2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 #include <linux/stacktrace.h>
33 #include <trace/events/kmem.h>
37 * 1. slub_lock (Global Semaphore)
39 * 3. slab_lock(page) (Only on some arches and for debugging)
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
88 * Overloading of page flags that are otherwise used for LRU management.
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
114 static inline int kmem_cache_debug(struct kmem_cache
*s
)
116 #ifdef CONFIG_SLUB_DEBUG
117 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
124 * Issues still to be resolved:
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 * - Variable sizing of the per node arrays
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
134 /* Enable to log cmpxchg failures */
135 #undef SLUB_DEBUG_CMPXCHG
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
141 #define MIN_PARTIAL 5
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
148 #define MAX_PARTIAL 10
150 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
158 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
161 * Set of flags that will prevent slab merging
163 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
167 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
168 SLAB_CACHE_DMA | SLAB_NOTRACK)
171 #define OO_MASK ((1 << OO_SHIFT) - 1)
172 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
174 /* Internal SLUB flags */
175 #define __OBJECT_POISON 0x80000000UL /* Poison object */
176 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
178 static int kmem_size
= sizeof(struct kmem_cache
);
181 static struct notifier_block slab_notifier
;
185 DOWN
, /* No slab functionality available */
186 PARTIAL
, /* Kmem_cache_node works */
187 UP
, /* Everything works but does not show up in sysfs */
191 /* A list of all slab caches on the system */
192 static DECLARE_RWSEM(slub_lock
);
193 static LIST_HEAD(slab_caches
);
196 * Tracking user of a slab.
198 #define TRACK_ADDRS_COUNT 16
200 unsigned long addr
; /* Called from address */
201 #ifdef CONFIG_STACKTRACE
202 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
204 int cpu
; /* Was running on cpu */
205 int pid
; /* Pid context */
206 unsigned long when
; /* When did the operation occur */
209 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
212 static int sysfs_slab_add(struct kmem_cache
*);
213 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
214 static void sysfs_slab_remove(struct kmem_cache
*);
217 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
218 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
220 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
228 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
230 #ifdef CONFIG_SLUB_STATS
231 __this_cpu_inc(s
->cpu_slab
->stat
[si
]);
235 /********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
239 int slab_is_available(void)
241 return slab_state
>= UP
;
244 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
246 return s
->node
[node
];
249 /* Verify that a pointer has an address that is valid within a slab page */
250 static inline int check_valid_pointer(struct kmem_cache
*s
,
251 struct page
*page
, const void *object
)
258 base
= page_address(page
);
259 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
260 (object
- base
) % s
->size
) {
267 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
269 return *(void **)(object
+ s
->offset
);
272 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
276 #ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
279 p
= get_freepointer(s
, object
);
284 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
286 *(void **)(object
+ s
->offset
) = fp
;
289 /* Loop over all objects in a slab */
290 #define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
294 /* Determine object index from a given position */
295 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
297 return (p
- addr
) / s
->size
;
300 static inline size_t slab_ksize(const struct kmem_cache
*s
)
302 #ifdef CONFIG_SLUB_DEBUG
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
307 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
316 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
319 * Else we can use all the padding etc for the allocation
324 static inline int order_objects(int order
, unsigned long size
, int reserved
)
326 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
329 static inline struct kmem_cache_order_objects
oo_make(int order
,
330 unsigned long size
, int reserved
)
332 struct kmem_cache_order_objects x
= {
333 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
339 static inline int oo_order(struct kmem_cache_order_objects x
)
341 return x
.x
>> OO_SHIFT
;
344 static inline int oo_objects(struct kmem_cache_order_objects x
)
346 return x
.x
& OO_MASK
;
350 * Per slab locking using the pagelock
352 static __always_inline
void slab_lock(struct page
*page
)
354 bit_spin_lock(PG_locked
, &page
->flags
);
357 static __always_inline
void slab_unlock(struct page
*page
)
359 __bit_spin_unlock(PG_locked
, &page
->flags
);
362 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
363 void *freelist_old
, unsigned long counters_old
,
364 void *freelist_new
, unsigned long counters_new
,
367 #ifdef CONFIG_CMPXCHG_DOUBLE
368 if (s
->flags
& __CMPXCHG_DOUBLE
) {
369 if (cmpxchg_double(&page
->freelist
,
370 freelist_old
, counters_old
,
371 freelist_new
, counters_new
))
377 if (page
->freelist
== freelist_old
&& page
->counters
== counters_old
) {
378 page
->freelist
= freelist_new
;
379 page
->counters
= counters_new
;
387 stat(s
, CMPXCHG_DOUBLE_FAIL
);
389 #ifdef SLUB_DEBUG_CMPXCHG
390 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
396 #ifdef CONFIG_SLUB_DEBUG
398 * Determine a map of object in use on a page.
400 * Node listlock must be held to guarantee that the page does
401 * not vanish from under us.
403 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
406 void *addr
= page_address(page
);
408 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
409 set_bit(slab_index(p
, s
, addr
), map
);
415 #ifdef CONFIG_SLUB_DEBUG_ON
416 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
418 static int slub_debug
;
421 static char *slub_debug_slabs
;
422 static int disable_higher_order_debug
;
427 static void print_section(char *text
, u8
*addr
, unsigned int length
)
435 for (i
= 0; i
< length
; i
++) {
437 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
440 printk(KERN_CONT
" %02x", addr
[i
]);
442 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
444 printk(KERN_CONT
" %s\n", ascii
);
451 printk(KERN_CONT
" ");
455 printk(KERN_CONT
" %s\n", ascii
);
459 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
460 enum track_item alloc
)
465 p
= object
+ s
->offset
+ sizeof(void *);
467 p
= object
+ s
->inuse
;
472 static void set_track(struct kmem_cache
*s
, void *object
,
473 enum track_item alloc
, unsigned long addr
)
475 struct track
*p
= get_track(s
, object
, alloc
);
478 #ifdef CONFIG_STACKTRACE
479 struct stack_trace trace
;
482 trace
.nr_entries
= 0;
483 trace
.max_entries
= TRACK_ADDRS_COUNT
;
484 trace
.entries
= p
->addrs
;
486 save_stack_trace(&trace
);
488 /* See rant in lockdep.c */
489 if (trace
.nr_entries
!= 0 &&
490 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
493 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
497 p
->cpu
= smp_processor_id();
498 p
->pid
= current
->pid
;
501 memset(p
, 0, sizeof(struct track
));
504 static void init_tracking(struct kmem_cache
*s
, void *object
)
506 if (!(s
->flags
& SLAB_STORE_USER
))
509 set_track(s
, object
, TRACK_FREE
, 0UL);
510 set_track(s
, object
, TRACK_ALLOC
, 0UL);
513 static void print_track(const char *s
, struct track
*t
)
518 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
519 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
520 #ifdef CONFIG_STACKTRACE
523 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
525 printk(KERN_ERR
"\t%pS\n", (void *)t
->addrs
[i
]);
532 static void print_tracking(struct kmem_cache
*s
, void *object
)
534 if (!(s
->flags
& SLAB_STORE_USER
))
537 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
538 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
541 static void print_page_info(struct page
*page
)
543 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
544 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
548 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
554 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
556 printk(KERN_ERR
"========================================"
557 "=====================================\n");
558 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
559 printk(KERN_ERR
"----------------------------------------"
560 "-------------------------------------\n\n");
563 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
569 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
571 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
574 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
576 unsigned int off
; /* Offset of last byte */
577 u8
*addr
= page_address(page
);
579 print_tracking(s
, p
);
581 print_page_info(page
);
583 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
584 p
, p
- addr
, get_freepointer(s
, p
));
587 print_section("Bytes b4", p
- 16, 16);
589 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
591 if (s
->flags
& SLAB_RED_ZONE
)
592 print_section("Redzone", p
+ s
->objsize
,
593 s
->inuse
- s
->objsize
);
596 off
= s
->offset
+ sizeof(void *);
600 if (s
->flags
& SLAB_STORE_USER
)
601 off
+= 2 * sizeof(struct track
);
604 /* Beginning of the filler is the free pointer */
605 print_section("Padding", p
+ off
, s
->size
- off
);
610 static void object_err(struct kmem_cache
*s
, struct page
*page
,
611 u8
*object
, char *reason
)
613 slab_bug(s
, "%s", reason
);
614 print_trailer(s
, page
, object
);
617 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
623 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
625 slab_bug(s
, "%s", buf
);
626 print_page_info(page
);
630 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
634 if (s
->flags
& __OBJECT_POISON
) {
635 memset(p
, POISON_FREE
, s
->objsize
- 1);
636 p
[s
->objsize
- 1] = POISON_END
;
639 if (s
->flags
& SLAB_RED_ZONE
)
640 memset(p
+ s
->objsize
, val
, s
->inuse
- s
->objsize
);
643 static u8
*check_bytes8(u8
*start
, u8 value
, unsigned int bytes
)
654 static u8
*check_bytes(u8
*start
, u8 value
, unsigned int bytes
)
657 unsigned int words
, prefix
;
660 return check_bytes8(start
, value
, bytes
);
662 value64
= value
| value
<< 8 | value
<< 16 | value
<< 24;
663 value64
= value64
| value64
<< 32;
664 prefix
= 8 - ((unsigned long)start
) % 8;
667 u8
*r
= check_bytes8(start
, value
, prefix
);
677 if (*(u64
*)start
!= value64
)
678 return check_bytes8(start
, value
, 8);
683 return check_bytes8(start
, value
, bytes
% 8);
686 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
687 void *from
, void *to
)
689 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
690 memset(from
, data
, to
- from
);
693 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
694 u8
*object
, char *what
,
695 u8
*start
, unsigned int value
, unsigned int bytes
)
700 fault
= check_bytes(start
, value
, bytes
);
705 while (end
> fault
&& end
[-1] == value
)
708 slab_bug(s
, "%s overwritten", what
);
709 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
710 fault
, end
- 1, fault
[0], value
);
711 print_trailer(s
, page
, object
);
713 restore_bytes(s
, what
, value
, fault
, end
);
721 * Bytes of the object to be managed.
722 * If the freepointer may overlay the object then the free
723 * pointer is the first word of the object.
725 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
728 * object + s->objsize
729 * Padding to reach word boundary. This is also used for Redzoning.
730 * Padding is extended by another word if Redzoning is enabled and
733 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
734 * 0xcc (RED_ACTIVE) for objects in use.
737 * Meta data starts here.
739 * A. Free pointer (if we cannot overwrite object on free)
740 * B. Tracking data for SLAB_STORE_USER
741 * C. Padding to reach required alignment boundary or at mininum
742 * one word if debugging is on to be able to detect writes
743 * before the word boundary.
745 * Padding is done using 0x5a (POISON_INUSE)
748 * Nothing is used beyond s->size.
750 * If slabcaches are merged then the objsize and inuse boundaries are mostly
751 * ignored. And therefore no slab options that rely on these boundaries
752 * may be used with merged slabcaches.
755 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
757 unsigned long off
= s
->inuse
; /* The end of info */
760 /* Freepointer is placed after the object. */
761 off
+= sizeof(void *);
763 if (s
->flags
& SLAB_STORE_USER
)
764 /* We also have user information there */
765 off
+= 2 * sizeof(struct track
);
770 return check_bytes_and_report(s
, page
, p
, "Object padding",
771 p
+ off
, POISON_INUSE
, s
->size
- off
);
774 /* Check the pad bytes at the end of a slab page */
775 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
783 if (!(s
->flags
& SLAB_POISON
))
786 start
= page_address(page
);
787 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
788 end
= start
+ length
;
789 remainder
= length
% s
->size
;
793 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
796 while (end
> fault
&& end
[-1] == POISON_INUSE
)
799 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
800 print_section("Padding", end
- remainder
, remainder
);
802 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
806 static int check_object(struct kmem_cache
*s
, struct page
*page
,
807 void *object
, u8 val
)
810 u8
*endobject
= object
+ s
->objsize
;
812 if (s
->flags
& SLAB_RED_ZONE
) {
813 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
814 endobject
, val
, s
->inuse
- s
->objsize
))
817 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
818 check_bytes_and_report(s
, page
, p
, "Alignment padding",
819 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
823 if (s
->flags
& SLAB_POISON
) {
824 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
825 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
826 POISON_FREE
, s
->objsize
- 1) ||
827 !check_bytes_and_report(s
, page
, p
, "Poison",
828 p
+ s
->objsize
- 1, POISON_END
, 1)))
831 * check_pad_bytes cleans up on its own.
833 check_pad_bytes(s
, page
, p
);
836 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
838 * Object and freepointer overlap. Cannot check
839 * freepointer while object is allocated.
843 /* Check free pointer validity */
844 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
845 object_err(s
, page
, p
, "Freepointer corrupt");
847 * No choice but to zap it and thus lose the remainder
848 * of the free objects in this slab. May cause
849 * another error because the object count is now wrong.
851 set_freepointer(s
, p
, NULL
);
857 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
861 VM_BUG_ON(!irqs_disabled());
863 if (!PageSlab(page
)) {
864 slab_err(s
, page
, "Not a valid slab page");
868 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
869 if (page
->objects
> maxobj
) {
870 slab_err(s
, page
, "objects %u > max %u",
871 s
->name
, page
->objects
, maxobj
);
874 if (page
->inuse
> page
->objects
) {
875 slab_err(s
, page
, "inuse %u > max %u",
876 s
->name
, page
->inuse
, page
->objects
);
879 /* Slab_pad_check fixes things up after itself */
880 slab_pad_check(s
, page
);
885 * Determine if a certain object on a page is on the freelist. Must hold the
886 * slab lock to guarantee that the chains are in a consistent state.
888 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
893 unsigned long max_objects
;
896 while (fp
&& nr
<= page
->objects
) {
899 if (!check_valid_pointer(s
, page
, fp
)) {
901 object_err(s
, page
, object
,
902 "Freechain corrupt");
903 set_freepointer(s
, object
, NULL
);
906 slab_err(s
, page
, "Freepointer corrupt");
907 page
->freelist
= NULL
;
908 page
->inuse
= page
->objects
;
909 slab_fix(s
, "Freelist cleared");
915 fp
= get_freepointer(s
, object
);
919 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
920 if (max_objects
> MAX_OBJS_PER_PAGE
)
921 max_objects
= MAX_OBJS_PER_PAGE
;
923 if (page
->objects
!= max_objects
) {
924 slab_err(s
, page
, "Wrong number of objects. Found %d but "
925 "should be %d", page
->objects
, max_objects
);
926 page
->objects
= max_objects
;
927 slab_fix(s
, "Number of objects adjusted.");
929 if (page
->inuse
!= page
->objects
- nr
) {
930 slab_err(s
, page
, "Wrong object count. Counter is %d but "
931 "counted were %d", page
->inuse
, page
->objects
- nr
);
932 page
->inuse
= page
->objects
- nr
;
933 slab_fix(s
, "Object count adjusted.");
935 return search
== NULL
;
938 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
941 if (s
->flags
& SLAB_TRACE
) {
942 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
944 alloc
? "alloc" : "free",
949 print_section("Object", (void *)object
, s
->objsize
);
956 * Hooks for other subsystems that check memory allocations. In a typical
957 * production configuration these hooks all should produce no code at all.
959 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
961 flags
&= gfp_allowed_mask
;
962 lockdep_trace_alloc(flags
);
963 might_sleep_if(flags
& __GFP_WAIT
);
965 return should_failslab(s
->objsize
, flags
, s
->flags
);
968 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
, void *object
)
970 flags
&= gfp_allowed_mask
;
971 kmemcheck_slab_alloc(s
, flags
, object
, slab_ksize(s
));
972 kmemleak_alloc_recursive(object
, s
->objsize
, 1, s
->flags
, flags
);
975 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
977 kmemleak_free_recursive(x
, s
->flags
);
980 * Trouble is that we may no longer disable interupts in the fast path
981 * So in order to make the debug calls that expect irqs to be
982 * disabled we need to disable interrupts temporarily.
984 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
988 local_irq_save(flags
);
989 kmemcheck_slab_free(s
, x
, s
->objsize
);
990 debug_check_no_locks_freed(x
, s
->objsize
);
991 local_irq_restore(flags
);
994 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
995 debug_check_no_obj_freed(x
, s
->objsize
);
999 * Tracking of fully allocated slabs for debugging purposes.
1001 * list_lock must be held.
1003 static void add_full(struct kmem_cache
*s
,
1004 struct kmem_cache_node
*n
, struct page
*page
)
1006 if (!(s
->flags
& SLAB_STORE_USER
))
1009 list_add(&page
->lru
, &n
->full
);
1013 * list_lock must be held.
1015 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
1017 if (!(s
->flags
& SLAB_STORE_USER
))
1020 list_del(&page
->lru
);
1023 /* Tracking of the number of slabs for debugging purposes */
1024 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1026 struct kmem_cache_node
*n
= get_node(s
, node
);
1028 return atomic_long_read(&n
->nr_slabs
);
1031 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1033 return atomic_long_read(&n
->nr_slabs
);
1036 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1038 struct kmem_cache_node
*n
= get_node(s
, node
);
1041 * May be called early in order to allocate a slab for the
1042 * kmem_cache_node structure. Solve the chicken-egg
1043 * dilemma by deferring the increment of the count during
1044 * bootstrap (see early_kmem_cache_node_alloc).
1047 atomic_long_inc(&n
->nr_slabs
);
1048 atomic_long_add(objects
, &n
->total_objects
);
1051 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1053 struct kmem_cache_node
*n
= get_node(s
, node
);
1055 atomic_long_dec(&n
->nr_slabs
);
1056 atomic_long_sub(objects
, &n
->total_objects
);
1059 /* Object debug checks for alloc/free paths */
1060 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1063 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1066 init_object(s
, object
, SLUB_RED_INACTIVE
);
1067 init_tracking(s
, object
);
1070 static noinline
int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
1071 void *object
, unsigned long addr
)
1073 if (!check_slab(s
, page
))
1076 if (!check_valid_pointer(s
, page
, object
)) {
1077 object_err(s
, page
, object
, "Freelist Pointer check fails");
1081 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1084 /* Success perform special debug activities for allocs */
1085 if (s
->flags
& SLAB_STORE_USER
)
1086 set_track(s
, object
, TRACK_ALLOC
, addr
);
1087 trace(s
, page
, object
, 1);
1088 init_object(s
, object
, SLUB_RED_ACTIVE
);
1092 if (PageSlab(page
)) {
1094 * If this is a slab page then lets do the best we can
1095 * to avoid issues in the future. Marking all objects
1096 * as used avoids touching the remaining objects.
1098 slab_fix(s
, "Marking all objects used");
1099 page
->inuse
= page
->objects
;
1100 page
->freelist
= NULL
;
1105 static noinline
int free_debug_processing(struct kmem_cache
*s
,
1106 struct page
*page
, void *object
, unsigned long addr
)
1108 unsigned long flags
;
1111 local_irq_save(flags
);
1114 if (!check_slab(s
, page
))
1117 if (!check_valid_pointer(s
, page
, object
)) {
1118 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1122 if (on_freelist(s
, page
, object
)) {
1123 object_err(s
, page
, object
, "Object already free");
1127 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1130 if (unlikely(s
!= page
->slab
)) {
1131 if (!PageSlab(page
)) {
1132 slab_err(s
, page
, "Attempt to free object(0x%p) "
1133 "outside of slab", object
);
1134 } else if (!page
->slab
) {
1136 "SLUB <none>: no slab for object 0x%p.\n",
1140 object_err(s
, page
, object
,
1141 "page slab pointer corrupt.");
1145 if (s
->flags
& SLAB_STORE_USER
)
1146 set_track(s
, object
, TRACK_FREE
, addr
);
1147 trace(s
, page
, object
, 0);
1148 init_object(s
, object
, SLUB_RED_INACTIVE
);
1152 local_irq_restore(flags
);
1156 slab_fix(s
, "Object at 0x%p not freed", object
);
1160 static int __init
setup_slub_debug(char *str
)
1162 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1163 if (*str
++ != '=' || !*str
)
1165 * No options specified. Switch on full debugging.
1171 * No options but restriction on slabs. This means full
1172 * debugging for slabs matching a pattern.
1176 if (tolower(*str
) == 'o') {
1178 * Avoid enabling debugging on caches if its minimum order
1179 * would increase as a result.
1181 disable_higher_order_debug
= 1;
1188 * Switch off all debugging measures.
1193 * Determine which debug features should be switched on
1195 for (; *str
&& *str
!= ','; str
++) {
1196 switch (tolower(*str
)) {
1198 slub_debug
|= SLAB_DEBUG_FREE
;
1201 slub_debug
|= SLAB_RED_ZONE
;
1204 slub_debug
|= SLAB_POISON
;
1207 slub_debug
|= SLAB_STORE_USER
;
1210 slub_debug
|= SLAB_TRACE
;
1213 slub_debug
|= SLAB_FAILSLAB
;
1216 printk(KERN_ERR
"slub_debug option '%c' "
1217 "unknown. skipped\n", *str
);
1223 slub_debug_slabs
= str
+ 1;
1228 __setup("slub_debug", setup_slub_debug
);
1230 static unsigned long kmem_cache_flags(unsigned long objsize
,
1231 unsigned long flags
, const char *name
,
1232 void (*ctor
)(void *))
1235 * Enable debugging if selected on the kernel commandline.
1237 if (slub_debug
&& (!slub_debug_slabs
||
1238 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
))))
1239 flags
|= slub_debug
;
1244 static inline void setup_object_debug(struct kmem_cache
*s
,
1245 struct page
*page
, void *object
) {}
1247 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1248 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1250 static inline int free_debug_processing(struct kmem_cache
*s
,
1251 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1253 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1255 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1256 void *object
, u8 val
) { return 1; }
1257 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1258 struct page
*page
) {}
1259 static inline void remove_full(struct kmem_cache
*s
, struct page
*page
) {}
1260 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1261 unsigned long flags
, const char *name
,
1262 void (*ctor
)(void *))
1266 #define slub_debug 0
1268 #define disable_higher_order_debug 0
1270 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1272 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1274 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1276 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1279 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
1282 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
1285 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
) {}
1287 #endif /* CONFIG_SLUB_DEBUG */
1290 * Slab allocation and freeing
1292 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1293 struct kmem_cache_order_objects oo
)
1295 int order
= oo_order(oo
);
1297 flags
|= __GFP_NOTRACK
;
1299 if (node
== NUMA_NO_NODE
)
1300 return alloc_pages(flags
, order
);
1302 return alloc_pages_exact_node(node
, flags
, order
);
1305 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1308 struct kmem_cache_order_objects oo
= s
->oo
;
1311 flags
&= gfp_allowed_mask
;
1313 if (flags
& __GFP_WAIT
)
1316 flags
|= s
->allocflags
;
1319 * Let the initial higher-order allocation fail under memory pressure
1320 * so we fall-back to the minimum order allocation.
1322 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1324 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1325 if (unlikely(!page
)) {
1328 * Allocation may have failed due to fragmentation.
1329 * Try a lower order alloc if possible
1331 page
= alloc_slab_page(flags
, node
, oo
);
1334 stat(s
, ORDER_FALLBACK
);
1337 if (flags
& __GFP_WAIT
)
1338 local_irq_disable();
1343 if (kmemcheck_enabled
1344 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1345 int pages
= 1 << oo_order(oo
);
1347 kmemcheck_alloc_shadow(page
, oo_order(oo
), flags
, node
);
1350 * Objects from caches that have a constructor don't get
1351 * cleared when they're allocated, so we need to do it here.
1354 kmemcheck_mark_uninitialized_pages(page
, pages
);
1356 kmemcheck_mark_unallocated_pages(page
, pages
);
1359 page
->objects
= oo_objects(oo
);
1360 mod_zone_page_state(page_zone(page
),
1361 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1362 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1368 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1371 setup_object_debug(s
, page
, object
);
1372 if (unlikely(s
->ctor
))
1376 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1383 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1385 page
= allocate_slab(s
,
1386 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1390 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1392 page
->flags
|= 1 << PG_slab
;
1394 start
= page_address(page
);
1396 if (unlikely(s
->flags
& SLAB_POISON
))
1397 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1400 for_each_object(p
, s
, start
, page
->objects
) {
1401 setup_object(s
, page
, last
);
1402 set_freepointer(s
, last
, p
);
1405 setup_object(s
, page
, last
);
1406 set_freepointer(s
, last
, NULL
);
1408 page
->freelist
= start
;
1415 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1417 int order
= compound_order(page
);
1418 int pages
= 1 << order
;
1420 if (kmem_cache_debug(s
)) {
1423 slab_pad_check(s
, page
);
1424 for_each_object(p
, s
, page_address(page
),
1426 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1429 kmemcheck_free_shadow(page
, compound_order(page
));
1431 mod_zone_page_state(page_zone(page
),
1432 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1433 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1436 __ClearPageSlab(page
);
1437 reset_page_mapcount(page
);
1438 if (current
->reclaim_state
)
1439 current
->reclaim_state
->reclaimed_slab
+= pages
;
1440 __free_pages(page
, order
);
1443 #define need_reserve_slab_rcu \
1444 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1446 static void rcu_free_slab(struct rcu_head
*h
)
1450 if (need_reserve_slab_rcu
)
1451 page
= virt_to_head_page(h
);
1453 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1455 __free_slab(page
->slab
, page
);
1458 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1460 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1461 struct rcu_head
*head
;
1463 if (need_reserve_slab_rcu
) {
1464 int order
= compound_order(page
);
1465 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1467 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1468 head
= page_address(page
) + offset
;
1471 * RCU free overloads the RCU head over the LRU
1473 head
= (void *)&page
->lru
;
1476 call_rcu(head
, rcu_free_slab
);
1478 __free_slab(s
, page
);
1481 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1483 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1488 * Management of partially allocated slabs.
1490 * list_lock must be held.
1492 static inline void add_partial(struct kmem_cache_node
*n
,
1493 struct page
*page
, int tail
)
1497 list_add_tail(&page
->lru
, &n
->partial
);
1499 list_add(&page
->lru
, &n
->partial
);
1503 * list_lock must be held.
1505 static inline void remove_partial(struct kmem_cache_node
*n
,
1508 list_del(&page
->lru
);
1513 * Lock slab, remove from the partial list and put the object into the
1516 * Must hold list_lock.
1518 static inline int acquire_slab(struct kmem_cache
*s
,
1519 struct kmem_cache_node
*n
, struct page
*page
)
1522 unsigned long counters
;
1526 * Zap the freelist and set the frozen bit.
1527 * The old freelist is the list of objects for the
1528 * per cpu allocation list.
1531 freelist
= page
->freelist
;
1532 counters
= page
->counters
;
1533 new.counters
= counters
;
1534 new.inuse
= page
->objects
;
1536 VM_BUG_ON(new.frozen
);
1539 } while (!cmpxchg_double_slab(s
, page
,
1542 "lock and freeze"));
1544 remove_partial(n
, page
);
1547 /* Populate the per cpu freelist */
1548 this_cpu_write(s
->cpu_slab
->freelist
, freelist
);
1549 this_cpu_write(s
->cpu_slab
->page
, page
);
1550 this_cpu_write(s
->cpu_slab
->node
, page_to_nid(page
));
1554 * Slab page came from the wrong list. No object to allocate
1555 * from. Put it onto the correct list and continue partial
1558 printk(KERN_ERR
"SLUB: %s : Page without available objects on"
1559 " partial list\n", s
->name
);
1565 * Try to allocate a partial slab from a specific node.
1567 static struct page
*get_partial_node(struct kmem_cache
*s
,
1568 struct kmem_cache_node
*n
)
1573 * Racy check. If we mistakenly see no partial slabs then we
1574 * just allocate an empty slab. If we mistakenly try to get a
1575 * partial slab and there is none available then get_partials()
1578 if (!n
|| !n
->nr_partial
)
1581 spin_lock(&n
->list_lock
);
1582 list_for_each_entry(page
, &n
->partial
, lru
)
1583 if (acquire_slab(s
, n
, page
))
1587 spin_unlock(&n
->list_lock
);
1592 * Get a page from somewhere. Search in increasing NUMA distances.
1594 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1597 struct zonelist
*zonelist
;
1600 enum zone_type high_zoneidx
= gfp_zone(flags
);
1604 * The defrag ratio allows a configuration of the tradeoffs between
1605 * inter node defragmentation and node local allocations. A lower
1606 * defrag_ratio increases the tendency to do local allocations
1607 * instead of attempting to obtain partial slabs from other nodes.
1609 * If the defrag_ratio is set to 0 then kmalloc() always
1610 * returns node local objects. If the ratio is higher then kmalloc()
1611 * may return off node objects because partial slabs are obtained
1612 * from other nodes and filled up.
1614 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1615 * defrag_ratio = 1000) then every (well almost) allocation will
1616 * first attempt to defrag slab caches on other nodes. This means
1617 * scanning over all nodes to look for partial slabs which may be
1618 * expensive if we do it every time we are trying to find a slab
1619 * with available objects.
1621 if (!s
->remote_node_defrag_ratio
||
1622 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1626 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1627 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1628 struct kmem_cache_node
*n
;
1630 n
= get_node(s
, zone_to_nid(zone
));
1632 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1633 n
->nr_partial
> s
->min_partial
) {
1634 page
= get_partial_node(s
, n
);
1647 * Get a partial page, lock it and return it.
1649 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1652 int searchnode
= (node
== NUMA_NO_NODE
) ? numa_node_id() : node
;
1654 page
= get_partial_node(s
, get_node(s
, searchnode
));
1655 if (page
|| node
!= NUMA_NO_NODE
)
1658 return get_any_partial(s
, flags
);
1661 #ifdef CONFIG_PREEMPT
1663 * Calculate the next globally unique transaction for disambiguiation
1664 * during cmpxchg. The transactions start with the cpu number and are then
1665 * incremented by CONFIG_NR_CPUS.
1667 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1670 * No preemption supported therefore also no need to check for
1676 static inline unsigned long next_tid(unsigned long tid
)
1678 return tid
+ TID_STEP
;
1681 static inline unsigned int tid_to_cpu(unsigned long tid
)
1683 return tid
% TID_STEP
;
1686 static inline unsigned long tid_to_event(unsigned long tid
)
1688 return tid
/ TID_STEP
;
1691 static inline unsigned int init_tid(int cpu
)
1696 static inline void note_cmpxchg_failure(const char *n
,
1697 const struct kmem_cache
*s
, unsigned long tid
)
1699 #ifdef SLUB_DEBUG_CMPXCHG
1700 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1702 printk(KERN_INFO
"%s %s: cmpxchg redo ", n
, s
->name
);
1704 #ifdef CONFIG_PREEMPT
1705 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1706 printk("due to cpu change %d -> %d\n",
1707 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1710 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1711 printk("due to cpu running other code. Event %ld->%ld\n",
1712 tid_to_event(tid
), tid_to_event(actual_tid
));
1714 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1715 actual_tid
, tid
, next_tid(tid
));
1717 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1720 void init_kmem_cache_cpus(struct kmem_cache
*s
)
1724 for_each_possible_cpu(cpu
)
1725 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1728 * Remove the cpu slab
1732 * Remove the cpu slab
1734 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1736 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
1737 struct page
*page
= c
->page
;
1738 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1740 enum slab_modes l
= M_NONE
, m
= M_NONE
;
1747 if (page
->freelist
) {
1748 stat(s
, DEACTIVATE_REMOTE_FREES
);
1752 c
->tid
= next_tid(c
->tid
);
1754 freelist
= c
->freelist
;
1758 * Stage one: Free all available per cpu objects back
1759 * to the page freelist while it is still frozen. Leave the
1762 * There is no need to take the list->lock because the page
1765 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
1767 unsigned long counters
;
1770 prior
= page
->freelist
;
1771 counters
= page
->counters
;
1772 set_freepointer(s
, freelist
, prior
);
1773 new.counters
= counters
;
1775 VM_BUG_ON(!new.frozen
);
1777 } while (!cmpxchg_double_slab(s
, page
,
1779 freelist
, new.counters
,
1780 "drain percpu freelist"));
1782 freelist
= nextfree
;
1786 * Stage two: Ensure that the page is unfrozen while the
1787 * list presence reflects the actual number of objects
1790 * We setup the list membership and then perform a cmpxchg
1791 * with the count. If there is a mismatch then the page
1792 * is not unfrozen but the page is on the wrong list.
1794 * Then we restart the process which may have to remove
1795 * the page from the list that we just put it on again
1796 * because the number of objects in the slab may have
1801 old
.freelist
= page
->freelist
;
1802 old
.counters
= page
->counters
;
1803 VM_BUG_ON(!old
.frozen
);
1805 /* Determine target state of the slab */
1806 new.counters
= old
.counters
;
1809 set_freepointer(s
, freelist
, old
.freelist
);
1810 new.freelist
= freelist
;
1812 new.freelist
= old
.freelist
;
1816 if (!new.inuse
&& n
->nr_partial
< s
->min_partial
)
1818 else if (new.freelist
) {
1823 * Taking the spinlock removes the possiblity
1824 * that acquire_slab() will see a slab page that
1827 spin_lock(&n
->list_lock
);
1831 if (kmem_cache_debug(s
) && !lock
) {
1834 * This also ensures that the scanning of full
1835 * slabs from diagnostic functions will not see
1838 spin_lock(&n
->list_lock
);
1846 remove_partial(n
, page
);
1848 else if (l
== M_FULL
)
1850 remove_full(s
, page
);
1852 if (m
== M_PARTIAL
) {
1854 add_partial(n
, page
, tail
);
1855 stat(s
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1857 } else if (m
== M_FULL
) {
1859 stat(s
, DEACTIVATE_FULL
);
1860 add_full(s
, n
, page
);
1866 if (!cmpxchg_double_slab(s
, page
,
1867 old
.freelist
, old
.counters
,
1868 new.freelist
, new.counters
,
1873 spin_unlock(&n
->list_lock
);
1876 stat(s
, DEACTIVATE_EMPTY
);
1877 discard_slab(s
, page
);
1882 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1884 stat(s
, CPUSLAB_FLUSH
);
1885 deactivate_slab(s
, c
);
1891 * Called from IPI handler with interrupts disabled.
1893 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1895 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
1897 if (likely(c
&& c
->page
))
1901 static void flush_cpu_slab(void *d
)
1903 struct kmem_cache
*s
= d
;
1905 __flush_cpu_slab(s
, smp_processor_id());
1908 static void flush_all(struct kmem_cache
*s
)
1910 on_each_cpu(flush_cpu_slab
, s
, 1);
1914 * Check if the objects in a per cpu structure fit numa
1915 * locality expectations.
1917 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1920 if (node
!= NUMA_NO_NODE
&& c
->node
!= node
)
1926 static int count_free(struct page
*page
)
1928 return page
->objects
- page
->inuse
;
1931 static unsigned long count_partial(struct kmem_cache_node
*n
,
1932 int (*get_count
)(struct page
*))
1934 unsigned long flags
;
1935 unsigned long x
= 0;
1938 spin_lock_irqsave(&n
->list_lock
, flags
);
1939 list_for_each_entry(page
, &n
->partial
, lru
)
1940 x
+= get_count(page
);
1941 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1945 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
1947 #ifdef CONFIG_SLUB_DEBUG
1948 return atomic_long_read(&n
->total_objects
);
1954 static noinline
void
1955 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
1960 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1962 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
1963 "default order: %d, min order: %d\n", s
->name
, s
->objsize
,
1964 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
1966 if (oo_order(s
->min
) > get_order(s
->objsize
))
1967 printk(KERN_WARNING
" %s debugging increased min order, use "
1968 "slub_debug=O to disable.\n", s
->name
);
1970 for_each_online_node(node
) {
1971 struct kmem_cache_node
*n
= get_node(s
, node
);
1972 unsigned long nr_slabs
;
1973 unsigned long nr_objs
;
1974 unsigned long nr_free
;
1979 nr_free
= count_partial(n
, count_free
);
1980 nr_slabs
= node_nr_slabs(n
);
1981 nr_objs
= node_nr_objs(n
);
1984 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1985 node
, nr_slabs
, nr_objs
, nr_free
);
1990 * Slow path. The lockless freelist is empty or we need to perform
1993 * Interrupts are disabled.
1995 * Processing is still very fast if new objects have been freed to the
1996 * regular freelist. In that case we simply take over the regular freelist
1997 * as the lockless freelist and zap the regular freelist.
1999 * If that is not working then we fall back to the partial lists. We take the
2000 * first element of the freelist as the object to allocate now and move the
2001 * rest of the freelist to the lockless freelist.
2003 * And if we were unable to get a new slab from the partial slab lists then
2004 * we need to allocate a new slab. This is the slowest path since it involves
2005 * a call to the page allocator and the setup of a new slab.
2007 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2008 unsigned long addr
, struct kmem_cache_cpu
*c
)
2012 unsigned long flags
;
2014 unsigned long counters
;
2016 local_irq_save(flags
);
2017 #ifdef CONFIG_PREEMPT
2019 * We may have been preempted and rescheduled on a different
2020 * cpu before disabling interrupts. Need to reload cpu area
2023 c
= this_cpu_ptr(s
->cpu_slab
);
2026 /* We handle __GFP_ZERO in the caller */
2027 gfpflags
&= ~__GFP_ZERO
;
2033 if (unlikely(!node_match(c
, node
))) {
2034 stat(s
, ALLOC_NODE_MISMATCH
);
2035 deactivate_slab(s
, c
);
2039 stat(s
, ALLOC_SLOWPATH
);
2042 object
= page
->freelist
;
2043 counters
= page
->counters
;
2044 new.counters
= counters
;
2045 VM_BUG_ON(!new.frozen
);
2048 * If there is no object left then we use this loop to
2049 * deactivate the slab which is simple since no objects
2050 * are left in the slab and therefore we do not need to
2051 * put the page back onto the partial list.
2053 * If there are objects left then we retrieve them
2054 * and use them to refill the per cpu queue.
2057 new.inuse
= page
->objects
;
2058 new.frozen
= object
!= NULL
;
2060 } while (!cmpxchg_double_slab(s
, page
,
2065 if (unlikely(!object
)) {
2067 stat(s
, DEACTIVATE_BYPASS
);
2071 stat(s
, ALLOC_REFILL
);
2074 VM_BUG_ON(!page
->frozen
);
2075 c
->freelist
= get_freepointer(s
, object
);
2076 c
->tid
= next_tid(c
->tid
);
2077 local_irq_restore(flags
);
2081 page
= get_partial(s
, gfpflags
, node
);
2083 stat(s
, ALLOC_FROM_PARTIAL
);
2084 object
= c
->freelist
;
2086 if (kmem_cache_debug(s
))
2091 page
= new_slab(s
, gfpflags
, node
);
2094 c
= __this_cpu_ptr(s
->cpu_slab
);
2099 * No other reference to the page yet so we can
2100 * muck around with it freely without cmpxchg
2102 object
= page
->freelist
;
2103 page
->freelist
= NULL
;
2104 page
->inuse
= page
->objects
;
2106 stat(s
, ALLOC_SLAB
);
2107 c
->node
= page_to_nid(page
);
2111 if (!(gfpflags
& __GFP_NOWARN
) && printk_ratelimit())
2112 slab_out_of_memory(s
, gfpflags
, node
);
2113 local_irq_restore(flags
);
2117 if (!object
|| !alloc_debug_processing(s
, page
, object
, addr
))
2120 c
->freelist
= get_freepointer(s
, object
);
2121 deactivate_slab(s
, c
);
2123 c
->node
= NUMA_NO_NODE
;
2124 local_irq_restore(flags
);
2129 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2130 * have the fastpath folded into their functions. So no function call
2131 * overhead for requests that can be satisfied on the fastpath.
2133 * The fastpath works by first checking if the lockless freelist can be used.
2134 * If not then __slab_alloc is called for slow processing.
2136 * Otherwise we can simply pick the next object from the lockless free list.
2138 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2139 gfp_t gfpflags
, int node
, unsigned long addr
)
2142 struct kmem_cache_cpu
*c
;
2145 if (slab_pre_alloc_hook(s
, gfpflags
))
2151 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2152 * enabled. We may switch back and forth between cpus while
2153 * reading from one cpu area. That does not matter as long
2154 * as we end up on the original cpu again when doing the cmpxchg.
2156 c
= __this_cpu_ptr(s
->cpu_slab
);
2159 * The transaction ids are globally unique per cpu and per operation on
2160 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2161 * occurs on the right processor and that there was no operation on the
2162 * linked list in between.
2167 object
= c
->freelist
;
2168 if (unlikely(!object
|| !node_match(c
, node
)))
2170 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2174 * The cmpxchg will only match if there was no additional
2175 * operation and if we are on the right processor.
2177 * The cmpxchg does the following atomically (without lock semantics!)
2178 * 1. Relocate first pointer to the current per cpu area.
2179 * 2. Verify that tid and freelist have not been changed
2180 * 3. If they were not changed replace tid and freelist
2182 * Since this is without lock semantics the protection is only against
2183 * code executing on this cpu *not* from access by other cpus.
2185 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2186 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2188 get_freepointer_safe(s
, object
), next_tid(tid
)))) {
2190 note_cmpxchg_failure("slab_alloc", s
, tid
);
2193 stat(s
, ALLOC_FASTPATH
);
2196 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2197 memset(object
, 0, s
->objsize
);
2199 slab_post_alloc_hook(s
, gfpflags
, object
);
2204 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2206 void *ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, _RET_IP_
);
2208 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->objsize
, s
->size
, gfpflags
);
2212 EXPORT_SYMBOL(kmem_cache_alloc
);
2214 #ifdef CONFIG_TRACING
2215 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2217 void *ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, _RET_IP_
);
2218 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2221 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2223 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
2225 void *ret
= kmalloc_order(size
, flags
, order
);
2226 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
2229 EXPORT_SYMBOL(kmalloc_order_trace
);
2233 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2235 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
2237 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2238 s
->objsize
, s
->size
, gfpflags
, node
);
2242 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2244 #ifdef CONFIG_TRACING
2245 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2247 int node
, size_t size
)
2249 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
2251 trace_kmalloc_node(_RET_IP_
, ret
,
2252 size
, s
->size
, gfpflags
, node
);
2255 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2260 * Slow patch handling. This may still be called frequently since objects
2261 * have a longer lifetime than the cpu slabs in most processing loads.
2263 * So we still attempt to reduce cache line usage. Just take the slab
2264 * lock and free the item. If there is no additional partial page
2265 * handling required then we can return immediately.
2267 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2268 void *x
, unsigned long addr
)
2271 void **object
= (void *)x
;
2275 unsigned long counters
;
2276 struct kmem_cache_node
*n
= NULL
;
2277 unsigned long uninitialized_var(flags
);
2279 stat(s
, FREE_SLOWPATH
);
2281 if (kmem_cache_debug(s
) && !free_debug_processing(s
, page
, x
, addr
))
2285 prior
= page
->freelist
;
2286 counters
= page
->counters
;
2287 set_freepointer(s
, object
, prior
);
2288 new.counters
= counters
;
2289 was_frozen
= new.frozen
;
2291 if ((!new.inuse
|| !prior
) && !was_frozen
&& !n
) {
2292 n
= get_node(s
, page_to_nid(page
));
2294 * Speculatively acquire the list_lock.
2295 * If the cmpxchg does not succeed then we may
2296 * drop the list_lock without any processing.
2298 * Otherwise the list_lock will synchronize with
2299 * other processors updating the list of slabs.
2301 spin_lock_irqsave(&n
->list_lock
, flags
);
2305 } while (!cmpxchg_double_slab(s
, page
,
2307 object
, new.counters
,
2312 * The list lock was not taken therefore no list
2313 * activity can be necessary.
2316 stat(s
, FREE_FROZEN
);
2321 * was_frozen may have been set after we acquired the list_lock in
2322 * an earlier loop. So we need to check it here again.
2325 stat(s
, FREE_FROZEN
);
2327 if (unlikely(!inuse
&& n
->nr_partial
> s
->min_partial
))
2331 * Objects left in the slab. If it was not on the partial list before
2334 if (unlikely(!prior
)) {
2335 remove_full(s
, page
);
2336 add_partial(n
, page
, 0);
2337 stat(s
, FREE_ADD_PARTIAL
);
2340 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2346 * Slab still on the partial list.
2348 remove_partial(n
, page
);
2349 stat(s
, FREE_REMOVE_PARTIAL
);
2352 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2354 discard_slab(s
, page
);
2358 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2359 * can perform fastpath freeing without additional function calls.
2361 * The fastpath is only possible if we are freeing to the current cpu slab
2362 * of this processor. This typically the case if we have just allocated
2365 * If fastpath is not possible then fall back to __slab_free where we deal
2366 * with all sorts of special processing.
2368 static __always_inline
void slab_free(struct kmem_cache
*s
,
2369 struct page
*page
, void *x
, unsigned long addr
)
2371 void **object
= (void *)x
;
2372 struct kmem_cache_cpu
*c
;
2375 slab_free_hook(s
, x
);
2380 * Determine the currently cpus per cpu slab.
2381 * The cpu may change afterward. However that does not matter since
2382 * data is retrieved via this pointer. If we are on the same cpu
2383 * during the cmpxchg then the free will succedd.
2385 c
= __this_cpu_ptr(s
->cpu_slab
);
2390 if (likely(page
== c
->page
)) {
2391 set_freepointer(s
, object
, c
->freelist
);
2393 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2394 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2396 object
, next_tid(tid
)))) {
2398 note_cmpxchg_failure("slab_free", s
, tid
);
2401 stat(s
, FREE_FASTPATH
);
2403 __slab_free(s
, page
, x
, addr
);
2407 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2411 page
= virt_to_head_page(x
);
2413 slab_free(s
, page
, x
, _RET_IP_
);
2415 trace_kmem_cache_free(_RET_IP_
, x
);
2417 EXPORT_SYMBOL(kmem_cache_free
);
2420 * Object placement in a slab is made very easy because we always start at
2421 * offset 0. If we tune the size of the object to the alignment then we can
2422 * get the required alignment by putting one properly sized object after
2425 * Notice that the allocation order determines the sizes of the per cpu
2426 * caches. Each processor has always one slab available for allocations.
2427 * Increasing the allocation order reduces the number of times that slabs
2428 * must be moved on and off the partial lists and is therefore a factor in
2433 * Mininum / Maximum order of slab pages. This influences locking overhead
2434 * and slab fragmentation. A higher order reduces the number of partial slabs
2435 * and increases the number of allocations possible without having to
2436 * take the list_lock.
2438 static int slub_min_order
;
2439 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
2440 static int slub_min_objects
;
2443 * Merge control. If this is set then no merging of slab caches will occur.
2444 * (Could be removed. This was introduced to pacify the merge skeptics.)
2446 static int slub_nomerge
;
2449 * Calculate the order of allocation given an slab object size.
2451 * The order of allocation has significant impact on performance and other
2452 * system components. Generally order 0 allocations should be preferred since
2453 * order 0 does not cause fragmentation in the page allocator. Larger objects
2454 * be problematic to put into order 0 slabs because there may be too much
2455 * unused space left. We go to a higher order if more than 1/16th of the slab
2458 * In order to reach satisfactory performance we must ensure that a minimum
2459 * number of objects is in one slab. Otherwise we may generate too much
2460 * activity on the partial lists which requires taking the list_lock. This is
2461 * less a concern for large slabs though which are rarely used.
2463 * slub_max_order specifies the order where we begin to stop considering the
2464 * number of objects in a slab as critical. If we reach slub_max_order then
2465 * we try to keep the page order as low as possible. So we accept more waste
2466 * of space in favor of a small page order.
2468 * Higher order allocations also allow the placement of more objects in a
2469 * slab and thereby reduce object handling overhead. If the user has
2470 * requested a higher mininum order then we start with that one instead of
2471 * the smallest order which will fit the object.
2473 static inline int slab_order(int size
, int min_objects
,
2474 int max_order
, int fract_leftover
, int reserved
)
2478 int min_order
= slub_min_order
;
2480 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
2481 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
2483 for (order
= max(min_order
,
2484 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
2485 order
<= max_order
; order
++) {
2487 unsigned long slab_size
= PAGE_SIZE
<< order
;
2489 if (slab_size
< min_objects
* size
+ reserved
)
2492 rem
= (slab_size
- reserved
) % size
;
2494 if (rem
<= slab_size
/ fract_leftover
)
2502 static inline int calculate_order(int size
, int reserved
)
2510 * Attempt to find best configuration for a slab. This
2511 * works by first attempting to generate a layout with
2512 * the best configuration and backing off gradually.
2514 * First we reduce the acceptable waste in a slab. Then
2515 * we reduce the minimum objects required in a slab.
2517 min_objects
= slub_min_objects
;
2519 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
2520 max_objects
= order_objects(slub_max_order
, size
, reserved
);
2521 min_objects
= min(min_objects
, max_objects
);
2523 while (min_objects
> 1) {
2525 while (fraction
>= 4) {
2526 order
= slab_order(size
, min_objects
,
2527 slub_max_order
, fraction
, reserved
);
2528 if (order
<= slub_max_order
)
2536 * We were unable to place multiple objects in a slab. Now
2537 * lets see if we can place a single object there.
2539 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
2540 if (order
<= slub_max_order
)
2544 * Doh this slab cannot be placed using slub_max_order.
2546 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
2547 if (order
< MAX_ORDER
)
2553 * Figure out what the alignment of the objects will be.
2555 static unsigned long calculate_alignment(unsigned long flags
,
2556 unsigned long align
, unsigned long size
)
2559 * If the user wants hardware cache aligned objects then follow that
2560 * suggestion if the object is sufficiently large.
2562 * The hardware cache alignment cannot override the specified
2563 * alignment though. If that is greater then use it.
2565 if (flags
& SLAB_HWCACHE_ALIGN
) {
2566 unsigned long ralign
= cache_line_size();
2567 while (size
<= ralign
/ 2)
2569 align
= max(align
, ralign
);
2572 if (align
< ARCH_SLAB_MINALIGN
)
2573 align
= ARCH_SLAB_MINALIGN
;
2575 return ALIGN(align
, sizeof(void *));
2579 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
2582 spin_lock_init(&n
->list_lock
);
2583 INIT_LIST_HEAD(&n
->partial
);
2584 #ifdef CONFIG_SLUB_DEBUG
2585 atomic_long_set(&n
->nr_slabs
, 0);
2586 atomic_long_set(&n
->total_objects
, 0);
2587 INIT_LIST_HEAD(&n
->full
);
2591 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
2593 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
2594 SLUB_PAGE_SHIFT
* sizeof(struct kmem_cache_cpu
));
2597 * Must align to double word boundary for the double cmpxchg
2598 * instructions to work; see __pcpu_double_call_return_bool().
2600 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
2601 2 * sizeof(void *));
2606 init_kmem_cache_cpus(s
);
2611 static struct kmem_cache
*kmem_cache_node
;
2614 * No kmalloc_node yet so do it by hand. We know that this is the first
2615 * slab on the node for this slabcache. There are no concurrent accesses
2618 * Note that this function only works on the kmalloc_node_cache
2619 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2620 * memory on a fresh node that has no slab structures yet.
2622 static void early_kmem_cache_node_alloc(int node
)
2625 struct kmem_cache_node
*n
;
2627 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
2629 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
2632 if (page_to_nid(page
) != node
) {
2633 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2635 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2636 "in order to be able to continue\n");
2641 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
2644 kmem_cache_node
->node
[node
] = n
;
2645 #ifdef CONFIG_SLUB_DEBUG
2646 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
2647 init_tracking(kmem_cache_node
, n
);
2649 init_kmem_cache_node(n
, kmem_cache_node
);
2650 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
2652 add_partial(n
, page
, 0);
2655 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2659 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2660 struct kmem_cache_node
*n
= s
->node
[node
];
2663 kmem_cache_free(kmem_cache_node
, n
);
2665 s
->node
[node
] = NULL
;
2669 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
2673 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2674 struct kmem_cache_node
*n
;
2676 if (slab_state
== DOWN
) {
2677 early_kmem_cache_node_alloc(node
);
2680 n
= kmem_cache_alloc_node(kmem_cache_node
,
2684 free_kmem_cache_nodes(s
);
2689 init_kmem_cache_node(n
, s
);
2694 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2696 if (min
< MIN_PARTIAL
)
2698 else if (min
> MAX_PARTIAL
)
2700 s
->min_partial
= min
;
2704 * calculate_sizes() determines the order and the distribution of data within
2707 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2709 unsigned long flags
= s
->flags
;
2710 unsigned long size
= s
->objsize
;
2711 unsigned long align
= s
->align
;
2715 * Round up object size to the next word boundary. We can only
2716 * place the free pointer at word boundaries and this determines
2717 * the possible location of the free pointer.
2719 size
= ALIGN(size
, sizeof(void *));
2721 #ifdef CONFIG_SLUB_DEBUG
2723 * Determine if we can poison the object itself. If the user of
2724 * the slab may touch the object after free or before allocation
2725 * then we should never poison the object itself.
2727 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2729 s
->flags
|= __OBJECT_POISON
;
2731 s
->flags
&= ~__OBJECT_POISON
;
2735 * If we are Redzoning then check if there is some space between the
2736 * end of the object and the free pointer. If not then add an
2737 * additional word to have some bytes to store Redzone information.
2739 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2740 size
+= sizeof(void *);
2744 * With that we have determined the number of bytes in actual use
2745 * by the object. This is the potential offset to the free pointer.
2749 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2752 * Relocate free pointer after the object if it is not
2753 * permitted to overwrite the first word of the object on
2756 * This is the case if we do RCU, have a constructor or
2757 * destructor or are poisoning the objects.
2760 size
+= sizeof(void *);
2763 #ifdef CONFIG_SLUB_DEBUG
2764 if (flags
& SLAB_STORE_USER
)
2766 * Need to store information about allocs and frees after
2769 size
+= 2 * sizeof(struct track
);
2771 if (flags
& SLAB_RED_ZONE
)
2773 * Add some empty padding so that we can catch
2774 * overwrites from earlier objects rather than let
2775 * tracking information or the free pointer be
2776 * corrupted if a user writes before the start
2779 size
+= sizeof(void *);
2783 * Determine the alignment based on various parameters that the
2784 * user specified and the dynamic determination of cache line size
2787 align
= calculate_alignment(flags
, align
, s
->objsize
);
2791 * SLUB stores one object immediately after another beginning from
2792 * offset 0. In order to align the objects we have to simply size
2793 * each object to conform to the alignment.
2795 size
= ALIGN(size
, align
);
2797 if (forced_order
>= 0)
2798 order
= forced_order
;
2800 order
= calculate_order(size
, s
->reserved
);
2807 s
->allocflags
|= __GFP_COMP
;
2809 if (s
->flags
& SLAB_CACHE_DMA
)
2810 s
->allocflags
|= SLUB_DMA
;
2812 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2813 s
->allocflags
|= __GFP_RECLAIMABLE
;
2816 * Determine the number of objects per slab
2818 s
->oo
= oo_make(order
, size
, s
->reserved
);
2819 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
2820 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2823 return !!oo_objects(s
->oo
);
2827 static int kmem_cache_open(struct kmem_cache
*s
,
2828 const char *name
, size_t size
,
2829 size_t align
, unsigned long flags
,
2830 void (*ctor
)(void *))
2832 memset(s
, 0, kmem_size
);
2837 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2840 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
2841 s
->reserved
= sizeof(struct rcu_head
);
2843 if (!calculate_sizes(s
, -1))
2845 if (disable_higher_order_debug
) {
2847 * Disable debugging flags that store metadata if the min slab
2850 if (get_order(s
->size
) > get_order(s
->objsize
)) {
2851 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
2853 if (!calculate_sizes(s
, -1))
2858 #ifdef CONFIG_CMPXCHG_DOUBLE
2859 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_DEBUG_FLAGS
) == 0)
2860 /* Enable fast mode */
2861 s
->flags
|= __CMPXCHG_DOUBLE
;
2865 * The larger the object size is, the more pages we want on the partial
2866 * list to avoid pounding the page allocator excessively.
2868 set_min_partial(s
, ilog2(s
->size
));
2871 s
->remote_node_defrag_ratio
= 1000;
2873 if (!init_kmem_cache_nodes(s
))
2876 if (alloc_kmem_cache_cpus(s
))
2879 free_kmem_cache_nodes(s
);
2881 if (flags
& SLAB_PANIC
)
2882 panic("Cannot create slab %s size=%lu realsize=%u "
2883 "order=%u offset=%u flags=%lx\n",
2884 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2890 * Determine the size of a slab object
2892 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2896 EXPORT_SYMBOL(kmem_cache_size
);
2898 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2901 #ifdef CONFIG_SLUB_DEBUG
2902 void *addr
= page_address(page
);
2904 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
2905 sizeof(long), GFP_ATOMIC
);
2908 slab_err(s
, page
, "%s", text
);
2911 get_map(s
, page
, map
);
2912 for_each_object(p
, s
, addr
, page
->objects
) {
2914 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2915 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2917 print_tracking(s
, p
);
2926 * Attempt to free all partial slabs on a node.
2928 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2930 unsigned long flags
;
2931 struct page
*page
, *h
;
2933 spin_lock_irqsave(&n
->list_lock
, flags
);
2934 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2936 remove_partial(n
, page
);
2937 discard_slab(s
, page
);
2939 list_slab_objects(s
, page
,
2940 "Objects remaining on kmem_cache_close()");
2943 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2947 * Release all resources used by a slab cache.
2949 static inline int kmem_cache_close(struct kmem_cache
*s
)
2954 free_percpu(s
->cpu_slab
);
2955 /* Attempt to free all objects */
2956 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2957 struct kmem_cache_node
*n
= get_node(s
, node
);
2960 if (n
->nr_partial
|| slabs_node(s
, node
))
2963 free_kmem_cache_nodes(s
);
2968 * Close a cache and release the kmem_cache structure
2969 * (must be used for caches created using kmem_cache_create)
2971 void kmem_cache_destroy(struct kmem_cache
*s
)
2973 down_write(&slub_lock
);
2977 if (kmem_cache_close(s
)) {
2978 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2979 "still has objects.\n", s
->name
, __func__
);
2982 if (s
->flags
& SLAB_DESTROY_BY_RCU
)
2984 sysfs_slab_remove(s
);
2986 up_write(&slub_lock
);
2988 EXPORT_SYMBOL(kmem_cache_destroy
);
2990 /********************************************************************
2992 *******************************************************************/
2994 struct kmem_cache
*kmalloc_caches
[SLUB_PAGE_SHIFT
];
2995 EXPORT_SYMBOL(kmalloc_caches
);
2997 static struct kmem_cache
*kmem_cache
;
2999 #ifdef CONFIG_ZONE_DMA
3000 static struct kmem_cache
*kmalloc_dma_caches
[SLUB_PAGE_SHIFT
];
3003 static int __init
setup_slub_min_order(char *str
)
3005 get_option(&str
, &slub_min_order
);
3010 __setup("slub_min_order=", setup_slub_min_order
);
3012 static int __init
setup_slub_max_order(char *str
)
3014 get_option(&str
, &slub_max_order
);
3015 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3020 __setup("slub_max_order=", setup_slub_max_order
);
3022 static int __init
setup_slub_min_objects(char *str
)
3024 get_option(&str
, &slub_min_objects
);
3029 __setup("slub_min_objects=", setup_slub_min_objects
);
3031 static int __init
setup_slub_nomerge(char *str
)
3037 __setup("slub_nomerge", setup_slub_nomerge
);
3039 static struct kmem_cache
*__init
create_kmalloc_cache(const char *name
,
3040 int size
, unsigned int flags
)
3042 struct kmem_cache
*s
;
3044 s
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3047 * This function is called with IRQs disabled during early-boot on
3048 * single CPU so there's no need to take slub_lock here.
3050 if (!kmem_cache_open(s
, name
, size
, ARCH_KMALLOC_MINALIGN
,
3054 list_add(&s
->list
, &slab_caches
);
3058 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
3063 * Conversion table for small slabs sizes / 8 to the index in the
3064 * kmalloc array. This is necessary for slabs < 192 since we have non power
3065 * of two cache sizes there. The size of larger slabs can be determined using
3068 static s8 size_index
[24] = {
3095 static inline int size_index_elem(size_t bytes
)
3097 return (bytes
- 1) / 8;
3100 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
3106 return ZERO_SIZE_PTR
;
3108 index
= size_index
[size_index_elem(size
)];
3110 index
= fls(size
- 1);
3112 #ifdef CONFIG_ZONE_DMA
3113 if (unlikely((flags
& SLUB_DMA
)))
3114 return kmalloc_dma_caches
[index
];
3117 return kmalloc_caches
[index
];
3120 void *__kmalloc(size_t size
, gfp_t flags
)
3122 struct kmem_cache
*s
;
3125 if (unlikely(size
> SLUB_MAX_SIZE
))
3126 return kmalloc_large(size
, flags
);
3128 s
= get_slab(size
, flags
);
3130 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3133 ret
= slab_alloc(s
, flags
, NUMA_NO_NODE
, _RET_IP_
);
3135 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3139 EXPORT_SYMBOL(__kmalloc
);
3142 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3147 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
3148 page
= alloc_pages_node(node
, flags
, get_order(size
));
3150 ptr
= page_address(page
);
3152 kmemleak_alloc(ptr
, size
, 1, flags
);
3156 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3158 struct kmem_cache
*s
;
3161 if (unlikely(size
> SLUB_MAX_SIZE
)) {
3162 ret
= kmalloc_large_node(size
, flags
, node
);
3164 trace_kmalloc_node(_RET_IP_
, ret
,
3165 size
, PAGE_SIZE
<< get_order(size
),
3171 s
= get_slab(size
, flags
);
3173 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3176 ret
= slab_alloc(s
, flags
, node
, _RET_IP_
);
3178 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3182 EXPORT_SYMBOL(__kmalloc_node
);
3185 size_t ksize(const void *object
)
3189 if (unlikely(object
== ZERO_SIZE_PTR
))
3192 page
= virt_to_head_page(object
);
3194 if (unlikely(!PageSlab(page
))) {
3195 WARN_ON(!PageCompound(page
));
3196 return PAGE_SIZE
<< compound_order(page
);
3199 return slab_ksize(page
->slab
);
3201 EXPORT_SYMBOL(ksize
);
3203 #ifdef CONFIG_SLUB_DEBUG
3204 bool verify_mem_not_deleted(const void *x
)
3207 void *object
= (void *)x
;
3208 unsigned long flags
;
3211 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3214 local_irq_save(flags
);
3216 page
= virt_to_head_page(x
);
3217 if (unlikely(!PageSlab(page
))) {
3218 /* maybe it was from stack? */
3224 if (on_freelist(page
->slab
, page
, object
)) {
3225 object_err(page
->slab
, page
, object
, "Object is on free-list");
3233 local_irq_restore(flags
);
3236 EXPORT_SYMBOL(verify_mem_not_deleted
);
3239 void kfree(const void *x
)
3242 void *object
= (void *)x
;
3244 trace_kfree(_RET_IP_
, x
);
3246 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3249 page
= virt_to_head_page(x
);
3250 if (unlikely(!PageSlab(page
))) {
3251 BUG_ON(!PageCompound(page
));
3256 slab_free(page
->slab
, page
, object
, _RET_IP_
);
3258 EXPORT_SYMBOL(kfree
);
3261 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3262 * the remaining slabs by the number of items in use. The slabs with the
3263 * most items in use come first. New allocations will then fill those up
3264 * and thus they can be removed from the partial lists.
3266 * The slabs with the least items are placed last. This results in them
3267 * being allocated from last increasing the chance that the last objects
3268 * are freed in them.
3270 int kmem_cache_shrink(struct kmem_cache
*s
)
3274 struct kmem_cache_node
*n
;
3277 int objects
= oo_objects(s
->max
);
3278 struct list_head
*slabs_by_inuse
=
3279 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
3280 unsigned long flags
;
3282 if (!slabs_by_inuse
)
3286 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3287 n
= get_node(s
, node
);
3292 for (i
= 0; i
< objects
; i
++)
3293 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
3295 spin_lock_irqsave(&n
->list_lock
, flags
);
3298 * Build lists indexed by the items in use in each slab.
3300 * Note that concurrent frees may occur while we hold the
3301 * list_lock. page->inuse here is the upper limit.
3303 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3305 remove_partial(n
, page
);
3306 discard_slab(s
, page
);
3308 list_move(&page
->lru
,
3309 slabs_by_inuse
+ page
->inuse
);
3314 * Rebuild the partial list with the slabs filled up most
3315 * first and the least used slabs at the end.
3317 for (i
= objects
- 1; i
>= 0; i
--)
3318 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
3320 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3323 kfree(slabs_by_inuse
);
3326 EXPORT_SYMBOL(kmem_cache_shrink
);
3328 #if defined(CONFIG_MEMORY_HOTPLUG)
3329 static int slab_mem_going_offline_callback(void *arg
)
3331 struct kmem_cache
*s
;
3333 down_read(&slub_lock
);
3334 list_for_each_entry(s
, &slab_caches
, list
)
3335 kmem_cache_shrink(s
);
3336 up_read(&slub_lock
);
3341 static void slab_mem_offline_callback(void *arg
)
3343 struct kmem_cache_node
*n
;
3344 struct kmem_cache
*s
;
3345 struct memory_notify
*marg
= arg
;
3348 offline_node
= marg
->status_change_nid
;
3351 * If the node still has available memory. we need kmem_cache_node
3354 if (offline_node
< 0)
3357 down_read(&slub_lock
);
3358 list_for_each_entry(s
, &slab_caches
, list
) {
3359 n
= get_node(s
, offline_node
);
3362 * if n->nr_slabs > 0, slabs still exist on the node
3363 * that is going down. We were unable to free them,
3364 * and offline_pages() function shouldn't call this
3365 * callback. So, we must fail.
3367 BUG_ON(slabs_node(s
, offline_node
));
3369 s
->node
[offline_node
] = NULL
;
3370 kmem_cache_free(kmem_cache_node
, n
);
3373 up_read(&slub_lock
);
3376 static int slab_mem_going_online_callback(void *arg
)
3378 struct kmem_cache_node
*n
;
3379 struct kmem_cache
*s
;
3380 struct memory_notify
*marg
= arg
;
3381 int nid
= marg
->status_change_nid
;
3385 * If the node's memory is already available, then kmem_cache_node is
3386 * already created. Nothing to do.
3392 * We are bringing a node online. No memory is available yet. We must
3393 * allocate a kmem_cache_node structure in order to bring the node
3396 down_read(&slub_lock
);
3397 list_for_each_entry(s
, &slab_caches
, list
) {
3399 * XXX: kmem_cache_alloc_node will fallback to other nodes
3400 * since memory is not yet available from the node that
3403 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
3408 init_kmem_cache_node(n
, s
);
3412 up_read(&slub_lock
);
3416 static int slab_memory_callback(struct notifier_block
*self
,
3417 unsigned long action
, void *arg
)
3422 case MEM_GOING_ONLINE
:
3423 ret
= slab_mem_going_online_callback(arg
);
3425 case MEM_GOING_OFFLINE
:
3426 ret
= slab_mem_going_offline_callback(arg
);
3429 case MEM_CANCEL_ONLINE
:
3430 slab_mem_offline_callback(arg
);
3433 case MEM_CANCEL_OFFLINE
:
3437 ret
= notifier_from_errno(ret
);
3443 #endif /* CONFIG_MEMORY_HOTPLUG */
3445 /********************************************************************
3446 * Basic setup of slabs
3447 *******************************************************************/
3450 * Used for early kmem_cache structures that were allocated using
3451 * the page allocator
3454 static void __init
kmem_cache_bootstrap_fixup(struct kmem_cache
*s
)
3458 list_add(&s
->list
, &slab_caches
);
3461 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3462 struct kmem_cache_node
*n
= get_node(s
, node
);
3466 list_for_each_entry(p
, &n
->partial
, lru
)
3469 #ifdef CONFIG_SLUB_DEBUG
3470 list_for_each_entry(p
, &n
->full
, lru
)
3477 void __init
kmem_cache_init(void)
3481 struct kmem_cache
*temp_kmem_cache
;
3483 struct kmem_cache
*temp_kmem_cache_node
;
3484 unsigned long kmalloc_size
;
3486 kmem_size
= offsetof(struct kmem_cache
, node
) +
3487 nr_node_ids
* sizeof(struct kmem_cache_node
*);
3489 /* Allocate two kmem_caches from the page allocator */
3490 kmalloc_size
= ALIGN(kmem_size
, cache_line_size());
3491 order
= get_order(2 * kmalloc_size
);
3492 kmem_cache
= (void *)__get_free_pages(GFP_NOWAIT
, order
);
3495 * Must first have the slab cache available for the allocations of the
3496 * struct kmem_cache_node's. There is special bootstrap code in
3497 * kmem_cache_open for slab_state == DOWN.
3499 kmem_cache_node
= (void *)kmem_cache
+ kmalloc_size
;
3501 kmem_cache_open(kmem_cache_node
, "kmem_cache_node",
3502 sizeof(struct kmem_cache_node
),
3503 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3505 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
3507 /* Able to allocate the per node structures */
3508 slab_state
= PARTIAL
;
3510 temp_kmem_cache
= kmem_cache
;
3511 kmem_cache_open(kmem_cache
, "kmem_cache", kmem_size
,
3512 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3513 kmem_cache
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3514 memcpy(kmem_cache
, temp_kmem_cache
, kmem_size
);
3517 * Allocate kmem_cache_node properly from the kmem_cache slab.
3518 * kmem_cache_node is separately allocated so no need to
3519 * update any list pointers.
3521 temp_kmem_cache_node
= kmem_cache_node
;
3523 kmem_cache_node
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3524 memcpy(kmem_cache_node
, temp_kmem_cache_node
, kmem_size
);
3526 kmem_cache_bootstrap_fixup(kmem_cache_node
);
3529 kmem_cache_bootstrap_fixup(kmem_cache
);
3531 /* Free temporary boot structure */
3532 free_pages((unsigned long)temp_kmem_cache
, order
);
3534 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3537 * Patch up the size_index table if we have strange large alignment
3538 * requirements for the kmalloc array. This is only the case for
3539 * MIPS it seems. The standard arches will not generate any code here.
3541 * Largest permitted alignment is 256 bytes due to the way we
3542 * handle the index determination for the smaller caches.
3544 * Make sure that nothing crazy happens if someone starts tinkering
3545 * around with ARCH_KMALLOC_MINALIGN
3547 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3548 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3550 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
3551 int elem
= size_index_elem(i
);
3552 if (elem
>= ARRAY_SIZE(size_index
))
3554 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
3557 if (KMALLOC_MIN_SIZE
== 64) {
3559 * The 96 byte size cache is not used if the alignment
3562 for (i
= 64 + 8; i
<= 96; i
+= 8)
3563 size_index
[size_index_elem(i
)] = 7;
3564 } else if (KMALLOC_MIN_SIZE
== 128) {
3566 * The 192 byte sized cache is not used if the alignment
3567 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3570 for (i
= 128 + 8; i
<= 192; i
+= 8)
3571 size_index
[size_index_elem(i
)] = 8;
3574 /* Caches that are not of the two-to-the-power-of size */
3575 if (KMALLOC_MIN_SIZE
<= 32) {
3576 kmalloc_caches
[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3580 if (KMALLOC_MIN_SIZE
<= 64) {
3581 kmalloc_caches
[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3585 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3586 kmalloc_caches
[i
] = create_kmalloc_cache("kmalloc", 1 << i
, 0);
3592 /* Provide the correct kmalloc names now that the caches are up */
3593 if (KMALLOC_MIN_SIZE
<= 32) {
3594 kmalloc_caches
[1]->name
= kstrdup(kmalloc_caches
[1]->name
, GFP_NOWAIT
);
3595 BUG_ON(!kmalloc_caches
[1]->name
);
3598 if (KMALLOC_MIN_SIZE
<= 64) {
3599 kmalloc_caches
[2]->name
= kstrdup(kmalloc_caches
[2]->name
, GFP_NOWAIT
);
3600 BUG_ON(!kmalloc_caches
[2]->name
);
3603 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3604 char *s
= kasprintf(GFP_NOWAIT
, "kmalloc-%d", 1 << i
);
3607 kmalloc_caches
[i
]->name
= s
;
3611 register_cpu_notifier(&slab_notifier
);
3614 #ifdef CONFIG_ZONE_DMA
3615 for (i
= 0; i
< SLUB_PAGE_SHIFT
; i
++) {
3616 struct kmem_cache
*s
= kmalloc_caches
[i
];
3619 char *name
= kasprintf(GFP_NOWAIT
,
3620 "dma-kmalloc-%d", s
->objsize
);
3623 kmalloc_dma_caches
[i
] = create_kmalloc_cache(name
,
3624 s
->objsize
, SLAB_CACHE_DMA
);
3629 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3630 " CPUs=%d, Nodes=%d\n",
3631 caches
, cache_line_size(),
3632 slub_min_order
, slub_max_order
, slub_min_objects
,
3633 nr_cpu_ids
, nr_node_ids
);
3636 void __init
kmem_cache_init_late(void)
3641 * Find a mergeable slab cache
3643 static int slab_unmergeable(struct kmem_cache
*s
)
3645 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3652 * We may have set a slab to be unmergeable during bootstrap.
3654 if (s
->refcount
< 0)
3660 static struct kmem_cache
*find_mergeable(size_t size
,
3661 size_t align
, unsigned long flags
, const char *name
,
3662 void (*ctor
)(void *))
3664 struct kmem_cache
*s
;
3666 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3672 size
= ALIGN(size
, sizeof(void *));
3673 align
= calculate_alignment(flags
, align
, size
);
3674 size
= ALIGN(size
, align
);
3675 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3677 list_for_each_entry(s
, &slab_caches
, list
) {
3678 if (slab_unmergeable(s
))
3684 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3687 * Check if alignment is compatible.
3688 * Courtesy of Adrian Drzewiecki
3690 if ((s
->size
& ~(align
- 1)) != s
->size
)
3693 if (s
->size
- size
>= sizeof(void *))
3701 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3702 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3704 struct kmem_cache
*s
;
3710 down_write(&slub_lock
);
3711 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3715 * Adjust the object sizes so that we clear
3716 * the complete object on kzalloc.
3718 s
->objsize
= max(s
->objsize
, (int)size
);
3719 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3721 if (sysfs_slab_alias(s
, name
)) {
3725 up_write(&slub_lock
);
3729 n
= kstrdup(name
, GFP_KERNEL
);
3733 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3735 if (kmem_cache_open(s
, n
,
3736 size
, align
, flags
, ctor
)) {
3737 list_add(&s
->list
, &slab_caches
);
3738 if (sysfs_slab_add(s
)) {
3744 up_write(&slub_lock
);
3751 up_write(&slub_lock
);
3753 if (flags
& SLAB_PANIC
)
3754 panic("Cannot create slabcache %s\n", name
);
3759 EXPORT_SYMBOL(kmem_cache_create
);
3763 * Use the cpu notifier to insure that the cpu slabs are flushed when
3766 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3767 unsigned long action
, void *hcpu
)
3769 long cpu
= (long)hcpu
;
3770 struct kmem_cache
*s
;
3771 unsigned long flags
;
3774 case CPU_UP_CANCELED
:
3775 case CPU_UP_CANCELED_FROZEN
:
3777 case CPU_DEAD_FROZEN
:
3778 down_read(&slub_lock
);
3779 list_for_each_entry(s
, &slab_caches
, list
) {
3780 local_irq_save(flags
);
3781 __flush_cpu_slab(s
, cpu
);
3782 local_irq_restore(flags
);
3784 up_read(&slub_lock
);
3792 static struct notifier_block __cpuinitdata slab_notifier
= {
3793 .notifier_call
= slab_cpuup_callback
3798 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3800 struct kmem_cache
*s
;
3803 if (unlikely(size
> SLUB_MAX_SIZE
))
3804 return kmalloc_large(size
, gfpflags
);
3806 s
= get_slab(size
, gfpflags
);
3808 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3811 ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, caller
);
3813 /* Honor the call site pointer we received. */
3814 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3820 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3821 int node
, unsigned long caller
)
3823 struct kmem_cache
*s
;
3826 if (unlikely(size
> SLUB_MAX_SIZE
)) {
3827 ret
= kmalloc_large_node(size
, gfpflags
, node
);
3829 trace_kmalloc_node(caller
, ret
,
3830 size
, PAGE_SIZE
<< get_order(size
),
3836 s
= get_slab(size
, gfpflags
);
3838 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3841 ret
= slab_alloc(s
, gfpflags
, node
, caller
);
3843 /* Honor the call site pointer we received. */
3844 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3851 static int count_inuse(struct page
*page
)
3856 static int count_total(struct page
*page
)
3858 return page
->objects
;
3862 #ifdef CONFIG_SLUB_DEBUG
3863 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3867 void *addr
= page_address(page
);
3869 if (!check_slab(s
, page
) ||
3870 !on_freelist(s
, page
, NULL
))
3873 /* Now we know that a valid freelist exists */
3874 bitmap_zero(map
, page
->objects
);
3876 get_map(s
, page
, map
);
3877 for_each_object(p
, s
, addr
, page
->objects
) {
3878 if (test_bit(slab_index(p
, s
, addr
), map
))
3879 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
3883 for_each_object(p
, s
, addr
, page
->objects
)
3884 if (!test_bit(slab_index(p
, s
, addr
), map
))
3885 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
3890 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3894 validate_slab(s
, page
, map
);
3898 static int validate_slab_node(struct kmem_cache
*s
,
3899 struct kmem_cache_node
*n
, unsigned long *map
)
3901 unsigned long count
= 0;
3903 unsigned long flags
;
3905 spin_lock_irqsave(&n
->list_lock
, flags
);
3907 list_for_each_entry(page
, &n
->partial
, lru
) {
3908 validate_slab_slab(s
, page
, map
);
3911 if (count
!= n
->nr_partial
)
3912 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3913 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3915 if (!(s
->flags
& SLAB_STORE_USER
))
3918 list_for_each_entry(page
, &n
->full
, lru
) {
3919 validate_slab_slab(s
, page
, map
);
3922 if (count
!= atomic_long_read(&n
->nr_slabs
))
3923 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3924 "counter=%ld\n", s
->name
, count
,
3925 atomic_long_read(&n
->nr_slabs
));
3928 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3932 static long validate_slab_cache(struct kmem_cache
*s
)
3935 unsigned long count
= 0;
3936 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3937 sizeof(unsigned long), GFP_KERNEL
);
3943 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3944 struct kmem_cache_node
*n
= get_node(s
, node
);
3946 count
+= validate_slab_node(s
, n
, map
);
3952 * Generate lists of code addresses where slabcache objects are allocated
3957 unsigned long count
;
3964 DECLARE_BITMAP(cpus
, NR_CPUS
);
3970 unsigned long count
;
3971 struct location
*loc
;
3974 static void free_loc_track(struct loc_track
*t
)
3977 free_pages((unsigned long)t
->loc
,
3978 get_order(sizeof(struct location
) * t
->max
));
3981 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3986 order
= get_order(sizeof(struct location
) * max
);
3988 l
= (void *)__get_free_pages(flags
, order
);
3993 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4001 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4002 const struct track
*track
)
4004 long start
, end
, pos
;
4006 unsigned long caddr
;
4007 unsigned long age
= jiffies
- track
->when
;
4013 pos
= start
+ (end
- start
+ 1) / 2;
4016 * There is nothing at "end". If we end up there
4017 * we need to add something to before end.
4022 caddr
= t
->loc
[pos
].addr
;
4023 if (track
->addr
== caddr
) {
4029 if (age
< l
->min_time
)
4031 if (age
> l
->max_time
)
4034 if (track
->pid
< l
->min_pid
)
4035 l
->min_pid
= track
->pid
;
4036 if (track
->pid
> l
->max_pid
)
4037 l
->max_pid
= track
->pid
;
4039 cpumask_set_cpu(track
->cpu
,
4040 to_cpumask(l
->cpus
));
4042 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4046 if (track
->addr
< caddr
)
4053 * Not found. Insert new tracking element.
4055 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4061 (t
->count
- pos
) * sizeof(struct location
));
4064 l
->addr
= track
->addr
;
4068 l
->min_pid
= track
->pid
;
4069 l
->max_pid
= track
->pid
;
4070 cpumask_clear(to_cpumask(l
->cpus
));
4071 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4072 nodes_clear(l
->nodes
);
4073 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4077 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4078 struct page
*page
, enum track_item alloc
,
4081 void *addr
= page_address(page
);
4084 bitmap_zero(map
, page
->objects
);
4085 get_map(s
, page
, map
);
4087 for_each_object(p
, s
, addr
, page
->objects
)
4088 if (!test_bit(slab_index(p
, s
, addr
), map
))
4089 add_location(t
, s
, get_track(s
, p
, alloc
));
4092 static int list_locations(struct kmem_cache
*s
, char *buf
,
4093 enum track_item alloc
)
4097 struct loc_track t
= { 0, 0, NULL
};
4099 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4100 sizeof(unsigned long), GFP_KERNEL
);
4102 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4105 return sprintf(buf
, "Out of memory\n");
4107 /* Push back cpu slabs */
4110 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4111 struct kmem_cache_node
*n
= get_node(s
, node
);
4112 unsigned long flags
;
4115 if (!atomic_long_read(&n
->nr_slabs
))
4118 spin_lock_irqsave(&n
->list_lock
, flags
);
4119 list_for_each_entry(page
, &n
->partial
, lru
)
4120 process_slab(&t
, s
, page
, alloc
, map
);
4121 list_for_each_entry(page
, &n
->full
, lru
)
4122 process_slab(&t
, s
, page
, alloc
, map
);
4123 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4126 for (i
= 0; i
< t
.count
; i
++) {
4127 struct location
*l
= &t
.loc
[i
];
4129 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4131 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4134 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4136 len
+= sprintf(buf
+ len
, "<not-available>");
4138 if (l
->sum_time
!= l
->min_time
) {
4139 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4141 (long)div_u64(l
->sum_time
, l
->count
),
4144 len
+= sprintf(buf
+ len
, " age=%ld",
4147 if (l
->min_pid
!= l
->max_pid
)
4148 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4149 l
->min_pid
, l
->max_pid
);
4151 len
+= sprintf(buf
+ len
, " pid=%ld",
4154 if (num_online_cpus() > 1 &&
4155 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4156 len
< PAGE_SIZE
- 60) {
4157 len
+= sprintf(buf
+ len
, " cpus=");
4158 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4159 to_cpumask(l
->cpus
));
4162 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4163 len
< PAGE_SIZE
- 60) {
4164 len
+= sprintf(buf
+ len
, " nodes=");
4165 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4169 len
+= sprintf(buf
+ len
, "\n");
4175 len
+= sprintf(buf
, "No data\n");
4180 #ifdef SLUB_RESILIENCY_TEST
4181 static void resiliency_test(void)
4185 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || SLUB_PAGE_SHIFT
< 10);
4187 printk(KERN_ERR
"SLUB resiliency testing\n");
4188 printk(KERN_ERR
"-----------------------\n");
4189 printk(KERN_ERR
"A. Corruption after allocation\n");
4191 p
= kzalloc(16, GFP_KERNEL
);
4193 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
4194 " 0x12->0x%p\n\n", p
+ 16);
4196 validate_slab_cache(kmalloc_caches
[4]);
4198 /* Hmmm... The next two are dangerous */
4199 p
= kzalloc(32, GFP_KERNEL
);
4200 p
[32 + sizeof(void *)] = 0x34;
4201 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
4202 " 0x34 -> -0x%p\n", p
);
4204 "If allocated object is overwritten then not detectable\n\n");
4206 validate_slab_cache(kmalloc_caches
[5]);
4207 p
= kzalloc(64, GFP_KERNEL
);
4208 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4210 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4213 "If allocated object is overwritten then not detectable\n\n");
4214 validate_slab_cache(kmalloc_caches
[6]);
4216 printk(KERN_ERR
"\nB. Corruption after free\n");
4217 p
= kzalloc(128, GFP_KERNEL
);
4220 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4221 validate_slab_cache(kmalloc_caches
[7]);
4223 p
= kzalloc(256, GFP_KERNEL
);
4226 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4228 validate_slab_cache(kmalloc_caches
[8]);
4230 p
= kzalloc(512, GFP_KERNEL
);
4233 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4234 validate_slab_cache(kmalloc_caches
[9]);
4238 static void resiliency_test(void) {};
4243 enum slab_stat_type
{
4244 SL_ALL
, /* All slabs */
4245 SL_PARTIAL
, /* Only partially allocated slabs */
4246 SL_CPU
, /* Only slabs used for cpu caches */
4247 SL_OBJECTS
, /* Determine allocated objects not slabs */
4248 SL_TOTAL
/* Determine object capacity not slabs */
4251 #define SO_ALL (1 << SL_ALL)
4252 #define SO_PARTIAL (1 << SL_PARTIAL)
4253 #define SO_CPU (1 << SL_CPU)
4254 #define SO_OBJECTS (1 << SL_OBJECTS)
4255 #define SO_TOTAL (1 << SL_TOTAL)
4257 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4258 char *buf
, unsigned long flags
)
4260 unsigned long total
= 0;
4263 unsigned long *nodes
;
4264 unsigned long *per_cpu
;
4266 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4269 per_cpu
= nodes
+ nr_node_ids
;
4271 if (flags
& SO_CPU
) {
4274 for_each_possible_cpu(cpu
) {
4275 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
4277 if (!c
|| c
->node
< 0)
4281 if (flags
& SO_TOTAL
)
4282 x
= c
->page
->objects
;
4283 else if (flags
& SO_OBJECTS
)
4289 nodes
[c
->node
] += x
;
4295 lock_memory_hotplug();
4296 #ifdef CONFIG_SLUB_DEBUG
4297 if (flags
& SO_ALL
) {
4298 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4299 struct kmem_cache_node
*n
= get_node(s
, node
);
4301 if (flags
& SO_TOTAL
)
4302 x
= atomic_long_read(&n
->total_objects
);
4303 else if (flags
& SO_OBJECTS
)
4304 x
= atomic_long_read(&n
->total_objects
) -
4305 count_partial(n
, count_free
);
4308 x
= atomic_long_read(&n
->nr_slabs
);
4315 if (flags
& SO_PARTIAL
) {
4316 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4317 struct kmem_cache_node
*n
= get_node(s
, node
);
4319 if (flags
& SO_TOTAL
)
4320 x
= count_partial(n
, count_total
);
4321 else if (flags
& SO_OBJECTS
)
4322 x
= count_partial(n
, count_inuse
);
4329 x
= sprintf(buf
, "%lu", total
);
4331 for_each_node_state(node
, N_NORMAL_MEMORY
)
4333 x
+= sprintf(buf
+ x
, " N%d=%lu",
4336 unlock_memory_hotplug();
4338 return x
+ sprintf(buf
+ x
, "\n");
4341 #ifdef CONFIG_SLUB_DEBUG
4342 static int any_slab_objects(struct kmem_cache
*s
)
4346 for_each_online_node(node
) {
4347 struct kmem_cache_node
*n
= get_node(s
, node
);
4352 if (atomic_long_read(&n
->total_objects
))
4359 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4360 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
4362 struct slab_attribute
{
4363 struct attribute attr
;
4364 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4365 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4368 #define SLAB_ATTR_RO(_name) \
4369 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4371 #define SLAB_ATTR(_name) \
4372 static struct slab_attribute _name##_attr = \
4373 __ATTR(_name, 0644, _name##_show, _name##_store)
4375 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4377 return sprintf(buf
, "%d\n", s
->size
);
4379 SLAB_ATTR_RO(slab_size
);
4381 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4383 return sprintf(buf
, "%d\n", s
->align
);
4385 SLAB_ATTR_RO(align
);
4387 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4389 return sprintf(buf
, "%d\n", s
->objsize
);
4391 SLAB_ATTR_RO(object_size
);
4393 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4395 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4397 SLAB_ATTR_RO(objs_per_slab
);
4399 static ssize_t
order_store(struct kmem_cache
*s
,
4400 const char *buf
, size_t length
)
4402 unsigned long order
;
4405 err
= strict_strtoul(buf
, 10, &order
);
4409 if (order
> slub_max_order
|| order
< slub_min_order
)
4412 calculate_sizes(s
, order
);
4416 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4418 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4422 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4424 return sprintf(buf
, "%lu\n", s
->min_partial
);
4427 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4433 err
= strict_strtoul(buf
, 10, &min
);
4437 set_min_partial(s
, min
);
4440 SLAB_ATTR(min_partial
);
4442 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4446 return sprintf(buf
, "%pS\n", s
->ctor
);
4450 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4452 return sprintf(buf
, "%d\n", s
->refcount
- 1);
4454 SLAB_ATTR_RO(aliases
);
4456 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4458 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4460 SLAB_ATTR_RO(partial
);
4462 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4464 return show_slab_objects(s
, buf
, SO_CPU
);
4466 SLAB_ATTR_RO(cpu_slabs
);
4468 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4470 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4472 SLAB_ATTR_RO(objects
);
4474 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4476 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4478 SLAB_ATTR_RO(objects_partial
);
4480 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4482 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4485 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4486 const char *buf
, size_t length
)
4488 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4490 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4493 SLAB_ATTR(reclaim_account
);
4495 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4497 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4499 SLAB_ATTR_RO(hwcache_align
);
4501 #ifdef CONFIG_ZONE_DMA
4502 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4504 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4506 SLAB_ATTR_RO(cache_dma
);
4509 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4511 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4513 SLAB_ATTR_RO(destroy_by_rcu
);
4515 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
4517 return sprintf(buf
, "%d\n", s
->reserved
);
4519 SLAB_ATTR_RO(reserved
);
4521 #ifdef CONFIG_SLUB_DEBUG
4522 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4524 return show_slab_objects(s
, buf
, SO_ALL
);
4526 SLAB_ATTR_RO(slabs
);
4528 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4530 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4532 SLAB_ATTR_RO(total_objects
);
4534 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4536 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4539 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4540 const char *buf
, size_t length
)
4542 s
->flags
&= ~SLAB_DEBUG_FREE
;
4543 if (buf
[0] == '1') {
4544 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4545 s
->flags
|= SLAB_DEBUG_FREE
;
4549 SLAB_ATTR(sanity_checks
);
4551 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4553 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4556 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4559 s
->flags
&= ~SLAB_TRACE
;
4560 if (buf
[0] == '1') {
4561 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4562 s
->flags
|= SLAB_TRACE
;
4568 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4570 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4573 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4574 const char *buf
, size_t length
)
4576 if (any_slab_objects(s
))
4579 s
->flags
&= ~SLAB_RED_ZONE
;
4580 if (buf
[0] == '1') {
4581 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4582 s
->flags
|= SLAB_RED_ZONE
;
4584 calculate_sizes(s
, -1);
4587 SLAB_ATTR(red_zone
);
4589 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4591 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4594 static ssize_t
poison_store(struct kmem_cache
*s
,
4595 const char *buf
, size_t length
)
4597 if (any_slab_objects(s
))
4600 s
->flags
&= ~SLAB_POISON
;
4601 if (buf
[0] == '1') {
4602 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4603 s
->flags
|= SLAB_POISON
;
4605 calculate_sizes(s
, -1);
4610 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4612 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4615 static ssize_t
store_user_store(struct kmem_cache
*s
,
4616 const char *buf
, size_t length
)
4618 if (any_slab_objects(s
))
4621 s
->flags
&= ~SLAB_STORE_USER
;
4622 if (buf
[0] == '1') {
4623 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4624 s
->flags
|= SLAB_STORE_USER
;
4626 calculate_sizes(s
, -1);
4629 SLAB_ATTR(store_user
);
4631 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4636 static ssize_t
validate_store(struct kmem_cache
*s
,
4637 const char *buf
, size_t length
)
4641 if (buf
[0] == '1') {
4642 ret
= validate_slab_cache(s
);
4648 SLAB_ATTR(validate
);
4650 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4652 if (!(s
->flags
& SLAB_STORE_USER
))
4654 return list_locations(s
, buf
, TRACK_ALLOC
);
4656 SLAB_ATTR_RO(alloc_calls
);
4658 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4660 if (!(s
->flags
& SLAB_STORE_USER
))
4662 return list_locations(s
, buf
, TRACK_FREE
);
4664 SLAB_ATTR_RO(free_calls
);
4665 #endif /* CONFIG_SLUB_DEBUG */
4667 #ifdef CONFIG_FAILSLAB
4668 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4670 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4673 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4676 s
->flags
&= ~SLAB_FAILSLAB
;
4678 s
->flags
|= SLAB_FAILSLAB
;
4681 SLAB_ATTR(failslab
);
4684 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4689 static ssize_t
shrink_store(struct kmem_cache
*s
,
4690 const char *buf
, size_t length
)
4692 if (buf
[0] == '1') {
4693 int rc
= kmem_cache_shrink(s
);
4704 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4706 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4709 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4710 const char *buf
, size_t length
)
4712 unsigned long ratio
;
4715 err
= strict_strtoul(buf
, 10, &ratio
);
4720 s
->remote_node_defrag_ratio
= ratio
* 10;
4724 SLAB_ATTR(remote_node_defrag_ratio
);
4727 #ifdef CONFIG_SLUB_STATS
4728 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4730 unsigned long sum
= 0;
4733 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4738 for_each_online_cpu(cpu
) {
4739 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
4745 len
= sprintf(buf
, "%lu", sum
);
4748 for_each_online_cpu(cpu
) {
4749 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4750 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4754 return len
+ sprintf(buf
+ len
, "\n");
4757 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
4761 for_each_online_cpu(cpu
)
4762 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
4765 #define STAT_ATTR(si, text) \
4766 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4768 return show_stat(s, buf, si); \
4770 static ssize_t text##_store(struct kmem_cache *s, \
4771 const char *buf, size_t length) \
4773 if (buf[0] != '0') \
4775 clear_stat(s, si); \
4780 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4781 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4782 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4783 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4784 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4785 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4786 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4787 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4788 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4789 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4790 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
4791 STAT_ATTR(FREE_SLAB
, free_slab
);
4792 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4793 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4794 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4795 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4796 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4797 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4798 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
4799 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4800 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
4801 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
4804 static struct attribute
*slab_attrs
[] = {
4805 &slab_size_attr
.attr
,
4806 &object_size_attr
.attr
,
4807 &objs_per_slab_attr
.attr
,
4809 &min_partial_attr
.attr
,
4811 &objects_partial_attr
.attr
,
4813 &cpu_slabs_attr
.attr
,
4817 &hwcache_align_attr
.attr
,
4818 &reclaim_account_attr
.attr
,
4819 &destroy_by_rcu_attr
.attr
,
4821 &reserved_attr
.attr
,
4822 #ifdef CONFIG_SLUB_DEBUG
4823 &total_objects_attr
.attr
,
4825 &sanity_checks_attr
.attr
,
4827 &red_zone_attr
.attr
,
4829 &store_user_attr
.attr
,
4830 &validate_attr
.attr
,
4831 &alloc_calls_attr
.attr
,
4832 &free_calls_attr
.attr
,
4834 #ifdef CONFIG_ZONE_DMA
4835 &cache_dma_attr
.attr
,
4838 &remote_node_defrag_ratio_attr
.attr
,
4840 #ifdef CONFIG_SLUB_STATS
4841 &alloc_fastpath_attr
.attr
,
4842 &alloc_slowpath_attr
.attr
,
4843 &free_fastpath_attr
.attr
,
4844 &free_slowpath_attr
.attr
,
4845 &free_frozen_attr
.attr
,
4846 &free_add_partial_attr
.attr
,
4847 &free_remove_partial_attr
.attr
,
4848 &alloc_from_partial_attr
.attr
,
4849 &alloc_slab_attr
.attr
,
4850 &alloc_refill_attr
.attr
,
4851 &alloc_node_mismatch_attr
.attr
,
4852 &free_slab_attr
.attr
,
4853 &cpuslab_flush_attr
.attr
,
4854 &deactivate_full_attr
.attr
,
4855 &deactivate_empty_attr
.attr
,
4856 &deactivate_to_head_attr
.attr
,
4857 &deactivate_to_tail_attr
.attr
,
4858 &deactivate_remote_frees_attr
.attr
,
4859 &deactivate_bypass_attr
.attr
,
4860 &order_fallback_attr
.attr
,
4861 &cmpxchg_double_fail_attr
.attr
,
4862 &cmpxchg_double_cpu_fail_attr
.attr
,
4864 #ifdef CONFIG_FAILSLAB
4865 &failslab_attr
.attr
,
4871 static struct attribute_group slab_attr_group
= {
4872 .attrs
= slab_attrs
,
4875 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4876 struct attribute
*attr
,
4879 struct slab_attribute
*attribute
;
4880 struct kmem_cache
*s
;
4883 attribute
= to_slab_attr(attr
);
4886 if (!attribute
->show
)
4889 err
= attribute
->show(s
, buf
);
4894 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4895 struct attribute
*attr
,
4896 const char *buf
, size_t len
)
4898 struct slab_attribute
*attribute
;
4899 struct kmem_cache
*s
;
4902 attribute
= to_slab_attr(attr
);
4905 if (!attribute
->store
)
4908 err
= attribute
->store(s
, buf
, len
);
4913 static void kmem_cache_release(struct kobject
*kobj
)
4915 struct kmem_cache
*s
= to_slab(kobj
);
4921 static const struct sysfs_ops slab_sysfs_ops
= {
4922 .show
= slab_attr_show
,
4923 .store
= slab_attr_store
,
4926 static struct kobj_type slab_ktype
= {
4927 .sysfs_ops
= &slab_sysfs_ops
,
4928 .release
= kmem_cache_release
4931 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4933 struct kobj_type
*ktype
= get_ktype(kobj
);
4935 if (ktype
== &slab_ktype
)
4940 static const struct kset_uevent_ops slab_uevent_ops
= {
4941 .filter
= uevent_filter
,
4944 static struct kset
*slab_kset
;
4946 #define ID_STR_LENGTH 64
4948 /* Create a unique string id for a slab cache:
4950 * Format :[flags-]size
4952 static char *create_unique_id(struct kmem_cache
*s
)
4954 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4961 * First flags affecting slabcache operations. We will only
4962 * get here for aliasable slabs so we do not need to support
4963 * too many flags. The flags here must cover all flags that
4964 * are matched during merging to guarantee that the id is
4967 if (s
->flags
& SLAB_CACHE_DMA
)
4969 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4971 if (s
->flags
& SLAB_DEBUG_FREE
)
4973 if (!(s
->flags
& SLAB_NOTRACK
))
4977 p
+= sprintf(p
, "%07d", s
->size
);
4978 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4982 static int sysfs_slab_add(struct kmem_cache
*s
)
4988 if (slab_state
< SYSFS
)
4989 /* Defer until later */
4992 unmergeable
= slab_unmergeable(s
);
4995 * Slabcache can never be merged so we can use the name proper.
4996 * This is typically the case for debug situations. In that
4997 * case we can catch duplicate names easily.
4999 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5003 * Create a unique name for the slab as a target
5006 name
= create_unique_id(s
);
5009 s
->kobj
.kset
= slab_kset
;
5010 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
5012 kobject_put(&s
->kobj
);
5016 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5018 kobject_del(&s
->kobj
);
5019 kobject_put(&s
->kobj
);
5022 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5024 /* Setup first alias */
5025 sysfs_slab_alias(s
, s
->name
);
5031 static void sysfs_slab_remove(struct kmem_cache
*s
)
5033 if (slab_state
< SYSFS
)
5035 * Sysfs has not been setup yet so no need to remove the
5040 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5041 kobject_del(&s
->kobj
);
5042 kobject_put(&s
->kobj
);
5046 * Need to buffer aliases during bootup until sysfs becomes
5047 * available lest we lose that information.
5049 struct saved_alias
{
5050 struct kmem_cache
*s
;
5052 struct saved_alias
*next
;
5055 static struct saved_alias
*alias_list
;
5057 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5059 struct saved_alias
*al
;
5061 if (slab_state
== SYSFS
) {
5063 * If we have a leftover link then remove it.
5065 sysfs_remove_link(&slab_kset
->kobj
, name
);
5066 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5069 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5075 al
->next
= alias_list
;
5080 static int __init
slab_sysfs_init(void)
5082 struct kmem_cache
*s
;
5085 down_write(&slub_lock
);
5087 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5089 up_write(&slub_lock
);
5090 printk(KERN_ERR
"Cannot register slab subsystem.\n");
5096 list_for_each_entry(s
, &slab_caches
, list
) {
5097 err
= sysfs_slab_add(s
);
5099 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
5100 " to sysfs\n", s
->name
);
5103 while (alias_list
) {
5104 struct saved_alias
*al
= alias_list
;
5106 alias_list
= alias_list
->next
;
5107 err
= sysfs_slab_alias(al
->s
, al
->name
);
5109 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
5110 " %s to sysfs\n", s
->name
);
5114 up_write(&slub_lock
);
5119 __initcall(slab_sysfs_init
);
5120 #endif /* CONFIG_SYSFS */
5123 * The /proc/slabinfo ABI
5125 #ifdef CONFIG_SLABINFO
5126 static void print_slabinfo_header(struct seq_file
*m
)
5128 seq_puts(m
, "slabinfo - version: 2.1\n");
5129 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
5130 "<objperslab> <pagesperslab>");
5131 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
5132 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5136 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
5140 down_read(&slub_lock
);
5142 print_slabinfo_header(m
);
5144 return seq_list_start(&slab_caches
, *pos
);
5147 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
5149 return seq_list_next(p
, &slab_caches
, pos
);
5152 static void s_stop(struct seq_file
*m
, void *p
)
5154 up_read(&slub_lock
);
5157 static int s_show(struct seq_file
*m
, void *p
)
5159 unsigned long nr_partials
= 0;
5160 unsigned long nr_slabs
= 0;
5161 unsigned long nr_inuse
= 0;
5162 unsigned long nr_objs
= 0;
5163 unsigned long nr_free
= 0;
5164 struct kmem_cache
*s
;
5167 s
= list_entry(p
, struct kmem_cache
, list
);
5169 for_each_online_node(node
) {
5170 struct kmem_cache_node
*n
= get_node(s
, node
);
5175 nr_partials
+= n
->nr_partial
;
5176 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
5177 nr_objs
+= atomic_long_read(&n
->total_objects
);
5178 nr_free
+= count_partial(n
, count_free
);
5181 nr_inuse
= nr_objs
- nr_free
;
5183 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
5184 nr_objs
, s
->size
, oo_objects(s
->oo
),
5185 (1 << oo_order(s
->oo
)));
5186 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
5187 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
5193 static const struct seq_operations slabinfo_op
= {
5200 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
5202 return seq_open(file
, &slabinfo_op
);
5205 static const struct file_operations proc_slabinfo_operations
= {
5206 .open
= slabinfo_open
,
5208 .llseek
= seq_lseek
,
5209 .release
= seq_release
,
5212 static int __init
slab_proc_init(void)
5214 proc_create("slabinfo", S_IRUGO
, NULL
, &proc_slabinfo_operations
);
5217 module_init(slab_proc_init
);
5218 #endif /* CONFIG_SLABINFO */