controller_node
)
2006 /* If adding a real disk at cxd0, and it's already alloc'ed */
2007 if (i
== 0 && h
->drv
[i
] != NULL
)
2011 * Found an empty slot, not already alloc'ed. Allocate it.
2012 * Mark it with raid_level == -1, so we know it's new later on.
2014 drv
= kzalloc(sizeof(*drv
), GFP_KERNEL
);
2017 drv
->raid_level
= -1; /* so we know it's new */
2024 static void cciss_free_drive_info(ctlr_info_t
*h
, int drv_index
)
2026 kfree(h
->drv
[drv_index
]);
2027 h
->drv
[drv_index
] = NULL
;
2030 static void cciss_free_gendisk(ctlr_info_t
*h
, int drv_index
)
2032 put_disk(h
->gendisk
[drv_index
]);
2033 h
->gendisk
[drv_index
] = NULL
;
2036 /* cciss_add_gendisk finds a free hba[]->drv structure
2037 * and allocates a gendisk if needed, and sets the lunid
2038 * in the drvinfo structure. It returns the index into
2039 * the ->drv[] array, or -1 if none are free.
2040 * is_controller_node indicates whether highest_lun should
2041 * count this disk, or if it's only being added to provide
2042 * a means to talk to the controller in case no logical
2043 * drives have yet been configured.
2045 static int cciss_add_gendisk(ctlr_info_t
*h
, unsigned char lunid
[],
2046 int controller_node
)
2050 drv_index
= cciss_alloc_drive_info(h
, controller_node
);
2051 if (drv_index
== -1)
2054 /*Check if the gendisk needs to be allocated */
2055 if (!h
->gendisk
[drv_index
]) {
2056 h
->gendisk
[drv_index
] =
2057 alloc_disk(1 << NWD_SHIFT
);
2058 if (!h
->gendisk
[drv_index
]) {
2059 printk(KERN_ERR
"cciss%d: could not "
2060 "allocate a new disk %d\n",
2061 h
->ctlr
, drv_index
);
2062 goto err_free_drive_info
;
2065 memcpy(h
->drv
[drv_index
]->LunID
, lunid
,
2066 sizeof(h
->drv
[drv_index
]->LunID
));
2067 if (cciss_create_ld_sysfs_entry(h
, drv_index
))
2069 /* Don't need to mark this busy because nobody */
2070 /* else knows about this disk yet to contend */
2071 /* for access to it. */
2072 h
->drv
[drv_index
]->busy_configuring
= 0;
2077 cciss_free_gendisk(h
, drv_index
);
2078 err_free_drive_info
:
2079 cciss_free_drive_info(h
, drv_index
);
2083 /* This is for the special case of a controller which
2084 * has no logical drives. In this case, we still need
2085 * to register a disk so the controller can be accessed
2086 * by the Array Config Utility.
2088 static void cciss_add_controller_node(ctlr_info_t
*h
)
2090 struct gendisk
*disk
;
2093 if (h
->gendisk
[0] != NULL
) /* already did this? Then bail. */
2096 drv_index
= cciss_add_gendisk(h
, CTLR_LUNID
, 1);
2097 if (drv_index
== -1)
2099 h
->drv
[drv_index
]->block_size
= 512;
2100 h
->drv
[drv_index
]->nr_blocks
= 0;
2101 h
->drv
[drv_index
]->heads
= 0;
2102 h
->drv
[drv_index
]->sectors
= 0;
2103 h
->drv
[drv_index
]->cylinders
= 0;
2104 h
->drv
[drv_index
]->raid_level
= -1;
2105 memset(h
->drv
[drv_index
]->serial_no
, 0, 16);
2106 disk
= h
->gendisk
[drv_index
];
2107 if (cciss_add_disk(h
, disk
, drv_index
) == 0)
2109 cciss_free_gendisk(h
, drv_index
);
2110 cciss_free_drive_info(h
, drv_index
);
2112 printk(KERN_WARNING
"cciss%d: could not "
2113 "add disk 0.\n", h
->ctlr
);
2117 /* This function will add and remove logical drives from the Logical
2118 * drive array of the controller and maintain persistency of ordering
2119 * so that mount points are preserved until the next reboot. This allows
2120 * for the removal of logical drives in the middle of the drive array
2121 * without a re-ordering of those drives.
2123 * h = The controller to perform the operations on
2125 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
,
2130 ReportLunData_struct
*ld_buff
= NULL
;
2136 unsigned char lunid
[8] = CTLR_LUNID
;
2137 unsigned long flags
;
2139 if (!capable(CAP_SYS_RAWIO
))
2142 /* Set busy_configuring flag for this operation */
2143 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
2144 if (h
->busy_configuring
) {
2145 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2148 h
->busy_configuring
= 1;
2149 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2151 ld_buff
= kzalloc(sizeof(ReportLunData_struct
), GFP_KERNEL
);
2152 if (ld_buff
== NULL
)
2155 return_code
= sendcmd_withirq(CISS_REPORT_LOG
, ctlr
, ld_buff
,
2156 sizeof(ReportLunData_struct
),
2157 0, CTLR_LUNID
, TYPE_CMD
);
2159 if (return_code
== IO_OK
)
2160 listlength
= be32_to_cpu(*(__be32
*) ld_buff
->LUNListLength
);
2161 else { /* reading number of logical volumes failed */
2162 printk(KERN_WARNING
"cciss: report logical volume"
2163 " command failed\n");
2168 num_luns
= listlength
/ 8; /* 8 bytes per entry */
2169 if (num_luns
> CISS_MAX_LUN
) {
2170 num_luns
= CISS_MAX_LUN
;
2171 printk(KERN_WARNING
"cciss: more luns configured"
2172 " on controller than can be handled by"
2177 cciss_add_controller_node(h
);
2179 /* Compare controller drive array to driver's drive array
2180 * to see if any drives are missing on the controller due
2181 * to action of Array Config Utility (user deletes drive)
2182 * and deregister logical drives which have disappeared.
2184 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2188 /* skip holes in the array from already deleted drives */
2189 if (h
->drv
[i
] == NULL
)
2192 for (j
= 0; j
< num_luns
; j
++) {
2193 memcpy(lunid
, &ld_buff
->LUN
[j
][0], sizeof(lunid
));
2194 if (memcmp(h
->drv
[i
]->LunID
, lunid
,
2195 sizeof(lunid
)) == 0) {
2201 /* Deregister it from the OS, it's gone. */
2202 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
2203 h
->drv
[i
]->busy_configuring
= 1;
2204 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2205 return_code
= deregister_disk(h
, i
, 1, via_ioctl
);
2206 if (h
->drv
[i
] != NULL
)
2207 h
->drv
[i
]->busy_configuring
= 0;
2211 /* Compare controller drive array to driver's drive array.
2212 * Check for updates in the drive information and any new drives
2213 * on the controller due to ACU adding logical drives, or changing
2214 * a logical drive's size, etc. Reregister any new/changed drives
2216 for (i
= 0; i
< num_luns
; i
++) {
2221 memcpy(lunid
, &ld_buff
->LUN
[i
][0], sizeof(lunid
));
2222 /* Find if the LUN is already in the drive array
2223 * of the driver. If so then update its info
2224 * if not in use. If it does not exist then find
2225 * the first free index and add it.
2227 for (j
= 0; j
<= h
->highest_lun
; j
++) {
2228 if (h
->drv
[j
] != NULL
&&
2229 memcmp(h
->drv
[j
]->LunID
, lunid
,
2230 sizeof(h
->drv
[j
]->LunID
)) == 0) {
2237 /* check if the drive was found already in the array */
2239 drv_index
= cciss_add_gendisk(h
, lunid
, 0);
2240 if (drv_index
== -1)
2243 cciss_update_drive_info(ctlr
, drv_index
, first_time
,
2249 h
->busy_configuring
= 0;
2250 /* We return -1 here to tell the ACU that we have registered/updated
2251 * all of the drives that we can and to keep it from calling us
2256 printk(KERN_ERR
"cciss: out of memory\n");
2257 h
->busy_configuring
= 0;
2261 static void cciss_clear_drive_info(drive_info_struct
*drive_info
)
2263 /* zero out the disk size info */
2264 drive_info
->nr_blocks
= 0;
2265 drive_info
->block_size
= 0;
2266 drive_info
->heads
= 0;
2267 drive_info
->sectors
= 0;
2268 drive_info
->cylinders
= 0;
2269 drive_info
->raid_level
= -1;
2270 memset(drive_info
->serial_no
, 0, sizeof(drive_info
->serial_no
));
2271 memset(drive_info
->model
, 0, sizeof(drive_info
->model
));
2272 memset(drive_info
->rev
, 0, sizeof(drive_info
->rev
));
2273 memset(drive_info
->vendor
, 0, sizeof(drive_info
->vendor
));
2275 * don't clear the LUNID though, we need to remember which
2280 /* This function will deregister the disk and it's queue from the
2281 * kernel. It must be called with the controller lock held and the
2282 * drv structures busy_configuring flag set. It's parameters are:
2284 * disk = This is the disk to be deregistered
2285 * drv = This is the drive_info_struct associated with the disk to be
2286 * deregistered. It contains information about the disk used
2288 * clear_all = This flag determines whether or not the disk information
2289 * is going to be completely cleared out and the highest_lun
2290 * reset. Sometimes we want to clear out information about
2291 * the disk in preparation for re-adding it. In this case
2292 * the highest_lun should be left unchanged and the LunID
2293 * should not be cleared.
2295 * This indicates whether we've reached this path via ioctl.
2296 * This affects the maximum usage count allowed for c0d0 to be messed with.
2297 * If this path is reached via ioctl(), then the max_usage_count will
2298 * be 1, as the process calling ioctl() has got to have the device open.
2299 * If we get here via sysfs, then the max usage count will be zero.
2301 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
2302 int clear_all
, int via_ioctl
)
2305 struct gendisk
*disk
;
2306 drive_info_struct
*drv
;
2307 int recalculate_highest_lun
;
2309 if (!capable(CAP_SYS_RAWIO
))
2312 drv
= h
->drv
[drv_index
];
2313 disk
= h
->gendisk
[drv_index
];
2315 /* make sure logical volume is NOT is use */
2316 if (clear_all
|| (h
->gendisk
[0] == disk
)) {
2317 if (drv
->usage_count
> via_ioctl
)
2319 } else if (drv
->usage_count
> 0)
2322 recalculate_highest_lun
= (drv
== h
->drv
[h
->highest_lun
]);
2324 /* invalidate the devices and deregister the disk. If it is disk
2325 * zero do not deregister it but just zero out it's values. This
2326 * allows us to delete disk zero but keep the controller registered.
2328 if (h
->gendisk
[0] != disk
) {
2329 struct request_queue
*q
= disk
->queue
;
2330 if (disk
->flags
& GENHD_FL_UP
) {
2331 cciss_destroy_ld_sysfs_entry(h
, drv_index
, 0);
2335 blk_cleanup_queue(q
);
2336 /* If clear_all is set then we are deleting the logical
2337 * drive, not just refreshing its info. For drives
2338 * other than disk 0 we will call put_disk. We do not
2339 * do this for disk 0 as we need it to be able to
2340 * configure the controller.
2343 /* This isn't pretty, but we need to find the
2344 * disk in our array and NULL our the pointer.
2345 * This is so that we will call alloc_disk if
2346 * this index is used again later.
2348 for (i
=0; i
< CISS_MAX_LUN
; i
++){
2349 if (h
->gendisk
[i
] == disk
) {
2350 h
->gendisk
[i
] = NULL
;
2357 set_capacity(disk
, 0);
2358 cciss_clear_drive_info(drv
);
2363 /* if it was the last disk, find the new hightest lun */
2364 if (clear_all
&& recalculate_highest_lun
) {
2365 int i
, newhighest
= -1;
2366 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2367 /* if the disk has size > 0, it is available */
2368 if (h
->drv
[i
] && h
->drv
[i
]->heads
)
2371 h
->highest_lun
= newhighest
;
2376 static int fill_cmd(CommandList_struct
*c
, __u8 cmd
, int ctlr
, void *buff
,
2377 size_t size
, __u8 page_code
, unsigned char *scsi3addr
,
2380 ctlr_info_t
*h
= hba
[ctlr
];
2381 u64bit buff_dma_handle
;
2384 c
->cmd_type
= CMD_IOCTL_PEND
;
2385 c
->Header
.ReplyQueue
= 0;
2387 c
->Header
.SGList
= 1;
2388 c
->Header
.SGTotal
= 1;
2390 c
->Header
.SGList
= 0;
2391 c
->Header
.SGTotal
= 0;
2393 c
->Header
.Tag
.lower
= c
->busaddr
;
2394 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
2396 c
->Request
.Type
.Type
= cmd_type
;
2397 if (cmd_type
== TYPE_CMD
) {
2400 /* are we trying to read a vital product page */
2401 if (page_code
!= 0) {
2402 c
->Request
.CDB
[1] = 0x01;
2403 c
->Request
.CDB
[2] = page_code
;
2405 c
->Request
.CDBLen
= 6;
2406 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2407 c
->Request
.Type
.Direction
= XFER_READ
;
2408 c
->Request
.Timeout
= 0;
2409 c
->Request
.CDB
[0] = CISS_INQUIRY
;
2410 c
->Request
.CDB
[4] = size
& 0xFF;
2412 case CISS_REPORT_LOG
:
2413 case CISS_REPORT_PHYS
:
2414 /* Talking to controller so It's a physical command
2415 mode = 00 target = 0. Nothing to write.
2417 c
->Request
.CDBLen
= 12;
2418 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2419 c
->Request
.Type
.Direction
= XFER_READ
;
2420 c
->Request
.Timeout
= 0;
2421 c
->Request
.CDB
[0] = cmd
;
2422 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; //MSB
2423 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
2424 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
2425 c
->Request
.CDB
[9] = size
& 0xFF;
2428 case CCISS_READ_CAPACITY
:
2429 c
->Request
.CDBLen
= 10;
2430 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2431 c
->Request
.Type
.Direction
= XFER_READ
;
2432 c
->Request
.Timeout
= 0;
2433 c
->Request
.CDB
[0] = cmd
;
2435 case CCISS_READ_CAPACITY_16
:
2436 c
->Request
.CDBLen
= 16;
2437 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2438 c
->Request
.Type
.Direction
= XFER_READ
;
2439 c
->Request
.Timeout
= 0;
2440 c
->Request
.CDB
[0] = cmd
;
2441 c
->Request
.CDB
[1] = 0x10;
2442 c
->Request
.CDB
[10] = (size
>> 24) & 0xFF;
2443 c
->Request
.CDB
[11] = (size
>> 16) & 0xFF;
2444 c
->Request
.CDB
[12] = (size
>> 8) & 0xFF;
2445 c
->Request
.CDB
[13] = size
& 0xFF;
2446 c
->Request
.Timeout
= 0;
2447 c
->Request
.CDB
[0] = cmd
;
2449 case CCISS_CACHE_FLUSH
:
2450 c
->Request
.CDBLen
= 12;
2451 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2452 c
->Request
.Type
.Direction
= XFER_WRITE
;
2453 c
->Request
.Timeout
= 0;
2454 c
->Request
.CDB
[0] = BMIC_WRITE
;
2455 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
2457 case TEST_UNIT_READY
:
2458 c
->Request
.CDBLen
= 6;
2459 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2460 c
->Request
.Type
.Direction
= XFER_NONE
;
2461 c
->Request
.Timeout
= 0;
2465 "cciss%d: Unknown Command 0x%c\n", ctlr
, cmd
);
2468 } else if (cmd_type
== TYPE_MSG
) {
2470 case 0: /* ABORT message */
2471 c
->Request
.CDBLen
= 12;
2472 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2473 c
->Request
.Type
.Direction
= XFER_WRITE
;
2474 c
->Request
.Timeout
= 0;
2475 c
->Request
.CDB
[0] = cmd
; /* abort */
2476 c
->Request
.CDB
[1] = 0; /* abort a command */
2477 /* buff contains the tag of the command to abort */
2478 memcpy(&c
->Request
.CDB
[4], buff
, 8);
2480 case 1: /* RESET message */
2481 c
->Request
.CDBLen
= 16;
2482 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2483 c
->Request
.Type
.Direction
= XFER_NONE
;
2484 c
->Request
.Timeout
= 0;
2485 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
2486 c
->Request
.CDB
[0] = cmd
; /* reset */
2487 c
->Request
.CDB
[1] = 0x03; /* reset a target */
2489 case 3: /* No-Op message */
2490 c
->Request
.CDBLen
= 1;
2491 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2492 c
->Request
.Type
.Direction
= XFER_WRITE
;
2493 c
->Request
.Timeout
= 0;
2494 c
->Request
.CDB
[0] = cmd
;
2498 "cciss%d: unknown message type %d\n", ctlr
, cmd
);
2503 "cciss%d: unknown command type %d\n", ctlr
, cmd_type
);
2506 /* Fill in the scatter gather information */
2508 buff_dma_handle
.val
= (__u64
) pci_map_single(h
->pdev
,
2510 PCI_DMA_BIDIRECTIONAL
);
2511 c
->SG
[0].Addr
.lower
= buff_dma_handle
.val32
.lower
;
2512 c
->SG
[0].Addr
.upper
= buff_dma_handle
.val32
.upper
;
2513 c
->SG
[0].Len
= size
;
2514 c
->SG
[0].Ext
= 0; /* we are not chaining */
2519 static int check_target_status(ctlr_info_t
*h
, CommandList_struct
*c
)
2521 switch (c
->err_info
->ScsiStatus
) {
2524 case SAM_STAT_CHECK_CONDITION
:
2525 switch (0xf & c
->err_info
->SenseInfo
[2]) {
2526 case 0: return IO_OK
; /* no sense */
2527 case 1: return IO_OK
; /* recovered error */
2529 printk(KERN_WARNING
"cciss%d: cmd 0x%02x "
2530 "check condition, sense key = 0x%02x\n",
2531 h
->ctlr
, c
->Request
.CDB
[0],
2532 c
->err_info
->SenseInfo
[2]);
2536 printk(KERN_WARNING
"cciss%d: cmd 0x%02x"
2537 "scsi status = 0x%02x\n", h
->ctlr
,
2538 c
->Request
.CDB
[0], c
->err_info
->ScsiStatus
);
2544 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
)
2546 int return_status
= IO_OK
;
2548 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
2551 switch (c
->err_info
->CommandStatus
) {
2552 case CMD_TARGET_STATUS
:
2553 return_status
= check_target_status(h
, c
);
2555 case CMD_DATA_UNDERRUN
:
2556 case CMD_DATA_OVERRUN
:
2557 /* expected for inquiry and report lun commands */
2560 printk(KERN_WARNING
"cciss: cmd 0x%02x is "
2561 "reported invalid\n", c
->Request
.CDB
[0]);
2562 return_status
= IO_ERROR
;
2564 case CMD_PROTOCOL_ERR
:
2565 printk(KERN_WARNING
"cciss: cmd 0x%02x has "
2566 "protocol error \n", c
->Request
.CDB
[0]);
2567 return_status
= IO_ERROR
;
2569 case CMD_HARDWARE_ERR
:
2570 printk(KERN_WARNING
"cciss: cmd 0x%02x had "
2571 " hardware error\n", c
->Request
.CDB
[0]);
2572 return_status
= IO_ERROR
;
2574 case CMD_CONNECTION_LOST
:
2575 printk(KERN_WARNING
"cciss: cmd 0x%02x had "
2576 "connection lost\n", c
->Request
.CDB
[0]);
2577 return_status
= IO_ERROR
;
2580 printk(KERN_WARNING
"cciss: cmd 0x%02x was "
2581 "aborted\n", c
->Request
.CDB
[0]);
2582 return_status
= IO_ERROR
;
2584 case CMD_ABORT_FAILED
:
2585 printk(KERN_WARNING
"cciss: cmd 0x%02x reports "
2586 "abort failed\n", c
->Request
.CDB
[0]);
2587 return_status
= IO_ERROR
;
2589 case CMD_UNSOLICITED_ABORT
:
2591 "cciss%d: unsolicited abort 0x%02x\n", h
->ctlr
,
2593 return_status
= IO_NEEDS_RETRY
;
2596 printk(KERN_WARNING
"cciss: cmd 0x%02x returned "
2597 "unknown status %x\n", c
->Request
.CDB
[0],
2598 c
->err_info
->CommandStatus
);
2599 return_status
= IO_ERROR
;
2601 return return_status
;
2604 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
2607 DECLARE_COMPLETION_ONSTACK(wait
);
2608 u64bit buff_dma_handle
;
2609 unsigned long flags
;
2610 int return_status
= IO_OK
;
2614 /* Put the request on the tail of the queue and send it */
2615 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
2619 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2621 wait_for_completion(&wait
);
2623 if (c
->err_info
->CommandStatus
== 0 || !attempt_retry
)
2626 return_status
= process_sendcmd_error(h
, c
);
2628 if (return_status
== IO_NEEDS_RETRY
&&
2629 c
->retry_count
< MAX_CMD_RETRIES
) {
2630 printk(KERN_WARNING
"cciss%d: retrying 0x%02x\n", h
->ctlr
,
2633 /* erase the old error information */
2634 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
2635 return_status
= IO_OK
;
2636 INIT_COMPLETION(wait
);
2641 /* unlock the buffers from DMA */
2642 buff_dma_handle
.val32
.lower
= c
->SG
[0].Addr
.lower
;
2643 buff_dma_handle
.val32
.upper
= c
->SG
[0].Addr
.upper
;
2644 pci_unmap_single(h
->pdev
, (dma_addr_t
) buff_dma_handle
.val
,
2645 c
->SG
[0].Len
, PCI_DMA_BIDIRECTIONAL
);
2646 return return_status
;
2649 static int sendcmd_withirq(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
2650 __u8 page_code
, unsigned char scsi3addr
[],
2653 ctlr_info_t
*h
= hba
[ctlr
];
2654 CommandList_struct
*c
;
2657 c
= cmd_alloc(h
, 0);
2660 return_status
= fill_cmd(c
, cmd
, ctlr
, buff
, size
, page_code
,
2661 scsi3addr
, cmd_type
);
2662 if (return_status
== IO_OK
)
2663 return_status
= sendcmd_withirq_core(h
, c
, 1);
2666 return return_status
;
2669 static void cciss_geometry_inquiry(int ctlr
, int logvol
,
2670 int withirq
, sector_t total_size
,
2671 unsigned int block_size
,
2672 InquiryData_struct
*inq_buff
,
2673 drive_info_struct
*drv
)
2677 unsigned char scsi3addr
[8];
2679 memset(inq_buff
, 0, sizeof(InquiryData_struct
));
2680 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
2682 return_code
= sendcmd_withirq(CISS_INQUIRY
, ctlr
,
2683 inq_buff
, sizeof(*inq_buff
),
2684 0xC1, scsi3addr
, TYPE_CMD
);
2686 return_code
= sendcmd(CISS_INQUIRY
, ctlr
, inq_buff
,
2687 sizeof(*inq_buff
), 0xC1, scsi3addr
,
2689 if (return_code
== IO_OK
) {
2690 if (inq_buff
->data_byte
[8] == 0xFF) {
2692 "cciss: reading geometry failed, volume "
2693 "does not support reading geometry\n");
2695 drv
->sectors
= 32; // Sectors per track
2696 drv
->cylinders
= total_size
+ 1;
2697 drv
->raid_level
= RAID_UNKNOWN
;
2699 drv
->heads
= inq_buff
->data_byte
[6];
2700 drv
->sectors
= inq_buff
->data_byte
[7];
2701 drv
->cylinders
= (inq_buff
->data_byte
[4] & 0xff) << 8;
2702 drv
->cylinders
+= inq_buff
->data_byte
[5];
2703 drv
->raid_level
= inq_buff
->data_byte
[8];
2705 drv
->block_size
= block_size
;
2706 drv
->nr_blocks
= total_size
+ 1;
2707 t
= drv
->heads
* drv
->sectors
;
2709 sector_t real_size
= total_size
+ 1;
2710 unsigned long rem
= sector_div(real_size
, t
);
2713 drv
->cylinders
= real_size
;
2715 } else { /* Get geometry failed */
2716 printk(KERN_WARNING
"cciss: reading geometry failed\n");
2721 cciss_read_capacity(int ctlr
, int logvol
, int withirq
, sector_t
*total_size
,
2722 unsigned int *block_size
)
2724 ReadCapdata_struct
*buf
;
2726 unsigned char scsi3addr
[8];
2728 buf
= kzalloc(sizeof(ReadCapdata_struct
), GFP_KERNEL
);
2730 printk(KERN_WARNING
"cciss: out of memory\n");
2734 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
2736 return_code
= sendcmd_withirq(CCISS_READ_CAPACITY
,
2737 ctlr
, buf
, sizeof(ReadCapdata_struct
),
2738 0, scsi3addr
, TYPE_CMD
);
2740 return_code
= sendcmd(CCISS_READ_CAPACITY
,
2741 ctlr
, buf
, sizeof(ReadCapdata_struct
),
2742 0, scsi3addr
, TYPE_CMD
);
2743 if (return_code
== IO_OK
) {
2744 *total_size
= be32_to_cpu(*(__be32
*) buf
->total_size
);
2745 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2746 } else { /* read capacity command failed */
2747 printk(KERN_WARNING
"cciss: read capacity failed\n");
2749 *block_size
= BLOCK_SIZE
;
2755 cciss_read_capacity_16(int ctlr
, int logvol
, int withirq
, sector_t
*total_size
, unsigned int *block_size
)
2757 ReadCapdata_struct_16
*buf
;
2759 unsigned char scsi3addr
[8];
2761 buf
= kzalloc(sizeof(ReadCapdata_struct_16
), GFP_KERNEL
);
2763 printk(KERN_WARNING
"cciss: out of memory\n");
2767 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
2769 return_code
= sendcmd_withirq(CCISS_READ_CAPACITY_16
,
2770 ctlr
, buf
, sizeof(ReadCapdata_struct_16
),
2771 0, scsi3addr
, TYPE_CMD
);
2774 return_code
= sendcmd(CCISS_READ_CAPACITY_16
,
2775 ctlr
, buf
, sizeof(ReadCapdata_struct_16
),
2776 0, scsi3addr
, TYPE_CMD
);
2778 if (return_code
== IO_OK
) {
2779 *total_size
= be64_to_cpu(*(__be64
*) buf
->total_size
);
2780 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2781 } else { /* read capacity command failed */
2782 printk(KERN_WARNING
"cciss: read capacity failed\n");
2784 *block_size
= BLOCK_SIZE
;
2786 printk(KERN_INFO
" blocks= %llu block_size= %d\n",
2787 (unsigned long long)*total_size
+1, *block_size
);
2791 static int cciss_revalidate(struct gendisk
*disk
)
2793 ctlr_info_t
*h
= get_host(disk
);
2794 drive_info_struct
*drv
= get_drv(disk
);
2797 unsigned int block_size
;
2798 sector_t total_size
;
2799 InquiryData_struct
*inq_buff
= NULL
;
2801 for (logvol
= 0; logvol
< CISS_MAX_LUN
; logvol
++) {
2802 if (memcmp(h
->drv
[logvol
]->LunID
, drv
->LunID
,
2803 sizeof(drv
->LunID
)) == 0) {
2812 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
2813 if (inq_buff
== NULL
) {
2814 printk(KERN_WARNING
"cciss: out of memory\n");
2817 if (h
->cciss_read
== CCISS_READ_10
) {
2818 cciss_read_capacity(h
->ctlr
, logvol
, 1,
2819 &total_size
, &block_size
);
2821 cciss_read_capacity_16(h
->ctlr
, logvol
, 1,
2822 &total_size
, &block_size
);
2824 cciss_geometry_inquiry(h
->ctlr
, logvol
, 1, total_size
, block_size
,
2827 blk_queue_logical_block_size(drv
->queue
, drv
->block_size
);
2828 set_capacity(disk
, drv
->nr_blocks
);
2835 * Wait polling for a command to complete.
2836 * The memory mapped FIFO is polled for the completion.
2837 * Used only at init time, interrupts from the HBA are disabled.
2839 static unsigned long pollcomplete(int ctlr
)
2844 /* Wait (up to 20 seconds) for a command to complete */
2846 for (i
= 20 * HZ
; i
> 0; i
--) {
2847 done
= hba
[ctlr
]->access
.command_completed(hba
[ctlr
]);
2848 if (done
== FIFO_EMPTY
)
2849 schedule_timeout_uninterruptible(1);
2853 /* Invalid address to tell caller we ran out of time */
2857 /* Send command c to controller h and poll for it to complete.
2858 * Turns interrupts off on the board. Used at driver init time
2859 * and during SCSI error recovery.
2861 static int sendcmd_core(ctlr_info_t
*h
, CommandList_struct
*c
)
2864 unsigned long complete
;
2865 int status
= IO_ERROR
;
2866 u64bit buff_dma_handle
;
2870 /* Disable interrupt on the board. */
2871 h
->access
.set_intr_mask(h
, CCISS_INTR_OFF
);
2873 /* Make sure there is room in the command FIFO */
2874 /* Actually it should be completely empty at this time */
2875 /* unless we are in here doing error handling for the scsi */
2876 /* tape side of the driver. */
2877 for (i
= 200000; i
> 0; i
--) {
2878 /* if fifo isn't full go */
2879 if (!(h
->access
.fifo_full(h
)))
2882 printk(KERN_WARNING
"cciss cciss%d: SendCmd FIFO full,"
2883 " waiting!\n", h
->ctlr
);
2885 h
->access
.submit_command(h
, c
); /* Send the cmd */
2887 complete
= pollcomplete(h
->ctlr
);
2890 printk(KERN_DEBUG
"cciss: command completed\n");
2891 #endif /* CCISS_DEBUG */
2893 if (complete
== 1) {
2895 "cciss cciss%d: SendCmd Timeout out, "
2896 "No command list address returned!\n", h
->ctlr
);
2901 /* Make sure it's the command we're expecting. */
2902 if ((complete
& ~CISS_ERROR_BIT
) != c
->busaddr
) {
2903 printk(KERN_WARNING
"cciss%d: Unexpected command "
2904 "completion.\n", h
->ctlr
);
2908 /* It is our command. If no error, we're done. */
2909 if (!(complete
& CISS_ERROR_BIT
)) {
2914 /* There is an error... */
2916 /* if data overrun or underun on Report command ignore it */
2917 if (((c
->Request
.CDB
[0] == CISS_REPORT_LOG
) ||
2918 (c
->Request
.CDB
[0] == CISS_REPORT_PHYS
) ||
2919 (c
->Request
.CDB
[0] == CISS_INQUIRY
)) &&
2920 ((c
->err_info
->CommandStatus
== CMD_DATA_OVERRUN
) ||
2921 (c
->err_info
->CommandStatus
== CMD_DATA_UNDERRUN
))) {
2922 complete
= c
->busaddr
;
2927 if (c
->err_info
->CommandStatus
== CMD_UNSOLICITED_ABORT
) {
2928 printk(KERN_WARNING
"cciss%d: unsolicited abort %p\n",
2930 if (c
->retry_count
< MAX_CMD_RETRIES
) {
2931 printk(KERN_WARNING
"cciss%d: retrying %p\n",
2934 /* erase the old error information */
2935 memset(c
->err_info
, 0, sizeof(c
->err_info
));
2938 printk(KERN_WARNING
"cciss%d: retried %p too many "
2939 "times\n", h
->ctlr
, c
);
2944 if (c
->err_info
->CommandStatus
== CMD_UNABORTABLE
) {
2945 printk(KERN_WARNING
"cciss%d: command could not be "
2946 "aborted.\n", h
->ctlr
);
2951 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
) {
2952 status
= check_target_status(h
, c
);
2956 printk(KERN_WARNING
"cciss%d: sendcmd error\n", h
->ctlr
);
2957 printk(KERN_WARNING
"cmd = 0x%02x, CommandStatus = 0x%02x\n",
2958 c
->Request
.CDB
[0], c
->err_info
->CommandStatus
);
2964 /* unlock the data buffer from DMA */
2965 buff_dma_handle
.val32
.lower
= c
->SG
[0].Addr
.lower
;
2966 buff_dma_handle
.val32
.upper
= c
->SG
[0].Addr
.upper
;
2967 pci_unmap_single(h
->pdev
, (dma_addr_t
) buff_dma_handle
.val
,
2968 c
->SG
[0].Len
, PCI_DMA_BIDIRECTIONAL
);
2973 * Send a command to the controller, and wait for it to complete.
2974 * Used at init time, and during SCSI error recovery.
2976 static int sendcmd(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
2977 __u8 page_code
, unsigned char *scsi3addr
, int cmd_type
)
2979 CommandList_struct
*c
;
2982 c
= cmd_alloc(hba
[ctlr
], 1);
2984 printk(KERN_WARNING
"cciss: unable to get memory");
2987 status
= fill_cmd(c
, cmd
, ctlr
, buff
, size
, page_code
,
2988 scsi3addr
, cmd_type
);
2989 if (status
== IO_OK
)
2990 status
= sendcmd_core(hba
[ctlr
], c
);
2991 cmd_free(hba
[ctlr
], c
, 1);
2996 * Map (physical) PCI mem into (virtual) kernel space
2998 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
3000 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
3001 ulong page_offs
= ((ulong
) base
) - page_base
;
3002 void __iomem
*page_remapped
= ioremap(page_base
, page_offs
+ size
);
3004 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
3008 * Takes jobs of the Q and sends them to the hardware, then puts it on
3009 * the Q to wait for completion.
3011 static void start_io(ctlr_info_t
*h
)
3013 CommandList_struct
*c
;
3015 while (!hlist_empty(&h
->reqQ
)) {
3016 c
= hlist_entry(h
->reqQ
.first
, CommandList_struct
, list
);
3017 /* can't do anything if fifo is full */
3018 if ((h
->access
.fifo_full(h
))) {
3019 printk(KERN_WARNING
"cciss: fifo full\n");
3023 /* Get the first entry from the Request Q */
3027 /* Tell the controller execute command */
3028 h
->access
.submit_command(h
, c
);
3030 /* Put job onto the completed Q */
3035 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
3036 /* Zeros out the error record and then resends the command back */
3037 /* to the controller */
3038 static inline void resend_cciss_cmd(ctlr_info_t
*h
, CommandList_struct
*c
)
3040 /* erase the old error information */
3041 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
3043 /* add it to software queue and then send it to the controller */
3046 if (h
->Qdepth
> h
->maxQsinceinit
)
3047 h
->maxQsinceinit
= h
->Qdepth
;
3052 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte
,
3053 unsigned int msg_byte
, unsigned int host_byte
,
3054 unsigned int driver_byte
)
3056 /* inverse of macros in scsi.h */
3057 return (scsi_status_byte
& 0xff) |
3058 ((msg_byte
& 0xff) << 8) |
3059 ((host_byte
& 0xff) << 16) |
3060 ((driver_byte
& 0xff) << 24);
3063 static inline int evaluate_target_status(ctlr_info_t
*h
,
3064 CommandList_struct
*cmd
, int *retry_cmd
)
3066 unsigned char sense_key
;
3067 unsigned char status_byte
, msg_byte
, host_byte
, driver_byte
;
3071 /* If we get in here, it means we got "target status", that is, scsi status */
3072 status_byte
= cmd
->err_info
->ScsiStatus
;
3073 driver_byte
= DRIVER_OK
;
3074 msg_byte
= cmd
->err_info
->CommandStatus
; /* correct? seems too device specific */
3076 if (blk_pc_request(cmd
->rq
))
3077 host_byte
= DID_PASSTHROUGH
;
3081 error_value
= make_status_bytes(status_byte
, msg_byte
,
3082 host_byte
, driver_byte
);
3084 if (cmd
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
) {
3085 if (!blk_pc_request(cmd
->rq
))
3086 printk(KERN_WARNING
"cciss: cmd %p "
3087 "has SCSI Status 0x%x\n",
3088 cmd
, cmd
->err_info
->ScsiStatus
);
3092 /* check the sense key */
3093 sense_key
= 0xf & cmd
->err_info
->SenseInfo
[2];
3094 /* no status or recovered error */
3095 if (((sense_key
== 0x0) || (sense_key
== 0x1)) && !blk_pc_request(cmd
->rq
))
3098 if (check_for_unit_attention(h
, cmd
)) {
3099 *retry_cmd
= !blk_pc_request(cmd
->rq
);
3103 if (!blk_pc_request(cmd
->rq
)) { /* Not SG_IO or similar? */
3104 if (error_value
!= 0)
3105 printk(KERN_WARNING
"cciss: cmd %p has CHECK CONDITION"
3106 " sense key = 0x%x\n", cmd
, sense_key
);
3110 /* SG_IO or similar, copy sense data back */
3111 if (cmd
->rq
->sense
) {
3112 if (cmd
->rq
->sense_len
> cmd
->err_info
->SenseLen
)
3113 cmd
->rq
->sense_len
= cmd
->err_info
->SenseLen
;
3114 memcpy(cmd
->rq
->sense
, cmd
->err_info
->SenseInfo
,
3115 cmd
->rq
->sense_len
);
3117 cmd
->rq
->sense_len
= 0;
3122 /* checks the status of the job and calls complete buffers to mark all
3123 * buffers for the completed job. Note that this function does not need
3124 * to hold the hba/queue lock.
3126 static inline void complete_command(ctlr_info_t
*h
, CommandList_struct
*cmd
,
3130 struct request
*rq
= cmd
->rq
;
3135 rq
->errors
= make_status_bytes(0, 0, 0, DRIVER_TIMEOUT
);
3137 if (cmd
->err_info
->CommandStatus
== 0) /* no error has occurred */
3138 goto after_error_processing
;
3140 switch (cmd
->err_info
->CommandStatus
) {
3141 case CMD_TARGET_STATUS
:
3142 rq
->errors
= evaluate_target_status(h
, cmd
, &retry_cmd
);
3144 case CMD_DATA_UNDERRUN
:
3145 if (blk_fs_request(cmd
->rq
)) {
3146 printk(KERN_WARNING
"cciss: cmd %p has"
3147 " completed with data underrun "
3149 cmd
->rq
->resid_len
= cmd
->err_info
->ResidualCnt
;
3152 case CMD_DATA_OVERRUN
:
3153 if (blk_fs_request(cmd
->rq
))
3154 printk(KERN_WARNING
"cciss: cmd %p has"
3155 " completed with data overrun "
3159 printk(KERN_WARNING
"cciss: cmd %p is "
3160 "reported invalid\n", cmd
);
3161 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3162 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3163 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3165 case CMD_PROTOCOL_ERR
:
3166 printk(KERN_WARNING
"cciss: cmd %p has "
3167 "protocol error \n", cmd
);
3168 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3169 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3170 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3172 case CMD_HARDWARE_ERR
:
3173 printk(KERN_WARNING
"cciss: cmd %p had "
3174 " hardware error\n", cmd
);
3175 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3176 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3177 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3179 case CMD_CONNECTION_LOST
:
3180 printk(KERN_WARNING
"cciss: cmd %p had "
3181 "connection lost\n", cmd
);
3182 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3183 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3184 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3187 printk(KERN_WARNING
"cciss: cmd %p was "
3189 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3190 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3191 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ABORT
);
3193 case CMD_ABORT_FAILED
:
3194 printk(KERN_WARNING
"cciss: cmd %p reports "
3195 "abort failed\n", cmd
);
3196 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3197 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3198 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3200 case CMD_UNSOLICITED_ABORT
:
3201 printk(KERN_WARNING
"cciss%d: unsolicited "
3202 "abort %p\n", h
->ctlr
, cmd
);
3203 if (cmd
->retry_count
< MAX_CMD_RETRIES
) {
3206 "cciss%d: retrying %p\n", h
->ctlr
, cmd
);
3210 "cciss%d: %p retried too "
3211 "many times\n", h
->ctlr
, cmd
);
3212 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3213 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3214 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ABORT
);
3217 printk(KERN_WARNING
"cciss: cmd %p timedout\n", cmd
);
3218 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3219 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3220 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3223 printk(KERN_WARNING
"cciss: cmd %p returned "
3224 "unknown status %x\n", cmd
,
3225 cmd
->err_info
->CommandStatus
);
3226 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3227 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3228 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3231 after_error_processing
:
3233 /* We need to return this command */
3235 resend_cciss_cmd(h
, cmd
);
3238 cmd
->rq
->completion_data
= cmd
;
3239 blk_complete_request(cmd
->rq
);
3243 * Get a request and submit it to the controller.
3245 static void do_cciss_request(struct request_queue
*q
)
3247 ctlr_info_t
*h
= q
->queuedata
;
3248 CommandList_struct
*c
;
3251 struct request
*creq
;
3253 struct scatterlist tmp_sg
[MAXSGENTRIES
];
3254 drive_info_struct
*drv
;
3257 /* We call start_io here in case there is a command waiting on the
3258 * queue that has not been sent.
3260 if (blk_queue_plugged(q
))
3264 creq
= blk_peek_request(q
);
3268 BUG_ON(creq
->nr_phys_segments
> MAXSGENTRIES
);
3270 if ((c
= cmd_alloc(h
, 1)) == NULL
)
3273 blk_start_request(creq
);
3275 spin_unlock_irq(q
->queue_lock
);
3277 c
->cmd_type
= CMD_RWREQ
;
3280 /* fill in the request */
3281 drv
= creq
->rq_disk
->private_data
;
3282 c
->Header
.ReplyQueue
= 0; // unused in simple mode
3283 /* got command from pool, so use the command block index instead */
3284 /* for direct lookups. */
3285 /* The first 2 bits are reserved for controller error reporting. */
3286 c
->Header
.Tag
.lower
= (c
->cmdindex
<< 3);
3287 c
->Header
.Tag
.lower
|= 0x04; /* flag for direct lookup. */
3288 memcpy(&c
->Header
.LUN
, drv
->LunID
, sizeof(drv
->LunID
));
3289 c
->Request
.CDBLen
= 10; // 12 byte commands not in FW yet;
3290 c
->Request
.Type
.Type
= TYPE_CMD
; // It is a command.
3291 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3292 c
->Request
.Type
.Direction
=
3293 (rq_data_dir(creq
) == READ
) ? XFER_READ
: XFER_WRITE
;
3294 c
->Request
.Timeout
= 0; // Don't time out
3296 (rq_data_dir(creq
) == READ
) ? h
->cciss_read
: h
->cciss_write
;
3297 start_blk
= blk_rq_pos(creq
);
3299 printk(KERN_DEBUG
"ciss: sector =%d nr_sectors=%d\n",
3300 (int)blk_rq_pos(creq
), (int)blk_rq_sectors(creq
));
3301 #endif /* CCISS_DEBUG */
3303 sg_init_table(tmp_sg
, MAXSGENTRIES
);
3304 seg
= blk_rq_map_sg(q
, creq
, tmp_sg
);
3306 /* get the DMA records for the setup */
3307 if (c
->Request
.Type
.Direction
== XFER_READ
)
3308 dir
= PCI_DMA_FROMDEVICE
;
3310 dir
= PCI_DMA_TODEVICE
;
3312 for (i
= 0; i
< seg
; i
++) {
3313 c
->SG
[i
].Len
= tmp_sg
[i
].length
;
3314 temp64
.val
= (__u64
) pci_map_page(h
->pdev
, sg_page(&tmp_sg
[i
]),
3316 tmp_sg
[i
].length
, dir
);
3317 c
->SG
[i
].Addr
.lower
= temp64
.val32
.lower
;
3318 c
->SG
[i
].Addr
.upper
= temp64
.val32
.upper
;
3319 c
->SG
[i
].Ext
= 0; // we are not chaining
3321 /* track how many SG entries we are using */
3326 printk(KERN_DEBUG
"cciss: Submitting %u sectors in %d segments\n",
3327 blk_rq_sectors(creq
), seg
);
3328 #endif /* CCISS_DEBUG */
3330 c
->Header
.SGList
= c
->Header
.SGTotal
= seg
;
3331 if (likely(blk_fs_request(creq
))) {
3332 if(h
->cciss_read
== CCISS_READ_10
) {
3333 c
->Request
.CDB
[1] = 0;
3334 c
->Request
.CDB
[2] = (start_blk
>> 24) & 0xff; //MSB
3335 c
->Request
.CDB
[3] = (start_blk
>> 16) & 0xff;
3336 c
->Request
.CDB
[4] = (start_blk
>> 8) & 0xff;
3337 c
->Request
.CDB
[5] = start_blk
& 0xff;
3338 c
->Request
.CDB
[6] = 0; // (sect >> 24) & 0xff; MSB
3339 c
->Request
.CDB
[7] = (blk_rq_sectors(creq
) >> 8) & 0xff;
3340 c
->Request
.CDB
[8] = blk_rq_sectors(creq
) & 0xff;
3341 c
->Request
.CDB
[9] = c
->Request
.CDB
[11] = c
->Request
.CDB
[12] = 0;
3343 u32 upper32
= upper_32_bits(start_blk
);
3345 c
->Request
.CDBLen
= 16;
3346 c
->Request
.CDB
[1]= 0;
3347 c
->Request
.CDB
[2]= (upper32
>> 24) & 0xff; //MSB
3348 c
->Request
.CDB
[3]= (upper32
>> 16) & 0xff;
3349 c
->Request
.CDB
[4]= (upper32
>> 8) & 0xff;
3350 c
->Request
.CDB
[5]= upper32
& 0xff;
3351 c
->Request
.CDB
[6]= (start_blk
>> 24) & 0xff;
3352 c
->Request
.CDB
[7]= (start_blk
>> 16) & 0xff;
3353 c
->Request
.CDB
[8]= (start_blk
>> 8) & 0xff;
3354 c
->Request
.CDB
[9]= start_blk
& 0xff;
3355 c
->Request
.CDB
[10]= (blk_rq_sectors(creq
) >> 24) & 0xff;
3356 c
->Request
.CDB
[11]= (blk_rq_sectors(creq
) >> 16) & 0xff;
3357 c
->Request
.CDB
[12]= (blk_rq_sectors(creq
) >> 8) & 0xff;
3358 c
->Request
.CDB
[13]= blk_rq_sectors(creq
) & 0xff;
3359 c
->Request
.CDB
[14] = c
->Request
.CDB
[15] = 0;
3361 } else if (blk_pc_request(creq
)) {
3362 c
->Request
.CDBLen
= creq
->cmd_len
;
3363 memcpy(c
->Request
.CDB
, creq
->cmd
, BLK_MAX_CDB
);
3365 printk(KERN_WARNING
"cciss%d: bad request type %d\n", h
->ctlr
, creq
->cmd_type
);
3369 spin_lock_irq(q
->queue_lock
);
3373 if (h
->Qdepth
> h
->maxQsinceinit
)
3374 h
->maxQsinceinit
= h
->Qdepth
;
3380 /* We will already have the driver lock here so not need
3386 static inline unsigned long get_next_completion(ctlr_info_t
*h
)
3388 return h
->access
.command_completed(h
);
3391 static inline int interrupt_pending(ctlr_info_t
*h
)
3393 return h
->access
.intr_pending(h
);
3396 static inline long interrupt_not_for_us(ctlr_info_t
*h
)
3398 return (((h
->access
.intr_pending(h
) == 0) ||
3399 (h
->interrupts_enabled
== 0)));
3402 static irqreturn_t
do_cciss_intr(int irq
, void *dev_id
)
3404 ctlr_info_t
*h
= dev_id
;
3405 CommandList_struct
*c
;
3406 unsigned long flags
;
3409 if (interrupt_not_for_us(h
))
3412 * If there are completed commands in the completion queue,
3413 * we had better do something about it.
3415 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
3416 while (interrupt_pending(h
)) {
3417 while ((a
= get_next_completion(h
)) != FIFO_EMPTY
) {
3421 if (a2
>= h
->nr_cmds
) {
3423 "cciss: controller cciss%d failed, stopping.\n",
3425 fail_all_cmds(h
->ctlr
);
3429 c
= h
->cmd_pool
+ a2
;
3433 struct hlist_node
*tmp
;
3437 hlist_for_each_entry(c
, tmp
, &h
->cmpQ
, list
) {
3438 if (c
->busaddr
== a
)
3443 * If we've found the command, take it off the
3444 * completion Q and free it
3446 if (c
&& c
->busaddr
== a
) {
3448 if (c
->cmd_type
== CMD_RWREQ
) {
3449 complete_command(h
, c
, 0);
3450 } else if (c
->cmd_type
== CMD_IOCTL_PEND
) {
3451 complete(c
->waiting
);
3453 # ifdef CONFIG_CISS_SCSI_TAPE
3454 else if (c
->cmd_type
== CMD_SCSI
)
3455 complete_scsi_command(c
, 0, a1
);
3462 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
3467 * add_to_scan_list() - add controller to rescan queue
3468 * @h: Pointer to the controller.
3470 * Adds the controller to the rescan queue if not already on the queue.
3472 * returns 1 if added to the queue, 0 if skipped (could be on the
3473 * queue already, or the controller could be initializing or shutting
3476 static int add_to_scan_list(struct ctlr_info
*h
)
3478 struct ctlr_info
*test_h
;
3482 if (h
->busy_initializing
)
3485 if (!mutex_trylock(&h
->busy_shutting_down
))
3488 mutex_lock(&scan_mutex
);
3489 list_for_each_entry(test_h
, &scan_q
, scan_list
) {
3495 if (!found
&& !h
->busy_scanning
) {
3496 INIT_COMPLETION(h
->scan_wait
);
3497 list_add_tail(&h
->scan_list
, &scan_q
);
3500 mutex_unlock(&scan_mutex
);
3501 mutex_unlock(&h
->busy_shutting_down
);
3507 * remove_from_scan_list() - remove controller from rescan queue
3508 * @h: Pointer to the controller.
3510 * Removes the controller from the rescan queue if present. Blocks if
3511 * the controller is currently conducting a rescan.
3513 static void remove_from_scan_list(struct ctlr_info
*h
)
3515 struct ctlr_info
*test_h
, *tmp_h
;
3518 mutex_lock(&scan_mutex
);
3519 list_for_each_entry_safe(test_h
, tmp_h
, &scan_q
, scan_list
) {
3521 list_del(&h
->scan_list
);
3522 complete_all(&h
->scan_wait
);
3523 mutex_unlock(&scan_mutex
);
3527 if (&h
->busy_scanning
)
3529 mutex_unlock(&scan_mutex
);
3532 wait_for_completion(&h
->scan_wait
);
3536 * scan_thread() - kernel thread used to rescan controllers
3539 * A kernel thread used scan for drive topology changes on
3540 * controllers. The thread processes only one controller at a time
3541 * using a queue. Controllers are added to the queue using
3542 * add_to_scan_list() and removed from the queue either after done
3543 * processing or using remove_from_scan_list().
3547 static int scan_thread(void *data
)
3549 struct ctlr_info
*h
;
3552 set_current_state(TASK_INTERRUPTIBLE
);
3554 if (kthread_should_stop())
3558 mutex_lock(&scan_mutex
);
3559 if (list_empty(&scan_q
)) {
3560 mutex_unlock(&scan_mutex
);
3564 h
= list_entry(scan_q
.next
,
3567 list_del(&h
->scan_list
);
3568 h
->busy_scanning
= 1;
3569 mutex_unlock(&scan_mutex
);
3572 rebuild_lun_table(h
, 0, 0);
3573 complete_all(&h
->scan_wait
);
3574 mutex_lock(&scan_mutex
);
3575 h
->busy_scanning
= 0;
3576 mutex_unlock(&scan_mutex
);
3584 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
)
3586 if (c
->err_info
->SenseInfo
[2] != UNIT_ATTENTION
)
3589 switch (c
->err_info
->SenseInfo
[12]) {
3591 printk(KERN_WARNING
"cciss%d: a state change "
3592 "detected, command retried\n", h
->ctlr
);
3596 printk(KERN_WARNING
"cciss%d: LUN failure "
3597 "detected, action required\n", h
->ctlr
);
3600 case REPORT_LUNS_CHANGED
:
3601 printk(KERN_WARNING
"cciss%d: report LUN data "
3602 "changed\n", h
->ctlr
);
3603 add_to_scan_list(h
);
3604 wake_up_process(cciss_scan_thread
);
3607 case POWER_OR_RESET
:
3608 printk(KERN_WARNING
"cciss%d: a power on "
3609 "or device reset detected\n", h
->ctlr
);
3612 case UNIT_ATTENTION_CLEARED
:
3613 printk(KERN_WARNING
"cciss%d: unit attention "
3614 "cleared by another initiator\n", h
->ctlr
);
3618 printk(KERN_WARNING
"cciss%d: unknown "
3619 "unit attention detected\n", h
->ctlr
);
3625 * We cannot read the structure directly, for portability we must use
3627 * This is for debug only.
3630 static void print_cfg_table(CfgTable_struct
*tb
)
3635 printk("Controller Configuration information\n");
3636 printk("------------------------------------\n");
3637 for (i
= 0; i
< 4; i
++)
3638 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
3639 temp_name
[4] = '\0';
3640 printk(" Signature = %s\n", temp_name
);
3641 printk(" Spec Number = %d\n", readl(&(tb
->SpecValence
)));
3642 printk(" Transport methods supported = 0x%x\n",
3643 readl(&(tb
->TransportSupport
)));
3644 printk(" Transport methods active = 0x%x\n",
3645 readl(&(tb
->TransportActive
)));
3646 printk(" Requested transport Method = 0x%x\n",
3647 readl(&(tb
->HostWrite
.TransportRequest
)));
3648 printk(" Coalesce Interrupt Delay = 0x%x\n",
3649 readl(&(tb
->HostWrite
.CoalIntDelay
)));
3650 printk(" Coalesce Interrupt Count = 0x%x\n",
3651 readl(&(tb
->HostWrite
.CoalIntCount
)));
3652 printk(" Max outstanding commands = 0x%d\n",
3653 readl(&(tb
->CmdsOutMax
)));
3654 printk(" Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
3655 for (i
= 0; i
< 16; i
++)
3656 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
3657 temp_name
[16] = '\0';
3658 printk(" Server Name = %s\n", temp_name
);
3659 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb
->HeartBeat
)));
3661 #endif /* CCISS_DEBUG */
3663 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
3665 int i
, offset
, mem_type
, bar_type
;
3666 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
3669 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
3670 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
3671 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
3674 mem_type
= pci_resource_flags(pdev
, i
) &
3675 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
3677 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
3678 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
3679 offset
+= 4; /* 32 bit */
3681 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
3684 default: /* reserved in PCI 2.2 */
3686 "Base address is invalid\n");
3691 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
3697 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3698 * controllers that are capable. If not, we use IO-APIC mode.
3701 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*c
,
3702 struct pci_dev
*pdev
, __u32 board_id
)
3704 #ifdef CONFIG_PCI_MSI
3706 struct msix_entry cciss_msix_entries
[4] = { {0, 0}, {0, 1},
3710 /* Some boards advertise MSI but don't really support it */
3711 if ((board_id
== 0x40700E11) ||
3712 (board_id
== 0x40800E11) ||
3713 (board_id
== 0x40820E11) || (board_id
== 0x40830E11))
3714 goto default_int_mode
;
3716 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
)) {
3717 err
= pci_enable_msix(pdev
, cciss_msix_entries
, 4);
3719 c
->intr
[0] = cciss_msix_entries
[0].vector
;
3720 c
->intr
[1] = cciss_msix_entries
[1].vector
;
3721 c
->intr
[2] = cciss_msix_entries
[2].vector
;
3722 c
->intr
[3] = cciss_msix_entries
[3].vector
;
3727 printk(KERN_WARNING
"cciss: only %d MSI-X vectors "
3728 "available\n", err
);
3729 goto default_int_mode
;
3731 printk(KERN_WARNING
"cciss: MSI-X init failed %d\n",
3733 goto default_int_mode
;
3736 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
)) {
3737 if (!pci_enable_msi(pdev
)) {
3740 printk(KERN_WARNING
"cciss: MSI init failed\n");
3744 #endif /* CONFIG_PCI_MSI */
3745 /* if we get here we're going to use the default interrupt mode */
3746 c
->intr
[SIMPLE_MODE_INT
] = pdev
->irq
;
3750 static int __devinit
cciss_pci_init(ctlr_info_t
*c
, struct pci_dev
*pdev
)
3752 ushort subsystem_vendor_id
, subsystem_device_id
, command
;
3753 __u32 board_id
, scratchpad
= 0;
3755 __u32 cfg_base_addr
;
3756 __u64 cfg_base_addr_index
;
3759 /* check to see if controller has been disabled */
3760 /* BEFORE trying to enable it */
3761 (void)pci_read_config_word(pdev
, PCI_COMMAND
, &command
);
3762 if (!(command
& 0x02)) {
3764 "cciss: controller appears to be disabled\n");
3768 err
= pci_enable_device(pdev
);
3770 printk(KERN_ERR
"cciss: Unable to Enable PCI device\n");
3774 err
= pci_request_regions(pdev
, "cciss");
3776 printk(KERN_ERR
"cciss: Cannot obtain PCI resources, "
3781 subsystem_vendor_id
= pdev
->subsystem_vendor
;
3782 subsystem_device_id
= pdev
->subsystem_device
;
3783 board_id
= (((__u32
) (subsystem_device_id
<< 16) & 0xffff0000) |
3784 subsystem_vendor_id
);
3787 printk("command = %x\n", command
);
3788 printk("irq = %x\n", pdev
->irq
);
3789 printk("board_id = %x\n", board_id
);
3790 #endif /* CCISS_DEBUG */
3792 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3793 * else we use the IO-APIC interrupt assigned to us by system ROM.
3795 cciss_interrupt_mode(c
, pdev
, board_id
);
3797 /* find the memory BAR */
3798 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
3799 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
)
3802 if (i
== DEVICE_COUNT_RESOURCE
) {
3803 printk(KERN_WARNING
"cciss: No memory BAR found\n");
3805 goto err_out_free_res
;
3808 c
->paddr
= pci_resource_start(pdev
, i
); /* addressing mode bits
3813 printk("address 0 = %lx\n", c
->paddr
);
3814 #endif /* CCISS_DEBUG */
3815 c
->vaddr
= remap_pci_mem(c
->paddr
, 0x250);
3817 /* Wait for the board to become ready. (PCI hotplug needs this.)
3818 * We poll for up to 120 secs, once per 100ms. */
3819 for (i
= 0; i
< 1200; i
++) {
3820 scratchpad
= readl(c
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
3821 if (scratchpad
== CCISS_FIRMWARE_READY
)
3823 set_current_state(TASK_INTERRUPTIBLE
);
3824 schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */
3826 if (scratchpad
!= CCISS_FIRMWARE_READY
) {
3827 printk(KERN_WARNING
"cciss: Board not ready. Timed out.\n");
3829 goto err_out_free_res
;
3832 /* get the address index number */
3833 cfg_base_addr
= readl(c
->vaddr
+ SA5_CTCFG_OFFSET
);
3834 cfg_base_addr
&= (__u32
) 0x0000ffff;
3836 printk("cfg base address = %x\n", cfg_base_addr
);
3837 #endif /* CCISS_DEBUG */
3838 cfg_base_addr_index
= find_PCI_BAR_index(pdev
, cfg_base_addr
);
3840 printk("cfg base address index = %llx\n",
3841 (unsigned long long)cfg_base_addr_index
);
3842 #endif /* CCISS_DEBUG */
3843 if (cfg_base_addr_index
== -1) {
3844 printk(KERN_WARNING
"cciss: Cannot find cfg_base_addr_index\n");
3846 goto err_out_free_res
;
3849 cfg_offset
= readl(c
->vaddr
+ SA5_CTMEM_OFFSET
);
3851 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset
);
3852 #endif /* CCISS_DEBUG */
3853 c
->cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
3854 cfg_base_addr_index
) +
3855 cfg_offset
, sizeof(CfgTable_struct
));
3856 c
->board_id
= board_id
;
3859 print_cfg_table(c
->cfgtable
);
3860 #endif /* CCISS_DEBUG */
3862 /* Some controllers support Zero Memory Raid (ZMR).
3863 * When configured in ZMR mode the number of supported
3864 * commands drops to 64. So instead of just setting an
3865 * arbitrary value we make the driver a little smarter.
3866 * We read the config table to tell us how many commands
3867 * are supported on the controller then subtract 4 to
3868 * leave a little room for ioctl calls.
3870 c
->max_commands
= readl(&(c
->cfgtable
->CmdsOutMax
));
3871 for (i
= 0; i
< ARRAY_SIZE(products
); i
++) {
3872 if (board_id
== products
[i
].board_id
) {
3873 c
->product_name
= products
[i
].product_name
;
3874 c
->access
= *(products
[i
].access
);
3875 c
->nr_cmds
= c
->max_commands
- 4;
3879 if ((readb(&c
->cfgtable
->Signature
[0]) != 'C') ||
3880 (readb(&c
->cfgtable
->Signature
[1]) != 'I') ||
3881 (readb(&c
->cfgtable
->Signature
[2]) != 'S') ||
3882 (readb(&c
->cfgtable
->Signature
[3]) != 'S')) {
3883 printk("Does not appear to be a valid CISS config table\n");
3885 goto err_out_free_res
;
3887 /* We didn't find the controller in our list. We know the
3888 * signature is valid. If it's an HP device let's try to
3889 * bind to the device and fire it up. Otherwise we bail.
3891 if (i
== ARRAY_SIZE(products
)) {
3892 if (subsystem_vendor_id
== PCI_VENDOR_ID_HP
) {
3893 c
->product_name
= products
[i
-1].product_name
;
3894 c
->access
= *(products
[i
-1].access
);
3895 c
->nr_cmds
= c
->max_commands
- 4;
3896 printk(KERN_WARNING
"cciss: This is an unknown "
3897 "Smart Array controller.\n"
3898 "cciss: Please update to the latest driver "
3899 "available from www.hp.com.\n");
3901 printk(KERN_WARNING
"cciss: Sorry, I don't know how"
3902 " to access the Smart Array controller %08lx\n"
3903 , (unsigned long)board_id
);
3905 goto err_out_free_res
;
3910 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3912 prefetch
= readl(&(c
->cfgtable
->SCSI_Prefetch
));
3914 writel(prefetch
, &(c
->cfgtable
->SCSI_Prefetch
));
3918 /* Disabling DMA prefetch and refetch for the P600.
3919 * An ASIC bug may result in accesses to invalid memory addresses.
3920 * We've disabled prefetch for some time now. Testing with XEN
3921 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3923 if(board_id
== 0x3225103C) {
3926 dma_prefetch
= readl(c
->vaddr
+ I2O_DMA1_CFG
);
3927 dma_prefetch
|= 0x8000;
3928 writel(dma_prefetch
, c
->vaddr
+ I2O_DMA1_CFG
);
3929 pci_read_config_dword(pdev
, PCI_COMMAND_PARITY
, &dma_refetch
);
3931 pci_write_config_dword(pdev
, PCI_COMMAND_PARITY
, dma_refetch
);
3935 printk("Trying to put board into Simple mode\n");
3936 #endif /* CCISS_DEBUG */
3937 c
->max_commands
= readl(&(c
->cfgtable
->CmdsOutMax
));
3938 /* Update the field, and then ring the doorbell */
3939 writel(CFGTBL_Trans_Simple
, &(c
->cfgtable
->HostWrite
.TransportRequest
));
3940 writel(CFGTBL_ChangeReq
, c
->vaddr
+ SA5_DOORBELL
);
3942 /* under certain very rare conditions, this can take awhile.
3943 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3944 * as we enter this code.) */
3945 for (i
= 0; i
< MAX_CONFIG_WAIT
; i
++) {
3946 if (!(readl(c
->vaddr
+ SA5_DOORBELL
) & CFGTBL_ChangeReq
))
3948 /* delay and try again */
3949 set_current_state(TASK_INTERRUPTIBLE
);
3950 schedule_timeout(msecs_to_jiffies(1));
3954 printk(KERN_DEBUG
"I counter got to %d %x\n", i
,
3955 readl(c
->vaddr
+ SA5_DOORBELL
));
3956 #endif /* CCISS_DEBUG */
3958 print_cfg_table(c
->cfgtable
);
3959 #endif /* CCISS_DEBUG */
3961 if (!(readl(&(c
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
)) {
3962 printk(KERN_WARNING
"cciss: unable to get board into"
3965 goto err_out_free_res
;
3971 * Deliberately omit pci_disable_device(): it does something nasty to
3972 * Smart Array controllers that pci_enable_device does not undo
3974 pci_release_regions(pdev
);
3978 /* Function to find the first free pointer into our hba[] array
3979 * Returns -1 if no free entries are left.
3981 static int alloc_cciss_hba(void)
3985 for (i
= 0; i
< MAX_CTLR
; i
++) {
3989 p
= kzalloc(sizeof(ctlr_info_t
), GFP_KERNEL
);
3996 printk(KERN_WARNING
"cciss: This driver supports a maximum"
3997 " of %d controllers.\n", MAX_CTLR
);
4000 printk(KERN_ERR
"cciss: out of memory.\n");
4004 static void free_hba(int n
)
4006 ctlr_info_t
*h
= hba
[n
];
4010 for (i
= 0; i
< h
->highest_lun
+ 1; i
++)
4011 if (h
->gendisk
[i
] != NULL
)
4012 put_disk(h
->gendisk
[i
]);
4016 /* Send a message CDB to the firmware. */
4017 static __devinit
int cciss_message(struct pci_dev
*pdev
, unsigned char opcode
, unsigned char type
)
4020 CommandListHeader_struct CommandHeader
;
4021 RequestBlock_struct Request
;
4022 ErrDescriptor_struct ErrorDescriptor
;
4024 static const size_t cmd_sz
= sizeof(Command
) + sizeof(ErrorInfo_struct
);
4027 uint32_t paddr32
, tag
;
4028 void __iomem
*vaddr
;
4031 vaddr
= ioremap_nocache(pci_resource_start(pdev
, 0), pci_resource_len(pdev
, 0));
4035 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4036 CCISS commands, so they must be allocated from the lower 4GiB of
4038 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
4044 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
4050 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4051 although there's no guarantee, we assume that the address is at
4052 least 4-byte aligned (most likely, it's page-aligned). */
4055 cmd
->CommandHeader
.ReplyQueue
= 0;
4056 cmd
->CommandHeader
.SGList
= 0;
4057 cmd
->CommandHeader
.SGTotal
= 0;
4058 cmd
->CommandHeader
.Tag
.lower
= paddr32
;
4059 cmd
->CommandHeader
.Tag
.upper
= 0;
4060 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
4062 cmd
->Request
.CDBLen
= 16;
4063 cmd
->Request
.Type
.Type
= TYPE_MSG
;
4064 cmd
->Request
.Type
.Attribute
= ATTR_HEADOFQUEUE
;
4065 cmd
->Request
.Type
.Direction
= XFER_NONE
;
4066 cmd
->Request
.Timeout
= 0; /* Don't time out */
4067 cmd
->Request
.CDB
[0] = opcode
;
4068 cmd
->Request
.CDB
[1] = type
;
4069 memset(&cmd
->Request
.CDB
[2], 0, 14); /* the rest of the CDB is reserved */
4071 cmd
->ErrorDescriptor
.Addr
.lower
= paddr32
+ sizeof(Command
);
4072 cmd
->ErrorDescriptor
.Addr
.upper
= 0;
4073 cmd
->ErrorDescriptor
.Len
= sizeof(ErrorInfo_struct
);
4075 writel(paddr32
, vaddr
+ SA5_REQUEST_PORT_OFFSET
);
4077 for (i
= 0; i
< 10; i
++) {
4078 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
4079 if ((tag
& ~3) == paddr32
)
4081 schedule_timeout_uninterruptible(HZ
);
4086 /* we leak the DMA buffer here ... no choice since the controller could
4087 still complete the command. */
4089 printk(KERN_ERR
"cciss: controller message %02x:%02x timed out\n",
4094 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
4097 printk(KERN_ERR
"cciss: controller message %02x:%02x failed\n",
4102 printk(KERN_INFO
"cciss: controller message %02x:%02x succeeded\n",
4107 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4108 #define cciss_noop(p) cciss_message(p, 3, 0)
4110 static __devinit
int cciss_reset_msi(struct pci_dev
*pdev
)
4112 /* the #defines are stolen from drivers/pci/msi.h. */
4113 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
4114 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
4119 pos
= pci_find_capability(pdev
, PCI_CAP_ID_MSI
);
4121 pci_read_config_word(pdev
, msi_control_reg(pos
), &control
);
4122 if (control
& PCI_MSI_FLAGS_ENABLE
) {
4123 printk(KERN_INFO
"cciss: resetting MSI\n");
4124 pci_write_config_word(pdev
, msi_control_reg(pos
), control
& ~PCI_MSI_FLAGS_ENABLE
);
4128 pos
= pci_find_capability(pdev
, PCI_CAP_ID_MSIX
);
4130 pci_read_config_word(pdev
, msi_control_reg(pos
), &control
);
4131 if (control
& PCI_MSIX_FLAGS_ENABLE
) {
4132 printk(KERN_INFO
"cciss: resetting MSI-X\n");
4133 pci_write_config_word(pdev
, msi_control_reg(pos
), control
& ~PCI_MSIX_FLAGS_ENABLE
);
4140 /* This does a hard reset of the controller using PCI power management
4142 static __devinit
int cciss_hard_reset_controller(struct pci_dev
*pdev
)
4144 u16 pmcsr
, saved_config_space
[32];
4147 printk(KERN_INFO
"cciss: using PCI PM to reset controller\n");
4149 /* This is very nearly the same thing as
4151 pci_save_state(pci_dev);
4152 pci_set_power_state(pci_dev, PCI_D3hot);
4153 pci_set_power_state(pci_dev, PCI_D0);
4154 pci_restore_state(pci_dev);
4156 but we can't use these nice canned kernel routines on
4157 kexec, because they also check the MSI/MSI-X state in PCI
4158 configuration space and do the wrong thing when it is
4159 set/cleared. Also, the pci_save/restore_state functions
4160 violate the ordering requirements for restoring the
4161 configuration space from the CCISS document (see the
4162 comment below). So we roll our own .... */
4164 for (i
= 0; i
< 32; i
++)
4165 pci_read_config_word(pdev
, 2*i
, &saved_config_space
[i
]);
4167 pos
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
4169 printk(KERN_ERR
"cciss_reset_controller: PCI PM not supported\n");
4173 /* Quoting from the Open CISS Specification: "The Power
4174 * Management Control/Status Register (CSR) controls the power
4175 * state of the device. The normal operating state is D0,
4176 * CSR=00h. The software off state is D3, CSR=03h. To reset
4177 * the controller, place the interface device in D3 then to
4178 * D0, this causes a secondary PCI reset which will reset the
4181 /* enter the D3hot power management state */
4182 pci_read_config_word(pdev
, pos
+ PCI_PM_CTRL
, &pmcsr
);
4183 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4185 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
4187 schedule_timeout_uninterruptible(HZ
>> 1);
4189 /* enter the D0 power management state */
4190 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4192 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
4194 schedule_timeout_uninterruptible(HZ
>> 1);
4196 /* Restore the PCI configuration space. The Open CISS
4197 * Specification says, "Restore the PCI Configuration
4198 * Registers, offsets 00h through 60h. It is important to
4199 * restore the command register, 16-bits at offset 04h,
4200 * last. Do not restore the configuration status register,
4201 * 16-bits at offset 06h." Note that the offset is 2*i. */
4202 for (i
= 0; i
< 32; i
++) {
4203 if (i
== 2 || i
== 3)
4205 pci_write_config_word(pdev
, 2*i
, saved_config_space
[i
]);
4208 pci_write_config_word(pdev
, 4, saved_config_space
[2]);
4214 * This is it. Find all the controllers and register them. I really hate
4215 * stealing all these major device numbers.
4216 * returns the number of block devices registered.
4218 static int __devinit
cciss_init_one(struct pci_dev
*pdev
,
4219 const struct pci_device_id
*ent
)
4224 int dac
, return_code
;
4225 InquiryData_struct
*inq_buff
;
4227 if (reset_devices
) {
4228 /* Reset the controller with a PCI power-cycle */
4229 if (cciss_hard_reset_controller(pdev
) || cciss_reset_msi(pdev
))
4232 /* Now try to get the controller to respond to a no-op. Some
4233 devices (notably the HP Smart Array 5i Controller) need
4234 up to 30 seconds to respond. */
4235 for (i
=0; i
<30; i
++) {
4236 if (cciss_noop(pdev
) == 0)
4239 schedule_timeout_uninterruptible(HZ
);
4242 printk(KERN_ERR
"cciss: controller seems dead\n");
4247 i
= alloc_cciss_hba();
4251 hba
[i
]->busy_initializing
= 1;
4252 INIT_HLIST_HEAD(&hba
[i
]->cmpQ
);
4253 INIT_HLIST_HEAD(&hba
[i
]->reqQ
);
4254 mutex_init(&hba
[i
]->busy_shutting_down
);
4256 if (cciss_pci_init(hba
[i
], pdev
) != 0)
4259 sprintf(hba
[i
]->devname
, "cciss%d", i
);
4261 hba
[i
]->pdev
= pdev
;
4263 init_completion(&hba
[i
]->scan_wait
);
4265 if (cciss_create_hba_sysfs_entry(hba
[i
]))
4268 /* configure PCI DMA stuff */
4269 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64)))
4271 else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))
4274 printk(KERN_ERR
"cciss: no suitable DMA available\n");
4279 * register with the major number, or get a dynamic major number
4280 * by passing 0 as argument. This is done for greater than
4281 * 8 controller support.
4283 if (i
< MAX_CTLR_ORIG
)
4284 hba
[i
]->major
= COMPAQ_CISS_MAJOR
+ i
;
4285 rc
= register_blkdev(hba
[i
]->major
, hba
[i
]->devname
);
4286 if (rc
== -EBUSY
|| rc
== -EINVAL
) {
4288 "cciss: Unable to get major number %d for %s "
4289 "on hba %d\n", hba
[i
]->major
, hba
[i
]->devname
, i
);
4292 if (i
>= MAX_CTLR_ORIG
)
4296 /* make sure the board interrupts are off */
4297 hba
[i
]->access
.set_intr_mask(hba
[i
], CCISS_INTR_OFF
);
4298 if (request_irq(hba
[i
]->intr
[SIMPLE_MODE_INT
], do_cciss_intr
,
4299 IRQF_DISABLED
| IRQF_SHARED
, hba
[i
]->devname
, hba
[i
])) {
4300 printk(KERN_ERR
"cciss: Unable to get irq %d for %s\n",
4301 hba
[i
]->intr
[SIMPLE_MODE_INT
], hba
[i
]->devname
);
4305 printk(KERN_INFO
"%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4306 hba
[i
]->devname
, pdev
->device
, pci_name(pdev
),
4307 hba
[i
]->intr
[SIMPLE_MODE_INT
], dac
? "" : " not");
4309 hba
[i
]->cmd_pool_bits
=
4310 kmalloc(DIV_ROUND_UP(hba
[i
]->nr_cmds
, BITS_PER_LONG
)
4311 * sizeof(unsigned long), GFP_KERNEL
);
4312 hba
[i
]->cmd_pool
= (CommandList_struct
*)
4313 pci_alloc_consistent(hba
[i
]->pdev
,
4314 hba
[i
]->nr_cmds
* sizeof(CommandList_struct
),
4315 &(hba
[i
]->cmd_pool_dhandle
));
4316 hba
[i
]->errinfo_pool
= (ErrorInfo_struct
*)
4317 pci_alloc_consistent(hba
[i
]->pdev
,
4318 hba
[i
]->nr_cmds
* sizeof(ErrorInfo_struct
),
4319 &(hba
[i
]->errinfo_pool_dhandle
));
4320 if ((hba
[i
]->cmd_pool_bits
== NULL
)
4321 || (hba
[i
]->cmd_pool
== NULL
)
4322 || (hba
[i
]->errinfo_pool
== NULL
)) {
4323 printk(KERN_ERR
"cciss: out of memory");
4326 spin_lock_init(&hba
[i
]->lock
);
4328 /* Initialize the pdev driver private data.
4329 have it point to hba[i]. */
4330 pci_set_drvdata(pdev
, hba
[i
]);
4331 /* command and error info recs zeroed out before
4333 memset(hba
[i
]->cmd_pool_bits
, 0,
4334 DIV_ROUND_UP(hba
[i
]->nr_cmds
, BITS_PER_LONG
)
4335 * sizeof(unsigned long));
4337 hba
[i
]->num_luns
= 0;
4338 hba
[i
]->highest_lun
= -1;
4339 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
4340 hba
[i
]->drv
[j
] = NULL
;
4341 hba
[i
]->gendisk
[j
] = NULL
;
4344 cciss_scsi_setup(i
);
4346 /* Turn the interrupts on so we can service requests */
4347 hba
[i
]->access
.set_intr_mask(hba
[i
], CCISS_INTR_ON
);
4349 /* Get the firmware version */
4350 inq_buff
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
4351 if (inq_buff
== NULL
) {
4352 printk(KERN_ERR
"cciss: out of memory\n");
4356 return_code
= sendcmd_withirq(CISS_INQUIRY
, i
, inq_buff
,
4357 sizeof(InquiryData_struct
), 0, CTLR_LUNID
, TYPE_CMD
);
4358 if (return_code
== IO_OK
) {
4359 hba
[i
]->firm_ver
[0] = inq_buff
->data_byte
[32];
4360 hba
[i
]->firm_ver
[1] = inq_buff
->data_byte
[33];
4361 hba
[i
]->firm_ver
[2] = inq_buff
->data_byte
[34];
4362 hba
[i
]->firm_ver
[3] = inq_buff
->data_byte
[35];
4363 } else { /* send command failed */
4364 printk(KERN_WARNING
"cciss: unable to determine firmware"
4365 " version of controller\n");
4371 hba
[i
]->cciss_max_sectors
= 2048;
4373 rebuild_lun_table(hba
[i
], 1, 0);
4374 hba
[i
]->busy_initializing
= 0;
4378 kfree(hba
[i
]->cmd_pool_bits
);
4379 if (hba
[i
]->cmd_pool
)
4380 pci_free_consistent(hba
[i
]->pdev
,
4381 hba
[i
]->nr_cmds
* sizeof(CommandList_struct
),
4382 hba
[i
]->cmd_pool
, hba
[i
]->cmd_pool_dhandle
);
4383 if (hba
[i
]->errinfo_pool
)
4384 pci_free_consistent(hba
[i
]->pdev
,
4385 hba
[i
]->nr_cmds
* sizeof(ErrorInfo_struct
),
4386 hba
[i
]->errinfo_pool
,
4387 hba
[i
]->errinfo_pool_dhandle
);
4388 free_irq(hba
[i
]->intr
[SIMPLE_MODE_INT
], hba
[i
]);
4390 unregister_blkdev(hba
[i
]->major
, hba
[i
]->devname
);
4392 cciss_destroy_hba_sysfs_entry(hba
[i
]);
4394 hba
[i
]->busy_initializing
= 0;
4397 * Deliberately omit pci_disable_device(): it does something nasty to
4398 * Smart Array controllers that pci_enable_device does not undo
4400 pci_release_regions(pdev
);
4401 pci_set_drvdata(pdev
, NULL
);
4406 static void cciss_shutdown(struct pci_dev
*pdev
)
4408 ctlr_info_t
*tmp_ptr
;
4413 tmp_ptr
= pci_get_drvdata(pdev
);
4414 if (tmp_ptr
== NULL
)
4420 /* Turn board interrupts off and send the flush cache command */
4421 /* sendcmd will turn off interrupt, and send the flush...
4422 * To write all data in the battery backed cache to disks */
4423 memset(flush_buf
, 0, 4);
4424 return_code
= sendcmd(CCISS_CACHE_FLUSH
, i
, flush_buf
, 4, 0,
4425 CTLR_LUNID
, TYPE_CMD
);
4426 if (return_code
== IO_OK
) {
4427 printk(KERN_INFO
"Completed flushing cache on controller %d\n", i
);
4429 printk(KERN_WARNING
"Error flushing cache on controller %d\n", i
);
4431 free_irq(hba
[i
]->intr
[2], hba
[i
]);
4434 static void __devexit
cciss_remove_one(struct pci_dev
*pdev
)
4436 ctlr_info_t
*tmp_ptr
;
4439 if (pci_get_drvdata(pdev
) == NULL
) {
4440 printk(KERN_ERR
"cciss: Unable to remove device \n");
4444 tmp_ptr
= pci_get_drvdata(pdev
);
4446 if (hba
[i
] == NULL
) {
4447 printk(KERN_ERR
"cciss: device appears to "
4448 "already be removed \n");
4452 mutex_lock(&hba
[i
]->busy_shutting_down
);
4454 remove_from_scan_list(hba
[i
]);
4455 remove_proc_entry(hba
[i
]->devname
, proc_cciss
);
4456 unregister_blkdev(hba
[i
]->major
, hba
[i
]->devname
);
4458 /* remove it from the disk list */
4459 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
4460 struct gendisk
*disk
= hba
[i
]->gendisk
[j
];
4462 struct request_queue
*q
= disk
->queue
;
4464 if (disk
->flags
& GENHD_FL_UP
) {
4465 cciss_destroy_ld_sysfs_entry(hba
[i
], j
, 1);
4469 blk_cleanup_queue(q
);
4473 #ifdef CONFIG_CISS_SCSI_TAPE
4474 cciss_unregister_scsi(i
); /* unhook from SCSI subsystem */
4477 cciss_shutdown(pdev
);
4479 #ifdef CONFIG_PCI_MSI
4480 if (hba
[i
]->msix_vector
)
4481 pci_disable_msix(hba
[i
]->pdev
);
4482 else if (hba
[i
]->msi_vector
)
4483 pci_disable_msi(hba
[i
]->pdev
);
4484 #endif /* CONFIG_PCI_MSI */
4486 iounmap(hba
[i
]->vaddr
);
4488 pci_free_consistent(hba
[i
]->pdev
, hba
[i
]->nr_cmds
* sizeof(CommandList_struct
),
4489 hba
[i
]->cmd_pool
, hba
[i
]->cmd_pool_dhandle
);
4490 pci_free_consistent(hba
[i
]->pdev
, hba
[i
]->nr_cmds
* sizeof(ErrorInfo_struct
),
4491 hba
[i
]->errinfo_pool
, hba
[i
]->errinfo_pool_dhandle
);
4492 kfree(hba
[i
]->cmd_pool_bits
);
4494 * Deliberately omit pci_disable_device(): it does something nasty to
4495 * Smart Array controllers that pci_enable_device does not undo
4497 pci_release_regions(pdev
);
4498 pci_set_drvdata(pdev
, NULL
);
4499 cciss_destroy_hba_sysfs_entry(hba
[i
]);
4500 mutex_unlock(&hba
[i
]->busy_shutting_down
);
4504 static struct pci_driver cciss_pci_driver
= {
4506 .probe
= cciss_init_one
,
4507 .remove
= __devexit_p(cciss_remove_one
),
4508 .id_table
= cciss_pci_device_id
, /* id_table */
4509 .shutdown
= cciss_shutdown
,
4513 * This is it. Register the PCI driver information for the cards we control
4514 * the OS will call our registered routines when it finds one of our cards.
4516 static int __init
cciss_init(void)
4521 * The hardware requires that commands are aligned on a 64-bit
4522 * boundary. Given that we use pci_alloc_consistent() to allocate an
4523 * array of them, the size must be a multiple of 8 bytes.
4525 BUILD_BUG_ON(sizeof(CommandList_struct
) % 8);
4527 printk(KERN_INFO DRIVER_NAME
"\n");
4529 err
= bus_register(&cciss_bus_type
);
4533 /* Start the scan thread */
4534 cciss_scan_thread
= kthread_run(scan_thread
, NULL
, "cciss_scan");
4535 if (IS_ERR(cciss_scan_thread
)) {
4536 err
= PTR_ERR(cciss_scan_thread
);
4537 goto err_bus_unregister
;
4540 /* Register for our PCI devices */
4541 err
= pci_register_driver(&cciss_pci_driver
);
4543 goto err_thread_stop
;
4548 kthread_stop(cciss_scan_thread
);
4550 bus_unregister(&cciss_bus_type
);
4555 static void __exit
cciss_cleanup(void)
4559 pci_unregister_driver(&cciss_pci_driver
);
4560 /* double check that all controller entrys have been removed */
4561 for (i
= 0; i
< MAX_CTLR
; i
++) {
4562 if (hba
[i
] != NULL
) {
4563 printk(KERN_WARNING
"cciss: had to remove"
4564 " controller %d\n", i
);
4565 cciss_remove_one(hba
[i
]->pdev
);
4568 kthread_stop(cciss_scan_thread
);
4569 remove_proc_entry("driver/cciss", NULL
);
4570 bus_unregister(&cciss_bus_type
);
4573 static void fail_all_cmds(unsigned long ctlr
)
4575 /* If we get here, the board is apparently dead. */
4576 ctlr_info_t
*h
= hba
[ctlr
];
4577 CommandList_struct
*c
;
4578 unsigned long flags
;
4580 printk(KERN_WARNING
"cciss%d: controller not responding.\n", h
->ctlr
);
4581 h
->alive
= 0; /* the controller apparently died... */
4583 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
4585 pci_disable_device(h
->pdev
); /* Make sure it is really dead. */
4587 /* move everything off the request queue onto the completed queue */
4588 while (!hlist_empty(&h
->reqQ
)) {
4589 c
= hlist_entry(h
->reqQ
.first
, CommandList_struct
, list
);
4595 /* Now, fail everything on the completed queue with a HW error */
4596 while (!hlist_empty(&h
->cmpQ
)) {
4597 c
= hlist_entry(h
->cmpQ
.first
, CommandList_struct
, list
);
4599 if (c
->cmd_type
!= CMD_MSG_STALE
)
4600 c
->err_info
->CommandStatus
= CMD_HARDWARE_ERR
;
4601 if (c
->cmd_type
== CMD_RWREQ
) {
4602 complete_command(h
, c
, 0);
4603 } else if (c
->cmd_type
== CMD_IOCTL_PEND
)
4604 complete(c
->waiting
);
4605 #ifdef CONFIG_CISS_SCSI_TAPE
4606 else if (c
->cmd_type
== CMD_SCSI
)
4607 complete_scsi_command(c
, 0, 0);
4610 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
4614 module_init(cciss_init
);
4615 module_exit(cciss_cleanup
);