3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <asm/cacheflush.h>
121 #include <asm/tlbflush.h>
122 #include <asm/page.h>
125 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
126 * 0 for faster, smaller code (especially in the critical paths).
128 * STATS - 1 to collect stats for /proc/slabinfo.
129 * 0 for faster, smaller code (especially in the critical paths).
131 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
134 #ifdef CONFIG_DEBUG_SLAB
137 #define FORCED_DEBUG 1
141 #define FORCED_DEBUG 0
144 /* Shouldn't this be in a header file somewhere? */
145 #define BYTES_PER_WORD sizeof(void *)
146 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
148 #ifndef ARCH_KMALLOC_FLAGS
149 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
152 /* Legal flag mask for kmem_cache_create(). */
154 # define CREATE_MASK (SLAB_RED_ZONE | \
155 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
158 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
159 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
160 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
162 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
164 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
165 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
166 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
172 * Bufctl's are used for linking objs within a slab
175 * This implementation relies on "struct page" for locating the cache &
176 * slab an object belongs to.
177 * This allows the bufctl structure to be small (one int), but limits
178 * the number of objects a slab (not a cache) can contain when off-slab
179 * bufctls are used. The limit is the size of the largest general cache
180 * that does not use off-slab slabs.
181 * For 32bit archs with 4 kB pages, is this 56.
182 * This is not serious, as it is only for large objects, when it is unwise
183 * to have too many per slab.
184 * Note: This limit can be raised by introducing a general cache whose size
185 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
188 typedef unsigned int kmem_bufctl_t
;
189 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
190 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
191 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
192 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
197 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
198 * arrange for kmem_freepages to be called via RCU. This is useful if
199 * we need to approach a kernel structure obliquely, from its address
200 * obtained without the usual locking. We can lock the structure to
201 * stabilize it and check it's still at the given address, only if we
202 * can be sure that the memory has not been meanwhile reused for some
203 * other kind of object (which our subsystem's lock might corrupt).
205 * rcu_read_lock before reading the address, then rcu_read_unlock after
206 * taking the spinlock within the structure expected at that address.
209 struct rcu_head head
;
210 struct kmem_cache
*cachep
;
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
224 struct list_head list
;
225 unsigned long colouroff
;
226 void *s_mem
; /* including colour offset */
227 unsigned int inuse
; /* num of objs active in slab */
229 unsigned short nodeid
;
231 struct slab_rcu __slab_cover_slab_rcu
;
239 * - LIFO ordering, to hand out cache-warm objects from _alloc
240 * - reduce the number of linked list operations
241 * - reduce spinlock operations
243 * The limit is stored in the per-cpu structure to reduce the data cache
250 unsigned int batchcount
;
251 unsigned int touched
;
254 * Must have this definition in here for the proper
255 * alignment of array_cache. Also simplifies accessing
261 * bootstrap: The caches do not work without cpuarrays anymore, but the
262 * cpuarrays are allocated from the generic caches...
264 #define BOOT_CPUCACHE_ENTRIES 1
265 struct arraycache_init
{
266 struct array_cache cache
;
267 void *entries
[BOOT_CPUCACHE_ENTRIES
];
271 * The slab lists for all objects.
274 struct list_head slabs_partial
; /* partial list first, better asm code */
275 struct list_head slabs_full
;
276 struct list_head slabs_free
;
277 unsigned long free_objects
;
278 unsigned int free_limit
;
279 unsigned int colour_next
; /* Per-node cache coloring */
280 spinlock_t list_lock
;
281 struct array_cache
*shared
; /* shared per node */
282 struct array_cache
**alien
; /* on other nodes */
283 unsigned long next_reap
; /* updated without locking */
284 int free_touched
; /* updated without locking */
288 * Need this for bootstrapping a per node allocator.
290 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
291 static struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
292 #define CACHE_CACHE 0
293 #define SIZE_AC MAX_NUMNODES
294 #define SIZE_L3 (2 * MAX_NUMNODES)
296 static int drain_freelist(struct kmem_cache
*cache
,
297 struct kmem_list3
*l3
, int tofree
);
298 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
300 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
301 static void cache_reap(struct work_struct
*unused
);
304 * This function must be completely optimized away if a constant is passed to
305 * it. Mostly the same as what is in linux/slab.h except it returns an index.
307 static __always_inline
int index_of(const size_t size
)
309 extern void __bad_size(void);
311 if (__builtin_constant_p(size
)) {
319 #include <linux/kmalloc_sizes.h>
327 static int slab_early_init
= 1;
329 #define INDEX_AC index_of(sizeof(struct arraycache_init))
330 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
332 static void kmem_list3_init(struct kmem_list3
*parent
)
334 INIT_LIST_HEAD(&parent
->slabs_full
);
335 INIT_LIST_HEAD(&parent
->slabs_partial
);
336 INIT_LIST_HEAD(&parent
->slabs_free
);
337 parent
->shared
= NULL
;
338 parent
->alien
= NULL
;
339 parent
->colour_next
= 0;
340 spin_lock_init(&parent
->list_lock
);
341 parent
->free_objects
= 0;
342 parent
->free_touched
= 0;
345 #define MAKE_LIST(cachep, listp, slab, nodeid) \
347 INIT_LIST_HEAD(listp); \
348 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
351 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
353 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
354 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
355 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
358 #define CFLGS_OFF_SLAB (0x80000000UL)
359 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
361 #define BATCHREFILL_LIMIT 16
363 * Optimization question: fewer reaps means less probability for unnessary
364 * cpucache drain/refill cycles.
366 * OTOH the cpuarrays can contain lots of objects,
367 * which could lock up otherwise freeable slabs.
369 #define REAPTIMEOUT_CPUC (2*HZ)
370 #define REAPTIMEOUT_LIST3 (4*HZ)
373 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
374 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
375 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
376 #define STATS_INC_GROWN(x) ((x)->grown++)
377 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
378 #define STATS_SET_HIGH(x) \
380 if ((x)->num_active > (x)->high_mark) \
381 (x)->high_mark = (x)->num_active; \
383 #define STATS_INC_ERR(x) ((x)->errors++)
384 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
385 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
386 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
387 #define STATS_SET_FREEABLE(x, i) \
389 if ((x)->max_freeable < i) \
390 (x)->max_freeable = i; \
392 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
393 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
394 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
395 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
397 #define STATS_INC_ACTIVE(x) do { } while (0)
398 #define STATS_DEC_ACTIVE(x) do { } while (0)
399 #define STATS_INC_ALLOCED(x) do { } while (0)
400 #define STATS_INC_GROWN(x) do { } while (0)
401 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
402 #define STATS_SET_HIGH(x) do { } while (0)
403 #define STATS_INC_ERR(x) do { } while (0)
404 #define STATS_INC_NODEALLOCS(x) do { } while (0)
405 #define STATS_INC_NODEFREES(x) do { } while (0)
406 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
407 #define STATS_SET_FREEABLE(x, i) do { } while (0)
408 #define STATS_INC_ALLOCHIT(x) do { } while (0)
409 #define STATS_INC_ALLOCMISS(x) do { } while (0)
410 #define STATS_INC_FREEHIT(x) do { } while (0)
411 #define STATS_INC_FREEMISS(x) do { } while (0)
417 * memory layout of objects:
419 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
420 * the end of an object is aligned with the end of the real
421 * allocation. Catches writes behind the end of the allocation.
422 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
424 * cachep->obj_offset: The real object.
425 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
426 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
427 * [BYTES_PER_WORD long]
429 static int obj_offset(struct kmem_cache
*cachep
)
431 return cachep
->obj_offset
;
434 static int obj_size(struct kmem_cache
*cachep
)
436 return cachep
->obj_size
;
439 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
441 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
442 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
443 sizeof(unsigned long long));
446 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
448 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
449 if (cachep
->flags
& SLAB_STORE_USER
)
450 return (unsigned long long *)(objp
+ cachep
->buffer_size
-
451 sizeof(unsigned long long) -
453 return (unsigned long long *) (objp
+ cachep
->buffer_size
-
454 sizeof(unsigned long long));
457 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
459 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
460 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
465 #define obj_offset(x) 0
466 #define obj_size(cachep) (cachep->buffer_size)
467 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
468 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
469 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
473 #ifdef CONFIG_TRACING
474 size_t slab_buffer_size(struct kmem_cache
*cachep
)
476 return cachep
->buffer_size
;
478 EXPORT_SYMBOL(slab_buffer_size
);
482 * Do not go above this order unless 0 objects fit into the slab.
484 #define BREAK_GFP_ORDER_HI 1
485 #define BREAK_GFP_ORDER_LO 0
486 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
489 * Functions for storing/retrieving the cachep and or slab from the page
490 * allocator. These are used to find the slab an obj belongs to. With kfree(),
491 * these are used to find the cache which an obj belongs to.
493 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
495 page
->lru
.next
= (struct list_head
*)cache
;
498 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
500 page
= compound_head(page
);
501 BUG_ON(!PageSlab(page
));
502 return (struct kmem_cache
*)page
->lru
.next
;
505 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
507 page
->lru
.prev
= (struct list_head
*)slab
;
510 static inline struct slab
*page_get_slab(struct page
*page
)
512 BUG_ON(!PageSlab(page
));
513 return (struct slab
*)page
->lru
.prev
;
516 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
518 struct page
*page
= virt_to_head_page(obj
);
519 return page_get_cache(page
);
522 static inline struct slab
*virt_to_slab(const void *obj
)
524 struct page
*page
= virt_to_head_page(obj
);
525 return page_get_slab(page
);
528 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
531 return slab
->s_mem
+ cache
->buffer_size
* idx
;
535 * We want to avoid an expensive divide : (offset / cache->buffer_size)
536 * Using the fact that buffer_size is a constant for a particular cache,
537 * we can replace (offset / cache->buffer_size) by
538 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
540 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
541 const struct slab
*slab
, void *obj
)
543 u32 offset
= (obj
- slab
->s_mem
);
544 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
548 * These are the default caches for kmalloc. Custom caches can have other sizes.
550 struct cache_sizes malloc_sizes
[] = {
551 #define CACHE(x) { .cs_size = (x) },
552 #include <linux/kmalloc_sizes.h>
556 EXPORT_SYMBOL(malloc_sizes
);
558 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
564 static struct cache_names __initdata cache_names
[] = {
565 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
566 #include <linux/kmalloc_sizes.h>
571 static struct arraycache_init initarray_cache __initdata
=
572 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
573 static struct arraycache_init initarray_generic
=
574 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
576 /* internal cache of cache description objs */
577 static struct kmem_cache cache_cache
= {
579 .limit
= BOOT_CPUCACHE_ENTRIES
,
581 .buffer_size
= sizeof(struct kmem_cache
),
582 .name
= "kmem_cache",
585 #define BAD_ALIEN_MAGIC 0x01020304ul
588 * chicken and egg problem: delay the per-cpu array allocation
589 * until the general caches are up.
600 * used by boot code to determine if it can use slab based allocator
602 int slab_is_available(void)
604 return g_cpucache_up
>= EARLY
;
607 #ifdef CONFIG_LOCKDEP
610 * Slab sometimes uses the kmalloc slabs to store the slab headers
611 * for other slabs "off slab".
612 * The locking for this is tricky in that it nests within the locks
613 * of all other slabs in a few places; to deal with this special
614 * locking we put on-slab caches into a separate lock-class.
616 * We set lock class for alien array caches which are up during init.
617 * The lock annotation will be lost if all cpus of a node goes down and
618 * then comes back up during hotplug
620 static struct lock_class_key on_slab_l3_key
;
621 static struct lock_class_key on_slab_alc_key
;
623 static void init_node_lock_keys(int q
)
625 struct cache_sizes
*s
= malloc_sizes
;
627 if (g_cpucache_up
!= FULL
)
630 for (s
= malloc_sizes
; s
->cs_size
!= ULONG_MAX
; s
++) {
631 struct array_cache
**alc
;
632 struct kmem_list3
*l3
;
635 l3
= s
->cs_cachep
->nodelists
[q
];
636 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
638 lockdep_set_class(&l3
->list_lock
, &on_slab_l3_key
);
641 * FIXME: This check for BAD_ALIEN_MAGIC
642 * should go away when common slab code is taught to
643 * work even without alien caches.
644 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
645 * for alloc_alien_cache,
647 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
651 lockdep_set_class(&alc
[r
]->lock
,
657 static inline void init_lock_keys(void)
662 init_node_lock_keys(node
);
665 static void init_node_lock_keys(int q
)
669 static inline void init_lock_keys(void)
675 * Guard access to the cache-chain.
677 static DEFINE_MUTEX(cache_chain_mutex
);
678 static struct list_head cache_chain
;
680 static DEFINE_PER_CPU(struct delayed_work
, slab_reap_work
);
682 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
684 return cachep
->array
[smp_processor_id()];
687 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
690 struct cache_sizes
*csizep
= malloc_sizes
;
693 /* This happens if someone tries to call
694 * kmem_cache_create(), or __kmalloc(), before
695 * the generic caches are initialized.
697 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
700 return ZERO_SIZE_PTR
;
702 while (size
> csizep
->cs_size
)
706 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
707 * has cs_{dma,}cachep==NULL. Thus no special case
708 * for large kmalloc calls required.
710 #ifdef CONFIG_ZONE_DMA
711 if (unlikely(gfpflags
& GFP_DMA
))
712 return csizep
->cs_dmacachep
;
714 return csizep
->cs_cachep
;
717 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
719 return __find_general_cachep(size
, gfpflags
);
722 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
724 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
728 * Calculate the number of objects and left-over bytes for a given buffer size.
730 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
731 size_t align
, int flags
, size_t *left_over
,
736 size_t slab_size
= PAGE_SIZE
<< gfporder
;
739 * The slab management structure can be either off the slab or
740 * on it. For the latter case, the memory allocated for a
744 * - One kmem_bufctl_t for each object
745 * - Padding to respect alignment of @align
746 * - @buffer_size bytes for each object
748 * If the slab management structure is off the slab, then the
749 * alignment will already be calculated into the size. Because
750 * the slabs are all pages aligned, the objects will be at the
751 * correct alignment when allocated.
753 if (flags
& CFLGS_OFF_SLAB
) {
755 nr_objs
= slab_size
/ buffer_size
;
757 if (nr_objs
> SLAB_LIMIT
)
758 nr_objs
= SLAB_LIMIT
;
761 * Ignore padding for the initial guess. The padding
762 * is at most @align-1 bytes, and @buffer_size is at
763 * least @align. In the worst case, this result will
764 * be one greater than the number of objects that fit
765 * into the memory allocation when taking the padding
768 nr_objs
= (slab_size
- sizeof(struct slab
)) /
769 (buffer_size
+ sizeof(kmem_bufctl_t
));
772 * This calculated number will be either the right
773 * amount, or one greater than what we want.
775 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
779 if (nr_objs
> SLAB_LIMIT
)
780 nr_objs
= SLAB_LIMIT
;
782 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
785 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
788 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
790 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
793 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
794 function
, cachep
->name
, msg
);
799 * By default on NUMA we use alien caches to stage the freeing of
800 * objects allocated from other nodes. This causes massive memory
801 * inefficiencies when using fake NUMA setup to split memory into a
802 * large number of small nodes, so it can be disabled on the command
806 static int use_alien_caches __read_mostly
= 1;
807 static int __init
noaliencache_setup(char *s
)
809 use_alien_caches
= 0;
812 __setup("noaliencache", noaliencache_setup
);
816 * Special reaping functions for NUMA systems called from cache_reap().
817 * These take care of doing round robin flushing of alien caches (containing
818 * objects freed on different nodes from which they were allocated) and the
819 * flushing of remote pcps by calling drain_node_pages.
821 static DEFINE_PER_CPU(unsigned long, slab_reap_node
);
823 static void init_reap_node(int cpu
)
827 node
= next_node(cpu_to_mem(cpu
), node_online_map
);
828 if (node
== MAX_NUMNODES
)
829 node
= first_node(node_online_map
);
831 per_cpu(slab_reap_node
, cpu
) = node
;
834 static void next_reap_node(void)
836 int node
= __this_cpu_read(slab_reap_node
);
838 node
= next_node(node
, node_online_map
);
839 if (unlikely(node
>= MAX_NUMNODES
))
840 node
= first_node(node_online_map
);
841 __this_cpu_write(slab_reap_node
, node
);
845 #define init_reap_node(cpu) do { } while (0)
846 #define next_reap_node(void) do { } while (0)
850 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
851 * via the workqueue/eventd.
852 * Add the CPU number into the expiration time to minimize the possibility of
853 * the CPUs getting into lockstep and contending for the global cache chain
856 static void __cpuinit
start_cpu_timer(int cpu
)
858 struct delayed_work
*reap_work
= &per_cpu(slab_reap_work
, cpu
);
861 * When this gets called from do_initcalls via cpucache_init(),
862 * init_workqueues() has already run, so keventd will be setup
865 if (keventd_up() && reap_work
->work
.func
== NULL
) {
867 INIT_DELAYED_WORK_DEFERRABLE(reap_work
, cache_reap
);
868 schedule_delayed_work_on(cpu
, reap_work
,
869 __round_jiffies_relative(HZ
, cpu
));
873 static struct array_cache
*alloc_arraycache(int node
, int entries
,
874 int batchcount
, gfp_t gfp
)
876 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
877 struct array_cache
*nc
= NULL
;
879 nc
= kmalloc_node(memsize
, gfp
, node
);
881 * The array_cache structures contain pointers to free object.
882 * However, when such objects are allocated or transferred to another
883 * cache the pointers are not cleared and they could be counted as
884 * valid references during a kmemleak scan. Therefore, kmemleak must
885 * not scan such objects.
887 kmemleak_no_scan(nc
);
891 nc
->batchcount
= batchcount
;
893 spin_lock_init(&nc
->lock
);
899 * Transfer objects in one arraycache to another.
900 * Locking must be handled by the caller.
902 * Return the number of entries transferred.
904 static int transfer_objects(struct array_cache
*to
,
905 struct array_cache
*from
, unsigned int max
)
907 /* Figure out how many entries to transfer */
908 int nr
= min3(from
->avail
, max
, to
->limit
- to
->avail
);
913 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
923 #define drain_alien_cache(cachep, alien) do { } while (0)
924 #define reap_alien(cachep, l3) do { } while (0)
926 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
928 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
931 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
935 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
940 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
946 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
947 gfp_t flags
, int nodeid
)
952 #else /* CONFIG_NUMA */
954 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
955 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
957 static struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
959 struct array_cache
**ac_ptr
;
960 int memsize
= sizeof(void *) * nr_node_ids
;
965 ac_ptr
= kzalloc_node(memsize
, gfp
, node
);
968 if (i
== node
|| !node_online(i
))
970 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d, gfp
);
972 for (i
--; i
>= 0; i
--)
982 static void free_alien_cache(struct array_cache
**ac_ptr
)
993 static void __drain_alien_cache(struct kmem_cache
*cachep
,
994 struct array_cache
*ac
, int node
)
996 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
999 spin_lock(&rl3
->list_lock
);
1001 * Stuff objects into the remote nodes shared array first.
1002 * That way we could avoid the overhead of putting the objects
1003 * into the free lists and getting them back later.
1006 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1008 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1010 spin_unlock(&rl3
->list_lock
);
1015 * Called from cache_reap() to regularly drain alien caches round robin.
1017 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1019 int node
= __this_cpu_read(slab_reap_node
);
1022 struct array_cache
*ac
= l3
->alien
[node
];
1024 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1025 __drain_alien_cache(cachep
, ac
, node
);
1026 spin_unlock_irq(&ac
->lock
);
1031 static void drain_alien_cache(struct kmem_cache
*cachep
,
1032 struct array_cache
**alien
)
1035 struct array_cache
*ac
;
1036 unsigned long flags
;
1038 for_each_online_node(i
) {
1041 spin_lock_irqsave(&ac
->lock
, flags
);
1042 __drain_alien_cache(cachep
, ac
, i
);
1043 spin_unlock_irqrestore(&ac
->lock
, flags
);
1048 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1050 struct slab
*slabp
= virt_to_slab(objp
);
1051 int nodeid
= slabp
->nodeid
;
1052 struct kmem_list3
*l3
;
1053 struct array_cache
*alien
= NULL
;
1056 node
= numa_mem_id();
1059 * Make sure we are not freeing a object from another node to the array
1060 * cache on this cpu.
1062 if (likely(slabp
->nodeid
== node
))
1065 l3
= cachep
->nodelists
[node
];
1066 STATS_INC_NODEFREES(cachep
);
1067 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1068 alien
= l3
->alien
[nodeid
];
1069 spin_lock(&alien
->lock
);
1070 if (unlikely(alien
->avail
== alien
->limit
)) {
1071 STATS_INC_ACOVERFLOW(cachep
);
1072 __drain_alien_cache(cachep
, alien
, nodeid
);
1074 alien
->entry
[alien
->avail
++] = objp
;
1075 spin_unlock(&alien
->lock
);
1077 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1078 free_block(cachep
, &objp
, 1, nodeid
);
1079 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1086 * Allocates and initializes nodelists for a node on each slab cache, used for
1087 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1088 * will be allocated off-node since memory is not yet online for the new node.
1089 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1092 * Must hold cache_chain_mutex.
1094 static int init_cache_nodelists_node(int node
)
1096 struct kmem_cache
*cachep
;
1097 struct kmem_list3
*l3
;
1098 const int memsize
= sizeof(struct kmem_list3
);
1100 list_for_each_entry(cachep
, &cache_chain
, next
) {
1102 * Set up the size64 kmemlist for cpu before we can
1103 * begin anything. Make sure some other cpu on this
1104 * node has not already allocated this
1106 if (!cachep
->nodelists
[node
]) {
1107 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1110 kmem_list3_init(l3
);
1111 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1112 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1115 * The l3s don't come and go as CPUs come and
1116 * go. cache_chain_mutex is sufficient
1119 cachep
->nodelists
[node
] = l3
;
1122 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1123 cachep
->nodelists
[node
]->free_limit
=
1124 (1 + nr_cpus_node(node
)) *
1125 cachep
->batchcount
+ cachep
->num
;
1126 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1131 static void __cpuinit
cpuup_canceled(long cpu
)
1133 struct kmem_cache
*cachep
;
1134 struct kmem_list3
*l3
= NULL
;
1135 int node
= cpu_to_mem(cpu
);
1136 const struct cpumask
*mask
= cpumask_of_node(node
);
1138 list_for_each_entry(cachep
, &cache_chain
, next
) {
1139 struct array_cache
*nc
;
1140 struct array_cache
*shared
;
1141 struct array_cache
**alien
;
1143 /* cpu is dead; no one can alloc from it. */
1144 nc
= cachep
->array
[cpu
];
1145 cachep
->array
[cpu
] = NULL
;
1146 l3
= cachep
->nodelists
[node
];
1149 goto free_array_cache
;
1151 spin_lock_irq(&l3
->list_lock
);
1153 /* Free limit for this kmem_list3 */
1154 l3
->free_limit
-= cachep
->batchcount
;
1156 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1158 if (!cpumask_empty(mask
)) {
1159 spin_unlock_irq(&l3
->list_lock
);
1160 goto free_array_cache
;
1163 shared
= l3
->shared
;
1165 free_block(cachep
, shared
->entry
,
1166 shared
->avail
, node
);
1173 spin_unlock_irq(&l3
->list_lock
);
1177 drain_alien_cache(cachep
, alien
);
1178 free_alien_cache(alien
);
1184 * In the previous loop, all the objects were freed to
1185 * the respective cache's slabs, now we can go ahead and
1186 * shrink each nodelist to its limit.
1188 list_for_each_entry(cachep
, &cache_chain
, next
) {
1189 l3
= cachep
->nodelists
[node
];
1192 drain_freelist(cachep
, l3
, l3
->free_objects
);
1196 static int __cpuinit
cpuup_prepare(long cpu
)
1198 struct kmem_cache
*cachep
;
1199 struct kmem_list3
*l3
= NULL
;
1200 int node
= cpu_to_mem(cpu
);
1204 * We need to do this right in the beginning since
1205 * alloc_arraycache's are going to use this list.
1206 * kmalloc_node allows us to add the slab to the right
1207 * kmem_list3 and not this cpu's kmem_list3
1209 err
= init_cache_nodelists_node(node
);
1214 * Now we can go ahead with allocating the shared arrays and
1217 list_for_each_entry(cachep
, &cache_chain
, next
) {
1218 struct array_cache
*nc
;
1219 struct array_cache
*shared
= NULL
;
1220 struct array_cache
**alien
= NULL
;
1222 nc
= alloc_arraycache(node
, cachep
->limit
,
1223 cachep
->batchcount
, GFP_KERNEL
);
1226 if (cachep
->shared
) {
1227 shared
= alloc_arraycache(node
,
1228 cachep
->shared
* cachep
->batchcount
,
1229 0xbaadf00d, GFP_KERNEL
);
1235 if (use_alien_caches
) {
1236 alien
= alloc_alien_cache(node
, cachep
->limit
, GFP_KERNEL
);
1243 cachep
->array
[cpu
] = nc
;
1244 l3
= cachep
->nodelists
[node
];
1247 spin_lock_irq(&l3
->list_lock
);
1250 * We are serialised from CPU_DEAD or
1251 * CPU_UP_CANCELLED by the cpucontrol lock
1253 l3
->shared
= shared
;
1262 spin_unlock_irq(&l3
->list_lock
);
1264 free_alien_cache(alien
);
1266 init_node_lock_keys(node
);
1270 cpuup_canceled(cpu
);
1274 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1275 unsigned long action
, void *hcpu
)
1277 long cpu
= (long)hcpu
;
1281 case CPU_UP_PREPARE
:
1282 case CPU_UP_PREPARE_FROZEN
:
1283 mutex_lock(&cache_chain_mutex
);
1284 err
= cpuup_prepare(cpu
);
1285 mutex_unlock(&cache_chain_mutex
);
1288 case CPU_ONLINE_FROZEN
:
1289 start_cpu_timer(cpu
);
1291 #ifdef CONFIG_HOTPLUG_CPU
1292 case CPU_DOWN_PREPARE
:
1293 case CPU_DOWN_PREPARE_FROZEN
:
1295 * Shutdown cache reaper. Note that the cache_chain_mutex is
1296 * held so that if cache_reap() is invoked it cannot do
1297 * anything expensive but will only modify reap_work
1298 * and reschedule the timer.
1300 cancel_delayed_work_sync(&per_cpu(slab_reap_work
, cpu
));
1301 /* Now the cache_reaper is guaranteed to be not running. */
1302 per_cpu(slab_reap_work
, cpu
).work
.func
= NULL
;
1304 case CPU_DOWN_FAILED
:
1305 case CPU_DOWN_FAILED_FROZEN
:
1306 start_cpu_timer(cpu
);
1309 case CPU_DEAD_FROZEN
:
1311 * Even if all the cpus of a node are down, we don't free the
1312 * kmem_list3 of any cache. This to avoid a race between
1313 * cpu_down, and a kmalloc allocation from another cpu for
1314 * memory from the node of the cpu going down. The list3
1315 * structure is usually allocated from kmem_cache_create() and
1316 * gets destroyed at kmem_cache_destroy().
1320 case CPU_UP_CANCELED
:
1321 case CPU_UP_CANCELED_FROZEN
:
1322 mutex_lock(&cache_chain_mutex
);
1323 cpuup_canceled(cpu
);
1324 mutex_unlock(&cache_chain_mutex
);
1327 return notifier_from_errno(err
);
1330 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1331 &cpuup_callback
, NULL
, 0
1334 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1336 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1337 * Returns -EBUSY if all objects cannot be drained so that the node is not
1340 * Must hold cache_chain_mutex.
1342 static int __meminit
drain_cache_nodelists_node(int node
)
1344 struct kmem_cache
*cachep
;
1347 list_for_each_entry(cachep
, &cache_chain
, next
) {
1348 struct kmem_list3
*l3
;
1350 l3
= cachep
->nodelists
[node
];
1354 drain_freelist(cachep
, l3
, l3
->free_objects
);
1356 if (!list_empty(&l3
->slabs_full
) ||
1357 !list_empty(&l3
->slabs_partial
)) {
1365 static int __meminit
slab_memory_callback(struct notifier_block
*self
,
1366 unsigned long action
, void *arg
)
1368 struct memory_notify
*mnb
= arg
;
1372 nid
= mnb
->status_change_nid
;
1377 case MEM_GOING_ONLINE
:
1378 mutex_lock(&cache_chain_mutex
);
1379 ret
= init_cache_nodelists_node(nid
);
1380 mutex_unlock(&cache_chain_mutex
);
1382 case MEM_GOING_OFFLINE
:
1383 mutex_lock(&cache_chain_mutex
);
1384 ret
= drain_cache_nodelists_node(nid
);
1385 mutex_unlock(&cache_chain_mutex
);
1389 case MEM_CANCEL_ONLINE
:
1390 case MEM_CANCEL_OFFLINE
:
1394 return notifier_from_errno(ret
);
1396 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1399 * swap the static kmem_list3 with kmalloced memory
1401 static void __init
init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1404 struct kmem_list3
*ptr
;
1406 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_NOWAIT
, nodeid
);
1409 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1411 * Do not assume that spinlocks can be initialized via memcpy:
1413 spin_lock_init(&ptr
->list_lock
);
1415 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1416 cachep
->nodelists
[nodeid
] = ptr
;
1420 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1421 * size of kmem_list3.
1423 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1427 for_each_online_node(node
) {
1428 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1429 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1431 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1436 * Initialisation. Called after the page allocator have been initialised and
1437 * before smp_init().
1439 void __init
kmem_cache_init(void)
1442 struct cache_sizes
*sizes
;
1443 struct cache_names
*names
;
1448 if (num_possible_nodes() == 1)
1449 use_alien_caches
= 0;
1451 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1452 kmem_list3_init(&initkmem_list3
[i
]);
1453 if (i
< MAX_NUMNODES
)
1454 cache_cache
.nodelists
[i
] = NULL
;
1456 set_up_list3s(&cache_cache
, CACHE_CACHE
);
1459 * Fragmentation resistance on low memory - only use bigger
1460 * page orders on machines with more than 32MB of memory.
1462 if (totalram_pages
> (32 << 20) >> PAGE_SHIFT
)
1463 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1465 /* Bootstrap is tricky, because several objects are allocated
1466 * from caches that do not exist yet:
1467 * 1) initialize the cache_cache cache: it contains the struct
1468 * kmem_cache structures of all caches, except cache_cache itself:
1469 * cache_cache is statically allocated.
1470 * Initially an __init data area is used for the head array and the
1471 * kmem_list3 structures, it's replaced with a kmalloc allocated
1472 * array at the end of the bootstrap.
1473 * 2) Create the first kmalloc cache.
1474 * The struct kmem_cache for the new cache is allocated normally.
1475 * An __init data area is used for the head array.
1476 * 3) Create the remaining kmalloc caches, with minimally sized
1478 * 4) Replace the __init data head arrays for cache_cache and the first
1479 * kmalloc cache with kmalloc allocated arrays.
1480 * 5) Replace the __init data for kmem_list3 for cache_cache and
1481 * the other cache's with kmalloc allocated memory.
1482 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1485 node
= numa_mem_id();
1487 /* 1) create the cache_cache */
1488 INIT_LIST_HEAD(&cache_chain
);
1489 list_add(&cache_cache
.next
, &cache_chain
);
1490 cache_cache
.colour_off
= cache_line_size();
1491 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1492 cache_cache
.nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
+ node
];
1495 * struct kmem_cache size depends on nr_node_ids, which
1496 * can be less than MAX_NUMNODES.
1498 cache_cache
.buffer_size
= offsetof(struct kmem_cache
, nodelists
) +
1499 nr_node_ids
* sizeof(struct kmem_list3
*);
1501 cache_cache
.obj_size
= cache_cache
.buffer_size
;
1503 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1505 cache_cache
.reciprocal_buffer_size
=
1506 reciprocal_value(cache_cache
.buffer_size
);
1508 for (order
= 0; order
< MAX_ORDER
; order
++) {
1509 cache_estimate(order
, cache_cache
.buffer_size
,
1510 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1511 if (cache_cache
.num
)
1514 BUG_ON(!cache_cache
.num
);
1515 cache_cache
.gfporder
= order
;
1516 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1517 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1518 sizeof(struct slab
), cache_line_size());
1520 /* 2+3) create the kmalloc caches */
1521 sizes
= malloc_sizes
;
1522 names
= cache_names
;
1525 * Initialize the caches that provide memory for the array cache and the
1526 * kmem_list3 structures first. Without this, further allocations will
1530 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1531 sizes
[INDEX_AC
].cs_size
,
1532 ARCH_KMALLOC_MINALIGN
,
1533 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1536 if (INDEX_AC
!= INDEX_L3
) {
1537 sizes
[INDEX_L3
].cs_cachep
=
1538 kmem_cache_create(names
[INDEX_L3
].name
,
1539 sizes
[INDEX_L3
].cs_size
,
1540 ARCH_KMALLOC_MINALIGN
,
1541 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1545 slab_early_init
= 0;
1547 while (sizes
->cs_size
!= ULONG_MAX
) {
1549 * For performance, all the general caches are L1 aligned.
1550 * This should be particularly beneficial on SMP boxes, as it
1551 * eliminates "false sharing".
1552 * Note for systems short on memory removing the alignment will
1553 * allow tighter packing of the smaller caches.
1555 if (!sizes
->cs_cachep
) {
1556 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1558 ARCH_KMALLOC_MINALIGN
,
1559 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1562 #ifdef CONFIG_ZONE_DMA
1563 sizes
->cs_dmacachep
= kmem_cache_create(
1566 ARCH_KMALLOC_MINALIGN
,
1567 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1574 /* 4) Replace the bootstrap head arrays */
1576 struct array_cache
*ptr
;
1578 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1580 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1581 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1582 sizeof(struct arraycache_init
));
1584 * Do not assume that spinlocks can be initialized via memcpy:
1586 spin_lock_init(&ptr
->lock
);
1588 cache_cache
.array
[smp_processor_id()] = ptr
;
1590 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1592 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1593 != &initarray_generic
.cache
);
1594 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1595 sizeof(struct arraycache_init
));
1597 * Do not assume that spinlocks can be initialized via memcpy:
1599 spin_lock_init(&ptr
->lock
);
1601 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1604 /* 5) Replace the bootstrap kmem_list3's */
1608 for_each_online_node(nid
) {
1609 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
+ nid
], nid
);
1611 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1612 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1614 if (INDEX_AC
!= INDEX_L3
) {
1615 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1616 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1621 g_cpucache_up
= EARLY
;
1624 void __init
kmem_cache_init_late(void)
1626 struct kmem_cache
*cachep
;
1628 /* 6) resize the head arrays to their final sizes */
1629 mutex_lock(&cache_chain_mutex
);
1630 list_for_each_entry(cachep
, &cache_chain
, next
)
1631 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1633 mutex_unlock(&cache_chain_mutex
);
1636 g_cpucache_up
= FULL
;
1638 /* Annotate slab for lockdep -- annotate the malloc caches */
1642 * Register a cpu startup notifier callback that initializes
1643 * cpu_cache_get for all new cpus
1645 register_cpu_notifier(&cpucache_notifier
);
1649 * Register a memory hotplug callback that initializes and frees
1652 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
1656 * The reap timers are started later, with a module init call: That part
1657 * of the kernel is not yet operational.
1661 static int __init
cpucache_init(void)
1666 * Register the timers that return unneeded pages to the page allocator
1668 for_each_online_cpu(cpu
)
1669 start_cpu_timer(cpu
);
1672 __initcall(cpucache_init
);
1675 * Interface to system's page allocator. No need to hold the cache-lock.
1677 * If we requested dmaable memory, we will get it. Even if we
1678 * did not request dmaable memory, we might get it, but that
1679 * would be relatively rare and ignorable.
1681 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1689 * Nommu uses slab's for process anonymous memory allocations, and thus
1690 * requires __GFP_COMP to properly refcount higher order allocations
1692 flags
|= __GFP_COMP
;
1695 flags
|= cachep
->gfpflags
;
1696 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1697 flags
|= __GFP_RECLAIMABLE
;
1699 page
= alloc_pages_exact_node(nodeid
, flags
| __GFP_NOTRACK
, cachep
->gfporder
);
1703 nr_pages
= (1 << cachep
->gfporder
);
1704 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1705 add_zone_page_state(page_zone(page
),
1706 NR_SLAB_RECLAIMABLE
, nr_pages
);
1708 add_zone_page_state(page_zone(page
),
1709 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1710 for (i
= 0; i
< nr_pages
; i
++)
1711 __SetPageSlab(page
+ i
);
1713 if (kmemcheck_enabled
&& !(cachep
->flags
& SLAB_NOTRACK
)) {
1714 kmemcheck_alloc_shadow(page
, cachep
->gfporder
, flags
, nodeid
);
1717 kmemcheck_mark_uninitialized_pages(page
, nr_pages
);
1719 kmemcheck_mark_unallocated_pages(page
, nr_pages
);
1722 return page_address(page
);
1726 * Interface to system's page release.
1728 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1730 unsigned long i
= (1 << cachep
->gfporder
);
1731 struct page
*page
= virt_to_page(addr
);
1732 const unsigned long nr_freed
= i
;
1734 kmemcheck_free_shadow(page
, cachep
->gfporder
);
1736 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1737 sub_zone_page_state(page_zone(page
),
1738 NR_SLAB_RECLAIMABLE
, nr_freed
);
1740 sub_zone_page_state(page_zone(page
),
1741 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1743 BUG_ON(!PageSlab(page
));
1744 __ClearPageSlab(page
);
1747 if (current
->reclaim_state
)
1748 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1749 free_pages((unsigned long)addr
, cachep
->gfporder
);
1752 static void kmem_rcu_free(struct rcu_head
*head
)
1754 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1755 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1757 kmem_freepages(cachep
, slab_rcu
->addr
);
1758 if (OFF_SLAB(cachep
))
1759 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1764 #ifdef CONFIG_DEBUG_PAGEALLOC
1765 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1766 unsigned long caller
)
1768 int size
= obj_size(cachep
);
1770 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1772 if (size
< 5 * sizeof(unsigned long))
1775 *addr
++ = 0x12345678;
1777 *addr
++ = smp_processor_id();
1778 size
-= 3 * sizeof(unsigned long);
1780 unsigned long *sptr
= &caller
;
1781 unsigned long svalue
;
1783 while (!kstack_end(sptr
)) {
1785 if (kernel_text_address(svalue
)) {
1787 size
-= sizeof(unsigned long);
1788 if (size
<= sizeof(unsigned long))
1794 *addr
++ = 0x87654321;
1798 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1800 int size
= obj_size(cachep
);
1801 addr
= &((char *)addr
)[obj_offset(cachep
)];
1803 memset(addr
, val
, size
);
1804 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1807 static void dump_line(char *data
, int offset
, int limit
)
1810 unsigned char error
= 0;
1813 printk(KERN_ERR
"%03x:", offset
);
1814 for (i
= 0; i
< limit
; i
++) {
1815 if (data
[offset
+ i
] != POISON_FREE
) {
1816 error
= data
[offset
+ i
];
1819 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1823 if (bad_count
== 1) {
1824 error
^= POISON_FREE
;
1825 if (!(error
& (error
- 1))) {
1826 printk(KERN_ERR
"Single bit error detected. Probably "
1829 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1832 printk(KERN_ERR
"Run a memory test tool.\n");
1841 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1846 if (cachep
->flags
& SLAB_RED_ZONE
) {
1847 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1848 *dbg_redzone1(cachep
, objp
),
1849 *dbg_redzone2(cachep
, objp
));
1852 if (cachep
->flags
& SLAB_STORE_USER
) {
1853 printk(KERN_ERR
"Last user: [<%p>]",
1854 *dbg_userword(cachep
, objp
));
1855 print_symbol("(%s)",
1856 (unsigned long)*dbg_userword(cachep
, objp
));
1859 realobj
= (char *)objp
+ obj_offset(cachep
);
1860 size
= obj_size(cachep
);
1861 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1864 if (i
+ limit
> size
)
1866 dump_line(realobj
, i
, limit
);
1870 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1876 realobj
= (char *)objp
+ obj_offset(cachep
);
1877 size
= obj_size(cachep
);
1879 for (i
= 0; i
< size
; i
++) {
1880 char exp
= POISON_FREE
;
1883 if (realobj
[i
] != exp
) {
1889 "Slab corruption: %s start=%p, len=%d\n",
1890 cachep
->name
, realobj
, size
);
1891 print_objinfo(cachep
, objp
, 0);
1893 /* Hexdump the affected line */
1896 if (i
+ limit
> size
)
1898 dump_line(realobj
, i
, limit
);
1901 /* Limit to 5 lines */
1907 /* Print some data about the neighboring objects, if they
1910 struct slab
*slabp
= virt_to_slab(objp
);
1913 objnr
= obj_to_index(cachep
, slabp
, objp
);
1915 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1916 realobj
= (char *)objp
+ obj_offset(cachep
);
1917 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1919 print_objinfo(cachep
, objp
, 2);
1921 if (objnr
+ 1 < cachep
->num
) {
1922 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1923 realobj
= (char *)objp
+ obj_offset(cachep
);
1924 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1926 print_objinfo(cachep
, objp
, 2);
1933 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
1936 for (i
= 0; i
< cachep
->num
; i
++) {
1937 void *objp
= index_to_obj(cachep
, slabp
, i
);
1939 if (cachep
->flags
& SLAB_POISON
) {
1940 #ifdef CONFIG_DEBUG_PAGEALLOC
1941 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1943 kernel_map_pages(virt_to_page(objp
),
1944 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1946 check_poison_obj(cachep
, objp
);
1948 check_poison_obj(cachep
, objp
);
1951 if (cachep
->flags
& SLAB_RED_ZONE
) {
1952 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1953 slab_error(cachep
, "start of a freed object "
1955 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1956 slab_error(cachep
, "end of a freed object "
1962 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
1968 * slab_destroy - destroy and release all objects in a slab
1969 * @cachep: cache pointer being destroyed
1970 * @slabp: slab pointer being destroyed
1972 * Destroy all the objs in a slab, and release the mem back to the system.
1973 * Before calling the slab must have been unlinked from the cache. The
1974 * cache-lock is not held/needed.
1976 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1978 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1980 slab_destroy_debugcheck(cachep
, slabp
);
1981 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1982 struct slab_rcu
*slab_rcu
;
1984 slab_rcu
= (struct slab_rcu
*)slabp
;
1985 slab_rcu
->cachep
= cachep
;
1986 slab_rcu
->addr
= addr
;
1987 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1989 kmem_freepages(cachep
, addr
);
1990 if (OFF_SLAB(cachep
))
1991 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1995 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
1998 struct kmem_list3
*l3
;
2000 for_each_online_cpu(i
)
2001 kfree(cachep
->array
[i
]);
2003 /* NUMA: free the list3 structures */
2004 for_each_online_node(i
) {
2005 l3
= cachep
->nodelists
[i
];
2008 free_alien_cache(l3
->alien
);
2012 kmem_cache_free(&cache_cache
, cachep
);
2017 * calculate_slab_order - calculate size (page order) of slabs
2018 * @cachep: pointer to the cache that is being created
2019 * @size: size of objects to be created in this cache.
2020 * @align: required alignment for the objects.
2021 * @flags: slab allocation flags
2023 * Also calculates the number of objects per slab.
2025 * This could be made much more intelligent. For now, try to avoid using
2026 * high order pages for slabs. When the gfp() functions are more friendly
2027 * towards high-order requests, this should be changed.
2029 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
2030 size_t size
, size_t align
, unsigned long flags
)
2032 unsigned long offslab_limit
;
2033 size_t left_over
= 0;
2036 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2040 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2044 if (flags
& CFLGS_OFF_SLAB
) {
2046 * Max number of objs-per-slab for caches which
2047 * use off-slab slabs. Needed to avoid a possible
2048 * looping condition in cache_grow().
2050 offslab_limit
= size
- sizeof(struct slab
);
2051 offslab_limit
/= sizeof(kmem_bufctl_t
);
2053 if (num
> offslab_limit
)
2057 /* Found something acceptable - save it away */
2059 cachep
->gfporder
= gfporder
;
2060 left_over
= remainder
;
2063 * A VFS-reclaimable slab tends to have most allocations
2064 * as GFP_NOFS and we really don't want to have to be allocating
2065 * higher-order pages when we are unable to shrink dcache.
2067 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2071 * Large number of objects is good, but very large slabs are
2072 * currently bad for the gfp()s.
2074 if (gfporder
>= slab_break_gfp_order
)
2078 * Acceptable internal fragmentation?
2080 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2086 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2088 if (g_cpucache_up
== FULL
)
2089 return enable_cpucache(cachep
, gfp
);
2091 if (g_cpucache_up
== NONE
) {
2093 * Note: the first kmem_cache_create must create the cache
2094 * that's used by kmalloc(24), otherwise the creation of
2095 * further caches will BUG().
2097 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2100 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2101 * the first cache, then we need to set up all its list3s,
2102 * otherwise the creation of further caches will BUG().
2104 set_up_list3s(cachep
, SIZE_AC
);
2105 if (INDEX_AC
== INDEX_L3
)
2106 g_cpucache_up
= PARTIAL_L3
;
2108 g_cpucache_up
= PARTIAL_AC
;
2110 cachep
->array
[smp_processor_id()] =
2111 kmalloc(sizeof(struct arraycache_init
), gfp
);
2113 if (g_cpucache_up
== PARTIAL_AC
) {
2114 set_up_list3s(cachep
, SIZE_L3
);
2115 g_cpucache_up
= PARTIAL_L3
;
2118 for_each_online_node(node
) {
2119 cachep
->nodelists
[node
] =
2120 kmalloc_node(sizeof(struct kmem_list3
),
2122 BUG_ON(!cachep
->nodelists
[node
]);
2123 kmem_list3_init(cachep
->nodelists
[node
]);
2127 cachep
->nodelists
[numa_mem_id()]->next_reap
=
2128 jiffies
+ REAPTIMEOUT_LIST3
+
2129 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2131 cpu_cache_get(cachep
)->avail
= 0;
2132 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2133 cpu_cache_get(cachep
)->batchcount
= 1;
2134 cpu_cache_get(cachep
)->touched
= 0;
2135 cachep
->batchcount
= 1;
2136 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2141 * kmem_cache_create - Create a cache.
2142 * @name: A string which is used in /proc/slabinfo to identify this cache.
2143 * @size: The size of objects to be created in this cache.
2144 * @align: The required alignment for the objects.
2145 * @flags: SLAB flags
2146 * @ctor: A constructor for the objects.
2148 * Returns a ptr to the cache on success, NULL on failure.
2149 * Cannot be called within a int, but can be interrupted.
2150 * The @ctor is run when new pages are allocated by the cache.
2152 * @name must be valid until the cache is destroyed. This implies that
2153 * the module calling this has to destroy the cache before getting unloaded.
2157 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2158 * to catch references to uninitialised memory.
2160 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2161 * for buffer overruns.
2163 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2164 * cacheline. This can be beneficial if you're counting cycles as closely
2168 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2169 unsigned long flags
, void (*ctor
)(void *))
2171 size_t left_over
, slab_size
, ralign
;
2172 struct kmem_cache
*cachep
= NULL
, *pc
;
2176 * Sanity checks... these are all serious usage bugs.
2178 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2179 size
> KMALLOC_MAX_SIZE
) {
2180 printk(KERN_ERR
"%s: Early error in slab %s\n", __func__
,
2186 * We use cache_chain_mutex to ensure a consistent view of
2187 * cpu_online_mask as well. Please see cpuup_callback
2189 if (slab_is_available()) {
2191 mutex_lock(&cache_chain_mutex
);
2194 list_for_each_entry(pc
, &cache_chain
, next
) {
2199 * This happens when the module gets unloaded and doesn't
2200 * destroy its slab cache and no-one else reuses the vmalloc
2201 * area of the module. Print a warning.
2203 res
= probe_kernel_address(pc
->name
, tmp
);
2206 "SLAB: cache with size %d has lost its name\n",
2211 if (!strcmp(pc
->name
, name
)) {
2213 "kmem_cache_create: duplicate cache %s\n", name
);
2220 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2223 * Enable redzoning and last user accounting, except for caches with
2224 * large objects, if the increased size would increase the object size
2225 * above the next power of two: caches with object sizes just above a
2226 * power of two have a significant amount of internal fragmentation.
2228 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2229 2 * sizeof(unsigned long long)))
2230 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2231 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2232 flags
|= SLAB_POISON
;
2234 if (flags
& SLAB_DESTROY_BY_RCU
)
2235 BUG_ON(flags
& SLAB_POISON
);
2238 * Always checks flags, a caller might be expecting debug support which
2241 BUG_ON(flags
& ~CREATE_MASK
);
2244 * Check that size is in terms of words. This is needed to avoid
2245 * unaligned accesses for some archs when redzoning is used, and makes
2246 * sure any on-slab bufctl's are also correctly aligned.
2248 if (size
& (BYTES_PER_WORD
- 1)) {
2249 size
+= (BYTES_PER_WORD
- 1);
2250 size
&= ~(BYTES_PER_WORD
- 1);
2253 /* calculate the final buffer alignment: */
2255 /* 1) arch recommendation: can be overridden for debug */
2256 if (flags
& SLAB_HWCACHE_ALIGN
) {
2258 * Default alignment: as specified by the arch code. Except if
2259 * an object is really small, then squeeze multiple objects into
2262 ralign
= cache_line_size();
2263 while (size
<= ralign
/ 2)
2266 ralign
= BYTES_PER_WORD
;
2270 * Redzoning and user store require word alignment or possibly larger.
2271 * Note this will be overridden by architecture or caller mandated
2272 * alignment if either is greater than BYTES_PER_WORD.
2274 if (flags
& SLAB_STORE_USER
)
2275 ralign
= BYTES_PER_WORD
;
2277 if (flags
& SLAB_RED_ZONE
) {
2278 ralign
= REDZONE_ALIGN
;
2279 /* If redzoning, ensure that the second redzone is suitably
2280 * aligned, by adjusting the object size accordingly. */
2281 size
+= REDZONE_ALIGN
- 1;
2282 size
&= ~(REDZONE_ALIGN
- 1);
2285 /* 2) arch mandated alignment */
2286 if (ralign
< ARCH_SLAB_MINALIGN
) {
2287 ralign
= ARCH_SLAB_MINALIGN
;
2289 /* 3) caller mandated alignment */
2290 if (ralign
< align
) {
2293 /* disable debug if necessary */
2294 if (ralign
> __alignof__(unsigned long long))
2295 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2301 if (slab_is_available())
2306 /* Get cache's description obj. */
2307 cachep
= kmem_cache_zalloc(&cache_cache
, gfp
);
2312 cachep
->obj_size
= size
;
2315 * Both debugging options require word-alignment which is calculated
2318 if (flags
& SLAB_RED_ZONE
) {
2319 /* add space for red zone words */
2320 cachep
->obj_offset
+= sizeof(unsigned long long);
2321 size
+= 2 * sizeof(unsigned long long);
2323 if (flags
& SLAB_STORE_USER
) {
2324 /* user store requires one word storage behind the end of
2325 * the real object. But if the second red zone needs to be
2326 * aligned to 64 bits, we must allow that much space.
2328 if (flags
& SLAB_RED_ZONE
)
2329 size
+= REDZONE_ALIGN
;
2331 size
+= BYTES_PER_WORD
;
2333 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2334 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2335 && cachep
->obj_size
> cache_line_size() && ALIGN(size
, align
) < PAGE_SIZE
) {
2336 cachep
->obj_offset
+= PAGE_SIZE
- ALIGN(size
, align
);
2343 * Determine if the slab management is 'on' or 'off' slab.
2344 * (bootstrapping cannot cope with offslab caches so don't do
2345 * it too early on. Always use on-slab management when
2346 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2348 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
&&
2349 !(flags
& SLAB_NOLEAKTRACE
))
2351 * Size is large, assume best to place the slab management obj
2352 * off-slab (should allow better packing of objs).
2354 flags
|= CFLGS_OFF_SLAB
;
2356 size
= ALIGN(size
, align
);
2358 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2362 "kmem_cache_create: couldn't create cache %s.\n", name
);
2363 kmem_cache_free(&cache_cache
, cachep
);
2367 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2368 + sizeof(struct slab
), align
);
2371 * If the slab has been placed off-slab, and we have enough space then
2372 * move it on-slab. This is at the expense of any extra colouring.
2374 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2375 flags
&= ~CFLGS_OFF_SLAB
;
2376 left_over
-= slab_size
;
2379 if (flags
& CFLGS_OFF_SLAB
) {
2380 /* really off slab. No need for manual alignment */
2382 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2384 #ifdef CONFIG_PAGE_POISONING
2385 /* If we're going to use the generic kernel_map_pages()
2386 * poisoning, then it's going to smash the contents of
2387 * the redzone and userword anyhow, so switch them off.
2389 if (size
% PAGE_SIZE
== 0 && flags
& SLAB_POISON
)
2390 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2394 cachep
->colour_off
= cache_line_size();
2395 /* Offset must be a multiple of the alignment. */
2396 if (cachep
->colour_off
< align
)
2397 cachep
->colour_off
= align
;
2398 cachep
->colour
= left_over
/ cachep
->colour_off
;
2399 cachep
->slab_size
= slab_size
;
2400 cachep
->flags
= flags
;
2401 cachep
->gfpflags
= 0;
2402 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2403 cachep
->gfpflags
|= GFP_DMA
;
2404 cachep
->buffer_size
= size
;
2405 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2407 if (flags
& CFLGS_OFF_SLAB
) {
2408 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2410 * This is a possibility for one of the malloc_sizes caches.
2411 * But since we go off slab only for object size greater than
2412 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2413 * this should not happen at all.
2414 * But leave a BUG_ON for some lucky dude.
2416 BUG_ON(ZERO_OR_NULL_PTR(cachep
->slabp_cache
));
2418 cachep
->ctor
= ctor
;
2419 cachep
->name
= name
;
2421 if (setup_cpu_cache(cachep
, gfp
)) {
2422 __kmem_cache_destroy(cachep
);
2427 /* cache setup completed, link it into the list */
2428 list_add(&cachep
->next
, &cache_chain
);
2430 if (!cachep
&& (flags
& SLAB_PANIC
))
2431 panic("kmem_cache_create(): failed to create slab `%s'\n",
2433 if (slab_is_available()) {
2434 mutex_unlock(&cache_chain_mutex
);
2439 EXPORT_SYMBOL(kmem_cache_create
);
2442 static void check_irq_off(void)
2444 BUG_ON(!irqs_disabled());
2447 static void check_irq_on(void)
2449 BUG_ON(irqs_disabled());
2452 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2456 assert_spin_locked(&cachep
->nodelists
[numa_mem_id()]->list_lock
);
2460 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2464 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2469 #define check_irq_off() do { } while(0)
2470 #define check_irq_on() do { } while(0)
2471 #define check_spinlock_acquired(x) do { } while(0)
2472 #define check_spinlock_acquired_node(x, y) do { } while(0)
2475 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2476 struct array_cache
*ac
,
2477 int force
, int node
);
2479 static void do_drain(void *arg
)
2481 struct kmem_cache
*cachep
= arg
;
2482 struct array_cache
*ac
;
2483 int node
= numa_mem_id();
2486 ac
= cpu_cache_get(cachep
);
2487 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2488 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2489 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2493 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2495 struct kmem_list3
*l3
;
2498 on_each_cpu(do_drain
, cachep
, 1);
2500 for_each_online_node(node
) {
2501 l3
= cachep
->nodelists
[node
];
2502 if (l3
&& l3
->alien
)
2503 drain_alien_cache(cachep
, l3
->alien
);
2506 for_each_online_node(node
) {
2507 l3
= cachep
->nodelists
[node
];
2509 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2514 * Remove slabs from the list of free slabs.
2515 * Specify the number of slabs to drain in tofree.
2517 * Returns the actual number of slabs released.
2519 static int drain_freelist(struct kmem_cache
*cache
,
2520 struct kmem_list3
*l3
, int tofree
)
2522 struct list_head
*p
;
2527 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2529 spin_lock_irq(&l3
->list_lock
);
2530 p
= l3
->slabs_free
.prev
;
2531 if (p
== &l3
->slabs_free
) {
2532 spin_unlock_irq(&l3
->list_lock
);
2536 slabp
= list_entry(p
, struct slab
, list
);
2538 BUG_ON(slabp
->inuse
);
2540 list_del(&slabp
->list
);
2542 * Safe to drop the lock. The slab is no longer linked
2545 l3
->free_objects
-= cache
->num
;
2546 spin_unlock_irq(&l3
->list_lock
);
2547 slab_destroy(cache
, slabp
);
2554 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2555 static int __cache_shrink(struct kmem_cache
*cachep
)
2558 struct kmem_list3
*l3
;
2560 drain_cpu_caches(cachep
);
2563 for_each_online_node(i
) {
2564 l3
= cachep
->nodelists
[i
];
2568 drain_freelist(cachep
, l3
, l3
->free_objects
);
2570 ret
+= !list_empty(&l3
->slabs_full
) ||
2571 !list_empty(&l3
->slabs_partial
);
2573 return (ret
? 1 : 0);
2577 * kmem_cache_shrink - Shrink a cache.
2578 * @cachep: The cache to shrink.
2580 * Releases as many slabs as possible for a cache.
2581 * To help debugging, a zero exit status indicates all slabs were released.
2583 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2586 BUG_ON(!cachep
|| in_interrupt());
2589 mutex_lock(&cache_chain_mutex
);
2590 ret
= __cache_shrink(cachep
);
2591 mutex_unlock(&cache_chain_mutex
);
2595 EXPORT_SYMBOL(kmem_cache_shrink
);
2598 * kmem_cache_destroy - delete a cache
2599 * @cachep: the cache to destroy
2601 * Remove a &struct kmem_cache object from the slab cache.
2603 * It is expected this function will be called by a module when it is
2604 * unloaded. This will remove the cache completely, and avoid a duplicate
2605 * cache being allocated each time a module is loaded and unloaded, if the
2606 * module doesn't have persistent in-kernel storage across loads and unloads.
2608 * The cache must be empty before calling this function.
2610 * The caller must guarantee that no one will allocate memory from the cache
2611 * during the kmem_cache_destroy().
2613 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2615 BUG_ON(!cachep
|| in_interrupt());
2617 /* Find the cache in the chain of caches. */
2619 mutex_lock(&cache_chain_mutex
);
2621 * the chain is never empty, cache_cache is never destroyed
2623 list_del(&cachep
->next
);
2624 if (__cache_shrink(cachep
)) {
2625 slab_error(cachep
, "Can't free all objects");
2626 list_add(&cachep
->next
, &cache_chain
);
2627 mutex_unlock(&cache_chain_mutex
);
2632 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2635 __kmem_cache_destroy(cachep
);
2636 mutex_unlock(&cache_chain_mutex
);
2639 EXPORT_SYMBOL(kmem_cache_destroy
);
2642 * Get the memory for a slab management obj.
2643 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2644 * always come from malloc_sizes caches. The slab descriptor cannot
2645 * come from the same cache which is getting created because,
2646 * when we are searching for an appropriate cache for these
2647 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2648 * If we are creating a malloc_sizes cache here it would not be visible to
2649 * kmem_find_general_cachep till the initialization is complete.
2650 * Hence we cannot have slabp_cache same as the original cache.
2652 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2653 int colour_off
, gfp_t local_flags
,
2658 if (OFF_SLAB(cachep
)) {
2659 /* Slab management obj is off-slab. */
2660 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2661 local_flags
, nodeid
);
2663 * If the first object in the slab is leaked (it's allocated
2664 * but no one has a reference to it), we want to make sure
2665 * kmemleak does not treat the ->s_mem pointer as a reference
2666 * to the object. Otherwise we will not report the leak.
2668 kmemleak_scan_area(&slabp
->list
, sizeof(struct list_head
),
2673 slabp
= objp
+ colour_off
;
2674 colour_off
+= cachep
->slab_size
;
2677 slabp
->colouroff
= colour_off
;
2678 slabp
->s_mem
= objp
+ colour_off
;
2679 slabp
->nodeid
= nodeid
;
2684 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2686 return (kmem_bufctl_t
*) (slabp
+ 1);
2689 static void cache_init_objs(struct kmem_cache
*cachep
,
2694 for (i
= 0; i
< cachep
->num
; i
++) {
2695 void *objp
= index_to_obj(cachep
, slabp
, i
);
2697 /* need to poison the objs? */
2698 if (cachep
->flags
& SLAB_POISON
)
2699 poison_obj(cachep
, objp
, POISON_FREE
);
2700 if (cachep
->flags
& SLAB_STORE_USER
)
2701 *dbg_userword(cachep
, objp
) = NULL
;
2703 if (cachep
->flags
& SLAB_RED_ZONE
) {
2704 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2705 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2708 * Constructors are not allowed to allocate memory from the same
2709 * cache which they are a constructor for. Otherwise, deadlock.
2710 * They must also be threaded.
2712 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2713 cachep
->ctor(objp
+ obj_offset(cachep
));
2715 if (cachep
->flags
& SLAB_RED_ZONE
) {
2716 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2717 slab_error(cachep
, "constructor overwrote the"
2718 " end of an object");
2719 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2720 slab_error(cachep
, "constructor overwrote the"
2721 " start of an object");
2723 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2724 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2725 kernel_map_pages(virt_to_page(objp
),
2726 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2731 slab_bufctl(slabp
)[i
] = i
+ 1;
2733 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2736 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2738 if (CONFIG_ZONE_DMA_FLAG
) {
2739 if (flags
& GFP_DMA
)
2740 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2742 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2746 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2749 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2753 next
= slab_bufctl(slabp
)[slabp
->free
];
2755 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2756 WARN_ON(slabp
->nodeid
!= nodeid
);
2763 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2764 void *objp
, int nodeid
)
2766 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2769 /* Verify that the slab belongs to the intended node */
2770 WARN_ON(slabp
->nodeid
!= nodeid
);
2772 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2773 printk(KERN_ERR
"slab: double free detected in cache "
2774 "'%s', objp %p\n", cachep
->name
, objp
);
2778 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2779 slabp
->free
= objnr
;
2784 * Map pages beginning at addr to the given cache and slab. This is required
2785 * for the slab allocator to be able to lookup the cache and slab of a
2786 * virtual address for kfree, ksize, and slab debugging.
2788 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2794 page
= virt_to_page(addr
);
2797 if (likely(!PageCompound(page
)))
2798 nr_pages
<<= cache
->gfporder
;
2801 page_set_cache(page
, cache
);
2802 page_set_slab(page
, slab
);
2804 } while (--nr_pages
);
2808 * Grow (by 1) the number of slabs within a cache. This is called by
2809 * kmem_cache_alloc() when there are no active objs left in a cache.
2811 static int cache_grow(struct kmem_cache
*cachep
,
2812 gfp_t flags
, int nodeid
, void *objp
)
2817 struct kmem_list3
*l3
;
2820 * Be lazy and only check for valid flags here, keeping it out of the
2821 * critical path in kmem_cache_alloc().
2823 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2824 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2826 /* Take the l3 list lock to change the colour_next on this node */
2828 l3
= cachep
->nodelists
[nodeid
];
2829 spin_lock(&l3
->list_lock
);
2831 /* Get colour for the slab, and cal the next value. */
2832 offset
= l3
->colour_next
;
2834 if (l3
->colour_next
>= cachep
->colour
)
2835 l3
->colour_next
= 0;
2836 spin_unlock(&l3
->list_lock
);
2838 offset
*= cachep
->colour_off
;
2840 if (local_flags
& __GFP_WAIT
)
2844 * The test for missing atomic flag is performed here, rather than
2845 * the more obvious place, simply to reduce the critical path length
2846 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2847 * will eventually be caught here (where it matters).
2849 kmem_flagcheck(cachep
, flags
);
2852 * Get mem for the objs. Attempt to allocate a physical page from
2856 objp
= kmem_getpages(cachep
, local_flags
, nodeid
);
2860 /* Get slab management. */
2861 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2862 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2866 slab_map_pages(cachep
, slabp
, objp
);
2868 cache_init_objs(cachep
, slabp
);
2870 if (local_flags
& __GFP_WAIT
)
2871 local_irq_disable();
2873 spin_lock(&l3
->list_lock
);
2875 /* Make slab active. */
2876 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2877 STATS_INC_GROWN(cachep
);
2878 l3
->free_objects
+= cachep
->num
;
2879 spin_unlock(&l3
->list_lock
);
2882 kmem_freepages(cachep
, objp
);
2884 if (local_flags
& __GFP_WAIT
)
2885 local_irq_disable();
2892 * Perform extra freeing checks:
2893 * - detect bad pointers.
2894 * - POISON/RED_ZONE checking
2896 static void kfree_debugcheck(const void *objp
)
2898 if (!virt_addr_valid(objp
)) {
2899 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2900 (unsigned long)objp
);
2905 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2907 unsigned long long redzone1
, redzone2
;
2909 redzone1
= *dbg_redzone1(cache
, obj
);
2910 redzone2
= *dbg_redzone2(cache
, obj
);
2915 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2918 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2919 slab_error(cache
, "double free detected");
2921 slab_error(cache
, "memory outside object was overwritten");
2923 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2924 obj
, redzone1
, redzone2
);
2927 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2934 BUG_ON(virt_to_cache(objp
) != cachep
);
2936 objp
-= obj_offset(cachep
);
2937 kfree_debugcheck(objp
);
2938 page
= virt_to_head_page(objp
);
2940 slabp
= page_get_slab(page
);
2942 if (cachep
->flags
& SLAB_RED_ZONE
) {
2943 verify_redzone_free(cachep
, objp
);
2944 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2945 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2947 if (cachep
->flags
& SLAB_STORE_USER
)
2948 *dbg_userword(cachep
, objp
) = caller
;
2950 objnr
= obj_to_index(cachep
, slabp
, objp
);
2952 BUG_ON(objnr
>= cachep
->num
);
2953 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2955 #ifdef CONFIG_DEBUG_SLAB_LEAK
2956 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2958 if (cachep
->flags
& SLAB_POISON
) {
2959 #ifdef CONFIG_DEBUG_PAGEALLOC
2960 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2961 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2962 kernel_map_pages(virt_to_page(objp
),
2963 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2965 poison_obj(cachep
, objp
, POISON_FREE
);
2968 poison_obj(cachep
, objp
, POISON_FREE
);
2974 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2979 /* Check slab's freelist to see if this obj is there. */
2980 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2982 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2985 if (entries
!= cachep
->num
- slabp
->inuse
) {
2987 printk(KERN_ERR
"slab: Internal list corruption detected in "
2988 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2989 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2991 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2994 printk("\n%03x:", i
);
2995 printk(" %02x", ((unsigned char *)slabp
)[i
]);
3002 #define kfree_debugcheck(x) do { } while(0)
3003 #define cache_free_debugcheck(x,objp,z) (objp)
3004 #define check_slabp(x,y) do { } while(0)
3007 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
3010 struct kmem_list3
*l3
;
3011 struct array_cache
*ac
;
3016 node
= numa_mem_id();
3017 ac
= cpu_cache_get(cachep
);
3018 batchcount
= ac
->batchcount
;
3019 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
3021 * If there was little recent activity on this cache, then
3022 * perform only a partial refill. Otherwise we could generate
3025 batchcount
= BATCHREFILL_LIMIT
;
3027 l3
= cachep
->nodelists
[node
];
3029 BUG_ON(ac
->avail
> 0 || !l3
);
3030 spin_lock(&l3
->list_lock
);
3032 /* See if we can refill from the shared array */
3033 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
)) {
3034 l3
->shared
->touched
= 1;
3038 while (batchcount
> 0) {
3039 struct list_head
*entry
;
3041 /* Get slab alloc is to come from. */
3042 entry
= l3
->slabs_partial
.next
;
3043 if (entry
== &l3
->slabs_partial
) {
3044 l3
->free_touched
= 1;
3045 entry
= l3
->slabs_free
.next
;
3046 if (entry
== &l3
->slabs_free
)
3050 slabp
= list_entry(entry
, struct slab
, list
);
3051 check_slabp(cachep
, slabp
);
3052 check_spinlock_acquired(cachep
);
3055 * The slab was either on partial or free list so
3056 * there must be at least one object available for
3059 BUG_ON(slabp
->inuse
>= cachep
->num
);
3061 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
3062 STATS_INC_ALLOCED(cachep
);
3063 STATS_INC_ACTIVE(cachep
);
3064 STATS_SET_HIGH(cachep
);
3066 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
3069 check_slabp(cachep
, slabp
);
3071 /* move slabp to correct slabp list: */
3072 list_del(&slabp
->list
);
3073 if (slabp
->free
== BUFCTL_END
)
3074 list_add(&slabp
->list
, &l3
->slabs_full
);
3076 list_add(&slabp
->list
, &l3
->slabs_partial
);
3080 l3
->free_objects
-= ac
->avail
;
3082 spin_unlock(&l3
->list_lock
);
3084 if (unlikely(!ac
->avail
)) {
3086 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3088 /* cache_grow can reenable interrupts, then ac could change. */
3089 ac
= cpu_cache_get(cachep
);
3090 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
3093 if (!ac
->avail
) /* objects refilled by interrupt? */
3097 return ac
->entry
[--ac
->avail
];
3100 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3103 might_sleep_if(flags
& __GFP_WAIT
);
3105 kmem_flagcheck(cachep
, flags
);
3110 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3111 gfp_t flags
, void *objp
, void *caller
)
3115 if (cachep
->flags
& SLAB_POISON
) {
3116 #ifdef CONFIG_DEBUG_PAGEALLOC
3117 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3118 kernel_map_pages(virt_to_page(objp
),
3119 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3121 check_poison_obj(cachep
, objp
);
3123 check_poison_obj(cachep
, objp
);
3125 poison_obj(cachep
, objp
, POISON_INUSE
);
3127 if (cachep
->flags
& SLAB_STORE_USER
)
3128 *dbg_userword(cachep
, objp
) = caller
;
3130 if (cachep
->flags
& SLAB_RED_ZONE
) {
3131 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3132 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3133 slab_error(cachep
, "double free, or memory outside"
3134 " object was overwritten");
3136 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3137 objp
, *dbg_redzone1(cachep
, objp
),
3138 *dbg_redzone2(cachep
, objp
));
3140 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3141 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3143 #ifdef CONFIG_DEBUG_SLAB_LEAK
3148 slabp
= page_get_slab(virt_to_head_page(objp
));
3149 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3150 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3153 objp
+= obj_offset(cachep
);
3154 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3156 #if ARCH_SLAB_MINALIGN
3157 if ((u32
)objp
& (ARCH_SLAB_MINALIGN
-1)) {
3158 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3159 objp
, ARCH_SLAB_MINALIGN
);
3165 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3168 static bool slab_should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3170 if (cachep
== &cache_cache
)
3173 return should_failslab(obj_size(cachep
), flags
, cachep
->flags
);
3176 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3179 struct array_cache
*ac
;
3183 ac
= cpu_cache_get(cachep
);
3184 if (likely(ac
->avail
)) {
3185 STATS_INC_ALLOCHIT(cachep
);
3187 objp
= ac
->entry
[--ac
->avail
];
3189 STATS_INC_ALLOCMISS(cachep
);
3190 objp
= cache_alloc_refill(cachep
, flags
);
3192 * the 'ac' may be updated by cache_alloc_refill(),
3193 * and kmemleak_erase() requires its correct value.
3195 ac
= cpu_cache_get(cachep
);
3198 * To avoid a false negative, if an object that is in one of the
3199 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3200 * treat the array pointers as a reference to the object.
3203 kmemleak_erase(&ac
->entry
[ac
->avail
]);
3209 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3211 * If we are in_interrupt, then process context, including cpusets and
3212 * mempolicy, may not apply and should not be used for allocation policy.
3214 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3216 int nid_alloc
, nid_here
;
3218 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3220 nid_alloc
= nid_here
= numa_mem_id();
3222 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3223 nid_alloc
= cpuset_slab_spread_node();
3224 else if (current
->mempolicy
)
3225 nid_alloc
= slab_node(current
->mempolicy
);
3227 if (nid_alloc
!= nid_here
)
3228 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3233 * Fallback function if there was no memory available and no objects on a
3234 * certain node and fall back is permitted. First we scan all the
3235 * available nodelists for available objects. If that fails then we
3236 * perform an allocation without specifying a node. This allows the page
3237 * allocator to do its reclaim / fallback magic. We then insert the
3238 * slab into the proper nodelist and then allocate from it.
3240 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3242 struct zonelist
*zonelist
;
3246 enum zone_type high_zoneidx
= gfp_zone(flags
);
3250 if (flags
& __GFP_THISNODE
)
3254 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
3255 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3259 * Look through allowed nodes for objects available
3260 * from existing per node queues.
3262 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3263 nid
= zone_to_nid(zone
);
3265 if (cpuset_zone_allowed_hardwall(zone
, flags
) &&
3266 cache
->nodelists
[nid
] &&
3267 cache
->nodelists
[nid
]->free_objects
) {
3268 obj
= ____cache_alloc_node(cache
,
3269 flags
| GFP_THISNODE
, nid
);
3277 * This allocation will be performed within the constraints
3278 * of the current cpuset / memory policy requirements.
3279 * We may trigger various forms of reclaim on the allowed
3280 * set and go into memory reserves if necessary.
3282 if (local_flags
& __GFP_WAIT
)
3284 kmem_flagcheck(cache
, flags
);
3285 obj
= kmem_getpages(cache
, local_flags
, numa_mem_id());
3286 if (local_flags
& __GFP_WAIT
)
3287 local_irq_disable();
3290 * Insert into the appropriate per node queues
3292 nid
= page_to_nid(virt_to_page(obj
));
3293 if (cache_grow(cache
, flags
, nid
, obj
)) {
3294 obj
= ____cache_alloc_node(cache
,
3295 flags
| GFP_THISNODE
, nid
);
3298 * Another processor may allocate the
3299 * objects in the slab since we are
3300 * not holding any locks.
3304 /* cache_grow already freed obj */
3314 * A interface to enable slab creation on nodeid
3316 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3319 struct list_head
*entry
;
3321 struct kmem_list3
*l3
;
3325 l3
= cachep
->nodelists
[nodeid
];
3330 spin_lock(&l3
->list_lock
);
3331 entry
= l3
->slabs_partial
.next
;
3332 if (entry
== &l3
->slabs_partial
) {
3333 l3
->free_touched
= 1;
3334 entry
= l3
->slabs_free
.next
;
3335 if (entry
== &l3
->slabs_free
)
3339 slabp
= list_entry(entry
, struct slab
, list
);
3340 check_spinlock_acquired_node(cachep
, nodeid
);
3341 check_slabp(cachep
, slabp
);
3343 STATS_INC_NODEALLOCS(cachep
);
3344 STATS_INC_ACTIVE(cachep
);
3345 STATS_SET_HIGH(cachep
);
3347 BUG_ON(slabp
->inuse
== cachep
->num
);
3349 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3350 check_slabp(cachep
, slabp
);
3352 /* move slabp to correct slabp list: */
3353 list_del(&slabp
->list
);
3355 if (slabp
->free
== BUFCTL_END
)
3356 list_add(&slabp
->list
, &l3
->slabs_full
);
3358 list_add(&slabp
->list
, &l3
->slabs_partial
);
3360 spin_unlock(&l3
->list_lock
);
3364 spin_unlock(&l3
->list_lock
);
3365 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3369 return fallback_alloc(cachep
, flags
);
3376 * kmem_cache_alloc_node - Allocate an object on the specified node
3377 * @cachep: The cache to allocate from.
3378 * @flags: See kmalloc().
3379 * @nodeid: node number of the target node.
3380 * @caller: return address of caller, used for debug information
3382 * Identical to kmem_cache_alloc but it will allocate memory on the given
3383 * node, which can improve the performance for cpu bound structures.
3385 * Fallback to other node is possible if __GFP_THISNODE is not set.
3387 static __always_inline
void *
3388 __cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3391 unsigned long save_flags
;
3393 int slab_node
= numa_mem_id();
3395 flags
&= gfp_allowed_mask
;
3397 lockdep_trace_alloc(flags
);
3399 if (slab_should_failslab(cachep
, flags
))
3402 cache_alloc_debugcheck_before(cachep
, flags
);
3403 local_irq_save(save_flags
);
3405 if (nodeid
== NUMA_NO_NODE
)
3408 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3409 /* Node not bootstrapped yet */
3410 ptr
= fallback_alloc(cachep
, flags
);
3414 if (nodeid
== slab_node
) {
3416 * Use the locally cached objects if possible.
3417 * However ____cache_alloc does not allow fallback
3418 * to other nodes. It may fail while we still have
3419 * objects on other nodes available.
3421 ptr
= ____cache_alloc(cachep
, flags
);
3425 /* ___cache_alloc_node can fall back to other nodes */
3426 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3428 local_irq_restore(save_flags
);
3429 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3430 kmemleak_alloc_recursive(ptr
, obj_size(cachep
), 1, cachep
->flags
,
3434 kmemcheck_slab_alloc(cachep
, flags
, ptr
, obj_size(cachep
));
3436 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3437 memset(ptr
, 0, obj_size(cachep
));
3442 static __always_inline
void *
3443 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3447 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3448 objp
= alternate_node_alloc(cache
, flags
);
3452 objp
= ____cache_alloc(cache
, flags
);
3455 * We may just have run out of memory on the local node.
3456 * ____cache_alloc_node() knows how to locate memory on other nodes
3459 objp
= ____cache_alloc_node(cache
, flags
, numa_mem_id());
3466 static __always_inline
void *
3467 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3469 return ____cache_alloc(cachep
, flags
);
3472 #endif /* CONFIG_NUMA */
3474 static __always_inline
void *
3475 __cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
, void *caller
)
3477 unsigned long save_flags
;
3480 flags
&= gfp_allowed_mask
;
3482 lockdep_trace_alloc(flags
);
3484 if (slab_should_failslab(cachep
, flags
))
3487 cache_alloc_debugcheck_before(cachep
, flags
);
3488 local_irq_save(save_flags
);
3489 objp
= __do_cache_alloc(cachep
, flags
);
3490 local_irq_restore(save_flags
);
3491 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3492 kmemleak_alloc_recursive(objp
, obj_size(cachep
), 1, cachep
->flags
,
3497 kmemcheck_slab_alloc(cachep
, flags
, objp
, obj_size(cachep
));
3499 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3500 memset(objp
, 0, obj_size(cachep
));
3506 * Caller needs to acquire correct kmem_list's list_lock
3508 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3512 struct kmem_list3
*l3
;
3514 for (i
= 0; i
< nr_objects
; i
++) {
3515 void *objp
= objpp
[i
];
3518 slabp
= virt_to_slab(objp
);
3519 l3
= cachep
->nodelists
[node
];
3520 list_del(&slabp
->list
);
3521 check_spinlock_acquired_node(cachep
, node
);
3522 check_slabp(cachep
, slabp
);
3523 slab_put_obj(cachep
, slabp
, objp
, node
);
3524 STATS_DEC_ACTIVE(cachep
);
3526 check_slabp(cachep
, slabp
);
3528 /* fixup slab chains */
3529 if (slabp
->inuse
== 0) {
3530 if (l3
->free_objects
> l3
->free_limit
) {
3531 l3
->free_objects
-= cachep
->num
;
3532 /* No need to drop any previously held
3533 * lock here, even if we have a off-slab slab
3534 * descriptor it is guaranteed to come from
3535 * a different cache, refer to comments before
3538 slab_destroy(cachep
, slabp
);
3540 list_add(&slabp
->list
, &l3
->slabs_free
);
3543 /* Unconditionally move a slab to the end of the
3544 * partial list on free - maximum time for the
3545 * other objects to be freed, too.
3547 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3552 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3555 struct kmem_list3
*l3
;
3556 int node
= numa_mem_id();
3558 batchcount
= ac
->batchcount
;
3560 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3563 l3
= cachep
->nodelists
[node
];
3564 spin_lock(&l3
->list_lock
);
3566 struct array_cache
*shared_array
= l3
->shared
;
3567 int max
= shared_array
->limit
- shared_array
->avail
;
3569 if (batchcount
> max
)
3571 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3572 ac
->entry
, sizeof(void *) * batchcount
);
3573 shared_array
->avail
+= batchcount
;
3578 free_block(cachep
, ac
->entry
, batchcount
, node
);
3583 struct list_head
*p
;
3585 p
= l3
->slabs_free
.next
;
3586 while (p
!= &(l3
->slabs_free
)) {
3589 slabp
= list_entry(p
, struct slab
, list
);
3590 BUG_ON(slabp
->inuse
);
3595 STATS_SET_FREEABLE(cachep
, i
);
3598 spin_unlock(&l3
->list_lock
);
3599 ac
->avail
-= batchcount
;
3600 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3604 * Release an obj back to its cache. If the obj has a constructed state, it must
3605 * be in this state _before_ it is released. Called with disabled ints.
3607 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
,
3610 struct array_cache
*ac
= cpu_cache_get(cachep
);
3613 kmemleak_free_recursive(objp
, cachep
->flags
);
3614 objp
= cache_free_debugcheck(cachep
, objp
, caller
);
3616 kmemcheck_slab_free(cachep
, objp
, obj_size(cachep
));
3619 * Skip calling cache_free_alien() when the platform is not numa.
3620 * This will avoid cache misses that happen while accessing slabp (which
3621 * is per page memory reference) to get nodeid. Instead use a global
3622 * variable to skip the call, which is mostly likely to be present in
3625 if (nr_online_nodes
> 1 && cache_free_alien(cachep
, objp
))
3628 if (likely(ac
->avail
< ac
->limit
)) {
3629 STATS_INC_FREEHIT(cachep
);
3630 ac
->entry
[ac
->avail
++] = objp
;
3633 STATS_INC_FREEMISS(cachep
);
3634 cache_flusharray(cachep
, ac
);
3635 ac
->entry
[ac
->avail
++] = objp
;
3640 * kmem_cache_alloc - Allocate an object
3641 * @cachep: The cache to allocate from.
3642 * @flags: See kmalloc().
3644 * Allocate an object from this cache. The flags are only relevant
3645 * if the cache has no available objects.
3647 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3649 void *ret
= __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3651 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3652 obj_size(cachep
), cachep
->buffer_size
, flags
);
3656 EXPORT_SYMBOL(kmem_cache_alloc
);
3658 #ifdef CONFIG_TRACING
3660 kmem_cache_alloc_trace(size_t size
, struct kmem_cache
*cachep
, gfp_t flags
)
3664 ret
= __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3666 trace_kmalloc(_RET_IP_
, ret
,
3667 size
, slab_buffer_size(cachep
), flags
);
3670 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
3674 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3676 void *ret
= __cache_alloc_node(cachep
, flags
, nodeid
,
3677 __builtin_return_address(0));
3679 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3680 obj_size(cachep
), cachep
->buffer_size
,
3685 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3687 #ifdef CONFIG_TRACING
3688 void *kmem_cache_alloc_node_trace(size_t size
,
3689 struct kmem_cache
*cachep
,
3695 ret
= __cache_alloc_node(cachep
, flags
, nodeid
,
3696 __builtin_return_address(0));
3697 trace_kmalloc_node(_RET_IP_
, ret
,
3698 size
, slab_buffer_size(cachep
),
3702 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
3705 static __always_inline
void *
3706 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, void *caller
)
3708 struct kmem_cache
*cachep
;
3710 cachep
= kmem_find_general_cachep(size
, flags
);
3711 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3713 return kmem_cache_alloc_node_trace(size
, cachep
, flags
, node
);
3716 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3717 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3719 return __do_kmalloc_node(size
, flags
, node
,
3720 __builtin_return_address(0));
3722 EXPORT_SYMBOL(__kmalloc_node
);
3724 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3725 int node
, unsigned long caller
)
3727 return __do_kmalloc_node(size
, flags
, node
, (void *)caller
);
3729 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3731 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3733 return __do_kmalloc_node(size
, flags
, node
, NULL
);
3735 EXPORT_SYMBOL(__kmalloc_node
);
3736 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3737 #endif /* CONFIG_NUMA */
3740 * __do_kmalloc - allocate memory
3741 * @size: how many bytes of memory are required.
3742 * @flags: the type of memory to allocate (see kmalloc).
3743 * @caller: function caller for debug tracking of the caller
3745 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3748 struct kmem_cache
*cachep
;
3751 /* If you want to save a few bytes .text space: replace
3753 * Then kmalloc uses the uninlined functions instead of the inline
3756 cachep
= __find_general_cachep(size
, flags
);
3757 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3759 ret
= __cache_alloc(cachep
, flags
, caller
);
3761 trace_kmalloc((unsigned long) caller
, ret
,
3762 size
, cachep
->buffer_size
, flags
);
3768 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3769 void *__kmalloc(size_t size
, gfp_t flags
)
3771 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3773 EXPORT_SYMBOL(__kmalloc
);
3775 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3777 return __do_kmalloc(size
, flags
, (void *)caller
);
3779 EXPORT_SYMBOL(__kmalloc_track_caller
);
3782 void *__kmalloc(size_t size
, gfp_t flags
)
3784 return __do_kmalloc(size
, flags
, NULL
);
3786 EXPORT_SYMBOL(__kmalloc
);
3790 * kmem_cache_free - Deallocate an object
3791 * @cachep: The cache the allocation was from.
3792 * @objp: The previously allocated object.
3794 * Free an object which was previously allocated from this
3797 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3799 unsigned long flags
;
3801 local_irq_save(flags
);
3802 debug_check_no_locks_freed(objp
, obj_size(cachep
));
3803 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3804 debug_check_no_obj_freed(objp
, obj_size(cachep
));
3805 __cache_free(cachep
, objp
, __builtin_return_address(0));
3806 local_irq_restore(flags
);
3808 trace_kmem_cache_free(_RET_IP_
, objp
);
3810 EXPORT_SYMBOL(kmem_cache_free
);
3813 * kfree - free previously allocated memory
3814 * @objp: pointer returned by kmalloc.
3816 * If @objp is NULL, no operation is performed.
3818 * Don't free memory not originally allocated by kmalloc()
3819 * or you will run into trouble.
3821 void kfree(const void *objp
)
3823 struct kmem_cache
*c
;
3824 unsigned long flags
;
3826 trace_kfree(_RET_IP_
, objp
);
3828 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3830 local_irq_save(flags
);
3831 kfree_debugcheck(objp
);
3832 c
= virt_to_cache(objp
);
3833 debug_check_no_locks_freed(objp
, obj_size(c
));
3834 debug_check_no_obj_freed(objp
, obj_size(c
));
3835 __cache_free(c
, (void *)objp
, __builtin_return_address(0));
3836 local_irq_restore(flags
);
3838 EXPORT_SYMBOL(kfree
);
3840 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3842 return obj_size(cachep
);
3844 EXPORT_SYMBOL(kmem_cache_size
);
3847 * This initializes kmem_list3 or resizes various caches for all nodes.
3849 static int alloc_kmemlist(struct kmem_cache
*cachep
, gfp_t gfp
)
3852 struct kmem_list3
*l3
;
3853 struct array_cache
*new_shared
;
3854 struct array_cache
**new_alien
= NULL
;
3856 for_each_online_node(node
) {
3858 if (use_alien_caches
) {
3859 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
3865 if (cachep
->shared
) {
3866 new_shared
= alloc_arraycache(node
,
3867 cachep
->shared
*cachep
->batchcount
,
3870 free_alien_cache(new_alien
);
3875 l3
= cachep
->nodelists
[node
];
3877 struct array_cache
*shared
= l3
->shared
;
3879 spin_lock_irq(&l3
->list_lock
);
3882 free_block(cachep
, shared
->entry
,
3883 shared
->avail
, node
);
3885 l3
->shared
= new_shared
;
3887 l3
->alien
= new_alien
;
3890 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3891 cachep
->batchcount
+ cachep
->num
;
3892 spin_unlock_irq(&l3
->list_lock
);
3894 free_alien_cache(new_alien
);
3897 l3
= kmalloc_node(sizeof(struct kmem_list3
), gfp
, node
);
3899 free_alien_cache(new_alien
);
3904 kmem_list3_init(l3
);
3905 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3906 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3907 l3
->shared
= new_shared
;
3908 l3
->alien
= new_alien
;
3909 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3910 cachep
->batchcount
+ cachep
->num
;
3911 cachep
->nodelists
[node
] = l3
;
3916 if (!cachep
->next
.next
) {
3917 /* Cache is not active yet. Roll back what we did */
3920 if (cachep
->nodelists
[node
]) {
3921 l3
= cachep
->nodelists
[node
];
3924 free_alien_cache(l3
->alien
);
3926 cachep
->nodelists
[node
] = NULL
;
3934 struct ccupdate_struct
{
3935 struct kmem_cache
*cachep
;
3936 struct array_cache
*new[NR_CPUS
];
3939 static void do_ccupdate_local(void *info
)
3941 struct ccupdate_struct
*new = info
;
3942 struct array_cache
*old
;
3945 old
= cpu_cache_get(new->cachep
);
3947 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3948 new->new[smp_processor_id()] = old
;
3951 /* Always called with the cache_chain_mutex held */
3952 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3953 int batchcount
, int shared
, gfp_t gfp
)
3955 struct ccupdate_struct
*new;
3958 new = kzalloc(sizeof(*new), gfp
);
3962 for_each_online_cpu(i
) {
3963 new->new[i
] = alloc_arraycache(cpu_to_mem(i
), limit
,
3966 for (i
--; i
>= 0; i
--)
3972 new->cachep
= cachep
;
3974 on_each_cpu(do_ccupdate_local
, (void *)new, 1);
3977 cachep
->batchcount
= batchcount
;
3978 cachep
->limit
= limit
;
3979 cachep
->shared
= shared
;
3981 for_each_online_cpu(i
) {
3982 struct array_cache
*ccold
= new->new[i
];
3985 spin_lock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
3986 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_mem(i
));
3987 spin_unlock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
3991 return alloc_kmemlist(cachep
, gfp
);
3994 /* Called with cache_chain_mutex held always */
3995 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
4001 * The head array serves three purposes:
4002 * - create a LIFO ordering, i.e. return objects that are cache-warm
4003 * - reduce the number of spinlock operations.
4004 * - reduce the number of linked list operations on the slab and
4005 * bufctl chains: array operations are cheaper.
4006 * The numbers are guessed, we should auto-tune as described by
4009 if (cachep
->buffer_size
> 131072)
4011 else if (cachep
->buffer_size
> PAGE_SIZE
)
4013 else if (cachep
->buffer_size
> 1024)
4015 else if (cachep
->buffer_size
> 256)
4021 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4022 * allocation behaviour: Most allocs on one cpu, most free operations
4023 * on another cpu. For these cases, an efficient object passing between
4024 * cpus is necessary. This is provided by a shared array. The array
4025 * replaces Bonwick's magazine layer.
4026 * On uniprocessor, it's functionally equivalent (but less efficient)
4027 * to a larger limit. Thus disabled by default.
4030 if (cachep
->buffer_size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
4035 * With debugging enabled, large batchcount lead to excessively long
4036 * periods with disabled local interrupts. Limit the batchcount
4041 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
, gfp
);
4043 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
4044 cachep
->name
, -err
);
4049 * Drain an array if it contains any elements taking the l3 lock only if
4050 * necessary. Note that the l3 listlock also protects the array_cache
4051 * if drain_array() is used on the shared array.
4053 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
4054 struct array_cache
*ac
, int force
, int node
)
4058 if (!ac
|| !ac
->avail
)
4060 if (ac
->touched
&& !force
) {
4063 spin_lock_irq(&l3
->list_lock
);
4065 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4066 if (tofree
> ac
->avail
)
4067 tofree
= (ac
->avail
+ 1) / 2;
4068 free_block(cachep
, ac
->entry
, tofree
, node
);
4069 ac
->avail
-= tofree
;
4070 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4071 sizeof(void *) * ac
->avail
);
4073 spin_unlock_irq(&l3
->list_lock
);
4078 * cache_reap - Reclaim memory from caches.
4079 * @w: work descriptor
4081 * Called from workqueue/eventd every few seconds.
4083 * - clear the per-cpu caches for this CPU.
4084 * - return freeable pages to the main free memory pool.
4086 * If we cannot acquire the cache chain mutex then just give up - we'll try
4087 * again on the next iteration.
4089 static void cache_reap(struct work_struct
*w
)
4091 struct kmem_cache
*searchp
;
4092 struct kmem_list3
*l3
;
4093 int node
= numa_mem_id();
4094 struct delayed_work
*work
= to_delayed_work(w
);
4096 if (!mutex_trylock(&cache_chain_mutex
))
4097 /* Give up. Setup the next iteration. */
4100 list_for_each_entry(searchp
, &cache_chain
, next
) {
4104 * We only take the l3 lock if absolutely necessary and we
4105 * have established with reasonable certainty that
4106 * we can do some work if the lock was obtained.
4108 l3
= searchp
->nodelists
[node
];
4110 reap_alien(searchp
, l3
);
4112 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4115 * These are racy checks but it does not matter
4116 * if we skip one check or scan twice.
4118 if (time_after(l3
->next_reap
, jiffies
))
4121 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4123 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4125 if (l3
->free_touched
)
4126 l3
->free_touched
= 0;
4130 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4131 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4132 STATS_ADD_REAPED(searchp
, freed
);
4138 mutex_unlock(&cache_chain_mutex
);
4141 /* Set up the next iteration */
4142 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4145 #ifdef CONFIG_SLABINFO
4147 static void print_slabinfo_header(struct seq_file
*m
)
4150 * Output format version, so at least we can change it
4151 * without _too_ many complaints.
4154 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
4156 seq_puts(m
, "slabinfo - version: 2.1\n");
4158 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4159 "<objperslab> <pagesperslab>");
4160 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4161 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4163 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4164 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4165 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4170 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4174 mutex_lock(&cache_chain_mutex
);
4176 print_slabinfo_header(m
);
4178 return seq_list_start(&cache_chain
, *pos
);
4181 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4183 return seq_list_next(p
, &cache_chain
, pos
);
4186 static void s_stop(struct seq_file
*m
, void *p
)
4188 mutex_unlock(&cache_chain_mutex
);
4191 static int s_show(struct seq_file
*m
, void *p
)
4193 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4195 unsigned long active_objs
;
4196 unsigned long num_objs
;
4197 unsigned long active_slabs
= 0;
4198 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4202 struct kmem_list3
*l3
;
4206 for_each_online_node(node
) {
4207 l3
= cachep
->nodelists
[node
];
4212 spin_lock_irq(&l3
->list_lock
);
4214 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4215 if (slabp
->inuse
!= cachep
->num
&& !error
)
4216 error
= "slabs_full accounting error";
4217 active_objs
+= cachep
->num
;
4220 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4221 if (slabp
->inuse
== cachep
->num
&& !error
)
4222 error
= "slabs_partial inuse accounting error";
4223 if (!slabp
->inuse
&& !error
)
4224 error
= "slabs_partial/inuse accounting error";
4225 active_objs
+= slabp
->inuse
;
4228 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4229 if (slabp
->inuse
&& !error
)
4230 error
= "slabs_free/inuse accounting error";
4233 free_objects
+= l3
->free_objects
;
4235 shared_avail
+= l3
->shared
->avail
;
4237 spin_unlock_irq(&l3
->list_lock
);
4239 num_slabs
+= active_slabs
;
4240 num_objs
= num_slabs
* cachep
->num
;
4241 if (num_objs
- active_objs
!= free_objects
&& !error
)
4242 error
= "free_objects accounting error";
4244 name
= cachep
->name
;
4246 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4248 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
4249 name
, active_objs
, num_objs
, cachep
->buffer_size
,
4250 cachep
->num
, (1 << cachep
->gfporder
));
4251 seq_printf(m
, " : tunables %4u %4u %4u",
4252 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
4253 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
4254 active_slabs
, num_slabs
, shared_avail
);
4257 unsigned long high
= cachep
->high_mark
;
4258 unsigned long allocs
= cachep
->num_allocations
;
4259 unsigned long grown
= cachep
->grown
;
4260 unsigned long reaped
= cachep
->reaped
;
4261 unsigned long errors
= cachep
->errors
;
4262 unsigned long max_freeable
= cachep
->max_freeable
;
4263 unsigned long node_allocs
= cachep
->node_allocs
;
4264 unsigned long node_frees
= cachep
->node_frees
;
4265 unsigned long overflows
= cachep
->node_overflow
;
4267 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu "
4268 "%4lu %4lu %4lu %4lu %4lu",
4269 allocs
, high
, grown
,
4270 reaped
, errors
, max_freeable
, node_allocs
,
4271 node_frees
, overflows
);
4275 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4276 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4277 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4278 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4280 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4281 allochit
, allocmiss
, freehit
, freemiss
);
4289 * slabinfo_op - iterator that generates /proc/slabinfo
4298 * num-pages-per-slab
4299 * + further values on SMP and with statistics enabled
4302 static const struct seq_operations slabinfo_op
= {
4309 #define MAX_SLABINFO_WRITE 128
4311 * slabinfo_write - Tuning for the slab allocator
4313 * @buffer: user buffer
4314 * @count: data length
4317 static ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
4318 size_t count
, loff_t
*ppos
)
4320 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4321 int limit
, batchcount
, shared
, res
;
4322 struct kmem_cache
*cachep
;
4324 if (count
> MAX_SLABINFO_WRITE
)
4326 if (copy_from_user(&kbuf
, buffer
, count
))
4328 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4330 tmp
= strchr(kbuf
, ' ');
4335 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4338 /* Find the cache in the chain of caches. */
4339 mutex_lock(&cache_chain_mutex
);
4341 list_for_each_entry(cachep
, &cache_chain
, next
) {
4342 if (!strcmp(cachep
->name
, kbuf
)) {
4343 if (limit
< 1 || batchcount
< 1 ||
4344 batchcount
> limit
|| shared
< 0) {
4347 res
= do_tune_cpucache(cachep
, limit
,
4354 mutex_unlock(&cache_chain_mutex
);
4360 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4362 return seq_open(file
, &slabinfo_op
);
4365 static const struct file_operations proc_slabinfo_operations
= {
4366 .open
= slabinfo_open
,
4368 .write
= slabinfo_write
,
4369 .llseek
= seq_lseek
,
4370 .release
= seq_release
,
4373 #ifdef CONFIG_DEBUG_SLAB_LEAK
4375 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4377 mutex_lock(&cache_chain_mutex
);
4378 return seq_list_start(&cache_chain
, *pos
);
4381 static inline int add_caller(unsigned long *n
, unsigned long v
)
4391 unsigned long *q
= p
+ 2 * i
;
4405 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4411 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4417 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4418 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4420 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4425 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4427 #ifdef CONFIG_KALLSYMS
4428 unsigned long offset
, size
;
4429 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4431 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4432 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4434 seq_printf(m
, " [%s]", modname
);
4438 seq_printf(m
, "%p", (void *)address
);
4441 static int leaks_show(struct seq_file
*m
, void *p
)
4443 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4445 struct kmem_list3
*l3
;
4447 unsigned long *n
= m
->private;
4451 if (!(cachep
->flags
& SLAB_STORE_USER
))
4453 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4456 /* OK, we can do it */
4460 for_each_online_node(node
) {
4461 l3
= cachep
->nodelists
[node
];
4466 spin_lock_irq(&l3
->list_lock
);
4468 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4469 handle_slab(n
, cachep
, slabp
);
4470 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4471 handle_slab(n
, cachep
, slabp
);
4472 spin_unlock_irq(&l3
->list_lock
);
4474 name
= cachep
->name
;
4476 /* Increase the buffer size */
4477 mutex_unlock(&cache_chain_mutex
);
4478 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4480 /* Too bad, we are really out */
4482 mutex_lock(&cache_chain_mutex
);
4485 *(unsigned long *)m
->private = n
[0] * 2;
4487 mutex_lock(&cache_chain_mutex
);
4488 /* Now make sure this entry will be retried */
4492 for (i
= 0; i
< n
[1]; i
++) {
4493 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4494 show_symbol(m
, n
[2*i
+2]);
4501 static const struct seq_operations slabstats_op
= {
4502 .start
= leaks_start
,
4508 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4510 unsigned long *n
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
4513 ret
= seq_open(file
, &slabstats_op
);
4515 struct seq_file
*m
= file
->private_data
;
4516 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4525 static const struct file_operations proc_slabstats_operations
= {
4526 .open
= slabstats_open
,
4528 .llseek
= seq_lseek
,
4529 .release
= seq_release_private
,
4533 static int __init
slab_proc_init(void)
4535 proc_create("slabinfo",S_IWUSR
|S_IRUGO
,NULL
,&proc_slabinfo_operations
);
4536 #ifdef CONFIG_DEBUG_SLAB_LEAK
4537 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4541 module_init(slab_proc_init
);
4545 * ksize - get the actual amount of memory allocated for a given object
4546 * @objp: Pointer to the object
4548 * kmalloc may internally round up allocations and return more memory
4549 * than requested. ksize() can be used to determine the actual amount of
4550 * memory allocated. The caller may use this additional memory, even though
4551 * a smaller amount of memory was initially specified with the kmalloc call.
4552 * The caller must guarantee that objp points to a valid object previously
4553 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4554 * must not be freed during the duration of the call.
4556 size_t ksize(const void *objp
)
4559 if (unlikely(objp
== ZERO_SIZE_PTR
))
4562 return obj_size(virt_to_cache(objp
));
4564 EXPORT_SYMBOL(ksize
);