Add linux-next specific files for 20110716
[linux-2.6/next.git] / mm / filemap.c
blob2a2f5e8880aedd651d08a073be7e8103ebef041c
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include <linux/cleancache.h>
38 #include "internal.h"
41 * FIXME: remove all knowledge of the buffer layer from the core VM
43 #include <linux/buffer_head.h> /* for try_to_free_buffers */
45 #include <asm/mman.h>
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 * Lock ordering:
62 * ->i_mmap_mutex (truncate_pagecache)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
67 * ->i_mutex
68 * ->i_mmap_mutex (truncate->unmap_mapping_range)
70 * ->mmap_sem
71 * ->i_mmap_mutex
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_mutex
82 * ->i_alloc_sem (various)
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
88 * ->i_mmap_mutex
89 * ->anon_vma.lock (vma_adjust)
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
105 * ->inode->i_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 * (code doesn't rely on that order, so you could switch it around)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
110 * ->i_mmap_mutex
114 * Delete a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
116 * is safe. The caller must hold the mapping's tree_lock.
118 void __delete_from_page_cache(struct page *page)
120 struct address_space *mapping = page->mapping;
123 * if we're uptodate, flush out into the cleancache, otherwise
124 * invalidate any existing cleancache entries. We can't leave
125 * stale data around in the cleancache once our page is gone
127 if (PageUptodate(page) && PageMappedToDisk(page))
128 cleancache_put_page(page);
129 else
130 cleancache_flush_page(mapping, page);
132 radix_tree_delete(&mapping->page_tree, page->index);
133 page->mapping = NULL;
134 /* Leave page->index set: truncation lookup relies upon it */
135 mapping->nrpages--;
136 __dec_zone_page_state(page, NR_FILE_PAGES);
137 if (PageSwapBacked(page))
138 __dec_zone_page_state(page, NR_SHMEM);
139 BUG_ON(page_mapped(page));
142 * Some filesystems seem to re-dirty the page even after
143 * the VM has canceled the dirty bit (eg ext3 journaling).
145 * Fix it up by doing a final dirty accounting check after
146 * having removed the page entirely.
148 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
149 dec_zone_page_state(page, NR_FILE_DIRTY);
150 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
155 * delete_from_page_cache - delete page from page cache
156 * @page: the page which the kernel is trying to remove from page cache
158 * This must be called only on pages that have been verified to be in the page
159 * cache and locked. It will never put the page into the free list, the caller
160 * has a reference on the page.
162 void delete_from_page_cache(struct page *page)
164 struct address_space *mapping = page->mapping;
165 void (*freepage)(struct page *);
167 BUG_ON(!PageLocked(page));
169 freepage = mapping->a_ops->freepage;
170 spin_lock_irq(&mapping->tree_lock);
171 __delete_from_page_cache(page);
172 spin_unlock_irq(&mapping->tree_lock);
173 mem_cgroup_uncharge_cache_page(page);
175 if (freepage)
176 freepage(page);
177 page_cache_release(page);
179 EXPORT_SYMBOL(delete_from_page_cache);
181 static int sleep_on_page(void *word)
183 io_schedule();
184 return 0;
187 static int sleep_on_page_killable(void *word)
189 sleep_on_page(word);
190 return fatal_signal_pending(current) ? -EINTR : 0;
194 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
195 * @mapping: address space structure to write
196 * @start: offset in bytes where the range starts
197 * @end: offset in bytes where the range ends (inclusive)
198 * @sync_mode: enable synchronous operation
200 * Start writeback against all of a mapping's dirty pages that lie
201 * within the byte offsets <start, end> inclusive.
203 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
204 * opposed to a regular memory cleansing writeback. The difference between
205 * these two operations is that if a dirty page/buffer is encountered, it must
206 * be waited upon, and not just skipped over.
208 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
209 loff_t end, int sync_mode)
211 int ret;
212 struct writeback_control wbc = {
213 .sync_mode = sync_mode,
214 .nr_to_write = LONG_MAX,
215 .range_start = start,
216 .range_end = end,
219 if (!mapping_cap_writeback_dirty(mapping))
220 return 0;
222 ret = do_writepages(mapping, &wbc);
223 return ret;
226 static inline int __filemap_fdatawrite(struct address_space *mapping,
227 int sync_mode)
229 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
232 int filemap_fdatawrite(struct address_space *mapping)
234 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
236 EXPORT_SYMBOL(filemap_fdatawrite);
238 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
239 loff_t end)
241 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
243 EXPORT_SYMBOL(filemap_fdatawrite_range);
246 * filemap_flush - mostly a non-blocking flush
247 * @mapping: target address_space
249 * This is a mostly non-blocking flush. Not suitable for data-integrity
250 * purposes - I/O may not be started against all dirty pages.
252 int filemap_flush(struct address_space *mapping)
254 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
256 EXPORT_SYMBOL(filemap_flush);
259 * filemap_fdatawait_range - wait for writeback to complete
260 * @mapping: address space structure to wait for
261 * @start_byte: offset in bytes where the range starts
262 * @end_byte: offset in bytes where the range ends (inclusive)
264 * Walk the list of under-writeback pages of the given address space
265 * in the given range and wait for all of them.
267 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
268 loff_t end_byte)
270 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
271 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
272 struct pagevec pvec;
273 int nr_pages;
274 int ret = 0;
276 if (end_byte < start_byte)
277 return 0;
279 pagevec_init(&pvec, 0);
280 while ((index <= end) &&
281 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
282 PAGECACHE_TAG_WRITEBACK,
283 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
284 unsigned i;
286 for (i = 0; i < nr_pages; i++) {
287 struct page *page = pvec.pages[i];
289 /* until radix tree lookup accepts end_index */
290 if (page->index > end)
291 continue;
293 wait_on_page_writeback(page);
294 if (TestClearPageError(page))
295 ret = -EIO;
297 pagevec_release(&pvec);
298 cond_resched();
301 /* Check for outstanding write errors */
302 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303 ret = -ENOSPC;
304 if (test_and_clear_bit(AS_EIO, &mapping->flags))
305 ret = -EIO;
307 return ret;
309 EXPORT_SYMBOL(filemap_fdatawait_range);
312 * filemap_fdatawait - wait for all under-writeback pages to complete
313 * @mapping: address space structure to wait for
315 * Walk the list of under-writeback pages of the given address space
316 * and wait for all of them.
318 int filemap_fdatawait(struct address_space *mapping)
320 loff_t i_size = i_size_read(mapping->host);
322 if (i_size == 0)
323 return 0;
325 return filemap_fdatawait_range(mapping, 0, i_size - 1);
327 EXPORT_SYMBOL(filemap_fdatawait);
329 int filemap_write_and_wait(struct address_space *mapping)
331 int err = 0;
333 if (mapping->nrpages) {
334 err = filemap_fdatawrite(mapping);
336 * Even if the above returned error, the pages may be
337 * written partially (e.g. -ENOSPC), so we wait for it.
338 * But the -EIO is special case, it may indicate the worst
339 * thing (e.g. bug) happened, so we avoid waiting for it.
341 if (err != -EIO) {
342 int err2 = filemap_fdatawait(mapping);
343 if (!err)
344 err = err2;
347 return err;
349 EXPORT_SYMBOL(filemap_write_and_wait);
352 * filemap_write_and_wait_range - write out & wait on a file range
353 * @mapping: the address_space for the pages
354 * @lstart: offset in bytes where the range starts
355 * @lend: offset in bytes where the range ends (inclusive)
357 * Write out and wait upon file offsets lstart->lend, inclusive.
359 * Note that `lend' is inclusive (describes the last byte to be written) so
360 * that this function can be used to write to the very end-of-file (end = -1).
362 int filemap_write_and_wait_range(struct address_space *mapping,
363 loff_t lstart, loff_t lend)
365 int err = 0;
367 if (mapping->nrpages) {
368 err = __filemap_fdatawrite_range(mapping, lstart, lend,
369 WB_SYNC_ALL);
370 /* See comment of filemap_write_and_wait() */
371 if (err != -EIO) {
372 int err2 = filemap_fdatawait_range(mapping,
373 lstart, lend);
374 if (!err)
375 err = err2;
378 return err;
380 EXPORT_SYMBOL(filemap_write_and_wait_range);
383 * replace_page_cache_page - replace a pagecache page with a new one
384 * @old: page to be replaced
385 * @new: page to replace with
386 * @gfp_mask: allocation mode
388 * This function replaces a page in the pagecache with a new one. On
389 * success it acquires the pagecache reference for the new page and
390 * drops it for the old page. Both the old and new pages must be
391 * locked. This function does not add the new page to the LRU, the
392 * caller must do that.
394 * The remove + add is atomic. The only way this function can fail is
395 * memory allocation failure.
397 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
399 int error;
400 struct mem_cgroup *memcg = NULL;
402 VM_BUG_ON(!PageLocked(old));
403 VM_BUG_ON(!PageLocked(new));
404 VM_BUG_ON(new->mapping);
407 * This is not page migration, but prepare_migration and
408 * end_migration does enough work for charge replacement.
410 * In the longer term we probably want a specialized function
411 * for moving the charge from old to new in a more efficient
412 * manner.
414 error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
415 if (error)
416 return error;
418 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
419 if (!error) {
420 struct address_space *mapping = old->mapping;
421 void (*freepage)(struct page *);
423 pgoff_t offset = old->index;
424 freepage = mapping->a_ops->freepage;
426 page_cache_get(new);
427 new->mapping = mapping;
428 new->index = offset;
430 spin_lock_irq(&mapping->tree_lock);
431 __delete_from_page_cache(old);
432 error = radix_tree_insert(&mapping->page_tree, offset, new);
433 BUG_ON(error);
434 mapping->nrpages++;
435 __inc_zone_page_state(new, NR_FILE_PAGES);
436 if (PageSwapBacked(new))
437 __inc_zone_page_state(new, NR_SHMEM);
438 spin_unlock_irq(&mapping->tree_lock);
439 radix_tree_preload_end();
440 if (freepage)
441 freepage(old);
442 page_cache_release(old);
443 mem_cgroup_end_migration(memcg, old, new, true);
444 } else {
445 mem_cgroup_end_migration(memcg, old, new, false);
448 return error;
450 EXPORT_SYMBOL_GPL(replace_page_cache_page);
453 * add_to_page_cache_locked - add a locked page to the pagecache
454 * @page: page to add
455 * @mapping: the page's address_space
456 * @offset: page index
457 * @gfp_mask: page allocation mode
459 * This function is used to add a page to the pagecache. It must be locked.
460 * This function does not add the page to the LRU. The caller must do that.
462 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
463 pgoff_t offset, gfp_t gfp_mask)
465 int error;
467 VM_BUG_ON(!PageLocked(page));
469 error = mem_cgroup_cache_charge(page, current->mm,
470 gfp_mask & GFP_RECLAIM_MASK);
471 if (error)
472 goto out;
474 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
475 if (error == 0) {
476 page_cache_get(page);
477 page->mapping = mapping;
478 page->index = offset;
480 spin_lock_irq(&mapping->tree_lock);
481 error = radix_tree_insert(&mapping->page_tree, offset, page);
482 if (likely(!error)) {
483 mapping->nrpages++;
484 __inc_zone_page_state(page, NR_FILE_PAGES);
485 if (PageSwapBacked(page))
486 __inc_zone_page_state(page, NR_SHMEM);
487 spin_unlock_irq(&mapping->tree_lock);
488 } else {
489 page->mapping = NULL;
490 /* Leave page->index set: truncation relies upon it */
491 spin_unlock_irq(&mapping->tree_lock);
492 mem_cgroup_uncharge_cache_page(page);
493 page_cache_release(page);
495 radix_tree_preload_end();
496 } else
497 mem_cgroup_uncharge_cache_page(page);
498 out:
499 return error;
501 EXPORT_SYMBOL(add_to_page_cache_locked);
503 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
504 pgoff_t offset, gfp_t gfp_mask)
506 int ret;
509 * Splice_read and readahead add shmem/tmpfs pages into the page cache
510 * before shmem_readpage has a chance to mark them as SwapBacked: they
511 * need to go on the anon lru below, and mem_cgroup_cache_charge
512 * (called in add_to_page_cache) needs to know where they're going too.
514 if (mapping_cap_swap_backed(mapping))
515 SetPageSwapBacked(page);
517 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
518 if (ret == 0) {
519 if (page_is_file_cache(page))
520 lru_cache_add_file(page);
521 else
522 lru_cache_add_anon(page);
524 return ret;
526 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
528 #ifdef CONFIG_NUMA
529 struct page *__page_cache_alloc(gfp_t gfp)
531 int n;
532 struct page *page;
534 if (cpuset_do_page_mem_spread()) {
535 get_mems_allowed();
536 n = cpuset_mem_spread_node();
537 page = alloc_pages_exact_node(n, gfp, 0);
538 put_mems_allowed();
539 return page;
541 return alloc_pages(gfp, 0);
543 EXPORT_SYMBOL(__page_cache_alloc);
544 #endif
547 * In order to wait for pages to become available there must be
548 * waitqueues associated with pages. By using a hash table of
549 * waitqueues where the bucket discipline is to maintain all
550 * waiters on the same queue and wake all when any of the pages
551 * become available, and for the woken contexts to check to be
552 * sure the appropriate page became available, this saves space
553 * at a cost of "thundering herd" phenomena during rare hash
554 * collisions.
556 static wait_queue_head_t *page_waitqueue(struct page *page)
558 const struct zone *zone = page_zone(page);
560 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
563 static inline void wake_up_page(struct page *page, int bit)
565 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
568 void wait_on_page_bit(struct page *page, int bit_nr)
570 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
572 if (test_bit(bit_nr, &page->flags))
573 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
574 TASK_UNINTERRUPTIBLE);
576 EXPORT_SYMBOL(wait_on_page_bit);
578 int wait_on_page_bit_killable(struct page *page, int bit_nr)
580 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
582 if (!test_bit(bit_nr, &page->flags))
583 return 0;
585 return __wait_on_bit(page_waitqueue(page), &wait,
586 sleep_on_page_killable, TASK_KILLABLE);
590 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
591 * @page: Page defining the wait queue of interest
592 * @waiter: Waiter to add to the queue
594 * Add an arbitrary @waiter to the wait queue for the nominated @page.
596 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
598 wait_queue_head_t *q = page_waitqueue(page);
599 unsigned long flags;
601 spin_lock_irqsave(&q->lock, flags);
602 __add_wait_queue(q, waiter);
603 spin_unlock_irqrestore(&q->lock, flags);
605 EXPORT_SYMBOL_GPL(add_page_wait_queue);
608 * unlock_page - unlock a locked page
609 * @page: the page
611 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
612 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
613 * mechananism between PageLocked pages and PageWriteback pages is shared.
614 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
616 * The mb is necessary to enforce ordering between the clear_bit and the read
617 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
619 void unlock_page(struct page *page)
621 VM_BUG_ON(!PageLocked(page));
622 clear_bit_unlock(PG_locked, &page->flags);
623 smp_mb__after_clear_bit();
624 wake_up_page(page, PG_locked);
626 EXPORT_SYMBOL(unlock_page);
629 * end_page_writeback - end writeback against a page
630 * @page: the page
632 void end_page_writeback(struct page *page)
634 if (TestClearPageReclaim(page))
635 rotate_reclaimable_page(page);
637 if (!test_clear_page_writeback(page))
638 BUG();
640 smp_mb__after_clear_bit();
641 wake_up_page(page, PG_writeback);
643 EXPORT_SYMBOL(end_page_writeback);
646 * __lock_page - get a lock on the page, assuming we need to sleep to get it
647 * @page: the page to lock
649 void __lock_page(struct page *page)
651 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
653 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
654 TASK_UNINTERRUPTIBLE);
656 EXPORT_SYMBOL(__lock_page);
658 int __lock_page_killable(struct page *page)
660 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
662 return __wait_on_bit_lock(page_waitqueue(page), &wait,
663 sleep_on_page_killable, TASK_KILLABLE);
665 EXPORT_SYMBOL_GPL(__lock_page_killable);
667 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
668 unsigned int flags)
670 if (flags & FAULT_FLAG_ALLOW_RETRY) {
672 * CAUTION! In this case, mmap_sem is not released
673 * even though return 0.
675 if (flags & FAULT_FLAG_RETRY_NOWAIT)
676 return 0;
678 up_read(&mm->mmap_sem);
679 if (flags & FAULT_FLAG_KILLABLE)
680 wait_on_page_locked_killable(page);
681 else
682 wait_on_page_locked(page);
683 return 0;
684 } else {
685 if (flags & FAULT_FLAG_KILLABLE) {
686 int ret;
688 ret = __lock_page_killable(page);
689 if (ret) {
690 up_read(&mm->mmap_sem);
691 return 0;
693 } else
694 __lock_page(page);
695 return 1;
700 * find_get_page - find and get a page reference
701 * @mapping: the address_space to search
702 * @offset: the page index
704 * Is there a pagecache struct page at the given (mapping, offset) tuple?
705 * If yes, increment its refcount and return it; if no, return NULL.
707 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
709 void **pagep;
710 struct page *page;
712 rcu_read_lock();
713 repeat:
714 page = NULL;
715 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
716 if (pagep) {
717 page = radix_tree_deref_slot(pagep);
718 if (unlikely(!page))
719 goto out;
720 if (radix_tree_deref_retry(page))
721 goto repeat;
723 if (!page_cache_get_speculative(page))
724 goto repeat;
727 * Has the page moved?
728 * This is part of the lockless pagecache protocol. See
729 * include/linux/pagemap.h for details.
731 if (unlikely(page != *pagep)) {
732 page_cache_release(page);
733 goto repeat;
736 out:
737 rcu_read_unlock();
739 return page;
741 EXPORT_SYMBOL(find_get_page);
744 * find_lock_page - locate, pin and lock a pagecache page
745 * @mapping: the address_space to search
746 * @offset: the page index
748 * Locates the desired pagecache page, locks it, increments its reference
749 * count and returns its address.
751 * Returns zero if the page was not present. find_lock_page() may sleep.
753 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
755 struct page *page;
757 repeat:
758 page = find_get_page(mapping, offset);
759 if (page) {
760 lock_page(page);
761 /* Has the page been truncated? */
762 if (unlikely(page->mapping != mapping)) {
763 unlock_page(page);
764 page_cache_release(page);
765 goto repeat;
767 VM_BUG_ON(page->index != offset);
769 return page;
771 EXPORT_SYMBOL(find_lock_page);
774 * find_or_create_page - locate or add a pagecache page
775 * @mapping: the page's address_space
776 * @index: the page's index into the mapping
777 * @gfp_mask: page allocation mode
779 * Locates a page in the pagecache. If the page is not present, a new page
780 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
781 * LRU list. The returned page is locked and has its reference count
782 * incremented.
784 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
785 * allocation!
787 * find_or_create_page() returns the desired page's address, or zero on
788 * memory exhaustion.
790 struct page *find_or_create_page(struct address_space *mapping,
791 pgoff_t index, gfp_t gfp_mask)
793 struct page *page;
794 int err;
795 repeat:
796 page = find_lock_page(mapping, index);
797 if (!page) {
798 page = __page_cache_alloc(gfp_mask);
799 if (!page)
800 return NULL;
802 * We want a regular kernel memory (not highmem or DMA etc)
803 * allocation for the radix tree nodes, but we need to honour
804 * the context-specific requirements the caller has asked for.
805 * GFP_RECLAIM_MASK collects those requirements.
807 err = add_to_page_cache_lru(page, mapping, index,
808 (gfp_mask & GFP_RECLAIM_MASK));
809 if (unlikely(err)) {
810 page_cache_release(page);
811 page = NULL;
812 if (err == -EEXIST)
813 goto repeat;
816 return page;
818 EXPORT_SYMBOL(find_or_create_page);
821 * find_get_pages - gang pagecache lookup
822 * @mapping: The address_space to search
823 * @start: The starting page index
824 * @nr_pages: The maximum number of pages
825 * @pages: Where the resulting pages are placed
827 * find_get_pages() will search for and return a group of up to
828 * @nr_pages pages in the mapping. The pages are placed at @pages.
829 * find_get_pages() takes a reference against the returned pages.
831 * The search returns a group of mapping-contiguous pages with ascending
832 * indexes. There may be holes in the indices due to not-present pages.
834 * find_get_pages() returns the number of pages which were found.
836 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
837 unsigned int nr_pages, struct page **pages)
839 unsigned int i;
840 unsigned int ret;
841 unsigned int nr_found;
843 rcu_read_lock();
844 restart:
845 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
846 (void ***)pages, start, nr_pages);
847 ret = 0;
848 for (i = 0; i < nr_found; i++) {
849 struct page *page;
850 repeat:
851 page = radix_tree_deref_slot((void **)pages[i]);
852 if (unlikely(!page))
853 continue;
856 * This can only trigger when the entry at index 0 moves out
857 * of or back to the root: none yet gotten, safe to restart.
859 if (radix_tree_deref_retry(page)) {
860 WARN_ON(start | i);
861 goto restart;
864 if (!page_cache_get_speculative(page))
865 goto repeat;
867 /* Has the page moved? */
868 if (unlikely(page != *((void **)pages[i]))) {
869 page_cache_release(page);
870 goto repeat;
873 pages[ret] = page;
874 ret++;
878 * If all entries were removed before we could secure them,
879 * try again, because callers stop trying once 0 is returned.
881 if (unlikely(!ret && nr_found))
882 goto restart;
883 rcu_read_unlock();
884 return ret;
888 * find_get_pages_contig - gang contiguous pagecache lookup
889 * @mapping: The address_space to search
890 * @index: The starting page index
891 * @nr_pages: The maximum number of pages
892 * @pages: Where the resulting pages are placed
894 * find_get_pages_contig() works exactly like find_get_pages(), except
895 * that the returned number of pages are guaranteed to be contiguous.
897 * find_get_pages_contig() returns the number of pages which were found.
899 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
900 unsigned int nr_pages, struct page **pages)
902 unsigned int i;
903 unsigned int ret;
904 unsigned int nr_found;
906 rcu_read_lock();
907 restart:
908 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
909 (void ***)pages, index, nr_pages);
910 ret = 0;
911 for (i = 0; i < nr_found; i++) {
912 struct page *page;
913 repeat:
914 page = radix_tree_deref_slot((void **)pages[i]);
915 if (unlikely(!page))
916 continue;
919 * This can only trigger when the entry at index 0 moves out
920 * of or back to the root: none yet gotten, safe to restart.
922 if (radix_tree_deref_retry(page))
923 goto restart;
925 if (!page_cache_get_speculative(page))
926 goto repeat;
928 /* Has the page moved? */
929 if (unlikely(page != *((void **)pages[i]))) {
930 page_cache_release(page);
931 goto repeat;
935 * must check mapping and index after taking the ref.
936 * otherwise we can get both false positives and false
937 * negatives, which is just confusing to the caller.
939 if (page->mapping == NULL || page->index != index) {
940 page_cache_release(page);
941 break;
944 pages[ret] = page;
945 ret++;
946 index++;
948 rcu_read_unlock();
949 return ret;
951 EXPORT_SYMBOL(find_get_pages_contig);
954 * find_get_pages_tag - find and return pages that match @tag
955 * @mapping: the address_space to search
956 * @index: the starting page index
957 * @tag: the tag index
958 * @nr_pages: the maximum number of pages
959 * @pages: where the resulting pages are placed
961 * Like find_get_pages, except we only return pages which are tagged with
962 * @tag. We update @index to index the next page for the traversal.
964 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
965 int tag, unsigned int nr_pages, struct page **pages)
967 unsigned int i;
968 unsigned int ret;
969 unsigned int nr_found;
971 rcu_read_lock();
972 restart:
973 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
974 (void ***)pages, *index, nr_pages, tag);
975 ret = 0;
976 for (i = 0; i < nr_found; i++) {
977 struct page *page;
978 repeat:
979 page = radix_tree_deref_slot((void **)pages[i]);
980 if (unlikely(!page))
981 continue;
984 * This can only trigger when the entry at index 0 moves out
985 * of or back to the root: none yet gotten, safe to restart.
987 if (radix_tree_deref_retry(page))
988 goto restart;
990 if (!page_cache_get_speculative(page))
991 goto repeat;
993 /* Has the page moved? */
994 if (unlikely(page != *((void **)pages[i]))) {
995 page_cache_release(page);
996 goto repeat;
999 pages[ret] = page;
1000 ret++;
1004 * If all entries were removed before we could secure them,
1005 * try again, because callers stop trying once 0 is returned.
1007 if (unlikely(!ret && nr_found))
1008 goto restart;
1009 rcu_read_unlock();
1011 if (ret)
1012 *index = pages[ret - 1]->index + 1;
1014 return ret;
1016 EXPORT_SYMBOL(find_get_pages_tag);
1019 * grab_cache_page_nowait - returns locked page at given index in given cache
1020 * @mapping: target address_space
1021 * @index: the page index
1023 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1024 * This is intended for speculative data generators, where the data can
1025 * be regenerated if the page couldn't be grabbed. This routine should
1026 * be safe to call while holding the lock for another page.
1028 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1029 * and deadlock against the caller's locked page.
1031 struct page *
1032 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1034 struct page *page = find_get_page(mapping, index);
1036 if (page) {
1037 if (trylock_page(page))
1038 return page;
1039 page_cache_release(page);
1040 return NULL;
1042 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1043 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1044 page_cache_release(page);
1045 page = NULL;
1047 return page;
1049 EXPORT_SYMBOL(grab_cache_page_nowait);
1052 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1053 * a _large_ part of the i/o request. Imagine the worst scenario:
1055 * ---R__________________________________________B__________
1056 * ^ reading here ^ bad block(assume 4k)
1058 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1059 * => failing the whole request => read(R) => read(R+1) =>
1060 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1061 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1062 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1064 * It is going insane. Fix it by quickly scaling down the readahead size.
1066 static void shrink_readahead_size_eio(struct file *filp,
1067 struct file_ra_state *ra)
1069 ra->ra_pages /= 4;
1073 * do_generic_file_read - generic file read routine
1074 * @filp: the file to read
1075 * @ppos: current file position
1076 * @desc: read_descriptor
1077 * @actor: read method
1079 * This is a generic file read routine, and uses the
1080 * mapping->a_ops->readpage() function for the actual low-level stuff.
1082 * This is really ugly. But the goto's actually try to clarify some
1083 * of the logic when it comes to error handling etc.
1085 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1086 read_descriptor_t *desc, read_actor_t actor)
1088 struct address_space *mapping = filp->f_mapping;
1089 struct inode *inode = mapping->host;
1090 struct file_ra_state *ra = &filp->f_ra;
1091 pgoff_t index;
1092 pgoff_t last_index;
1093 pgoff_t prev_index;
1094 unsigned long offset; /* offset into pagecache page */
1095 unsigned int prev_offset;
1096 int error;
1098 index = *ppos >> PAGE_CACHE_SHIFT;
1099 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1100 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1101 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1102 offset = *ppos & ~PAGE_CACHE_MASK;
1104 for (;;) {
1105 struct page *page;
1106 pgoff_t end_index;
1107 loff_t isize;
1108 unsigned long nr, ret;
1110 cond_resched();
1111 find_page:
1112 page = find_get_page(mapping, index);
1113 if (!page) {
1114 page_cache_sync_readahead(mapping,
1115 ra, filp,
1116 index, last_index - index);
1117 page = find_get_page(mapping, index);
1118 if (unlikely(page == NULL))
1119 goto no_cached_page;
1121 if (PageReadahead(page)) {
1122 page_cache_async_readahead(mapping,
1123 ra, filp, page,
1124 index, last_index - index);
1126 if (!PageUptodate(page)) {
1127 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1128 !mapping->a_ops->is_partially_uptodate)
1129 goto page_not_up_to_date;
1130 if (!trylock_page(page))
1131 goto page_not_up_to_date;
1132 /* Did it get truncated before we got the lock? */
1133 if (!page->mapping)
1134 goto page_not_up_to_date_locked;
1135 if (!mapping->a_ops->is_partially_uptodate(page,
1136 desc, offset))
1137 goto page_not_up_to_date_locked;
1138 unlock_page(page);
1140 page_ok:
1142 * i_size must be checked after we know the page is Uptodate.
1144 * Checking i_size after the check allows us to calculate
1145 * the correct value for "nr", which means the zero-filled
1146 * part of the page is not copied back to userspace (unless
1147 * another truncate extends the file - this is desired though).
1150 isize = i_size_read(inode);
1151 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1152 if (unlikely(!isize || index > end_index)) {
1153 page_cache_release(page);
1154 goto out;
1157 /* nr is the maximum number of bytes to copy from this page */
1158 nr = PAGE_CACHE_SIZE;
1159 if (index == end_index) {
1160 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1161 if (nr <= offset) {
1162 page_cache_release(page);
1163 goto out;
1166 nr = nr - offset;
1168 /* If users can be writing to this page using arbitrary
1169 * virtual addresses, take care about potential aliasing
1170 * before reading the page on the kernel side.
1172 if (mapping_writably_mapped(mapping))
1173 flush_dcache_page(page);
1176 * When a sequential read accesses a page several times,
1177 * only mark it as accessed the first time.
1179 if (prev_index != index || offset != prev_offset)
1180 mark_page_accessed(page);
1181 prev_index = index;
1184 * Ok, we have the page, and it's up-to-date, so
1185 * now we can copy it to user space...
1187 * The actor routine returns how many bytes were actually used..
1188 * NOTE! This may not be the same as how much of a user buffer
1189 * we filled up (we may be padding etc), so we can only update
1190 * "pos" here (the actor routine has to update the user buffer
1191 * pointers and the remaining count).
1193 ret = actor(desc, page, offset, nr);
1194 offset += ret;
1195 index += offset >> PAGE_CACHE_SHIFT;
1196 offset &= ~PAGE_CACHE_MASK;
1197 prev_offset = offset;
1199 page_cache_release(page);
1200 if (ret == nr && desc->count)
1201 continue;
1202 goto out;
1204 page_not_up_to_date:
1205 /* Get exclusive access to the page ... */
1206 error = lock_page_killable(page);
1207 if (unlikely(error))
1208 goto readpage_error;
1210 page_not_up_to_date_locked:
1211 /* Did it get truncated before we got the lock? */
1212 if (!page->mapping) {
1213 unlock_page(page);
1214 page_cache_release(page);
1215 continue;
1218 /* Did somebody else fill it already? */
1219 if (PageUptodate(page)) {
1220 unlock_page(page);
1221 goto page_ok;
1224 readpage:
1226 * A previous I/O error may have been due to temporary
1227 * failures, eg. multipath errors.
1228 * PG_error will be set again if readpage fails.
1230 ClearPageError(page);
1231 /* Start the actual read. The read will unlock the page. */
1232 error = mapping->a_ops->readpage(filp, page);
1234 if (unlikely(error)) {
1235 if (error == AOP_TRUNCATED_PAGE) {
1236 page_cache_release(page);
1237 goto find_page;
1239 goto readpage_error;
1242 if (!PageUptodate(page)) {
1243 error = lock_page_killable(page);
1244 if (unlikely(error))
1245 goto readpage_error;
1246 if (!PageUptodate(page)) {
1247 if (page->mapping == NULL) {
1249 * invalidate_mapping_pages got it
1251 unlock_page(page);
1252 page_cache_release(page);
1253 goto find_page;
1255 unlock_page(page);
1256 shrink_readahead_size_eio(filp, ra);
1257 error = -EIO;
1258 goto readpage_error;
1260 unlock_page(page);
1263 goto page_ok;
1265 readpage_error:
1266 /* UHHUH! A synchronous read error occurred. Report it */
1267 desc->error = error;
1268 page_cache_release(page);
1269 goto out;
1271 no_cached_page:
1273 * Ok, it wasn't cached, so we need to create a new
1274 * page..
1276 page = page_cache_alloc_cold(mapping);
1277 if (!page) {
1278 desc->error = -ENOMEM;
1279 goto out;
1281 error = add_to_page_cache_lru(page, mapping,
1282 index, GFP_KERNEL);
1283 if (error) {
1284 page_cache_release(page);
1285 if (error == -EEXIST)
1286 goto find_page;
1287 desc->error = error;
1288 goto out;
1290 goto readpage;
1293 out:
1294 ra->prev_pos = prev_index;
1295 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1296 ra->prev_pos |= prev_offset;
1298 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1299 file_accessed(filp);
1302 int file_read_actor(read_descriptor_t *desc, struct page *page,
1303 unsigned long offset, unsigned long size)
1305 char *kaddr;
1306 unsigned long left, count = desc->count;
1308 if (size > count)
1309 size = count;
1312 * Faults on the destination of a read are common, so do it before
1313 * taking the kmap.
1315 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1316 kaddr = kmap_atomic(page, KM_USER0);
1317 left = __copy_to_user_inatomic(desc->arg.buf,
1318 kaddr + offset, size);
1319 kunmap_atomic(kaddr, KM_USER0);
1320 if (left == 0)
1321 goto success;
1324 /* Do it the slow way */
1325 kaddr = kmap(page);
1326 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1327 kunmap(page);
1329 if (left) {
1330 size -= left;
1331 desc->error = -EFAULT;
1333 success:
1334 desc->count = count - size;
1335 desc->written += size;
1336 desc->arg.buf += size;
1337 return size;
1341 * Performs necessary checks before doing a write
1342 * @iov: io vector request
1343 * @nr_segs: number of segments in the iovec
1344 * @count: number of bytes to write
1345 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1347 * Adjust number of segments and amount of bytes to write (nr_segs should be
1348 * properly initialized first). Returns appropriate error code that caller
1349 * should return or zero in case that write should be allowed.
1351 int generic_segment_checks(const struct iovec *iov,
1352 unsigned long *nr_segs, size_t *count, int access_flags)
1354 unsigned long seg;
1355 size_t cnt = 0;
1356 for (seg = 0; seg < *nr_segs; seg++) {
1357 const struct iovec *iv = &iov[seg];
1360 * If any segment has a negative length, or the cumulative
1361 * length ever wraps negative then return -EINVAL.
1363 cnt += iv->iov_len;
1364 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1365 return -EINVAL;
1366 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1367 continue;
1368 if (seg == 0)
1369 return -EFAULT;
1370 *nr_segs = seg;
1371 cnt -= iv->iov_len; /* This segment is no good */
1372 break;
1374 *count = cnt;
1375 return 0;
1377 EXPORT_SYMBOL(generic_segment_checks);
1380 * generic_file_aio_read - generic filesystem read routine
1381 * @iocb: kernel I/O control block
1382 * @iov: io vector request
1383 * @nr_segs: number of segments in the iovec
1384 * @pos: current file position
1386 * This is the "read()" routine for all filesystems
1387 * that can use the page cache directly.
1389 ssize_t
1390 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1391 unsigned long nr_segs, loff_t pos)
1393 struct file *filp = iocb->ki_filp;
1394 ssize_t retval;
1395 unsigned long seg = 0;
1396 size_t count;
1397 loff_t *ppos = &iocb->ki_pos;
1398 struct blk_plug plug;
1400 count = 0;
1401 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1402 if (retval)
1403 return retval;
1405 blk_start_plug(&plug);
1407 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1408 if (filp->f_flags & O_DIRECT) {
1409 loff_t size;
1410 struct address_space *mapping;
1411 struct inode *inode;
1413 mapping = filp->f_mapping;
1414 inode = mapping->host;
1415 if (!count)
1416 goto out; /* skip atime */
1417 size = i_size_read(inode);
1418 if (pos < size) {
1419 retval = filemap_write_and_wait_range(mapping, pos,
1420 pos + iov_length(iov, nr_segs) - 1);
1421 if (!retval) {
1422 retval = mapping->a_ops->direct_IO(READ, iocb,
1423 iov, pos, nr_segs);
1425 if (retval > 0) {
1426 *ppos = pos + retval;
1427 count -= retval;
1431 * Btrfs can have a short DIO read if we encounter
1432 * compressed extents, so if there was an error, or if
1433 * we've already read everything we wanted to, or if
1434 * there was a short read because we hit EOF, go ahead
1435 * and return. Otherwise fallthrough to buffered io for
1436 * the rest of the read.
1438 if (retval < 0 || !count || *ppos >= size) {
1439 file_accessed(filp);
1440 goto out;
1445 count = retval;
1446 for (seg = 0; seg < nr_segs; seg++) {
1447 read_descriptor_t desc;
1448 loff_t offset = 0;
1451 * If we did a short DIO read we need to skip the section of the
1452 * iov that we've already read data into.
1454 if (count) {
1455 if (count > iov[seg].iov_len) {
1456 count -= iov[seg].iov_len;
1457 continue;
1459 offset = count;
1460 count = 0;
1463 desc.written = 0;
1464 desc.arg.buf = iov[seg].iov_base + offset;
1465 desc.count = iov[seg].iov_len - offset;
1466 if (desc.count == 0)
1467 continue;
1468 desc.error = 0;
1469 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1470 retval += desc.written;
1471 if (desc.error) {
1472 retval = retval ?: desc.error;
1473 break;
1475 if (desc.count > 0)
1476 break;
1478 out:
1479 blk_finish_plug(&plug);
1480 return retval;
1482 EXPORT_SYMBOL(generic_file_aio_read);
1484 static ssize_t
1485 do_readahead(struct address_space *mapping, struct file *filp,
1486 pgoff_t index, unsigned long nr)
1488 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1489 return -EINVAL;
1491 force_page_cache_readahead(mapping, filp, index, nr);
1492 return 0;
1495 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1497 ssize_t ret;
1498 struct file *file;
1500 ret = -EBADF;
1501 file = fget(fd);
1502 if (file) {
1503 if (file->f_mode & FMODE_READ) {
1504 struct address_space *mapping = file->f_mapping;
1505 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1506 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1507 unsigned long len = end - start + 1;
1508 ret = do_readahead(mapping, file, start, len);
1510 fput(file);
1512 return ret;
1514 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1515 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1517 return SYSC_readahead((int) fd, offset, (size_t) count);
1519 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1520 #endif
1522 #ifdef CONFIG_MMU
1524 * page_cache_read - adds requested page to the page cache if not already there
1525 * @file: file to read
1526 * @offset: page index
1528 * This adds the requested page to the page cache if it isn't already there,
1529 * and schedules an I/O to read in its contents from disk.
1531 static int page_cache_read(struct file *file, pgoff_t offset)
1533 struct address_space *mapping = file->f_mapping;
1534 struct page *page;
1535 int ret;
1537 do {
1538 page = page_cache_alloc_cold(mapping);
1539 if (!page)
1540 return -ENOMEM;
1542 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1543 if (ret == 0)
1544 ret = mapping->a_ops->readpage(file, page);
1545 else if (ret == -EEXIST)
1546 ret = 0; /* losing race to add is OK */
1548 page_cache_release(page);
1550 } while (ret == AOP_TRUNCATED_PAGE);
1552 return ret;
1555 #define MMAP_LOTSAMISS (100)
1558 * Synchronous readahead happens when we don't even find
1559 * a page in the page cache at all.
1561 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1562 struct file_ra_state *ra,
1563 struct file *file,
1564 pgoff_t offset)
1566 unsigned long ra_pages;
1567 struct address_space *mapping = file->f_mapping;
1569 /* If we don't want any read-ahead, don't bother */
1570 if (VM_RandomReadHint(vma))
1571 return;
1572 if (!ra->ra_pages)
1573 return;
1575 if (VM_SequentialReadHint(vma)) {
1576 page_cache_sync_readahead(mapping, ra, file, offset,
1577 ra->ra_pages);
1578 return;
1581 /* Avoid banging the cache line if not needed */
1582 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1583 ra->mmap_miss++;
1586 * Do we miss much more than hit in this file? If so,
1587 * stop bothering with read-ahead. It will only hurt.
1589 if (ra->mmap_miss > MMAP_LOTSAMISS)
1590 return;
1593 * mmap read-around
1595 ra_pages = max_sane_readahead(ra->ra_pages);
1596 ra->start = max_t(long, 0, offset - ra_pages / 2);
1597 ra->size = ra_pages;
1598 ra->async_size = ra_pages / 4;
1599 ra_submit(ra, mapping, file);
1603 * Asynchronous readahead happens when we find the page and PG_readahead,
1604 * so we want to possibly extend the readahead further..
1606 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1607 struct file_ra_state *ra,
1608 struct file *file,
1609 struct page *page,
1610 pgoff_t offset)
1612 struct address_space *mapping = file->f_mapping;
1614 /* If we don't want any read-ahead, don't bother */
1615 if (VM_RandomReadHint(vma))
1616 return;
1617 if (ra->mmap_miss > 0)
1618 ra->mmap_miss--;
1619 if (PageReadahead(page))
1620 page_cache_async_readahead(mapping, ra, file,
1621 page, offset, ra->ra_pages);
1625 * filemap_fault - read in file data for page fault handling
1626 * @vma: vma in which the fault was taken
1627 * @vmf: struct vm_fault containing details of the fault
1629 * filemap_fault() is invoked via the vma operations vector for a
1630 * mapped memory region to read in file data during a page fault.
1632 * The goto's are kind of ugly, but this streamlines the normal case of having
1633 * it in the page cache, and handles the special cases reasonably without
1634 * having a lot of duplicated code.
1636 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1638 int error;
1639 struct file *file = vma->vm_file;
1640 struct address_space *mapping = file->f_mapping;
1641 struct file_ra_state *ra = &file->f_ra;
1642 struct inode *inode = mapping->host;
1643 pgoff_t offset = vmf->pgoff;
1644 struct page *page;
1645 pgoff_t size;
1646 int ret = 0;
1648 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1649 if (offset >= size)
1650 return VM_FAULT_SIGBUS;
1653 * Do we have something in the page cache already?
1655 page = find_get_page(mapping, offset);
1656 if (likely(page)) {
1658 * We found the page, so try async readahead before
1659 * waiting for the lock.
1661 do_async_mmap_readahead(vma, ra, file, page, offset);
1662 } else {
1663 /* No page in the page cache at all */
1664 do_sync_mmap_readahead(vma, ra, file, offset);
1665 count_vm_event(PGMAJFAULT);
1666 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1667 ret = VM_FAULT_MAJOR;
1668 retry_find:
1669 page = find_get_page(mapping, offset);
1670 if (!page)
1671 goto no_cached_page;
1674 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1675 page_cache_release(page);
1676 return ret | VM_FAULT_RETRY;
1679 /* Did it get truncated? */
1680 if (unlikely(page->mapping != mapping)) {
1681 unlock_page(page);
1682 put_page(page);
1683 goto retry_find;
1685 VM_BUG_ON(page->index != offset);
1688 * We have a locked page in the page cache, now we need to check
1689 * that it's up-to-date. If not, it is going to be due to an error.
1691 if (unlikely(!PageUptodate(page)))
1692 goto page_not_uptodate;
1695 * Found the page and have a reference on it.
1696 * We must recheck i_size under page lock.
1698 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1699 if (unlikely(offset >= size)) {
1700 unlock_page(page);
1701 page_cache_release(page);
1702 return VM_FAULT_SIGBUS;
1705 vmf->page = page;
1706 return ret | VM_FAULT_LOCKED;
1708 no_cached_page:
1710 * We're only likely to ever get here if MADV_RANDOM is in
1711 * effect.
1713 error = page_cache_read(file, offset);
1716 * The page we want has now been added to the page cache.
1717 * In the unlikely event that someone removed it in the
1718 * meantime, we'll just come back here and read it again.
1720 if (error >= 0)
1721 goto retry_find;
1724 * An error return from page_cache_read can result if the
1725 * system is low on memory, or a problem occurs while trying
1726 * to schedule I/O.
1728 if (error == -ENOMEM)
1729 return VM_FAULT_OOM;
1730 return VM_FAULT_SIGBUS;
1732 page_not_uptodate:
1734 * Umm, take care of errors if the page isn't up-to-date.
1735 * Try to re-read it _once_. We do this synchronously,
1736 * because there really aren't any performance issues here
1737 * and we need to check for errors.
1739 ClearPageError(page);
1740 error = mapping->a_ops->readpage(file, page);
1741 if (!error) {
1742 wait_on_page_locked(page);
1743 if (!PageUptodate(page))
1744 error = -EIO;
1746 page_cache_release(page);
1748 if (!error || error == AOP_TRUNCATED_PAGE)
1749 goto retry_find;
1751 /* Things didn't work out. Return zero to tell the mm layer so. */
1752 shrink_readahead_size_eio(file, ra);
1753 return VM_FAULT_SIGBUS;
1755 EXPORT_SYMBOL(filemap_fault);
1757 const struct vm_operations_struct generic_file_vm_ops = {
1758 .fault = filemap_fault,
1761 /* This is used for a general mmap of a disk file */
1763 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1765 struct address_space *mapping = file->f_mapping;
1767 if (!mapping->a_ops->readpage)
1768 return -ENOEXEC;
1769 file_accessed(file);
1770 vma->vm_ops = &generic_file_vm_ops;
1771 vma->vm_flags |= VM_CAN_NONLINEAR;
1772 return 0;
1776 * This is for filesystems which do not implement ->writepage.
1778 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1780 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1781 return -EINVAL;
1782 return generic_file_mmap(file, vma);
1784 #else
1785 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1787 return -ENOSYS;
1789 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1791 return -ENOSYS;
1793 #endif /* CONFIG_MMU */
1795 EXPORT_SYMBOL(generic_file_mmap);
1796 EXPORT_SYMBOL(generic_file_readonly_mmap);
1798 static struct page *__read_cache_page(struct address_space *mapping,
1799 pgoff_t index,
1800 int (*filler)(void *, struct page *),
1801 void *data,
1802 gfp_t gfp)
1804 struct page *page;
1805 int err;
1806 repeat:
1807 page = find_get_page(mapping, index);
1808 if (!page) {
1809 page = __page_cache_alloc(gfp | __GFP_COLD);
1810 if (!page)
1811 return ERR_PTR(-ENOMEM);
1812 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1813 if (unlikely(err)) {
1814 page_cache_release(page);
1815 if (err == -EEXIST)
1816 goto repeat;
1817 /* Presumably ENOMEM for radix tree node */
1818 return ERR_PTR(err);
1820 err = filler(data, page);
1821 if (err < 0) {
1822 page_cache_release(page);
1823 page = ERR_PTR(err);
1826 return page;
1829 static struct page *do_read_cache_page(struct address_space *mapping,
1830 pgoff_t index,
1831 int (*filler)(void *, struct page *),
1832 void *data,
1833 gfp_t gfp)
1836 struct page *page;
1837 int err;
1839 retry:
1840 page = __read_cache_page(mapping, index, filler, data, gfp);
1841 if (IS_ERR(page))
1842 return page;
1843 if (PageUptodate(page))
1844 goto out;
1846 lock_page(page);
1847 if (!page->mapping) {
1848 unlock_page(page);
1849 page_cache_release(page);
1850 goto retry;
1852 if (PageUptodate(page)) {
1853 unlock_page(page);
1854 goto out;
1856 err = filler(data, page);
1857 if (err < 0) {
1858 page_cache_release(page);
1859 return ERR_PTR(err);
1861 out:
1862 mark_page_accessed(page);
1863 return page;
1867 * read_cache_page_async - read into page cache, fill it if needed
1868 * @mapping: the page's address_space
1869 * @index: the page index
1870 * @filler: function to perform the read
1871 * @data: first arg to filler(data, page) function, often left as NULL
1873 * Same as read_cache_page, but don't wait for page to become unlocked
1874 * after submitting it to the filler.
1876 * Read into the page cache. If a page already exists, and PageUptodate() is
1877 * not set, try to fill the page but don't wait for it to become unlocked.
1879 * If the page does not get brought uptodate, return -EIO.
1881 struct page *read_cache_page_async(struct address_space *mapping,
1882 pgoff_t index,
1883 int (*filler)(void *, struct page *),
1884 void *data)
1886 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1888 EXPORT_SYMBOL(read_cache_page_async);
1890 static struct page *wait_on_page_read(struct page *page)
1892 if (!IS_ERR(page)) {
1893 wait_on_page_locked(page);
1894 if (!PageUptodate(page)) {
1895 page_cache_release(page);
1896 page = ERR_PTR(-EIO);
1899 return page;
1903 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1904 * @mapping: the page's address_space
1905 * @index: the page index
1906 * @gfp: the page allocator flags to use if allocating
1908 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1909 * any new page allocations done using the specified allocation flags. Note
1910 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1911 * expect to do this atomically or anything like that - but you can pass in
1912 * other page requirements.
1914 * If the page does not get brought uptodate, return -EIO.
1916 struct page *read_cache_page_gfp(struct address_space *mapping,
1917 pgoff_t index,
1918 gfp_t gfp)
1920 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1922 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1924 EXPORT_SYMBOL(read_cache_page_gfp);
1927 * read_cache_page - read into page cache, fill it if needed
1928 * @mapping: the page's address_space
1929 * @index: the page index
1930 * @filler: function to perform the read
1931 * @data: first arg to filler(data, page) function, often left as NULL
1933 * Read into the page cache. If a page already exists, and PageUptodate() is
1934 * not set, try to fill the page then wait for it to become unlocked.
1936 * If the page does not get brought uptodate, return -EIO.
1938 struct page *read_cache_page(struct address_space *mapping,
1939 pgoff_t index,
1940 int (*filler)(void *, struct page *),
1941 void *data)
1943 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1945 EXPORT_SYMBOL(read_cache_page);
1948 * The logic we want is
1950 * if suid or (sgid and xgrp)
1951 * remove privs
1953 int should_remove_suid(struct dentry *dentry)
1955 mode_t mode = dentry->d_inode->i_mode;
1956 int kill = 0;
1958 /* suid always must be killed */
1959 if (unlikely(mode & S_ISUID))
1960 kill = ATTR_KILL_SUID;
1963 * sgid without any exec bits is just a mandatory locking mark; leave
1964 * it alone. If some exec bits are set, it's a real sgid; kill it.
1966 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1967 kill |= ATTR_KILL_SGID;
1969 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1970 return kill;
1972 return 0;
1974 EXPORT_SYMBOL(should_remove_suid);
1976 static int __remove_suid(struct dentry *dentry, int kill)
1978 struct iattr newattrs;
1980 newattrs.ia_valid = ATTR_FORCE | kill;
1981 return notify_change(dentry, &newattrs);
1984 int file_remove_suid(struct file *file)
1986 struct dentry *dentry = file->f_path.dentry;
1987 struct inode *inode = dentry->d_inode;
1988 int killsuid;
1989 int killpriv;
1990 int error = 0;
1992 /* Fast path for nothing security related */
1993 if (IS_NOSEC(inode))
1994 return 0;
1996 killsuid = should_remove_suid(dentry);
1997 killpriv = security_inode_need_killpriv(dentry);
1999 if (killpriv < 0)
2000 return killpriv;
2001 if (killpriv)
2002 error = security_inode_killpriv(dentry);
2003 if (!error && killsuid)
2004 error = __remove_suid(dentry, killsuid);
2005 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
2006 inode->i_flags |= S_NOSEC;
2008 return error;
2010 EXPORT_SYMBOL(file_remove_suid);
2012 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2013 const struct iovec *iov, size_t base, size_t bytes)
2015 size_t copied = 0, left = 0;
2017 while (bytes) {
2018 char __user *buf = iov->iov_base + base;
2019 int copy = min(bytes, iov->iov_len - base);
2021 base = 0;
2022 left = __copy_from_user_inatomic(vaddr, buf, copy);
2023 copied += copy;
2024 bytes -= copy;
2025 vaddr += copy;
2026 iov++;
2028 if (unlikely(left))
2029 break;
2031 return copied - left;
2035 * Copy as much as we can into the page and return the number of bytes which
2036 * were successfully copied. If a fault is encountered then return the number of
2037 * bytes which were copied.
2039 size_t iov_iter_copy_from_user_atomic(struct page *page,
2040 struct iov_iter *i, unsigned long offset, size_t bytes)
2042 char *kaddr;
2043 size_t copied;
2045 BUG_ON(!in_atomic());
2046 kaddr = kmap_atomic(page, KM_USER0);
2047 if (likely(i->nr_segs == 1)) {
2048 int left;
2049 char __user *buf = i->iov->iov_base + i->iov_offset;
2050 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2051 copied = bytes - left;
2052 } else {
2053 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2054 i->iov, i->iov_offset, bytes);
2056 kunmap_atomic(kaddr, KM_USER0);
2058 return copied;
2060 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2063 * This has the same sideeffects and return value as
2064 * iov_iter_copy_from_user_atomic().
2065 * The difference is that it attempts to resolve faults.
2066 * Page must not be locked.
2068 size_t iov_iter_copy_from_user(struct page *page,
2069 struct iov_iter *i, unsigned long offset, size_t bytes)
2071 char *kaddr;
2072 size_t copied;
2074 kaddr = kmap(page);
2075 if (likely(i->nr_segs == 1)) {
2076 int left;
2077 char __user *buf = i->iov->iov_base + i->iov_offset;
2078 left = __copy_from_user(kaddr + offset, buf, bytes);
2079 copied = bytes - left;
2080 } else {
2081 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2082 i->iov, i->iov_offset, bytes);
2084 kunmap(page);
2085 return copied;
2087 EXPORT_SYMBOL(iov_iter_copy_from_user);
2089 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2091 BUG_ON(i->count < bytes);
2093 if (likely(i->nr_segs == 1)) {
2094 i->iov_offset += bytes;
2095 i->count -= bytes;
2096 } else {
2097 const struct iovec *iov = i->iov;
2098 size_t base = i->iov_offset;
2101 * The !iov->iov_len check ensures we skip over unlikely
2102 * zero-length segments (without overruning the iovec).
2104 while (bytes || unlikely(i->count && !iov->iov_len)) {
2105 int copy;
2107 copy = min(bytes, iov->iov_len - base);
2108 BUG_ON(!i->count || i->count < copy);
2109 i->count -= copy;
2110 bytes -= copy;
2111 base += copy;
2112 if (iov->iov_len == base) {
2113 iov++;
2114 base = 0;
2117 i->iov = iov;
2118 i->iov_offset = base;
2121 EXPORT_SYMBOL(iov_iter_advance);
2124 * Fault in the first iovec of the given iov_iter, to a maximum length
2125 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2126 * accessed (ie. because it is an invalid address).
2128 * writev-intensive code may want this to prefault several iovecs -- that
2129 * would be possible (callers must not rely on the fact that _only_ the
2130 * first iovec will be faulted with the current implementation).
2132 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2134 char __user *buf = i->iov->iov_base + i->iov_offset;
2135 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2136 return fault_in_pages_readable(buf, bytes);
2138 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2141 * Return the count of just the current iov_iter segment.
2143 size_t iov_iter_single_seg_count(struct iov_iter *i)
2145 const struct iovec *iov = i->iov;
2146 if (i->nr_segs == 1)
2147 return i->count;
2148 else
2149 return min(i->count, iov->iov_len - i->iov_offset);
2151 EXPORT_SYMBOL(iov_iter_single_seg_count);
2154 * Performs necessary checks before doing a write
2156 * Can adjust writing position or amount of bytes to write.
2157 * Returns appropriate error code that caller should return or
2158 * zero in case that write should be allowed.
2160 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2162 struct inode *inode = file->f_mapping->host;
2163 unsigned long limit = rlimit(RLIMIT_FSIZE);
2165 if (unlikely(*pos < 0))
2166 return -EINVAL;
2168 if (!isblk) {
2169 /* FIXME: this is for backwards compatibility with 2.4 */
2170 if (file->f_flags & O_APPEND)
2171 *pos = i_size_read(inode);
2173 if (limit != RLIM_INFINITY) {
2174 if (*pos >= limit) {
2175 send_sig(SIGXFSZ, current, 0);
2176 return -EFBIG;
2178 if (*count > limit - (typeof(limit))*pos) {
2179 *count = limit - (typeof(limit))*pos;
2185 * LFS rule
2187 if (unlikely(*pos + *count > MAX_NON_LFS &&
2188 !(file->f_flags & O_LARGEFILE))) {
2189 if (*pos >= MAX_NON_LFS) {
2190 return -EFBIG;
2192 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2193 *count = MAX_NON_LFS - (unsigned long)*pos;
2198 * Are we about to exceed the fs block limit ?
2200 * If we have written data it becomes a short write. If we have
2201 * exceeded without writing data we send a signal and return EFBIG.
2202 * Linus frestrict idea will clean these up nicely..
2204 if (likely(!isblk)) {
2205 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2206 if (*count || *pos > inode->i_sb->s_maxbytes) {
2207 return -EFBIG;
2209 /* zero-length writes at ->s_maxbytes are OK */
2212 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2213 *count = inode->i_sb->s_maxbytes - *pos;
2214 } else {
2215 #ifdef CONFIG_BLOCK
2216 loff_t isize;
2217 if (bdev_read_only(I_BDEV(inode)))
2218 return -EPERM;
2219 isize = i_size_read(inode);
2220 if (*pos >= isize) {
2221 if (*count || *pos > isize)
2222 return -ENOSPC;
2225 if (*pos + *count > isize)
2226 *count = isize - *pos;
2227 #else
2228 return -EPERM;
2229 #endif
2231 return 0;
2233 EXPORT_SYMBOL(generic_write_checks);
2235 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2236 loff_t pos, unsigned len, unsigned flags,
2237 struct page **pagep, void **fsdata)
2239 const struct address_space_operations *aops = mapping->a_ops;
2241 return aops->write_begin(file, mapping, pos, len, flags,
2242 pagep, fsdata);
2244 EXPORT_SYMBOL(pagecache_write_begin);
2246 int pagecache_write_end(struct file *file, struct address_space *mapping,
2247 loff_t pos, unsigned len, unsigned copied,
2248 struct page *page, void *fsdata)
2250 const struct address_space_operations *aops = mapping->a_ops;
2252 mark_page_accessed(page);
2253 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2255 EXPORT_SYMBOL(pagecache_write_end);
2257 ssize_t
2258 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2259 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2260 size_t count, size_t ocount)
2262 struct file *file = iocb->ki_filp;
2263 struct address_space *mapping = file->f_mapping;
2264 struct inode *inode = mapping->host;
2265 ssize_t written;
2266 size_t write_len;
2267 pgoff_t end;
2269 if (count != ocount)
2270 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2272 write_len = iov_length(iov, *nr_segs);
2273 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2275 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2276 if (written)
2277 goto out;
2280 * After a write we want buffered reads to be sure to go to disk to get
2281 * the new data. We invalidate clean cached page from the region we're
2282 * about to write. We do this *before* the write so that we can return
2283 * without clobbering -EIOCBQUEUED from ->direct_IO().
2285 if (mapping->nrpages) {
2286 written = invalidate_inode_pages2_range(mapping,
2287 pos >> PAGE_CACHE_SHIFT, end);
2289 * If a page can not be invalidated, return 0 to fall back
2290 * to buffered write.
2292 if (written) {
2293 if (written == -EBUSY)
2294 return 0;
2295 goto out;
2299 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2302 * Finally, try again to invalidate clean pages which might have been
2303 * cached by non-direct readahead, or faulted in by get_user_pages()
2304 * if the source of the write was an mmap'ed region of the file
2305 * we're writing. Either one is a pretty crazy thing to do,
2306 * so we don't support it 100%. If this invalidation
2307 * fails, tough, the write still worked...
2309 if (mapping->nrpages) {
2310 invalidate_inode_pages2_range(mapping,
2311 pos >> PAGE_CACHE_SHIFT, end);
2314 if (written > 0) {
2315 pos += written;
2316 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2317 i_size_write(inode, pos);
2318 mark_inode_dirty(inode);
2320 *ppos = pos;
2322 out:
2323 return written;
2325 EXPORT_SYMBOL(generic_file_direct_write);
2328 * Find or create a page at the given pagecache position. Return the locked
2329 * page. This function is specifically for buffered writes.
2331 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2332 pgoff_t index, unsigned flags)
2334 int status;
2335 struct page *page;
2336 gfp_t gfp_notmask = 0;
2337 if (flags & AOP_FLAG_NOFS)
2338 gfp_notmask = __GFP_FS;
2339 repeat:
2340 page = find_lock_page(mapping, index);
2341 if (page)
2342 goto found;
2344 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2345 if (!page)
2346 return NULL;
2347 status = add_to_page_cache_lru(page, mapping, index,
2348 GFP_KERNEL & ~gfp_notmask);
2349 if (unlikely(status)) {
2350 page_cache_release(page);
2351 if (status == -EEXIST)
2352 goto repeat;
2353 return NULL;
2355 found:
2356 wait_on_page_writeback(page);
2357 return page;
2359 EXPORT_SYMBOL(grab_cache_page_write_begin);
2361 static ssize_t generic_perform_write(struct file *file,
2362 struct iov_iter *i, loff_t pos)
2364 struct address_space *mapping = file->f_mapping;
2365 const struct address_space_operations *a_ops = mapping->a_ops;
2366 long status = 0;
2367 ssize_t written = 0;
2368 unsigned int flags = 0;
2371 * Copies from kernel address space cannot fail (NFSD is a big user).
2373 if (segment_eq(get_fs(), KERNEL_DS))
2374 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2376 do {
2377 struct page *page;
2378 unsigned long offset; /* Offset into pagecache page */
2379 unsigned long bytes; /* Bytes to write to page */
2380 size_t copied; /* Bytes copied from user */
2381 void *fsdata;
2383 offset = (pos & (PAGE_CACHE_SIZE - 1));
2384 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2385 iov_iter_count(i));
2387 again:
2390 * Bring in the user page that we will copy from _first_.
2391 * Otherwise there's a nasty deadlock on copying from the
2392 * same page as we're writing to, without it being marked
2393 * up-to-date.
2395 * Not only is this an optimisation, but it is also required
2396 * to check that the address is actually valid, when atomic
2397 * usercopies are used, below.
2399 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2400 status = -EFAULT;
2401 break;
2404 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2405 &page, &fsdata);
2406 if (unlikely(status))
2407 break;
2409 if (mapping_writably_mapped(mapping))
2410 flush_dcache_page(page);
2412 pagefault_disable();
2413 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2414 pagefault_enable();
2415 flush_dcache_page(page);
2417 mark_page_accessed(page);
2418 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2419 page, fsdata);
2420 if (unlikely(status < 0))
2421 break;
2422 copied = status;
2424 cond_resched();
2426 iov_iter_advance(i, copied);
2427 if (unlikely(copied == 0)) {
2429 * If we were unable to copy any data at all, we must
2430 * fall back to a single segment length write.
2432 * If we didn't fallback here, we could livelock
2433 * because not all segments in the iov can be copied at
2434 * once without a pagefault.
2436 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2437 iov_iter_single_seg_count(i));
2438 goto again;
2440 pos += copied;
2441 written += copied;
2443 balance_dirty_pages_ratelimited(mapping);
2445 } while (iov_iter_count(i));
2447 return written ? written : status;
2450 ssize_t
2451 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2452 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2453 size_t count, ssize_t written)
2455 struct file *file = iocb->ki_filp;
2456 ssize_t status;
2457 struct iov_iter i;
2459 iov_iter_init(&i, iov, nr_segs, count, written);
2460 status = generic_perform_write(file, &i, pos);
2462 if (likely(status >= 0)) {
2463 written += status;
2464 *ppos = pos + status;
2467 return written ? written : status;
2469 EXPORT_SYMBOL(generic_file_buffered_write);
2472 * __generic_file_aio_write - write data to a file
2473 * @iocb: IO state structure (file, offset, etc.)
2474 * @iov: vector with data to write
2475 * @nr_segs: number of segments in the vector
2476 * @ppos: position where to write
2478 * This function does all the work needed for actually writing data to a
2479 * file. It does all basic checks, removes SUID from the file, updates
2480 * modification times and calls proper subroutines depending on whether we
2481 * do direct IO or a standard buffered write.
2483 * It expects i_mutex to be grabbed unless we work on a block device or similar
2484 * object which does not need locking at all.
2486 * This function does *not* take care of syncing data in case of O_SYNC write.
2487 * A caller has to handle it. This is mainly due to the fact that we want to
2488 * avoid syncing under i_mutex.
2490 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2491 unsigned long nr_segs, loff_t *ppos)
2493 struct file *file = iocb->ki_filp;
2494 struct address_space * mapping = file->f_mapping;
2495 size_t ocount; /* original count */
2496 size_t count; /* after file limit checks */
2497 struct inode *inode = mapping->host;
2498 loff_t pos;
2499 ssize_t written;
2500 ssize_t err;
2502 ocount = 0;
2503 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2504 if (err)
2505 return err;
2507 count = ocount;
2508 pos = *ppos;
2510 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2512 /* We can write back this queue in page reclaim */
2513 current->backing_dev_info = mapping->backing_dev_info;
2514 written = 0;
2516 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2517 if (err)
2518 goto out;
2520 if (count == 0)
2521 goto out;
2523 err = file_remove_suid(file);
2524 if (err)
2525 goto out;
2527 file_update_time(file);
2529 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2530 if (unlikely(file->f_flags & O_DIRECT)) {
2531 loff_t endbyte;
2532 ssize_t written_buffered;
2534 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2535 ppos, count, ocount);
2536 if (written < 0 || written == count)
2537 goto out;
2539 * direct-io write to a hole: fall through to buffered I/O
2540 * for completing the rest of the request.
2542 pos += written;
2543 count -= written;
2544 written_buffered = generic_file_buffered_write(iocb, iov,
2545 nr_segs, pos, ppos, count,
2546 written);
2548 * If generic_file_buffered_write() retuned a synchronous error
2549 * then we want to return the number of bytes which were
2550 * direct-written, or the error code if that was zero. Note
2551 * that this differs from normal direct-io semantics, which
2552 * will return -EFOO even if some bytes were written.
2554 if (written_buffered < 0) {
2555 err = written_buffered;
2556 goto out;
2560 * We need to ensure that the page cache pages are written to
2561 * disk and invalidated to preserve the expected O_DIRECT
2562 * semantics.
2564 endbyte = pos + written_buffered - written - 1;
2565 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2566 if (err == 0) {
2567 written = written_buffered;
2568 invalidate_mapping_pages(mapping,
2569 pos >> PAGE_CACHE_SHIFT,
2570 endbyte >> PAGE_CACHE_SHIFT);
2571 } else {
2573 * We don't know how much we wrote, so just return
2574 * the number of bytes which were direct-written
2577 } else {
2578 written = generic_file_buffered_write(iocb, iov, nr_segs,
2579 pos, ppos, count, written);
2581 out:
2582 current->backing_dev_info = NULL;
2583 return written ? written : err;
2585 EXPORT_SYMBOL(__generic_file_aio_write);
2588 * generic_file_aio_write - write data to a file
2589 * @iocb: IO state structure
2590 * @iov: vector with data to write
2591 * @nr_segs: number of segments in the vector
2592 * @pos: position in file where to write
2594 * This is a wrapper around __generic_file_aio_write() to be used by most
2595 * filesystems. It takes care of syncing the file in case of O_SYNC file
2596 * and acquires i_mutex as needed.
2598 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2599 unsigned long nr_segs, loff_t pos)
2601 struct file *file = iocb->ki_filp;
2602 struct inode *inode = file->f_mapping->host;
2603 struct blk_plug plug;
2604 ssize_t ret;
2606 BUG_ON(iocb->ki_pos != pos);
2608 mutex_lock(&inode->i_mutex);
2609 blk_start_plug(&plug);
2610 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2611 mutex_unlock(&inode->i_mutex);
2613 if (ret > 0 || ret == -EIOCBQUEUED) {
2614 ssize_t err;
2616 err = generic_write_sync(file, pos, ret);
2617 if (err < 0 && ret > 0)
2618 ret = err;
2620 blk_finish_plug(&plug);
2621 return ret;
2623 EXPORT_SYMBOL(generic_file_aio_write);
2626 * try_to_release_page() - release old fs-specific metadata on a page
2628 * @page: the page which the kernel is trying to free
2629 * @gfp_mask: memory allocation flags (and I/O mode)
2631 * The address_space is to try to release any data against the page
2632 * (presumably at page->private). If the release was successful, return `1'.
2633 * Otherwise return zero.
2635 * This may also be called if PG_fscache is set on a page, indicating that the
2636 * page is known to the local caching routines.
2638 * The @gfp_mask argument specifies whether I/O may be performed to release
2639 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2642 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2644 struct address_space * const mapping = page->mapping;
2646 BUG_ON(!PageLocked(page));
2647 if (PageWriteback(page))
2648 return 0;
2650 if (mapping && mapping->a_ops->releasepage)
2651 return mapping->a_ops->releasepage(page, gfp_mask);
2652 return try_to_free_buffers(page);
2655 EXPORT_SYMBOL(try_to_release_page);