Add linux-next specific files for 20110716
[linux-2.6/next.git] / mm / hugetlb.c
blobbfcf153bc82907f31ccc1921256622a82bf20d2f
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/io.h>
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
41 __initdata LIST_HEAD(huge_boot_pages);
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
48 #define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54 static DEFINE_SPINLOCK(hugetlb_lock);
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 * across the pages in a mapping.
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex. To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
65 * down_write(&mm->mmap_sem);
66 * or
67 * down_read(&mm->mmap_sem);
68 * mutex_lock(&hugetlb_instantiation_mutex);
70 struct file_region {
71 struct list_head link;
72 long from;
73 long to;
76 static long region_add(struct list_head *head, long f, long t)
78 struct file_region *rg, *nrg, *trg;
80 /* Locate the region we are either in or before. */
81 list_for_each_entry(rg, head, link)
82 if (f <= rg->to)
83 break;
85 /* Round our left edge to the current segment if it encloses us. */
86 if (f > rg->from)
87 f = rg->from;
89 /* Check for and consume any regions we now overlap with. */
90 nrg = rg;
91 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92 if (&rg->link == head)
93 break;
94 if (rg->from > t)
95 break;
97 /* If this area reaches higher then extend our area to
98 * include it completely. If this is not the first area
99 * which we intend to reuse, free it. */
100 if (rg->to > t)
101 t = rg->to;
102 if (rg != nrg) {
103 list_del(&rg->link);
104 kfree(rg);
107 nrg->from = f;
108 nrg->to = t;
109 return 0;
112 static long region_chg(struct list_head *head, long f, long t)
114 struct file_region *rg, *nrg;
115 long chg = 0;
117 /* Locate the region we are before or in. */
118 list_for_each_entry(rg, head, link)
119 if (f <= rg->to)
120 break;
122 /* If we are below the current region then a new region is required.
123 * Subtle, allocate a new region at the position but make it zero
124 * size such that we can guarantee to record the reservation. */
125 if (&rg->link == head || t < rg->from) {
126 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127 if (!nrg)
128 return -ENOMEM;
129 nrg->from = f;
130 nrg->to = f;
131 INIT_LIST_HEAD(&nrg->link);
132 list_add(&nrg->link, rg->link.prev);
134 return t - f;
137 /* Round our left edge to the current segment if it encloses us. */
138 if (f > rg->from)
139 f = rg->from;
140 chg = t - f;
142 /* Check for and consume any regions we now overlap with. */
143 list_for_each_entry(rg, rg->link.prev, link) {
144 if (&rg->link == head)
145 break;
146 if (rg->from > t)
147 return chg;
149 /* We overlap with this area, if it extends further than
150 * us then we must extend ourselves. Account for its
151 * existing reservation. */
152 if (rg->to > t) {
153 chg += rg->to - t;
154 t = rg->to;
156 chg -= rg->to - rg->from;
158 return chg;
161 static long region_truncate(struct list_head *head, long end)
163 struct file_region *rg, *trg;
164 long chg = 0;
166 /* Locate the region we are either in or before. */
167 list_for_each_entry(rg, head, link)
168 if (end <= rg->to)
169 break;
170 if (&rg->link == head)
171 return 0;
173 /* If we are in the middle of a region then adjust it. */
174 if (end > rg->from) {
175 chg = rg->to - end;
176 rg->to = end;
177 rg = list_entry(rg->link.next, typeof(*rg), link);
180 /* Drop any remaining regions. */
181 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182 if (&rg->link == head)
183 break;
184 chg += rg->to - rg->from;
185 list_del(&rg->link);
186 kfree(rg);
188 return chg;
191 static long region_count(struct list_head *head, long f, long t)
193 struct file_region *rg;
194 long chg = 0;
196 /* Locate each segment we overlap with, and count that overlap. */
197 list_for_each_entry(rg, head, link) {
198 int seg_from;
199 int seg_to;
201 if (rg->to <= f)
202 continue;
203 if (rg->from >= t)
204 break;
206 seg_from = max(rg->from, f);
207 seg_to = min(rg->to, t);
209 chg += seg_to - seg_from;
212 return chg;
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
219 static pgoff_t vma_hugecache_offset(struct hstate *h,
220 struct vm_area_struct *vma, unsigned long address)
222 return ((address - vma->vm_start) >> huge_page_shift(h)) +
223 (vma->vm_pgoff >> huge_page_order(h));
226 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227 unsigned long address)
229 return vma_hugecache_offset(hstate_vma(vma), vma, address);
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
236 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
238 struct hstate *hstate;
240 if (!is_vm_hugetlb_page(vma))
241 return PAGE_SIZE;
243 hstate = hstate_vma(vma);
245 return 1UL << (hstate->order + PAGE_SHIFT);
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
258 return vma_kernel_pagesize(vma);
260 #endif
263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
265 * alignment.
267 #define HPAGE_RESV_OWNER (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping. A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated. A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
290 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
292 return (unsigned long)vma->vm_private_data;
295 static void set_vma_private_data(struct vm_area_struct *vma,
296 unsigned long value)
298 vma->vm_private_data = (void *)value;
301 struct resv_map {
302 struct kref refs;
303 struct list_head regions;
306 static struct resv_map *resv_map_alloc(void)
308 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309 if (!resv_map)
310 return NULL;
312 kref_init(&resv_map->refs);
313 INIT_LIST_HEAD(&resv_map->regions);
315 return resv_map;
318 static void resv_map_release(struct kref *ref)
320 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
322 /* Clear out any active regions before we release the map. */
323 region_truncate(&resv_map->regions, 0);
324 kfree(resv_map);
327 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
329 VM_BUG_ON(!is_vm_hugetlb_page(vma));
330 if (!(vma->vm_flags & VM_MAYSHARE))
331 return (struct resv_map *)(get_vma_private_data(vma) &
332 ~HPAGE_RESV_MASK);
333 return NULL;
336 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
338 VM_BUG_ON(!is_vm_hugetlb_page(vma));
339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
341 set_vma_private_data(vma, (get_vma_private_data(vma) &
342 HPAGE_RESV_MASK) | (unsigned long)map);
345 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
347 VM_BUG_ON(!is_vm_hugetlb_page(vma));
348 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
350 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
353 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
355 VM_BUG_ON(!is_vm_hugetlb_page(vma));
357 return (get_vma_private_data(vma) & flag) != 0;
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate *h,
362 struct vm_area_struct *vma)
364 if (vma->vm_flags & VM_NORESERVE)
365 return;
367 if (vma->vm_flags & VM_MAYSHARE) {
368 /* Shared mappings always use reserves */
369 h->resv_huge_pages--;
370 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
372 * Only the process that called mmap() has reserves for
373 * private mappings.
375 h->resv_huge_pages--;
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
382 VM_BUG_ON(!is_vm_hugetlb_page(vma));
383 if (!(vma->vm_flags & VM_MAYSHARE))
384 vma->vm_private_data = (void *)0;
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct *vma)
390 if (vma->vm_flags & VM_MAYSHARE)
391 return 1;
392 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393 return 1;
394 return 0;
397 static void copy_gigantic_page(struct page *dst, struct page *src)
399 int i;
400 struct hstate *h = page_hstate(src);
401 struct page *dst_base = dst;
402 struct page *src_base = src;
404 for (i = 0; i < pages_per_huge_page(h); ) {
405 cond_resched();
406 copy_highpage(dst, src);
408 i++;
409 dst = mem_map_next(dst, dst_base, i);
410 src = mem_map_next(src, src_base, i);
414 void copy_huge_page(struct page *dst, struct page *src)
416 int i;
417 struct hstate *h = page_hstate(src);
419 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
420 copy_gigantic_page(dst, src);
421 return;
424 might_sleep();
425 for (i = 0; i < pages_per_huge_page(h); i++) {
426 cond_resched();
427 copy_highpage(dst + i, src + i);
431 static void enqueue_huge_page(struct hstate *h, struct page *page)
433 int nid = page_to_nid(page);
434 list_add(&page->lru, &h->hugepage_freelists[nid]);
435 h->free_huge_pages++;
436 h->free_huge_pages_node[nid]++;
439 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
441 struct page *page;
443 if (list_empty(&h->hugepage_freelists[nid]))
444 return NULL;
445 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
446 list_del(&page->lru);
447 set_page_refcounted(page);
448 h->free_huge_pages--;
449 h->free_huge_pages_node[nid]--;
450 return page;
453 static struct page *dequeue_huge_page_vma(struct hstate *h,
454 struct vm_area_struct *vma,
455 unsigned long address, int avoid_reserve)
457 struct page *page = NULL;
458 struct mempolicy *mpol;
459 nodemask_t *nodemask;
460 struct zonelist *zonelist;
461 struct zone *zone;
462 struct zoneref *z;
464 get_mems_allowed();
465 zonelist = huge_zonelist(vma, address,
466 htlb_alloc_mask, &mpol, &nodemask);
468 * A child process with MAP_PRIVATE mappings created by their parent
469 * have no page reserves. This check ensures that reservations are
470 * not "stolen". The child may still get SIGKILLed
472 if (!vma_has_reserves(vma) &&
473 h->free_huge_pages - h->resv_huge_pages == 0)
474 goto err;
476 /* If reserves cannot be used, ensure enough pages are in the pool */
477 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
478 goto err;
480 for_each_zone_zonelist_nodemask(zone, z, zonelist,
481 MAX_NR_ZONES - 1, nodemask) {
482 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
483 page = dequeue_huge_page_node(h, zone_to_nid(zone));
484 if (page) {
485 if (!avoid_reserve)
486 decrement_hugepage_resv_vma(h, vma);
487 break;
491 err:
492 mpol_cond_put(mpol);
493 put_mems_allowed();
494 return page;
497 static void update_and_free_page(struct hstate *h, struct page *page)
499 int i;
501 VM_BUG_ON(h->order >= MAX_ORDER);
503 h->nr_huge_pages--;
504 h->nr_huge_pages_node[page_to_nid(page)]--;
505 for (i = 0; i < pages_per_huge_page(h); i++) {
506 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
507 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
508 1 << PG_private | 1<< PG_writeback);
510 set_compound_page_dtor(page, NULL);
511 set_page_refcounted(page);
512 arch_release_hugepage(page);
513 __free_pages(page, huge_page_order(h));
516 struct hstate *size_to_hstate(unsigned long size)
518 struct hstate *h;
520 for_each_hstate(h) {
521 if (huge_page_size(h) == size)
522 return h;
524 return NULL;
527 static void free_huge_page(struct page *page)
530 * Can't pass hstate in here because it is called from the
531 * compound page destructor.
533 struct hstate *h = page_hstate(page);
534 int nid = page_to_nid(page);
535 struct address_space *mapping;
537 mapping = (struct address_space *) page_private(page);
538 set_page_private(page, 0);
539 page->mapping = NULL;
540 BUG_ON(page_count(page));
541 BUG_ON(page_mapcount(page));
542 INIT_LIST_HEAD(&page->lru);
544 spin_lock(&hugetlb_lock);
545 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
546 update_and_free_page(h, page);
547 h->surplus_huge_pages--;
548 h->surplus_huge_pages_node[nid]--;
549 } else {
550 enqueue_huge_page(h, page);
552 spin_unlock(&hugetlb_lock);
553 if (mapping)
554 hugetlb_put_quota(mapping, 1);
557 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
559 set_compound_page_dtor(page, free_huge_page);
560 spin_lock(&hugetlb_lock);
561 h->nr_huge_pages++;
562 h->nr_huge_pages_node[nid]++;
563 spin_unlock(&hugetlb_lock);
564 put_page(page); /* free it into the hugepage allocator */
567 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
569 int i;
570 int nr_pages = 1 << order;
571 struct page *p = page + 1;
573 /* we rely on prep_new_huge_page to set the destructor */
574 set_compound_order(page, order);
575 __SetPageHead(page);
576 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
577 __SetPageTail(p);
578 p->first_page = page;
582 int PageHuge(struct page *page)
584 compound_page_dtor *dtor;
586 if (!PageCompound(page))
587 return 0;
589 page = compound_head(page);
590 dtor = get_compound_page_dtor(page);
592 return dtor == free_huge_page;
595 EXPORT_SYMBOL_GPL(PageHuge);
597 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
599 struct page *page;
601 if (h->order >= MAX_ORDER)
602 return NULL;
604 page = alloc_pages_exact_node(nid,
605 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
606 __GFP_REPEAT|__GFP_NOWARN,
607 huge_page_order(h));
608 if (page) {
609 if (arch_prepare_hugepage(page)) {
610 __free_pages(page, huge_page_order(h));
611 return NULL;
613 prep_new_huge_page(h, page, nid);
616 return page;
620 * common helper functions for hstate_next_node_to_{alloc|free}.
621 * We may have allocated or freed a huge page based on a different
622 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
623 * be outside of *nodes_allowed. Ensure that we use an allowed
624 * node for alloc or free.
626 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
628 nid = next_node(nid, *nodes_allowed);
629 if (nid == MAX_NUMNODES)
630 nid = first_node(*nodes_allowed);
631 VM_BUG_ON(nid >= MAX_NUMNODES);
633 return nid;
636 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
638 if (!node_isset(nid, *nodes_allowed))
639 nid = next_node_allowed(nid, nodes_allowed);
640 return nid;
644 * returns the previously saved node ["this node"] from which to
645 * allocate a persistent huge page for the pool and advance the
646 * next node from which to allocate, handling wrap at end of node
647 * mask.
649 static int hstate_next_node_to_alloc(struct hstate *h,
650 nodemask_t *nodes_allowed)
652 int nid;
654 VM_BUG_ON(!nodes_allowed);
656 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
657 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
659 return nid;
662 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
664 struct page *page;
665 int start_nid;
666 int next_nid;
667 int ret = 0;
669 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
670 next_nid = start_nid;
672 do {
673 page = alloc_fresh_huge_page_node(h, next_nid);
674 if (page) {
675 ret = 1;
676 break;
678 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
679 } while (next_nid != start_nid);
681 if (ret)
682 count_vm_event(HTLB_BUDDY_PGALLOC);
683 else
684 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
686 return ret;
690 * helper for free_pool_huge_page() - return the previously saved
691 * node ["this node"] from which to free a huge page. Advance the
692 * next node id whether or not we find a free huge page to free so
693 * that the next attempt to free addresses the next node.
695 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
697 int nid;
699 VM_BUG_ON(!nodes_allowed);
701 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
702 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
704 return nid;
708 * Free huge page from pool from next node to free.
709 * Attempt to keep persistent huge pages more or less
710 * balanced over allowed nodes.
711 * Called with hugetlb_lock locked.
713 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
714 bool acct_surplus)
716 int start_nid;
717 int next_nid;
718 int ret = 0;
720 start_nid = hstate_next_node_to_free(h, nodes_allowed);
721 next_nid = start_nid;
723 do {
725 * If we're returning unused surplus pages, only examine
726 * nodes with surplus pages.
728 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
729 !list_empty(&h->hugepage_freelists[next_nid])) {
730 struct page *page =
731 list_entry(h->hugepage_freelists[next_nid].next,
732 struct page, lru);
733 list_del(&page->lru);
734 h->free_huge_pages--;
735 h->free_huge_pages_node[next_nid]--;
736 if (acct_surplus) {
737 h->surplus_huge_pages--;
738 h->surplus_huge_pages_node[next_nid]--;
740 update_and_free_page(h, page);
741 ret = 1;
742 break;
744 next_nid = hstate_next_node_to_free(h, nodes_allowed);
745 } while (next_nid != start_nid);
747 return ret;
750 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
752 struct page *page;
753 unsigned int r_nid;
755 if (h->order >= MAX_ORDER)
756 return NULL;
759 * Assume we will successfully allocate the surplus page to
760 * prevent racing processes from causing the surplus to exceed
761 * overcommit
763 * This however introduces a different race, where a process B
764 * tries to grow the static hugepage pool while alloc_pages() is
765 * called by process A. B will only examine the per-node
766 * counters in determining if surplus huge pages can be
767 * converted to normal huge pages in adjust_pool_surplus(). A
768 * won't be able to increment the per-node counter, until the
769 * lock is dropped by B, but B doesn't drop hugetlb_lock until
770 * no more huge pages can be converted from surplus to normal
771 * state (and doesn't try to convert again). Thus, we have a
772 * case where a surplus huge page exists, the pool is grown, and
773 * the surplus huge page still exists after, even though it
774 * should just have been converted to a normal huge page. This
775 * does not leak memory, though, as the hugepage will be freed
776 * once it is out of use. It also does not allow the counters to
777 * go out of whack in adjust_pool_surplus() as we don't modify
778 * the node values until we've gotten the hugepage and only the
779 * per-node value is checked there.
781 spin_lock(&hugetlb_lock);
782 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
783 spin_unlock(&hugetlb_lock);
784 return NULL;
785 } else {
786 h->nr_huge_pages++;
787 h->surplus_huge_pages++;
789 spin_unlock(&hugetlb_lock);
791 if (nid == NUMA_NO_NODE)
792 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
793 __GFP_REPEAT|__GFP_NOWARN,
794 huge_page_order(h));
795 else
796 page = alloc_pages_exact_node(nid,
797 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
798 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
800 if (page && arch_prepare_hugepage(page)) {
801 __free_pages(page, huge_page_order(h));
802 return NULL;
805 spin_lock(&hugetlb_lock);
806 if (page) {
807 r_nid = page_to_nid(page);
808 set_compound_page_dtor(page, free_huge_page);
810 * We incremented the global counters already
812 h->nr_huge_pages_node[r_nid]++;
813 h->surplus_huge_pages_node[r_nid]++;
814 __count_vm_event(HTLB_BUDDY_PGALLOC);
815 } else {
816 h->nr_huge_pages--;
817 h->surplus_huge_pages--;
818 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
820 spin_unlock(&hugetlb_lock);
822 return page;
826 * This allocation function is useful in the context where vma is irrelevant.
827 * E.g. soft-offlining uses this function because it only cares physical
828 * address of error page.
830 struct page *alloc_huge_page_node(struct hstate *h, int nid)
832 struct page *page;
834 spin_lock(&hugetlb_lock);
835 page = dequeue_huge_page_node(h, nid);
836 spin_unlock(&hugetlb_lock);
838 if (!page)
839 page = alloc_buddy_huge_page(h, nid);
841 return page;
845 * Increase the hugetlb pool such that it can accommodate a reservation
846 * of size 'delta'.
848 static int gather_surplus_pages(struct hstate *h, int delta)
850 struct list_head surplus_list;
851 struct page *page, *tmp;
852 int ret, i;
853 int needed, allocated;
855 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
856 if (needed <= 0) {
857 h->resv_huge_pages += delta;
858 return 0;
861 allocated = 0;
862 INIT_LIST_HEAD(&surplus_list);
864 ret = -ENOMEM;
865 retry:
866 spin_unlock(&hugetlb_lock);
867 for (i = 0; i < needed; i++) {
868 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
869 if (!page)
871 * We were not able to allocate enough pages to
872 * satisfy the entire reservation so we free what
873 * we've allocated so far.
875 goto free;
877 list_add(&page->lru, &surplus_list);
879 allocated += needed;
882 * After retaking hugetlb_lock, we need to recalculate 'needed'
883 * because either resv_huge_pages or free_huge_pages may have changed.
885 spin_lock(&hugetlb_lock);
886 needed = (h->resv_huge_pages + delta) -
887 (h->free_huge_pages + allocated);
888 if (needed > 0)
889 goto retry;
892 * The surplus_list now contains _at_least_ the number of extra pages
893 * needed to accommodate the reservation. Add the appropriate number
894 * of pages to the hugetlb pool and free the extras back to the buddy
895 * allocator. Commit the entire reservation here to prevent another
896 * process from stealing the pages as they are added to the pool but
897 * before they are reserved.
899 needed += allocated;
900 h->resv_huge_pages += delta;
901 ret = 0;
903 spin_unlock(&hugetlb_lock);
904 /* Free the needed pages to the hugetlb pool */
905 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
906 if ((--needed) < 0)
907 break;
908 list_del(&page->lru);
910 * This page is now managed by the hugetlb allocator and has
911 * no users -- drop the buddy allocator's reference.
913 put_page_testzero(page);
914 VM_BUG_ON(page_count(page));
915 enqueue_huge_page(h, page);
918 /* Free unnecessary surplus pages to the buddy allocator */
919 free:
920 if (!list_empty(&surplus_list)) {
921 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
922 list_del(&page->lru);
923 put_page(page);
926 spin_lock(&hugetlb_lock);
928 return ret;
932 * When releasing a hugetlb pool reservation, any surplus pages that were
933 * allocated to satisfy the reservation must be explicitly freed if they were
934 * never used.
935 * Called with hugetlb_lock held.
937 static void return_unused_surplus_pages(struct hstate *h,
938 unsigned long unused_resv_pages)
940 unsigned long nr_pages;
942 /* Uncommit the reservation */
943 h->resv_huge_pages -= unused_resv_pages;
945 /* Cannot return gigantic pages currently */
946 if (h->order >= MAX_ORDER)
947 return;
949 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
952 * We want to release as many surplus pages as possible, spread
953 * evenly across all nodes with memory. Iterate across these nodes
954 * until we can no longer free unreserved surplus pages. This occurs
955 * when the nodes with surplus pages have no free pages.
956 * free_pool_huge_page() will balance the the freed pages across the
957 * on-line nodes with memory and will handle the hstate accounting.
959 while (nr_pages--) {
960 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
961 break;
966 * Determine if the huge page at addr within the vma has an associated
967 * reservation. Where it does not we will need to logically increase
968 * reservation and actually increase quota before an allocation can occur.
969 * Where any new reservation would be required the reservation change is
970 * prepared, but not committed. Once the page has been quota'd allocated
971 * an instantiated the change should be committed via vma_commit_reservation.
972 * No action is required on failure.
974 static long vma_needs_reservation(struct hstate *h,
975 struct vm_area_struct *vma, unsigned long addr)
977 struct address_space *mapping = vma->vm_file->f_mapping;
978 struct inode *inode = mapping->host;
980 if (vma->vm_flags & VM_MAYSHARE) {
981 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
982 return region_chg(&inode->i_mapping->private_list,
983 idx, idx + 1);
985 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
986 return 1;
988 } else {
989 long err;
990 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
991 struct resv_map *reservations = vma_resv_map(vma);
993 err = region_chg(&reservations->regions, idx, idx + 1);
994 if (err < 0)
995 return err;
996 return 0;
999 static void vma_commit_reservation(struct hstate *h,
1000 struct vm_area_struct *vma, unsigned long addr)
1002 struct address_space *mapping = vma->vm_file->f_mapping;
1003 struct inode *inode = mapping->host;
1005 if (vma->vm_flags & VM_MAYSHARE) {
1006 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1007 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1009 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1010 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1011 struct resv_map *reservations = vma_resv_map(vma);
1013 /* Mark this page used in the map. */
1014 region_add(&reservations->regions, idx, idx + 1);
1018 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1019 unsigned long addr, int avoid_reserve)
1021 struct hstate *h = hstate_vma(vma);
1022 struct page *page;
1023 struct address_space *mapping = vma->vm_file->f_mapping;
1024 struct inode *inode = mapping->host;
1025 long chg;
1028 * Processes that did not create the mapping will have no reserves and
1029 * will not have accounted against quota. Check that the quota can be
1030 * made before satisfying the allocation
1031 * MAP_NORESERVE mappings may also need pages and quota allocated
1032 * if no reserve mapping overlaps.
1034 chg = vma_needs_reservation(h, vma, addr);
1035 if (chg < 0)
1036 return ERR_PTR(-VM_FAULT_OOM);
1037 if (chg)
1038 if (hugetlb_get_quota(inode->i_mapping, chg))
1039 return ERR_PTR(-VM_FAULT_SIGBUS);
1041 spin_lock(&hugetlb_lock);
1042 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1043 spin_unlock(&hugetlb_lock);
1045 if (!page) {
1046 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1047 if (!page) {
1048 hugetlb_put_quota(inode->i_mapping, chg);
1049 return ERR_PTR(-VM_FAULT_SIGBUS);
1053 set_page_private(page, (unsigned long) mapping);
1055 vma_commit_reservation(h, vma, addr);
1057 return page;
1060 int __weak alloc_bootmem_huge_page(struct hstate *h)
1062 struct huge_bootmem_page *m;
1063 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1065 while (nr_nodes) {
1066 void *addr;
1068 addr = __alloc_bootmem_node_nopanic(
1069 NODE_DATA(hstate_next_node_to_alloc(h,
1070 &node_states[N_HIGH_MEMORY])),
1071 huge_page_size(h), huge_page_size(h), 0);
1073 if (addr) {
1075 * Use the beginning of the huge page to store the
1076 * huge_bootmem_page struct (until gather_bootmem
1077 * puts them into the mem_map).
1079 m = addr;
1080 goto found;
1082 nr_nodes--;
1084 return 0;
1086 found:
1087 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1088 /* Put them into a private list first because mem_map is not up yet */
1089 list_add(&m->list, &huge_boot_pages);
1090 m->hstate = h;
1091 return 1;
1094 static void prep_compound_huge_page(struct page *page, int order)
1096 if (unlikely(order > (MAX_ORDER - 1)))
1097 prep_compound_gigantic_page(page, order);
1098 else
1099 prep_compound_page(page, order);
1102 /* Put bootmem huge pages into the standard lists after mem_map is up */
1103 static void __init gather_bootmem_prealloc(void)
1105 struct huge_bootmem_page *m;
1107 list_for_each_entry(m, &huge_boot_pages, list) {
1108 struct page *page = virt_to_page(m);
1109 struct hstate *h = m->hstate;
1110 __ClearPageReserved(page);
1111 WARN_ON(page_count(page) != 1);
1112 prep_compound_huge_page(page, h->order);
1113 prep_new_huge_page(h, page, page_to_nid(page));
1115 * If we had gigantic hugepages allocated at boot time, we need
1116 * to restore the 'stolen' pages to totalram_pages in order to
1117 * fix confusing memory reports from free(1) and another
1118 * side-effects, like CommitLimit going negative.
1120 if (h->order > (MAX_ORDER - 1))
1121 totalram_pages += 1 << h->order;
1125 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1127 unsigned long i;
1129 for (i = 0; i < h->max_huge_pages; ++i) {
1130 if (h->order >= MAX_ORDER) {
1131 if (!alloc_bootmem_huge_page(h))
1132 break;
1133 } else if (!alloc_fresh_huge_page(h,
1134 &node_states[N_HIGH_MEMORY]))
1135 break;
1137 h->max_huge_pages = i;
1140 static void __init hugetlb_init_hstates(void)
1142 struct hstate *h;
1144 for_each_hstate(h) {
1145 /* oversize hugepages were init'ed in early boot */
1146 if (h->order < MAX_ORDER)
1147 hugetlb_hstate_alloc_pages(h);
1151 static char * __init memfmt(char *buf, unsigned long n)
1153 if (n >= (1UL << 30))
1154 sprintf(buf, "%lu GB", n >> 30);
1155 else if (n >= (1UL << 20))
1156 sprintf(buf, "%lu MB", n >> 20);
1157 else
1158 sprintf(buf, "%lu KB", n >> 10);
1159 return buf;
1162 static void __init report_hugepages(void)
1164 struct hstate *h;
1166 for_each_hstate(h) {
1167 char buf[32];
1168 printk(KERN_INFO "HugeTLB registered %s page size, "
1169 "pre-allocated %ld pages\n",
1170 memfmt(buf, huge_page_size(h)),
1171 h->free_huge_pages);
1175 #ifdef CONFIG_HIGHMEM
1176 static void try_to_free_low(struct hstate *h, unsigned long count,
1177 nodemask_t *nodes_allowed)
1179 int i;
1181 if (h->order >= MAX_ORDER)
1182 return;
1184 for_each_node_mask(i, *nodes_allowed) {
1185 struct page *page, *next;
1186 struct list_head *freel = &h->hugepage_freelists[i];
1187 list_for_each_entry_safe(page, next, freel, lru) {
1188 if (count >= h->nr_huge_pages)
1189 return;
1190 if (PageHighMem(page))
1191 continue;
1192 list_del(&page->lru);
1193 update_and_free_page(h, page);
1194 h->free_huge_pages--;
1195 h->free_huge_pages_node[page_to_nid(page)]--;
1199 #else
1200 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1201 nodemask_t *nodes_allowed)
1204 #endif
1207 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1208 * balanced by operating on them in a round-robin fashion.
1209 * Returns 1 if an adjustment was made.
1211 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1212 int delta)
1214 int start_nid, next_nid;
1215 int ret = 0;
1217 VM_BUG_ON(delta != -1 && delta != 1);
1219 if (delta < 0)
1220 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1221 else
1222 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1223 next_nid = start_nid;
1225 do {
1226 int nid = next_nid;
1227 if (delta < 0) {
1229 * To shrink on this node, there must be a surplus page
1231 if (!h->surplus_huge_pages_node[nid]) {
1232 next_nid = hstate_next_node_to_alloc(h,
1233 nodes_allowed);
1234 continue;
1237 if (delta > 0) {
1239 * Surplus cannot exceed the total number of pages
1241 if (h->surplus_huge_pages_node[nid] >=
1242 h->nr_huge_pages_node[nid]) {
1243 next_nid = hstate_next_node_to_free(h,
1244 nodes_allowed);
1245 continue;
1249 h->surplus_huge_pages += delta;
1250 h->surplus_huge_pages_node[nid] += delta;
1251 ret = 1;
1252 break;
1253 } while (next_nid != start_nid);
1255 return ret;
1258 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1259 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1260 nodemask_t *nodes_allowed)
1262 unsigned long min_count, ret;
1264 if (h->order >= MAX_ORDER)
1265 return h->max_huge_pages;
1268 * Increase the pool size
1269 * First take pages out of surplus state. Then make up the
1270 * remaining difference by allocating fresh huge pages.
1272 * We might race with alloc_buddy_huge_page() here and be unable
1273 * to convert a surplus huge page to a normal huge page. That is
1274 * not critical, though, it just means the overall size of the
1275 * pool might be one hugepage larger than it needs to be, but
1276 * within all the constraints specified by the sysctls.
1278 spin_lock(&hugetlb_lock);
1279 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1280 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1281 break;
1284 while (count > persistent_huge_pages(h)) {
1286 * If this allocation races such that we no longer need the
1287 * page, free_huge_page will handle it by freeing the page
1288 * and reducing the surplus.
1290 spin_unlock(&hugetlb_lock);
1291 ret = alloc_fresh_huge_page(h, nodes_allowed);
1292 spin_lock(&hugetlb_lock);
1293 if (!ret)
1294 goto out;
1296 /* Bail for signals. Probably ctrl-c from user */
1297 if (signal_pending(current))
1298 goto out;
1302 * Decrease the pool size
1303 * First return free pages to the buddy allocator (being careful
1304 * to keep enough around to satisfy reservations). Then place
1305 * pages into surplus state as needed so the pool will shrink
1306 * to the desired size as pages become free.
1308 * By placing pages into the surplus state independent of the
1309 * overcommit value, we are allowing the surplus pool size to
1310 * exceed overcommit. There are few sane options here. Since
1311 * alloc_buddy_huge_page() is checking the global counter,
1312 * though, we'll note that we're not allowed to exceed surplus
1313 * and won't grow the pool anywhere else. Not until one of the
1314 * sysctls are changed, or the surplus pages go out of use.
1316 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1317 min_count = max(count, min_count);
1318 try_to_free_low(h, min_count, nodes_allowed);
1319 while (min_count < persistent_huge_pages(h)) {
1320 if (!free_pool_huge_page(h, nodes_allowed, 0))
1321 break;
1323 while (count < persistent_huge_pages(h)) {
1324 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1325 break;
1327 out:
1328 ret = persistent_huge_pages(h);
1329 spin_unlock(&hugetlb_lock);
1330 return ret;
1333 #define HSTATE_ATTR_RO(_name) \
1334 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1336 #define HSTATE_ATTR(_name) \
1337 static struct kobj_attribute _name##_attr = \
1338 __ATTR(_name, 0644, _name##_show, _name##_store)
1340 static struct kobject *hugepages_kobj;
1341 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1343 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1345 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1347 int i;
1349 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1350 if (hstate_kobjs[i] == kobj) {
1351 if (nidp)
1352 *nidp = NUMA_NO_NODE;
1353 return &hstates[i];
1356 return kobj_to_node_hstate(kobj, nidp);
1359 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1360 struct kobj_attribute *attr, char *buf)
1362 struct hstate *h;
1363 unsigned long nr_huge_pages;
1364 int nid;
1366 h = kobj_to_hstate(kobj, &nid);
1367 if (nid == NUMA_NO_NODE)
1368 nr_huge_pages = h->nr_huge_pages;
1369 else
1370 nr_huge_pages = h->nr_huge_pages_node[nid];
1372 return sprintf(buf, "%lu\n", nr_huge_pages);
1375 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1376 struct kobject *kobj, struct kobj_attribute *attr,
1377 const char *buf, size_t len)
1379 int err;
1380 int nid;
1381 unsigned long count;
1382 struct hstate *h;
1383 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1385 err = strict_strtoul(buf, 10, &count);
1386 if (err)
1387 goto out;
1389 h = kobj_to_hstate(kobj, &nid);
1390 if (h->order >= MAX_ORDER) {
1391 err = -EINVAL;
1392 goto out;
1395 if (nid == NUMA_NO_NODE) {
1397 * global hstate attribute
1399 if (!(obey_mempolicy &&
1400 init_nodemask_of_mempolicy(nodes_allowed))) {
1401 NODEMASK_FREE(nodes_allowed);
1402 nodes_allowed = &node_states[N_HIGH_MEMORY];
1404 } else if (nodes_allowed) {
1406 * per node hstate attribute: adjust count to global,
1407 * but restrict alloc/free to the specified node.
1409 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1410 init_nodemask_of_node(nodes_allowed, nid);
1411 } else
1412 nodes_allowed = &node_states[N_HIGH_MEMORY];
1414 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1416 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1417 NODEMASK_FREE(nodes_allowed);
1419 return len;
1420 out:
1421 NODEMASK_FREE(nodes_allowed);
1422 return err;
1425 static ssize_t nr_hugepages_show(struct kobject *kobj,
1426 struct kobj_attribute *attr, char *buf)
1428 return nr_hugepages_show_common(kobj, attr, buf);
1431 static ssize_t nr_hugepages_store(struct kobject *kobj,
1432 struct kobj_attribute *attr, const char *buf, size_t len)
1434 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1436 HSTATE_ATTR(nr_hugepages);
1438 #ifdef CONFIG_NUMA
1441 * hstate attribute for optionally mempolicy-based constraint on persistent
1442 * huge page alloc/free.
1444 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1445 struct kobj_attribute *attr, char *buf)
1447 return nr_hugepages_show_common(kobj, attr, buf);
1450 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1451 struct kobj_attribute *attr, const char *buf, size_t len)
1453 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1455 HSTATE_ATTR(nr_hugepages_mempolicy);
1456 #endif
1459 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1460 struct kobj_attribute *attr, char *buf)
1462 struct hstate *h = kobj_to_hstate(kobj, NULL);
1463 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1466 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1467 struct kobj_attribute *attr, const char *buf, size_t count)
1469 int err;
1470 unsigned long input;
1471 struct hstate *h = kobj_to_hstate(kobj, NULL);
1473 if (h->order >= MAX_ORDER)
1474 return -EINVAL;
1476 err = strict_strtoul(buf, 10, &input);
1477 if (err)
1478 return err;
1480 spin_lock(&hugetlb_lock);
1481 h->nr_overcommit_huge_pages = input;
1482 spin_unlock(&hugetlb_lock);
1484 return count;
1486 HSTATE_ATTR(nr_overcommit_hugepages);
1488 static ssize_t free_hugepages_show(struct kobject *kobj,
1489 struct kobj_attribute *attr, char *buf)
1491 struct hstate *h;
1492 unsigned long free_huge_pages;
1493 int nid;
1495 h = kobj_to_hstate(kobj, &nid);
1496 if (nid == NUMA_NO_NODE)
1497 free_huge_pages = h->free_huge_pages;
1498 else
1499 free_huge_pages = h->free_huge_pages_node[nid];
1501 return sprintf(buf, "%lu\n", free_huge_pages);
1503 HSTATE_ATTR_RO(free_hugepages);
1505 static ssize_t resv_hugepages_show(struct kobject *kobj,
1506 struct kobj_attribute *attr, char *buf)
1508 struct hstate *h = kobj_to_hstate(kobj, NULL);
1509 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1511 HSTATE_ATTR_RO(resv_hugepages);
1513 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1514 struct kobj_attribute *attr, char *buf)
1516 struct hstate *h;
1517 unsigned long surplus_huge_pages;
1518 int nid;
1520 h = kobj_to_hstate(kobj, &nid);
1521 if (nid == NUMA_NO_NODE)
1522 surplus_huge_pages = h->surplus_huge_pages;
1523 else
1524 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1526 return sprintf(buf, "%lu\n", surplus_huge_pages);
1528 HSTATE_ATTR_RO(surplus_hugepages);
1530 static struct attribute *hstate_attrs[] = {
1531 &nr_hugepages_attr.attr,
1532 &nr_overcommit_hugepages_attr.attr,
1533 &free_hugepages_attr.attr,
1534 &resv_hugepages_attr.attr,
1535 &surplus_hugepages_attr.attr,
1536 #ifdef CONFIG_NUMA
1537 &nr_hugepages_mempolicy_attr.attr,
1538 #endif
1539 NULL,
1542 static struct attribute_group hstate_attr_group = {
1543 .attrs = hstate_attrs,
1546 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1547 struct kobject **hstate_kobjs,
1548 struct attribute_group *hstate_attr_group)
1550 int retval;
1551 int hi = h - hstates;
1553 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1554 if (!hstate_kobjs[hi])
1555 return -ENOMEM;
1557 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1558 if (retval)
1559 kobject_put(hstate_kobjs[hi]);
1561 return retval;
1564 static void __init hugetlb_sysfs_init(void)
1566 struct hstate *h;
1567 int err;
1569 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1570 if (!hugepages_kobj)
1571 return;
1573 for_each_hstate(h) {
1574 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1575 hstate_kobjs, &hstate_attr_group);
1576 if (err)
1577 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1578 h->name);
1582 #ifdef CONFIG_NUMA
1585 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1586 * with node sysdevs in node_devices[] using a parallel array. The array
1587 * index of a node sysdev or _hstate == node id.
1588 * This is here to avoid any static dependency of the node sysdev driver, in
1589 * the base kernel, on the hugetlb module.
1591 struct node_hstate {
1592 struct kobject *hugepages_kobj;
1593 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1595 struct node_hstate node_hstates[MAX_NUMNODES];
1598 * A subset of global hstate attributes for node sysdevs
1600 static struct attribute *per_node_hstate_attrs[] = {
1601 &nr_hugepages_attr.attr,
1602 &free_hugepages_attr.attr,
1603 &surplus_hugepages_attr.attr,
1604 NULL,
1607 static struct attribute_group per_node_hstate_attr_group = {
1608 .attrs = per_node_hstate_attrs,
1612 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1613 * Returns node id via non-NULL nidp.
1615 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1617 int nid;
1619 for (nid = 0; nid < nr_node_ids; nid++) {
1620 struct node_hstate *nhs = &node_hstates[nid];
1621 int i;
1622 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1623 if (nhs->hstate_kobjs[i] == kobj) {
1624 if (nidp)
1625 *nidp = nid;
1626 return &hstates[i];
1630 BUG();
1631 return NULL;
1635 * Unregister hstate attributes from a single node sysdev.
1636 * No-op if no hstate attributes attached.
1638 void hugetlb_unregister_node(struct node *node)
1640 struct hstate *h;
1641 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1643 if (!nhs->hugepages_kobj)
1644 return; /* no hstate attributes */
1646 for_each_hstate(h)
1647 if (nhs->hstate_kobjs[h - hstates]) {
1648 kobject_put(nhs->hstate_kobjs[h - hstates]);
1649 nhs->hstate_kobjs[h - hstates] = NULL;
1652 kobject_put(nhs->hugepages_kobj);
1653 nhs->hugepages_kobj = NULL;
1657 * hugetlb module exit: unregister hstate attributes from node sysdevs
1658 * that have them.
1660 static void hugetlb_unregister_all_nodes(void)
1662 int nid;
1665 * disable node sysdev registrations.
1667 register_hugetlbfs_with_node(NULL, NULL);
1670 * remove hstate attributes from any nodes that have them.
1672 for (nid = 0; nid < nr_node_ids; nid++)
1673 hugetlb_unregister_node(&node_devices[nid]);
1677 * Register hstate attributes for a single node sysdev.
1678 * No-op if attributes already registered.
1680 void hugetlb_register_node(struct node *node)
1682 struct hstate *h;
1683 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1684 int err;
1686 if (nhs->hugepages_kobj)
1687 return; /* already allocated */
1689 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1690 &node->sysdev.kobj);
1691 if (!nhs->hugepages_kobj)
1692 return;
1694 for_each_hstate(h) {
1695 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1696 nhs->hstate_kobjs,
1697 &per_node_hstate_attr_group);
1698 if (err) {
1699 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1700 " for node %d\n",
1701 h->name, node->sysdev.id);
1702 hugetlb_unregister_node(node);
1703 break;
1709 * hugetlb init time: register hstate attributes for all registered node
1710 * sysdevs of nodes that have memory. All on-line nodes should have
1711 * registered their associated sysdev by this time.
1713 static void hugetlb_register_all_nodes(void)
1715 int nid;
1717 for_each_node_state(nid, N_HIGH_MEMORY) {
1718 struct node *node = &node_devices[nid];
1719 if (node->sysdev.id == nid)
1720 hugetlb_register_node(node);
1724 * Let the node sysdev driver know we're here so it can
1725 * [un]register hstate attributes on node hotplug.
1727 register_hugetlbfs_with_node(hugetlb_register_node,
1728 hugetlb_unregister_node);
1730 #else /* !CONFIG_NUMA */
1732 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1734 BUG();
1735 if (nidp)
1736 *nidp = -1;
1737 return NULL;
1740 static void hugetlb_unregister_all_nodes(void) { }
1742 static void hugetlb_register_all_nodes(void) { }
1744 #endif
1746 static void __exit hugetlb_exit(void)
1748 struct hstate *h;
1750 hugetlb_unregister_all_nodes();
1752 for_each_hstate(h) {
1753 kobject_put(hstate_kobjs[h - hstates]);
1756 kobject_put(hugepages_kobj);
1758 module_exit(hugetlb_exit);
1760 static int __init hugetlb_init(void)
1762 /* Some platform decide whether they support huge pages at boot
1763 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1764 * there is no such support
1766 if (HPAGE_SHIFT == 0)
1767 return 0;
1769 if (!size_to_hstate(default_hstate_size)) {
1770 default_hstate_size = HPAGE_SIZE;
1771 if (!size_to_hstate(default_hstate_size))
1772 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1774 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1775 if (default_hstate_max_huge_pages)
1776 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1778 hugetlb_init_hstates();
1780 gather_bootmem_prealloc();
1782 report_hugepages();
1784 hugetlb_sysfs_init();
1786 hugetlb_register_all_nodes();
1788 return 0;
1790 module_init(hugetlb_init);
1792 /* Should be called on processing a hugepagesz=... option */
1793 void __init hugetlb_add_hstate(unsigned order)
1795 struct hstate *h;
1796 unsigned long i;
1798 if (size_to_hstate(PAGE_SIZE << order)) {
1799 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1800 return;
1802 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1803 BUG_ON(order == 0);
1804 h = &hstates[max_hstate++];
1805 h->order = order;
1806 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1807 h->nr_huge_pages = 0;
1808 h->free_huge_pages = 0;
1809 for (i = 0; i < MAX_NUMNODES; ++i)
1810 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1811 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1812 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1813 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1814 huge_page_size(h)/1024);
1816 parsed_hstate = h;
1819 static int __init hugetlb_nrpages_setup(char *s)
1821 unsigned long *mhp;
1822 static unsigned long *last_mhp;
1825 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1826 * so this hugepages= parameter goes to the "default hstate".
1828 if (!max_hstate)
1829 mhp = &default_hstate_max_huge_pages;
1830 else
1831 mhp = &parsed_hstate->max_huge_pages;
1833 if (mhp == last_mhp) {
1834 printk(KERN_WARNING "hugepages= specified twice without "
1835 "interleaving hugepagesz=, ignoring\n");
1836 return 1;
1839 if (sscanf(s, "%lu", mhp) <= 0)
1840 *mhp = 0;
1843 * Global state is always initialized later in hugetlb_init.
1844 * But we need to allocate >= MAX_ORDER hstates here early to still
1845 * use the bootmem allocator.
1847 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1848 hugetlb_hstate_alloc_pages(parsed_hstate);
1850 last_mhp = mhp;
1852 return 1;
1854 __setup("hugepages=", hugetlb_nrpages_setup);
1856 static int __init hugetlb_default_setup(char *s)
1858 default_hstate_size = memparse(s, &s);
1859 return 1;
1861 __setup("default_hugepagesz=", hugetlb_default_setup);
1863 static unsigned int cpuset_mems_nr(unsigned int *array)
1865 int node;
1866 unsigned int nr = 0;
1868 for_each_node_mask(node, cpuset_current_mems_allowed)
1869 nr += array[node];
1871 return nr;
1874 #ifdef CONFIG_SYSCTL
1875 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1876 struct ctl_table *table, int write,
1877 void __user *buffer, size_t *length, loff_t *ppos)
1879 struct hstate *h = &default_hstate;
1880 unsigned long tmp;
1881 int ret;
1883 tmp = h->max_huge_pages;
1885 if (write && h->order >= MAX_ORDER)
1886 return -EINVAL;
1888 table->data = &tmp;
1889 table->maxlen = sizeof(unsigned long);
1890 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1891 if (ret)
1892 goto out;
1894 if (write) {
1895 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1896 GFP_KERNEL | __GFP_NORETRY);
1897 if (!(obey_mempolicy &&
1898 init_nodemask_of_mempolicy(nodes_allowed))) {
1899 NODEMASK_FREE(nodes_allowed);
1900 nodes_allowed = &node_states[N_HIGH_MEMORY];
1902 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1904 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1905 NODEMASK_FREE(nodes_allowed);
1907 out:
1908 return ret;
1911 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1912 void __user *buffer, size_t *length, loff_t *ppos)
1915 return hugetlb_sysctl_handler_common(false, table, write,
1916 buffer, length, ppos);
1919 #ifdef CONFIG_NUMA
1920 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1921 void __user *buffer, size_t *length, loff_t *ppos)
1923 return hugetlb_sysctl_handler_common(true, table, write,
1924 buffer, length, ppos);
1926 #endif /* CONFIG_NUMA */
1928 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1929 void __user *buffer,
1930 size_t *length, loff_t *ppos)
1932 proc_dointvec(table, write, buffer, length, ppos);
1933 if (hugepages_treat_as_movable)
1934 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1935 else
1936 htlb_alloc_mask = GFP_HIGHUSER;
1937 return 0;
1940 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1941 void __user *buffer,
1942 size_t *length, loff_t *ppos)
1944 struct hstate *h = &default_hstate;
1945 unsigned long tmp;
1946 int ret;
1948 tmp = h->nr_overcommit_huge_pages;
1950 if (write && h->order >= MAX_ORDER)
1951 return -EINVAL;
1953 table->data = &tmp;
1954 table->maxlen = sizeof(unsigned long);
1955 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1956 if (ret)
1957 goto out;
1959 if (write) {
1960 spin_lock(&hugetlb_lock);
1961 h->nr_overcommit_huge_pages = tmp;
1962 spin_unlock(&hugetlb_lock);
1964 out:
1965 return ret;
1968 #endif /* CONFIG_SYSCTL */
1970 void hugetlb_report_meminfo(struct seq_file *m)
1972 struct hstate *h = &default_hstate;
1973 seq_printf(m,
1974 "HugePages_Total: %5lu\n"
1975 "HugePages_Free: %5lu\n"
1976 "HugePages_Rsvd: %5lu\n"
1977 "HugePages_Surp: %5lu\n"
1978 "Hugepagesize: %8lu kB\n",
1979 h->nr_huge_pages,
1980 h->free_huge_pages,
1981 h->resv_huge_pages,
1982 h->surplus_huge_pages,
1983 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1986 int hugetlb_report_node_meminfo(int nid, char *buf)
1988 struct hstate *h = &default_hstate;
1989 return sprintf(buf,
1990 "Node %d HugePages_Total: %5u\n"
1991 "Node %d HugePages_Free: %5u\n"
1992 "Node %d HugePages_Surp: %5u\n",
1993 nid, h->nr_huge_pages_node[nid],
1994 nid, h->free_huge_pages_node[nid],
1995 nid, h->surplus_huge_pages_node[nid]);
1998 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1999 unsigned long hugetlb_total_pages(void)
2001 struct hstate *h = &default_hstate;
2002 return h->nr_huge_pages * pages_per_huge_page(h);
2005 static int hugetlb_acct_memory(struct hstate *h, long delta)
2007 int ret = -ENOMEM;
2009 spin_lock(&hugetlb_lock);
2011 * When cpuset is configured, it breaks the strict hugetlb page
2012 * reservation as the accounting is done on a global variable. Such
2013 * reservation is completely rubbish in the presence of cpuset because
2014 * the reservation is not checked against page availability for the
2015 * current cpuset. Application can still potentially OOM'ed by kernel
2016 * with lack of free htlb page in cpuset that the task is in.
2017 * Attempt to enforce strict accounting with cpuset is almost
2018 * impossible (or too ugly) because cpuset is too fluid that
2019 * task or memory node can be dynamically moved between cpusets.
2021 * The change of semantics for shared hugetlb mapping with cpuset is
2022 * undesirable. However, in order to preserve some of the semantics,
2023 * we fall back to check against current free page availability as
2024 * a best attempt and hopefully to minimize the impact of changing
2025 * semantics that cpuset has.
2027 if (delta > 0) {
2028 if (gather_surplus_pages(h, delta) < 0)
2029 goto out;
2031 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2032 return_unused_surplus_pages(h, delta);
2033 goto out;
2037 ret = 0;
2038 if (delta < 0)
2039 return_unused_surplus_pages(h, (unsigned long) -delta);
2041 out:
2042 spin_unlock(&hugetlb_lock);
2043 return ret;
2046 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2048 struct resv_map *reservations = vma_resv_map(vma);
2051 * This new VMA should share its siblings reservation map if present.
2052 * The VMA will only ever have a valid reservation map pointer where
2053 * it is being copied for another still existing VMA. As that VMA
2054 * has a reference to the reservation map it cannot disappear until
2055 * after this open call completes. It is therefore safe to take a
2056 * new reference here without additional locking.
2058 if (reservations)
2059 kref_get(&reservations->refs);
2062 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2064 struct hstate *h = hstate_vma(vma);
2065 struct resv_map *reservations = vma_resv_map(vma);
2066 unsigned long reserve;
2067 unsigned long start;
2068 unsigned long end;
2070 if (reservations) {
2071 start = vma_hugecache_offset(h, vma, vma->vm_start);
2072 end = vma_hugecache_offset(h, vma, vma->vm_end);
2074 reserve = (end - start) -
2075 region_count(&reservations->regions, start, end);
2077 kref_put(&reservations->refs, resv_map_release);
2079 if (reserve) {
2080 hugetlb_acct_memory(h, -reserve);
2081 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2087 * We cannot handle pagefaults against hugetlb pages at all. They cause
2088 * handle_mm_fault() to try to instantiate regular-sized pages in the
2089 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2090 * this far.
2092 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2094 BUG();
2095 return 0;
2098 const struct vm_operations_struct hugetlb_vm_ops = {
2099 .fault = hugetlb_vm_op_fault,
2100 .open = hugetlb_vm_op_open,
2101 .close = hugetlb_vm_op_close,
2104 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2105 int writable)
2107 pte_t entry;
2109 if (writable) {
2110 entry =
2111 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2112 } else {
2113 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2115 entry = pte_mkyoung(entry);
2116 entry = pte_mkhuge(entry);
2118 return entry;
2121 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2122 unsigned long address, pte_t *ptep)
2124 pte_t entry;
2126 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2127 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2128 update_mmu_cache(vma, address, ptep);
2133 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2134 struct vm_area_struct *vma)
2136 pte_t *src_pte, *dst_pte, entry;
2137 struct page *ptepage;
2138 unsigned long addr;
2139 int cow;
2140 struct hstate *h = hstate_vma(vma);
2141 unsigned long sz = huge_page_size(h);
2143 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2145 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2146 src_pte = huge_pte_offset(src, addr);
2147 if (!src_pte)
2148 continue;
2149 dst_pte = huge_pte_alloc(dst, addr, sz);
2150 if (!dst_pte)
2151 goto nomem;
2153 /* If the pagetables are shared don't copy or take references */
2154 if (dst_pte == src_pte)
2155 continue;
2157 spin_lock(&dst->page_table_lock);
2158 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2159 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2160 if (cow)
2161 huge_ptep_set_wrprotect(src, addr, src_pte);
2162 entry = huge_ptep_get(src_pte);
2163 ptepage = pte_page(entry);
2164 get_page(ptepage);
2165 page_dup_rmap(ptepage);
2166 set_huge_pte_at(dst, addr, dst_pte, entry);
2168 spin_unlock(&src->page_table_lock);
2169 spin_unlock(&dst->page_table_lock);
2171 return 0;
2173 nomem:
2174 return -ENOMEM;
2177 static int is_hugetlb_entry_migration(pte_t pte)
2179 swp_entry_t swp;
2181 if (huge_pte_none(pte) || pte_present(pte))
2182 return 0;
2183 swp = pte_to_swp_entry(pte);
2184 if (non_swap_entry(swp) && is_migration_entry(swp)) {
2185 return 1;
2186 } else
2187 return 0;
2190 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2192 swp_entry_t swp;
2194 if (huge_pte_none(pte) || pte_present(pte))
2195 return 0;
2196 swp = pte_to_swp_entry(pte);
2197 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
2198 return 1;
2199 } else
2200 return 0;
2203 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2204 unsigned long end, struct page *ref_page)
2206 struct mm_struct *mm = vma->vm_mm;
2207 unsigned long address;
2208 pte_t *ptep;
2209 pte_t pte;
2210 struct page *page;
2211 struct page *tmp;
2212 struct hstate *h = hstate_vma(vma);
2213 unsigned long sz = huge_page_size(h);
2216 * A page gathering list, protected by per file i_mmap_mutex. The
2217 * lock is used to avoid list corruption from multiple unmapping
2218 * of the same page since we are using page->lru.
2220 LIST_HEAD(page_list);
2222 WARN_ON(!is_vm_hugetlb_page(vma));
2223 BUG_ON(start & ~huge_page_mask(h));
2224 BUG_ON(end & ~huge_page_mask(h));
2226 mmu_notifier_invalidate_range_start(mm, start, end);
2227 spin_lock(&mm->page_table_lock);
2228 for (address = start; address < end; address += sz) {
2229 ptep = huge_pte_offset(mm, address);
2230 if (!ptep)
2231 continue;
2233 if (huge_pmd_unshare(mm, &address, ptep))
2234 continue;
2237 * If a reference page is supplied, it is because a specific
2238 * page is being unmapped, not a range. Ensure the page we
2239 * are about to unmap is the actual page of interest.
2241 if (ref_page) {
2242 pte = huge_ptep_get(ptep);
2243 if (huge_pte_none(pte))
2244 continue;
2245 page = pte_page(pte);
2246 if (page != ref_page)
2247 continue;
2250 * Mark the VMA as having unmapped its page so that
2251 * future faults in this VMA will fail rather than
2252 * looking like data was lost
2254 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2257 pte = huge_ptep_get_and_clear(mm, address, ptep);
2258 if (huge_pte_none(pte))
2259 continue;
2262 * HWPoisoned hugepage is already unmapped and dropped reference
2264 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2265 continue;
2267 page = pte_page(pte);
2268 if (pte_dirty(pte))
2269 set_page_dirty(page);
2270 list_add(&page->lru, &page_list);
2272 spin_unlock(&mm->page_table_lock);
2273 flush_tlb_range(vma, start, end);
2274 mmu_notifier_invalidate_range_end(mm, start, end);
2275 list_for_each_entry_safe(page, tmp, &page_list, lru) {
2276 page_remove_rmap(page);
2277 list_del(&page->lru);
2278 put_page(page);
2282 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2283 unsigned long end, struct page *ref_page)
2285 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2286 __unmap_hugepage_range(vma, start, end, ref_page);
2287 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2291 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2292 * mappping it owns the reserve page for. The intention is to unmap the page
2293 * from other VMAs and let the children be SIGKILLed if they are faulting the
2294 * same region.
2296 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2297 struct page *page, unsigned long address)
2299 struct hstate *h = hstate_vma(vma);
2300 struct vm_area_struct *iter_vma;
2301 struct address_space *mapping;
2302 struct prio_tree_iter iter;
2303 pgoff_t pgoff;
2306 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2307 * from page cache lookup which is in HPAGE_SIZE units.
2309 address = address & huge_page_mask(h);
2310 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2311 + (vma->vm_pgoff >> PAGE_SHIFT);
2312 mapping = (struct address_space *)page_private(page);
2315 * Take the mapping lock for the duration of the table walk. As
2316 * this mapping should be shared between all the VMAs,
2317 * __unmap_hugepage_range() is called as the lock is already held
2319 mutex_lock(&mapping->i_mmap_mutex);
2320 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2321 /* Do not unmap the current VMA */
2322 if (iter_vma == vma)
2323 continue;
2326 * Unmap the page from other VMAs without their own reserves.
2327 * They get marked to be SIGKILLed if they fault in these
2328 * areas. This is because a future no-page fault on this VMA
2329 * could insert a zeroed page instead of the data existing
2330 * from the time of fork. This would look like data corruption
2332 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2333 __unmap_hugepage_range(iter_vma,
2334 address, address + huge_page_size(h),
2335 page);
2337 mutex_unlock(&mapping->i_mmap_mutex);
2339 return 1;
2343 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2345 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2346 unsigned long address, pte_t *ptep, pte_t pte,
2347 struct page *pagecache_page)
2349 struct hstate *h = hstate_vma(vma);
2350 struct page *old_page, *new_page;
2351 int avoidcopy;
2352 int outside_reserve = 0;
2354 old_page = pte_page(pte);
2356 retry_avoidcopy:
2357 /* If no-one else is actually using this page, avoid the copy
2358 * and just make the page writable */
2359 avoidcopy = (page_mapcount(old_page) == 1);
2360 if (avoidcopy) {
2361 if (PageAnon(old_page))
2362 page_move_anon_rmap(old_page, vma, address);
2363 set_huge_ptep_writable(vma, address, ptep);
2364 return 0;
2368 * If the process that created a MAP_PRIVATE mapping is about to
2369 * perform a COW due to a shared page count, attempt to satisfy
2370 * the allocation without using the existing reserves. The pagecache
2371 * page is used to determine if the reserve at this address was
2372 * consumed or not. If reserves were used, a partial faulted mapping
2373 * at the time of fork() could consume its reserves on COW instead
2374 * of the full address range.
2376 if (!(vma->vm_flags & VM_MAYSHARE) &&
2377 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2378 old_page != pagecache_page)
2379 outside_reserve = 1;
2381 page_cache_get(old_page);
2383 /* Drop page_table_lock as buddy allocator may be called */
2384 spin_unlock(&mm->page_table_lock);
2385 new_page = alloc_huge_page(vma, address, outside_reserve);
2387 if (IS_ERR(new_page)) {
2388 page_cache_release(old_page);
2391 * If a process owning a MAP_PRIVATE mapping fails to COW,
2392 * it is due to references held by a child and an insufficient
2393 * huge page pool. To guarantee the original mappers
2394 * reliability, unmap the page from child processes. The child
2395 * may get SIGKILLed if it later faults.
2397 if (outside_reserve) {
2398 BUG_ON(huge_pte_none(pte));
2399 if (unmap_ref_private(mm, vma, old_page, address)) {
2400 BUG_ON(page_count(old_page) != 1);
2401 BUG_ON(huge_pte_none(pte));
2402 spin_lock(&mm->page_table_lock);
2403 goto retry_avoidcopy;
2405 WARN_ON_ONCE(1);
2408 /* Caller expects lock to be held */
2409 spin_lock(&mm->page_table_lock);
2410 return -PTR_ERR(new_page);
2414 * When the original hugepage is shared one, it does not have
2415 * anon_vma prepared.
2417 if (unlikely(anon_vma_prepare(vma))) {
2418 /* Caller expects lock to be held */
2419 spin_lock(&mm->page_table_lock);
2420 return VM_FAULT_OOM;
2423 copy_user_huge_page(new_page, old_page, address, vma,
2424 pages_per_huge_page(h));
2425 __SetPageUptodate(new_page);
2428 * Retake the page_table_lock to check for racing updates
2429 * before the page tables are altered
2431 spin_lock(&mm->page_table_lock);
2432 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2433 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2434 /* Break COW */
2435 mmu_notifier_invalidate_range_start(mm,
2436 address & huge_page_mask(h),
2437 (address & huge_page_mask(h)) + huge_page_size(h));
2438 huge_ptep_clear_flush(vma, address, ptep);
2439 set_huge_pte_at(mm, address, ptep,
2440 make_huge_pte(vma, new_page, 1));
2441 page_remove_rmap(old_page);
2442 hugepage_add_new_anon_rmap(new_page, vma, address);
2443 /* Make the old page be freed below */
2444 new_page = old_page;
2445 mmu_notifier_invalidate_range_end(mm,
2446 address & huge_page_mask(h),
2447 (address & huge_page_mask(h)) + huge_page_size(h));
2449 page_cache_release(new_page);
2450 page_cache_release(old_page);
2451 return 0;
2454 /* Return the pagecache page at a given address within a VMA */
2455 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2456 struct vm_area_struct *vma, unsigned long address)
2458 struct address_space *mapping;
2459 pgoff_t idx;
2461 mapping = vma->vm_file->f_mapping;
2462 idx = vma_hugecache_offset(h, vma, address);
2464 return find_lock_page(mapping, idx);
2468 * Return whether there is a pagecache page to back given address within VMA.
2469 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2471 static bool hugetlbfs_pagecache_present(struct hstate *h,
2472 struct vm_area_struct *vma, unsigned long address)
2474 struct address_space *mapping;
2475 pgoff_t idx;
2476 struct page *page;
2478 mapping = vma->vm_file->f_mapping;
2479 idx = vma_hugecache_offset(h, vma, address);
2481 page = find_get_page(mapping, idx);
2482 if (page)
2483 put_page(page);
2484 return page != NULL;
2487 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2488 unsigned long address, pte_t *ptep, unsigned int flags)
2490 struct hstate *h = hstate_vma(vma);
2491 int ret = VM_FAULT_SIGBUS;
2492 pgoff_t idx;
2493 unsigned long size;
2494 struct page *page;
2495 struct address_space *mapping;
2496 pte_t new_pte;
2499 * Currently, we are forced to kill the process in the event the
2500 * original mapper has unmapped pages from the child due to a failed
2501 * COW. Warn that such a situation has occurred as it may not be obvious
2503 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2504 printk(KERN_WARNING
2505 "PID %d killed due to inadequate hugepage pool\n",
2506 current->pid);
2507 return ret;
2510 mapping = vma->vm_file->f_mapping;
2511 idx = vma_hugecache_offset(h, vma, address);
2514 * Use page lock to guard against racing truncation
2515 * before we get page_table_lock.
2517 retry:
2518 page = find_lock_page(mapping, idx);
2519 if (!page) {
2520 size = i_size_read(mapping->host) >> huge_page_shift(h);
2521 if (idx >= size)
2522 goto out;
2523 page = alloc_huge_page(vma, address, 0);
2524 if (IS_ERR(page)) {
2525 ret = -PTR_ERR(page);
2526 goto out;
2528 clear_huge_page(page, address, pages_per_huge_page(h));
2529 __SetPageUptodate(page);
2531 if (vma->vm_flags & VM_MAYSHARE) {
2532 int err;
2533 struct inode *inode = mapping->host;
2535 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2536 if (err) {
2537 put_page(page);
2538 if (err == -EEXIST)
2539 goto retry;
2540 goto out;
2543 spin_lock(&inode->i_lock);
2544 inode->i_blocks += blocks_per_huge_page(h);
2545 spin_unlock(&inode->i_lock);
2546 page_dup_rmap(page);
2547 } else {
2548 lock_page(page);
2549 if (unlikely(anon_vma_prepare(vma))) {
2550 ret = VM_FAULT_OOM;
2551 goto backout_unlocked;
2553 hugepage_add_new_anon_rmap(page, vma, address);
2555 } else {
2557 * If memory error occurs between mmap() and fault, some process
2558 * don't have hwpoisoned swap entry for errored virtual address.
2559 * So we need to block hugepage fault by PG_hwpoison bit check.
2561 if (unlikely(PageHWPoison(page))) {
2562 ret = VM_FAULT_HWPOISON |
2563 VM_FAULT_SET_HINDEX(h - hstates);
2564 goto backout_unlocked;
2566 page_dup_rmap(page);
2570 * If we are going to COW a private mapping later, we examine the
2571 * pending reservations for this page now. This will ensure that
2572 * any allocations necessary to record that reservation occur outside
2573 * the spinlock.
2575 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2576 if (vma_needs_reservation(h, vma, address) < 0) {
2577 ret = VM_FAULT_OOM;
2578 goto backout_unlocked;
2581 spin_lock(&mm->page_table_lock);
2582 size = i_size_read(mapping->host) >> huge_page_shift(h);
2583 if (idx >= size)
2584 goto backout;
2586 ret = 0;
2587 if (!huge_pte_none(huge_ptep_get(ptep)))
2588 goto backout;
2590 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2591 && (vma->vm_flags & VM_SHARED)));
2592 set_huge_pte_at(mm, address, ptep, new_pte);
2594 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2595 /* Optimization, do the COW without a second fault */
2596 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2599 spin_unlock(&mm->page_table_lock);
2600 unlock_page(page);
2601 out:
2602 return ret;
2604 backout:
2605 spin_unlock(&mm->page_table_lock);
2606 backout_unlocked:
2607 unlock_page(page);
2608 put_page(page);
2609 goto out;
2612 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2613 unsigned long address, unsigned int flags)
2615 pte_t *ptep;
2616 pte_t entry;
2617 int ret;
2618 struct page *page = NULL;
2619 struct page *pagecache_page = NULL;
2620 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2621 struct hstate *h = hstate_vma(vma);
2623 ptep = huge_pte_offset(mm, address);
2624 if (ptep) {
2625 entry = huge_ptep_get(ptep);
2626 if (unlikely(is_hugetlb_entry_migration(entry))) {
2627 migration_entry_wait(mm, (pmd_t *)ptep, address);
2628 return 0;
2629 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2630 return VM_FAULT_HWPOISON_LARGE |
2631 VM_FAULT_SET_HINDEX(h - hstates);
2634 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2635 if (!ptep)
2636 return VM_FAULT_OOM;
2639 * Serialize hugepage allocation and instantiation, so that we don't
2640 * get spurious allocation failures if two CPUs race to instantiate
2641 * the same page in the page cache.
2643 mutex_lock(&hugetlb_instantiation_mutex);
2644 entry = huge_ptep_get(ptep);
2645 if (huge_pte_none(entry)) {
2646 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2647 goto out_mutex;
2650 ret = 0;
2653 * If we are going to COW the mapping later, we examine the pending
2654 * reservations for this page now. This will ensure that any
2655 * allocations necessary to record that reservation occur outside the
2656 * spinlock. For private mappings, we also lookup the pagecache
2657 * page now as it is used to determine if a reservation has been
2658 * consumed.
2660 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2661 if (vma_needs_reservation(h, vma, address) < 0) {
2662 ret = VM_FAULT_OOM;
2663 goto out_mutex;
2666 if (!(vma->vm_flags & VM_MAYSHARE))
2667 pagecache_page = hugetlbfs_pagecache_page(h,
2668 vma, address);
2672 * hugetlb_cow() requires page locks of pte_page(entry) and
2673 * pagecache_page, so here we need take the former one
2674 * when page != pagecache_page or !pagecache_page.
2675 * Note that locking order is always pagecache_page -> page,
2676 * so no worry about deadlock.
2678 page = pte_page(entry);
2679 if (page != pagecache_page)
2680 lock_page(page);
2682 spin_lock(&mm->page_table_lock);
2683 /* Check for a racing update before calling hugetlb_cow */
2684 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2685 goto out_page_table_lock;
2688 if (flags & FAULT_FLAG_WRITE) {
2689 if (!pte_write(entry)) {
2690 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2691 pagecache_page);
2692 goto out_page_table_lock;
2694 entry = pte_mkdirty(entry);
2696 entry = pte_mkyoung(entry);
2697 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2698 flags & FAULT_FLAG_WRITE))
2699 update_mmu_cache(vma, address, ptep);
2701 out_page_table_lock:
2702 spin_unlock(&mm->page_table_lock);
2704 if (pagecache_page) {
2705 unlock_page(pagecache_page);
2706 put_page(pagecache_page);
2708 if (page != pagecache_page)
2709 unlock_page(page);
2711 out_mutex:
2712 mutex_unlock(&hugetlb_instantiation_mutex);
2714 return ret;
2717 /* Can be overriden by architectures */
2718 __attribute__((weak)) struct page *
2719 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2720 pud_t *pud, int write)
2722 BUG();
2723 return NULL;
2726 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2727 struct page **pages, struct vm_area_struct **vmas,
2728 unsigned long *position, int *length, int i,
2729 unsigned int flags)
2731 unsigned long pfn_offset;
2732 unsigned long vaddr = *position;
2733 int remainder = *length;
2734 struct hstate *h = hstate_vma(vma);
2736 spin_lock(&mm->page_table_lock);
2737 while (vaddr < vma->vm_end && remainder) {
2738 pte_t *pte;
2739 int absent;
2740 struct page *page;
2743 * Some archs (sparc64, sh*) have multiple pte_ts to
2744 * each hugepage. We have to make sure we get the
2745 * first, for the page indexing below to work.
2747 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2748 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2751 * When coredumping, it suits get_dump_page if we just return
2752 * an error where there's an empty slot with no huge pagecache
2753 * to back it. This way, we avoid allocating a hugepage, and
2754 * the sparse dumpfile avoids allocating disk blocks, but its
2755 * huge holes still show up with zeroes where they need to be.
2757 if (absent && (flags & FOLL_DUMP) &&
2758 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2759 remainder = 0;
2760 break;
2763 if (absent ||
2764 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2765 int ret;
2767 spin_unlock(&mm->page_table_lock);
2768 ret = hugetlb_fault(mm, vma, vaddr,
2769 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2770 spin_lock(&mm->page_table_lock);
2771 if (!(ret & VM_FAULT_ERROR))
2772 continue;
2774 remainder = 0;
2775 break;
2778 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2779 page = pte_page(huge_ptep_get(pte));
2780 same_page:
2781 if (pages) {
2782 pages[i] = mem_map_offset(page, pfn_offset);
2783 get_page(pages[i]);
2786 if (vmas)
2787 vmas[i] = vma;
2789 vaddr += PAGE_SIZE;
2790 ++pfn_offset;
2791 --remainder;
2792 ++i;
2793 if (vaddr < vma->vm_end && remainder &&
2794 pfn_offset < pages_per_huge_page(h)) {
2796 * We use pfn_offset to avoid touching the pageframes
2797 * of this compound page.
2799 goto same_page;
2802 spin_unlock(&mm->page_table_lock);
2803 *length = remainder;
2804 *position = vaddr;
2806 return i ? i : -EFAULT;
2809 void hugetlb_change_protection(struct vm_area_struct *vma,
2810 unsigned long address, unsigned long end, pgprot_t newprot)
2812 struct mm_struct *mm = vma->vm_mm;
2813 unsigned long start = address;
2814 pte_t *ptep;
2815 pte_t pte;
2816 struct hstate *h = hstate_vma(vma);
2818 BUG_ON(address >= end);
2819 flush_cache_range(vma, address, end);
2821 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2822 spin_lock(&mm->page_table_lock);
2823 for (; address < end; address += huge_page_size(h)) {
2824 ptep = huge_pte_offset(mm, address);
2825 if (!ptep)
2826 continue;
2827 if (huge_pmd_unshare(mm, &address, ptep))
2828 continue;
2829 if (!huge_pte_none(huge_ptep_get(ptep))) {
2830 pte = huge_ptep_get_and_clear(mm, address, ptep);
2831 pte = pte_mkhuge(pte_modify(pte, newprot));
2832 set_huge_pte_at(mm, address, ptep, pte);
2835 spin_unlock(&mm->page_table_lock);
2836 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2838 flush_tlb_range(vma, start, end);
2841 int hugetlb_reserve_pages(struct inode *inode,
2842 long from, long to,
2843 struct vm_area_struct *vma,
2844 vm_flags_t vm_flags)
2846 long ret, chg;
2847 struct hstate *h = hstate_inode(inode);
2850 * Only apply hugepage reservation if asked. At fault time, an
2851 * attempt will be made for VM_NORESERVE to allocate a page
2852 * and filesystem quota without using reserves
2854 if (vm_flags & VM_NORESERVE)
2855 return 0;
2858 * Shared mappings base their reservation on the number of pages that
2859 * are already allocated on behalf of the file. Private mappings need
2860 * to reserve the full area even if read-only as mprotect() may be
2861 * called to make the mapping read-write. Assume !vma is a shm mapping
2863 if (!vma || vma->vm_flags & VM_MAYSHARE)
2864 chg = region_chg(&inode->i_mapping->private_list, from, to);
2865 else {
2866 struct resv_map *resv_map = resv_map_alloc();
2867 if (!resv_map)
2868 return -ENOMEM;
2870 chg = to - from;
2872 set_vma_resv_map(vma, resv_map);
2873 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2876 if (chg < 0)
2877 return chg;
2879 /* There must be enough filesystem quota for the mapping */
2880 if (hugetlb_get_quota(inode->i_mapping, chg))
2881 return -ENOSPC;
2884 * Check enough hugepages are available for the reservation.
2885 * Hand back the quota if there are not
2887 ret = hugetlb_acct_memory(h, chg);
2888 if (ret < 0) {
2889 hugetlb_put_quota(inode->i_mapping, chg);
2890 return ret;
2894 * Account for the reservations made. Shared mappings record regions
2895 * that have reservations as they are shared by multiple VMAs.
2896 * When the last VMA disappears, the region map says how much
2897 * the reservation was and the page cache tells how much of
2898 * the reservation was consumed. Private mappings are per-VMA and
2899 * only the consumed reservations are tracked. When the VMA
2900 * disappears, the original reservation is the VMA size and the
2901 * consumed reservations are stored in the map. Hence, nothing
2902 * else has to be done for private mappings here
2904 if (!vma || vma->vm_flags & VM_MAYSHARE)
2905 region_add(&inode->i_mapping->private_list, from, to);
2906 return 0;
2909 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2911 struct hstate *h = hstate_inode(inode);
2912 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2914 spin_lock(&inode->i_lock);
2915 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2916 spin_unlock(&inode->i_lock);
2918 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2919 hugetlb_acct_memory(h, -(chg - freed));
2922 #ifdef CONFIG_MEMORY_FAILURE
2924 /* Should be called in hugetlb_lock */
2925 static int is_hugepage_on_freelist(struct page *hpage)
2927 struct page *page;
2928 struct page *tmp;
2929 struct hstate *h = page_hstate(hpage);
2930 int nid = page_to_nid(hpage);
2932 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
2933 if (page == hpage)
2934 return 1;
2935 return 0;
2939 * This function is called from memory failure code.
2940 * Assume the caller holds page lock of the head page.
2942 int dequeue_hwpoisoned_huge_page(struct page *hpage)
2944 struct hstate *h = page_hstate(hpage);
2945 int nid = page_to_nid(hpage);
2946 int ret = -EBUSY;
2948 spin_lock(&hugetlb_lock);
2949 if (is_hugepage_on_freelist(hpage)) {
2950 list_del(&hpage->lru);
2951 set_page_refcounted(hpage);
2952 h->free_huge_pages--;
2953 h->free_huge_pages_node[nid]--;
2954 ret = 0;
2956 spin_unlock(&hugetlb_lock);
2957 return ret;
2959 #endif