Add linux-next specific files for 20110716
[linux-2.6/next.git] / mm / slub.c
blobd853e953313bee78b526ccd25158e304f9262176
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 #include <linux/stacktrace.h>
33 #include <trace/events/kmem.h>
36 * Lock order:
37 * 1. slub_lock (Global Semaphore)
38 * 2. node->list_lock
39 * 3. slab_lock(page) (Only on some arches and for debugging)
41 * slub_lock
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
69 * the list lock.
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
88 * Overloading of page flags that are otherwise used for LRU management.
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
114 static inline int kmem_cache_debug(struct kmem_cache *s)
116 #ifdef CONFIG_SLUB_DEBUG
117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118 #else
119 return 0;
120 #endif
124 * Issues still to be resolved:
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 * - Variable sizing of the per node arrays
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
134 /* Enable to log cmpxchg failures */
135 #undef SLUB_DEBUG_CMPXCHG
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
141 #define MIN_PARTIAL 5
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
148 #define MAX_PARTIAL 10
150 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
158 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
161 * Set of flags that will prevent slab merging
163 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 SLAB_FAILSLAB)
167 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
168 SLAB_CACHE_DMA | SLAB_NOTRACK)
170 #define OO_SHIFT 16
171 #define OO_MASK ((1 << OO_SHIFT) - 1)
172 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
174 /* Internal SLUB flags */
175 #define __OBJECT_POISON 0x80000000UL /* Poison object */
176 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
178 static int kmem_size = sizeof(struct kmem_cache);
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
184 static enum {
185 DOWN, /* No slab functionality available */
186 PARTIAL, /* Kmem_cache_node works */
187 UP, /* Everything works but does not show up in sysfs */
188 SYSFS /* Sysfs up */
189 } slab_state = DOWN;
191 /* A list of all slab caches on the system */
192 static DECLARE_RWSEM(slub_lock);
193 static LIST_HEAD(slab_caches);
196 * Tracking user of a slab.
198 #define TRACK_ADDRS_COUNT 16
199 struct track {
200 unsigned long addr; /* Called from address */
201 #ifdef CONFIG_STACKTRACE
202 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
203 #endif
204 int cpu; /* Was running on cpu */
205 int pid; /* Pid context */
206 unsigned long when; /* When did the operation occur */
209 enum track_item { TRACK_ALLOC, TRACK_FREE };
211 #ifdef CONFIG_SYSFS
212 static int sysfs_slab_add(struct kmem_cache *);
213 static int sysfs_slab_alias(struct kmem_cache *, const char *);
214 static void sysfs_slab_remove(struct kmem_cache *);
216 #else
217 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 { return 0; }
220 static inline void sysfs_slab_remove(struct kmem_cache *s)
222 kfree(s->name);
223 kfree(s);
226 #endif
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 #ifdef CONFIG_SLUB_STATS
231 __this_cpu_inc(s->cpu_slab->stat[si]);
232 #endif
235 /********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
239 int slab_is_available(void)
241 return slab_state >= UP;
244 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
246 return s->node[node];
249 /* Verify that a pointer has an address that is valid within a slab page */
250 static inline int check_valid_pointer(struct kmem_cache *s,
251 struct page *page, const void *object)
253 void *base;
255 if (!object)
256 return 1;
258 base = page_address(page);
259 if (object < base || object >= base + page->objects * s->size ||
260 (object - base) % s->size) {
261 return 0;
264 return 1;
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
269 return *(void **)(object + s->offset);
272 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
274 void *p;
276 #ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278 #else
279 p = get_freepointer(s, object);
280 #endif
281 return p;
284 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
286 *(void **)(object + s->offset) = fp;
289 /* Loop over all objects in a slab */
290 #define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
292 __p += (__s)->size)
294 /* Determine object index from a given position */
295 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
297 return (p - addr) / s->size;
300 static inline size_t slab_ksize(const struct kmem_cache *s)
302 #ifdef CONFIG_SLUB_DEBUG
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
307 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308 return s->objsize;
310 #endif
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
316 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317 return s->inuse;
319 * Else we can use all the padding etc for the allocation
321 return s->size;
324 static inline int order_objects(int order, unsigned long size, int reserved)
326 return ((PAGE_SIZE << order) - reserved) / size;
329 static inline struct kmem_cache_order_objects oo_make(int order,
330 unsigned long size, int reserved)
332 struct kmem_cache_order_objects x = {
333 (order << OO_SHIFT) + order_objects(order, size, reserved)
336 return x;
339 static inline int oo_order(struct kmem_cache_order_objects x)
341 return x.x >> OO_SHIFT;
344 static inline int oo_objects(struct kmem_cache_order_objects x)
346 return x.x & OO_MASK;
350 * Per slab locking using the pagelock
352 static __always_inline void slab_lock(struct page *page)
354 bit_spin_lock(PG_locked, &page->flags);
357 static __always_inline void slab_unlock(struct page *page)
359 __bit_spin_unlock(PG_locked, &page->flags);
362 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
363 void *freelist_old, unsigned long counters_old,
364 void *freelist_new, unsigned long counters_new,
365 const char *n)
367 #ifdef CONFIG_CMPXCHG_DOUBLE
368 if (s->flags & __CMPXCHG_DOUBLE) {
369 if (cmpxchg_double(&page->freelist,
370 freelist_old, counters_old,
371 freelist_new, counters_new))
372 return 1;
373 } else
374 #endif
376 slab_lock(page);
377 if (page->freelist == freelist_old && page->counters == counters_old) {
378 page->freelist = freelist_new;
379 page->counters = counters_new;
380 slab_unlock(page);
381 return 1;
383 slab_unlock(page);
386 cpu_relax();
387 stat(s, CMPXCHG_DOUBLE_FAIL);
389 #ifdef SLUB_DEBUG_CMPXCHG
390 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
391 #endif
393 return 0;
396 #ifdef CONFIG_SLUB_DEBUG
398 * Determine a map of object in use on a page.
400 * Node listlock must be held to guarantee that the page does
401 * not vanish from under us.
403 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
405 void *p;
406 void *addr = page_address(page);
408 for (p = page->freelist; p; p = get_freepointer(s, p))
409 set_bit(slab_index(p, s, addr), map);
413 * Debug settings:
415 #ifdef CONFIG_SLUB_DEBUG_ON
416 static int slub_debug = DEBUG_DEFAULT_FLAGS;
417 #else
418 static int slub_debug;
419 #endif
421 static char *slub_debug_slabs;
422 static int disable_higher_order_debug;
425 * Object debugging
427 static void print_section(char *text, u8 *addr, unsigned int length)
429 int i, offset;
430 int newline = 1;
431 char ascii[17];
433 ascii[16] = 0;
435 for (i = 0; i < length; i++) {
436 if (newline) {
437 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
438 newline = 0;
440 printk(KERN_CONT " %02x", addr[i]);
441 offset = i % 16;
442 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
443 if (offset == 15) {
444 printk(KERN_CONT " %s\n", ascii);
445 newline = 1;
448 if (!newline) {
449 i %= 16;
450 while (i < 16) {
451 printk(KERN_CONT " ");
452 ascii[i] = ' ';
453 i++;
455 printk(KERN_CONT " %s\n", ascii);
459 static struct track *get_track(struct kmem_cache *s, void *object,
460 enum track_item alloc)
462 struct track *p;
464 if (s->offset)
465 p = object + s->offset + sizeof(void *);
466 else
467 p = object + s->inuse;
469 return p + alloc;
472 static void set_track(struct kmem_cache *s, void *object,
473 enum track_item alloc, unsigned long addr)
475 struct track *p = get_track(s, object, alloc);
477 if (addr) {
478 #ifdef CONFIG_STACKTRACE
479 struct stack_trace trace;
480 int i;
482 trace.nr_entries = 0;
483 trace.max_entries = TRACK_ADDRS_COUNT;
484 trace.entries = p->addrs;
485 trace.skip = 3;
486 save_stack_trace(&trace);
488 /* See rant in lockdep.c */
489 if (trace.nr_entries != 0 &&
490 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
491 trace.nr_entries--;
493 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
494 p->addrs[i] = 0;
495 #endif
496 p->addr = addr;
497 p->cpu = smp_processor_id();
498 p->pid = current->pid;
499 p->when = jiffies;
500 } else
501 memset(p, 0, sizeof(struct track));
504 static void init_tracking(struct kmem_cache *s, void *object)
506 if (!(s->flags & SLAB_STORE_USER))
507 return;
509 set_track(s, object, TRACK_FREE, 0UL);
510 set_track(s, object, TRACK_ALLOC, 0UL);
513 static void print_track(const char *s, struct track *t)
515 if (!t->addr)
516 return;
518 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
519 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
520 #ifdef CONFIG_STACKTRACE
522 int i;
523 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
524 if (t->addrs[i])
525 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
526 else
527 break;
529 #endif
532 static void print_tracking(struct kmem_cache *s, void *object)
534 if (!(s->flags & SLAB_STORE_USER))
535 return;
537 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
538 print_track("Freed", get_track(s, object, TRACK_FREE));
541 static void print_page_info(struct page *page)
543 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
544 page, page->objects, page->inuse, page->freelist, page->flags);
548 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
550 va_list args;
551 char buf[100];
553 va_start(args, fmt);
554 vsnprintf(buf, sizeof(buf), fmt, args);
555 va_end(args);
556 printk(KERN_ERR "========================================"
557 "=====================================\n");
558 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
559 printk(KERN_ERR "----------------------------------------"
560 "-------------------------------------\n\n");
563 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
565 va_list args;
566 char buf[100];
568 va_start(args, fmt);
569 vsnprintf(buf, sizeof(buf), fmt, args);
570 va_end(args);
571 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
574 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
576 unsigned int off; /* Offset of last byte */
577 u8 *addr = page_address(page);
579 print_tracking(s, p);
581 print_page_info(page);
583 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
584 p, p - addr, get_freepointer(s, p));
586 if (p > addr + 16)
587 print_section("Bytes b4", p - 16, 16);
589 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
591 if (s->flags & SLAB_RED_ZONE)
592 print_section("Redzone", p + s->objsize,
593 s->inuse - s->objsize);
595 if (s->offset)
596 off = s->offset + sizeof(void *);
597 else
598 off = s->inuse;
600 if (s->flags & SLAB_STORE_USER)
601 off += 2 * sizeof(struct track);
603 if (off != s->size)
604 /* Beginning of the filler is the free pointer */
605 print_section("Padding", p + off, s->size - off);
607 dump_stack();
610 static void object_err(struct kmem_cache *s, struct page *page,
611 u8 *object, char *reason)
613 slab_bug(s, "%s", reason);
614 print_trailer(s, page, object);
617 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
619 va_list args;
620 char buf[100];
622 va_start(args, fmt);
623 vsnprintf(buf, sizeof(buf), fmt, args);
624 va_end(args);
625 slab_bug(s, "%s", buf);
626 print_page_info(page);
627 dump_stack();
630 static void init_object(struct kmem_cache *s, void *object, u8 val)
632 u8 *p = object;
634 if (s->flags & __OBJECT_POISON) {
635 memset(p, POISON_FREE, s->objsize - 1);
636 p[s->objsize - 1] = POISON_END;
639 if (s->flags & SLAB_RED_ZONE)
640 memset(p + s->objsize, val, s->inuse - s->objsize);
643 static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
645 while (bytes) {
646 if (*start != value)
647 return start;
648 start++;
649 bytes--;
651 return NULL;
654 static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
656 u64 value64;
657 unsigned int words, prefix;
659 if (bytes <= 16)
660 return check_bytes8(start, value, bytes);
662 value64 = value | value << 8 | value << 16 | value << 24;
663 value64 = value64 | value64 << 32;
664 prefix = 8 - ((unsigned long)start) % 8;
666 if (prefix) {
667 u8 *r = check_bytes8(start, value, prefix);
668 if (r)
669 return r;
670 start += prefix;
671 bytes -= prefix;
674 words = bytes / 8;
676 while (words) {
677 if (*(u64 *)start != value64)
678 return check_bytes8(start, value, 8);
679 start += 8;
680 words--;
683 return check_bytes8(start, value, bytes % 8);
686 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
687 void *from, void *to)
689 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
690 memset(from, data, to - from);
693 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
694 u8 *object, char *what,
695 u8 *start, unsigned int value, unsigned int bytes)
697 u8 *fault;
698 u8 *end;
700 fault = check_bytes(start, value, bytes);
701 if (!fault)
702 return 1;
704 end = start + bytes;
705 while (end > fault && end[-1] == value)
706 end--;
708 slab_bug(s, "%s overwritten", what);
709 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
710 fault, end - 1, fault[0], value);
711 print_trailer(s, page, object);
713 restore_bytes(s, what, value, fault, end);
714 return 0;
718 * Object layout:
720 * object address
721 * Bytes of the object to be managed.
722 * If the freepointer may overlay the object then the free
723 * pointer is the first word of the object.
725 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
726 * 0xa5 (POISON_END)
728 * object + s->objsize
729 * Padding to reach word boundary. This is also used for Redzoning.
730 * Padding is extended by another word if Redzoning is enabled and
731 * objsize == inuse.
733 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
734 * 0xcc (RED_ACTIVE) for objects in use.
736 * object + s->inuse
737 * Meta data starts here.
739 * A. Free pointer (if we cannot overwrite object on free)
740 * B. Tracking data for SLAB_STORE_USER
741 * C. Padding to reach required alignment boundary or at mininum
742 * one word if debugging is on to be able to detect writes
743 * before the word boundary.
745 * Padding is done using 0x5a (POISON_INUSE)
747 * object + s->size
748 * Nothing is used beyond s->size.
750 * If slabcaches are merged then the objsize and inuse boundaries are mostly
751 * ignored. And therefore no slab options that rely on these boundaries
752 * may be used with merged slabcaches.
755 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
757 unsigned long off = s->inuse; /* The end of info */
759 if (s->offset)
760 /* Freepointer is placed after the object. */
761 off += sizeof(void *);
763 if (s->flags & SLAB_STORE_USER)
764 /* We also have user information there */
765 off += 2 * sizeof(struct track);
767 if (s->size == off)
768 return 1;
770 return check_bytes_and_report(s, page, p, "Object padding",
771 p + off, POISON_INUSE, s->size - off);
774 /* Check the pad bytes at the end of a slab page */
775 static int slab_pad_check(struct kmem_cache *s, struct page *page)
777 u8 *start;
778 u8 *fault;
779 u8 *end;
780 int length;
781 int remainder;
783 if (!(s->flags & SLAB_POISON))
784 return 1;
786 start = page_address(page);
787 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
788 end = start + length;
789 remainder = length % s->size;
790 if (!remainder)
791 return 1;
793 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
794 if (!fault)
795 return 1;
796 while (end > fault && end[-1] == POISON_INUSE)
797 end--;
799 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
800 print_section("Padding", end - remainder, remainder);
802 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
803 return 0;
806 static int check_object(struct kmem_cache *s, struct page *page,
807 void *object, u8 val)
809 u8 *p = object;
810 u8 *endobject = object + s->objsize;
812 if (s->flags & SLAB_RED_ZONE) {
813 if (!check_bytes_and_report(s, page, object, "Redzone",
814 endobject, val, s->inuse - s->objsize))
815 return 0;
816 } else {
817 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
818 check_bytes_and_report(s, page, p, "Alignment padding",
819 endobject, POISON_INUSE, s->inuse - s->objsize);
823 if (s->flags & SLAB_POISON) {
824 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
825 (!check_bytes_and_report(s, page, p, "Poison", p,
826 POISON_FREE, s->objsize - 1) ||
827 !check_bytes_and_report(s, page, p, "Poison",
828 p + s->objsize - 1, POISON_END, 1)))
829 return 0;
831 * check_pad_bytes cleans up on its own.
833 check_pad_bytes(s, page, p);
836 if (!s->offset && val == SLUB_RED_ACTIVE)
838 * Object and freepointer overlap. Cannot check
839 * freepointer while object is allocated.
841 return 1;
843 /* Check free pointer validity */
844 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
845 object_err(s, page, p, "Freepointer corrupt");
847 * No choice but to zap it and thus lose the remainder
848 * of the free objects in this slab. May cause
849 * another error because the object count is now wrong.
851 set_freepointer(s, p, NULL);
852 return 0;
854 return 1;
857 static int check_slab(struct kmem_cache *s, struct page *page)
859 int maxobj;
861 VM_BUG_ON(!irqs_disabled());
863 if (!PageSlab(page)) {
864 slab_err(s, page, "Not a valid slab page");
865 return 0;
868 maxobj = order_objects(compound_order(page), s->size, s->reserved);
869 if (page->objects > maxobj) {
870 slab_err(s, page, "objects %u > max %u",
871 s->name, page->objects, maxobj);
872 return 0;
874 if (page->inuse > page->objects) {
875 slab_err(s, page, "inuse %u > max %u",
876 s->name, page->inuse, page->objects);
877 return 0;
879 /* Slab_pad_check fixes things up after itself */
880 slab_pad_check(s, page);
881 return 1;
885 * Determine if a certain object on a page is on the freelist. Must hold the
886 * slab lock to guarantee that the chains are in a consistent state.
888 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
890 int nr = 0;
891 void *fp;
892 void *object = NULL;
893 unsigned long max_objects;
895 fp = page->freelist;
896 while (fp && nr <= page->objects) {
897 if (fp == search)
898 return 1;
899 if (!check_valid_pointer(s, page, fp)) {
900 if (object) {
901 object_err(s, page, object,
902 "Freechain corrupt");
903 set_freepointer(s, object, NULL);
904 break;
905 } else {
906 slab_err(s, page, "Freepointer corrupt");
907 page->freelist = NULL;
908 page->inuse = page->objects;
909 slab_fix(s, "Freelist cleared");
910 return 0;
912 break;
914 object = fp;
915 fp = get_freepointer(s, object);
916 nr++;
919 max_objects = order_objects(compound_order(page), s->size, s->reserved);
920 if (max_objects > MAX_OBJS_PER_PAGE)
921 max_objects = MAX_OBJS_PER_PAGE;
923 if (page->objects != max_objects) {
924 slab_err(s, page, "Wrong number of objects. Found %d but "
925 "should be %d", page->objects, max_objects);
926 page->objects = max_objects;
927 slab_fix(s, "Number of objects adjusted.");
929 if (page->inuse != page->objects - nr) {
930 slab_err(s, page, "Wrong object count. Counter is %d but "
931 "counted were %d", page->inuse, page->objects - nr);
932 page->inuse = page->objects - nr;
933 slab_fix(s, "Object count adjusted.");
935 return search == NULL;
938 static void trace(struct kmem_cache *s, struct page *page, void *object,
939 int alloc)
941 if (s->flags & SLAB_TRACE) {
942 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
943 s->name,
944 alloc ? "alloc" : "free",
945 object, page->inuse,
946 page->freelist);
948 if (!alloc)
949 print_section("Object", (void *)object, s->objsize);
951 dump_stack();
956 * Hooks for other subsystems that check memory allocations. In a typical
957 * production configuration these hooks all should produce no code at all.
959 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
961 flags &= gfp_allowed_mask;
962 lockdep_trace_alloc(flags);
963 might_sleep_if(flags & __GFP_WAIT);
965 return should_failslab(s->objsize, flags, s->flags);
968 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
970 flags &= gfp_allowed_mask;
971 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
972 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
975 static inline void slab_free_hook(struct kmem_cache *s, void *x)
977 kmemleak_free_recursive(x, s->flags);
980 * Trouble is that we may no longer disable interupts in the fast path
981 * So in order to make the debug calls that expect irqs to be
982 * disabled we need to disable interrupts temporarily.
984 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
986 unsigned long flags;
988 local_irq_save(flags);
989 kmemcheck_slab_free(s, x, s->objsize);
990 debug_check_no_locks_freed(x, s->objsize);
991 local_irq_restore(flags);
993 #endif
994 if (!(s->flags & SLAB_DEBUG_OBJECTS))
995 debug_check_no_obj_freed(x, s->objsize);
999 * Tracking of fully allocated slabs for debugging purposes.
1001 * list_lock must be held.
1003 static void add_full(struct kmem_cache *s,
1004 struct kmem_cache_node *n, struct page *page)
1006 if (!(s->flags & SLAB_STORE_USER))
1007 return;
1009 list_add(&page->lru, &n->full);
1013 * list_lock must be held.
1015 static void remove_full(struct kmem_cache *s, struct page *page)
1017 if (!(s->flags & SLAB_STORE_USER))
1018 return;
1020 list_del(&page->lru);
1023 /* Tracking of the number of slabs for debugging purposes */
1024 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1026 struct kmem_cache_node *n = get_node(s, node);
1028 return atomic_long_read(&n->nr_slabs);
1031 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1033 return atomic_long_read(&n->nr_slabs);
1036 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1038 struct kmem_cache_node *n = get_node(s, node);
1041 * May be called early in order to allocate a slab for the
1042 * kmem_cache_node structure. Solve the chicken-egg
1043 * dilemma by deferring the increment of the count during
1044 * bootstrap (see early_kmem_cache_node_alloc).
1046 if (n) {
1047 atomic_long_inc(&n->nr_slabs);
1048 atomic_long_add(objects, &n->total_objects);
1051 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1053 struct kmem_cache_node *n = get_node(s, node);
1055 atomic_long_dec(&n->nr_slabs);
1056 atomic_long_sub(objects, &n->total_objects);
1059 /* Object debug checks for alloc/free paths */
1060 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1061 void *object)
1063 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1064 return;
1066 init_object(s, object, SLUB_RED_INACTIVE);
1067 init_tracking(s, object);
1070 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1071 void *object, unsigned long addr)
1073 if (!check_slab(s, page))
1074 goto bad;
1076 if (!check_valid_pointer(s, page, object)) {
1077 object_err(s, page, object, "Freelist Pointer check fails");
1078 goto bad;
1081 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1082 goto bad;
1084 /* Success perform special debug activities for allocs */
1085 if (s->flags & SLAB_STORE_USER)
1086 set_track(s, object, TRACK_ALLOC, addr);
1087 trace(s, page, object, 1);
1088 init_object(s, object, SLUB_RED_ACTIVE);
1089 return 1;
1091 bad:
1092 if (PageSlab(page)) {
1094 * If this is a slab page then lets do the best we can
1095 * to avoid issues in the future. Marking all objects
1096 * as used avoids touching the remaining objects.
1098 slab_fix(s, "Marking all objects used");
1099 page->inuse = page->objects;
1100 page->freelist = NULL;
1102 return 0;
1105 static noinline int free_debug_processing(struct kmem_cache *s,
1106 struct page *page, void *object, unsigned long addr)
1108 unsigned long flags;
1109 int rc = 0;
1111 local_irq_save(flags);
1112 slab_lock(page);
1114 if (!check_slab(s, page))
1115 goto fail;
1117 if (!check_valid_pointer(s, page, object)) {
1118 slab_err(s, page, "Invalid object pointer 0x%p", object);
1119 goto fail;
1122 if (on_freelist(s, page, object)) {
1123 object_err(s, page, object, "Object already free");
1124 goto fail;
1127 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1128 goto out;
1130 if (unlikely(s != page->slab)) {
1131 if (!PageSlab(page)) {
1132 slab_err(s, page, "Attempt to free object(0x%p) "
1133 "outside of slab", object);
1134 } else if (!page->slab) {
1135 printk(KERN_ERR
1136 "SLUB <none>: no slab for object 0x%p.\n",
1137 object);
1138 dump_stack();
1139 } else
1140 object_err(s, page, object,
1141 "page slab pointer corrupt.");
1142 goto fail;
1145 if (s->flags & SLAB_STORE_USER)
1146 set_track(s, object, TRACK_FREE, addr);
1147 trace(s, page, object, 0);
1148 init_object(s, object, SLUB_RED_INACTIVE);
1149 rc = 1;
1150 out:
1151 slab_unlock(page);
1152 local_irq_restore(flags);
1153 return rc;
1155 fail:
1156 slab_fix(s, "Object at 0x%p not freed", object);
1157 goto out;
1160 static int __init setup_slub_debug(char *str)
1162 slub_debug = DEBUG_DEFAULT_FLAGS;
1163 if (*str++ != '=' || !*str)
1165 * No options specified. Switch on full debugging.
1167 goto out;
1169 if (*str == ',')
1171 * No options but restriction on slabs. This means full
1172 * debugging for slabs matching a pattern.
1174 goto check_slabs;
1176 if (tolower(*str) == 'o') {
1178 * Avoid enabling debugging on caches if its minimum order
1179 * would increase as a result.
1181 disable_higher_order_debug = 1;
1182 goto out;
1185 slub_debug = 0;
1186 if (*str == '-')
1188 * Switch off all debugging measures.
1190 goto out;
1193 * Determine which debug features should be switched on
1195 for (; *str && *str != ','; str++) {
1196 switch (tolower(*str)) {
1197 case 'f':
1198 slub_debug |= SLAB_DEBUG_FREE;
1199 break;
1200 case 'z':
1201 slub_debug |= SLAB_RED_ZONE;
1202 break;
1203 case 'p':
1204 slub_debug |= SLAB_POISON;
1205 break;
1206 case 'u':
1207 slub_debug |= SLAB_STORE_USER;
1208 break;
1209 case 't':
1210 slub_debug |= SLAB_TRACE;
1211 break;
1212 case 'a':
1213 slub_debug |= SLAB_FAILSLAB;
1214 break;
1215 default:
1216 printk(KERN_ERR "slub_debug option '%c' "
1217 "unknown. skipped\n", *str);
1221 check_slabs:
1222 if (*str == ',')
1223 slub_debug_slabs = str + 1;
1224 out:
1225 return 1;
1228 __setup("slub_debug", setup_slub_debug);
1230 static unsigned long kmem_cache_flags(unsigned long objsize,
1231 unsigned long flags, const char *name,
1232 void (*ctor)(void *))
1235 * Enable debugging if selected on the kernel commandline.
1237 if (slub_debug && (!slub_debug_slabs ||
1238 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1239 flags |= slub_debug;
1241 return flags;
1243 #else
1244 static inline void setup_object_debug(struct kmem_cache *s,
1245 struct page *page, void *object) {}
1247 static inline int alloc_debug_processing(struct kmem_cache *s,
1248 struct page *page, void *object, unsigned long addr) { return 0; }
1250 static inline int free_debug_processing(struct kmem_cache *s,
1251 struct page *page, void *object, unsigned long addr) { return 0; }
1253 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1254 { return 1; }
1255 static inline int check_object(struct kmem_cache *s, struct page *page,
1256 void *object, u8 val) { return 1; }
1257 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1258 struct page *page) {}
1259 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1260 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1261 unsigned long flags, const char *name,
1262 void (*ctor)(void *))
1264 return flags;
1266 #define slub_debug 0
1268 #define disable_higher_order_debug 0
1270 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1271 { return 0; }
1272 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1273 { return 0; }
1274 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1275 int objects) {}
1276 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1277 int objects) {}
1279 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1280 { return 0; }
1282 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1283 void *object) {}
1285 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1287 #endif /* CONFIG_SLUB_DEBUG */
1290 * Slab allocation and freeing
1292 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1293 struct kmem_cache_order_objects oo)
1295 int order = oo_order(oo);
1297 flags |= __GFP_NOTRACK;
1299 if (node == NUMA_NO_NODE)
1300 return alloc_pages(flags, order);
1301 else
1302 return alloc_pages_exact_node(node, flags, order);
1305 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1307 struct page *page;
1308 struct kmem_cache_order_objects oo = s->oo;
1309 gfp_t alloc_gfp;
1311 flags &= gfp_allowed_mask;
1313 if (flags & __GFP_WAIT)
1314 local_irq_enable();
1316 flags |= s->allocflags;
1319 * Let the initial higher-order allocation fail under memory pressure
1320 * so we fall-back to the minimum order allocation.
1322 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1324 page = alloc_slab_page(alloc_gfp, node, oo);
1325 if (unlikely(!page)) {
1326 oo = s->min;
1328 * Allocation may have failed due to fragmentation.
1329 * Try a lower order alloc if possible
1331 page = alloc_slab_page(flags, node, oo);
1333 if (page)
1334 stat(s, ORDER_FALLBACK);
1337 if (flags & __GFP_WAIT)
1338 local_irq_disable();
1340 if (!page)
1341 return NULL;
1343 if (kmemcheck_enabled
1344 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1345 int pages = 1 << oo_order(oo);
1347 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1350 * Objects from caches that have a constructor don't get
1351 * cleared when they're allocated, so we need to do it here.
1353 if (s->ctor)
1354 kmemcheck_mark_uninitialized_pages(page, pages);
1355 else
1356 kmemcheck_mark_unallocated_pages(page, pages);
1359 page->objects = oo_objects(oo);
1360 mod_zone_page_state(page_zone(page),
1361 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1362 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1363 1 << oo_order(oo));
1365 return page;
1368 static void setup_object(struct kmem_cache *s, struct page *page,
1369 void *object)
1371 setup_object_debug(s, page, object);
1372 if (unlikely(s->ctor))
1373 s->ctor(object);
1376 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1378 struct page *page;
1379 void *start;
1380 void *last;
1381 void *p;
1383 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1385 page = allocate_slab(s,
1386 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1387 if (!page)
1388 goto out;
1390 inc_slabs_node(s, page_to_nid(page), page->objects);
1391 page->slab = s;
1392 page->flags |= 1 << PG_slab;
1394 start = page_address(page);
1396 if (unlikely(s->flags & SLAB_POISON))
1397 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1399 last = start;
1400 for_each_object(p, s, start, page->objects) {
1401 setup_object(s, page, last);
1402 set_freepointer(s, last, p);
1403 last = p;
1405 setup_object(s, page, last);
1406 set_freepointer(s, last, NULL);
1408 page->freelist = start;
1409 page->inuse = 0;
1410 page->frozen = 1;
1411 out:
1412 return page;
1415 static void __free_slab(struct kmem_cache *s, struct page *page)
1417 int order = compound_order(page);
1418 int pages = 1 << order;
1420 if (kmem_cache_debug(s)) {
1421 void *p;
1423 slab_pad_check(s, page);
1424 for_each_object(p, s, page_address(page),
1425 page->objects)
1426 check_object(s, page, p, SLUB_RED_INACTIVE);
1429 kmemcheck_free_shadow(page, compound_order(page));
1431 mod_zone_page_state(page_zone(page),
1432 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1433 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1434 -pages);
1436 __ClearPageSlab(page);
1437 reset_page_mapcount(page);
1438 if (current->reclaim_state)
1439 current->reclaim_state->reclaimed_slab += pages;
1440 __free_pages(page, order);
1443 #define need_reserve_slab_rcu \
1444 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1446 static void rcu_free_slab(struct rcu_head *h)
1448 struct page *page;
1450 if (need_reserve_slab_rcu)
1451 page = virt_to_head_page(h);
1452 else
1453 page = container_of((struct list_head *)h, struct page, lru);
1455 __free_slab(page->slab, page);
1458 static void free_slab(struct kmem_cache *s, struct page *page)
1460 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1461 struct rcu_head *head;
1463 if (need_reserve_slab_rcu) {
1464 int order = compound_order(page);
1465 int offset = (PAGE_SIZE << order) - s->reserved;
1467 VM_BUG_ON(s->reserved != sizeof(*head));
1468 head = page_address(page) + offset;
1469 } else {
1471 * RCU free overloads the RCU head over the LRU
1473 head = (void *)&page->lru;
1476 call_rcu(head, rcu_free_slab);
1477 } else
1478 __free_slab(s, page);
1481 static void discard_slab(struct kmem_cache *s, struct page *page)
1483 dec_slabs_node(s, page_to_nid(page), page->objects);
1484 free_slab(s, page);
1488 * Management of partially allocated slabs.
1490 * list_lock must be held.
1492 static inline void add_partial(struct kmem_cache_node *n,
1493 struct page *page, int tail)
1495 n->nr_partial++;
1496 if (tail)
1497 list_add_tail(&page->lru, &n->partial);
1498 else
1499 list_add(&page->lru, &n->partial);
1503 * list_lock must be held.
1505 static inline void remove_partial(struct kmem_cache_node *n,
1506 struct page *page)
1508 list_del(&page->lru);
1509 n->nr_partial--;
1513 * Lock slab, remove from the partial list and put the object into the
1514 * per cpu freelist.
1516 * Must hold list_lock.
1518 static inline int acquire_slab(struct kmem_cache *s,
1519 struct kmem_cache_node *n, struct page *page)
1521 void *freelist;
1522 unsigned long counters;
1523 struct page new;
1526 * Zap the freelist and set the frozen bit.
1527 * The old freelist is the list of objects for the
1528 * per cpu allocation list.
1530 do {
1531 freelist = page->freelist;
1532 counters = page->counters;
1533 new.counters = counters;
1534 new.inuse = page->objects;
1536 VM_BUG_ON(new.frozen);
1537 new.frozen = 1;
1539 } while (!cmpxchg_double_slab(s, page,
1540 freelist, counters,
1541 NULL, new.counters,
1542 "lock and freeze"));
1544 remove_partial(n, page);
1546 if (freelist) {
1547 /* Populate the per cpu freelist */
1548 this_cpu_write(s->cpu_slab->freelist, freelist);
1549 this_cpu_write(s->cpu_slab->page, page);
1550 this_cpu_write(s->cpu_slab->node, page_to_nid(page));
1551 return 1;
1552 } else {
1554 * Slab page came from the wrong list. No object to allocate
1555 * from. Put it onto the correct list and continue partial
1556 * scan.
1558 printk(KERN_ERR "SLUB: %s : Page without available objects on"
1559 " partial list\n", s->name);
1560 return 0;
1565 * Try to allocate a partial slab from a specific node.
1567 static struct page *get_partial_node(struct kmem_cache *s,
1568 struct kmem_cache_node *n)
1570 struct page *page;
1573 * Racy check. If we mistakenly see no partial slabs then we
1574 * just allocate an empty slab. If we mistakenly try to get a
1575 * partial slab and there is none available then get_partials()
1576 * will return NULL.
1578 if (!n || !n->nr_partial)
1579 return NULL;
1581 spin_lock(&n->list_lock);
1582 list_for_each_entry(page, &n->partial, lru)
1583 if (acquire_slab(s, n, page))
1584 goto out;
1585 page = NULL;
1586 out:
1587 spin_unlock(&n->list_lock);
1588 return page;
1592 * Get a page from somewhere. Search in increasing NUMA distances.
1594 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1596 #ifdef CONFIG_NUMA
1597 struct zonelist *zonelist;
1598 struct zoneref *z;
1599 struct zone *zone;
1600 enum zone_type high_zoneidx = gfp_zone(flags);
1601 struct page *page;
1604 * The defrag ratio allows a configuration of the tradeoffs between
1605 * inter node defragmentation and node local allocations. A lower
1606 * defrag_ratio increases the tendency to do local allocations
1607 * instead of attempting to obtain partial slabs from other nodes.
1609 * If the defrag_ratio is set to 0 then kmalloc() always
1610 * returns node local objects. If the ratio is higher then kmalloc()
1611 * may return off node objects because partial slabs are obtained
1612 * from other nodes and filled up.
1614 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1615 * defrag_ratio = 1000) then every (well almost) allocation will
1616 * first attempt to defrag slab caches on other nodes. This means
1617 * scanning over all nodes to look for partial slabs which may be
1618 * expensive if we do it every time we are trying to find a slab
1619 * with available objects.
1621 if (!s->remote_node_defrag_ratio ||
1622 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1623 return NULL;
1625 get_mems_allowed();
1626 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1627 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1628 struct kmem_cache_node *n;
1630 n = get_node(s, zone_to_nid(zone));
1632 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1633 n->nr_partial > s->min_partial) {
1634 page = get_partial_node(s, n);
1635 if (page) {
1636 put_mems_allowed();
1637 return page;
1641 put_mems_allowed();
1642 #endif
1643 return NULL;
1647 * Get a partial page, lock it and return it.
1649 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1651 struct page *page;
1652 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1654 page = get_partial_node(s, get_node(s, searchnode));
1655 if (page || node != NUMA_NO_NODE)
1656 return page;
1658 return get_any_partial(s, flags);
1661 #ifdef CONFIG_PREEMPT
1663 * Calculate the next globally unique transaction for disambiguiation
1664 * during cmpxchg. The transactions start with the cpu number and are then
1665 * incremented by CONFIG_NR_CPUS.
1667 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1668 #else
1670 * No preemption supported therefore also no need to check for
1671 * different cpus.
1673 #define TID_STEP 1
1674 #endif
1676 static inline unsigned long next_tid(unsigned long tid)
1678 return tid + TID_STEP;
1681 static inline unsigned int tid_to_cpu(unsigned long tid)
1683 return tid % TID_STEP;
1686 static inline unsigned long tid_to_event(unsigned long tid)
1688 return tid / TID_STEP;
1691 static inline unsigned int init_tid(int cpu)
1693 return cpu;
1696 static inline void note_cmpxchg_failure(const char *n,
1697 const struct kmem_cache *s, unsigned long tid)
1699 #ifdef SLUB_DEBUG_CMPXCHG
1700 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1702 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1704 #ifdef CONFIG_PREEMPT
1705 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1706 printk("due to cpu change %d -> %d\n",
1707 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1708 else
1709 #endif
1710 if (tid_to_event(tid) != tid_to_event(actual_tid))
1711 printk("due to cpu running other code. Event %ld->%ld\n",
1712 tid_to_event(tid), tid_to_event(actual_tid));
1713 else
1714 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1715 actual_tid, tid, next_tid(tid));
1716 #endif
1717 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1720 void init_kmem_cache_cpus(struct kmem_cache *s)
1722 int cpu;
1724 for_each_possible_cpu(cpu)
1725 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1728 * Remove the cpu slab
1732 * Remove the cpu slab
1734 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1736 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1737 struct page *page = c->page;
1738 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1739 int lock = 0;
1740 enum slab_modes l = M_NONE, m = M_NONE;
1741 void *freelist;
1742 void *nextfree;
1743 int tail = 0;
1744 struct page new;
1745 struct page old;
1747 if (page->freelist) {
1748 stat(s, DEACTIVATE_REMOTE_FREES);
1749 tail = 1;
1752 c->tid = next_tid(c->tid);
1753 c->page = NULL;
1754 freelist = c->freelist;
1755 c->freelist = NULL;
1758 * Stage one: Free all available per cpu objects back
1759 * to the page freelist while it is still frozen. Leave the
1760 * last one.
1762 * There is no need to take the list->lock because the page
1763 * is still frozen.
1765 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1766 void *prior;
1767 unsigned long counters;
1769 do {
1770 prior = page->freelist;
1771 counters = page->counters;
1772 set_freepointer(s, freelist, prior);
1773 new.counters = counters;
1774 new.inuse--;
1775 VM_BUG_ON(!new.frozen);
1777 } while (!cmpxchg_double_slab(s, page,
1778 prior, counters,
1779 freelist, new.counters,
1780 "drain percpu freelist"));
1782 freelist = nextfree;
1786 * Stage two: Ensure that the page is unfrozen while the
1787 * list presence reflects the actual number of objects
1788 * during unfreeze.
1790 * We setup the list membership and then perform a cmpxchg
1791 * with the count. If there is a mismatch then the page
1792 * is not unfrozen but the page is on the wrong list.
1794 * Then we restart the process which may have to remove
1795 * the page from the list that we just put it on again
1796 * because the number of objects in the slab may have
1797 * changed.
1799 redo:
1801 old.freelist = page->freelist;
1802 old.counters = page->counters;
1803 VM_BUG_ON(!old.frozen);
1805 /* Determine target state of the slab */
1806 new.counters = old.counters;
1807 if (freelist) {
1808 new.inuse--;
1809 set_freepointer(s, freelist, old.freelist);
1810 new.freelist = freelist;
1811 } else
1812 new.freelist = old.freelist;
1814 new.frozen = 0;
1816 if (!new.inuse && n->nr_partial < s->min_partial)
1817 m = M_FREE;
1818 else if (new.freelist) {
1819 m = M_PARTIAL;
1820 if (!lock) {
1821 lock = 1;
1823 * Taking the spinlock removes the possiblity
1824 * that acquire_slab() will see a slab page that
1825 * is frozen
1827 spin_lock(&n->list_lock);
1829 } else {
1830 m = M_FULL;
1831 if (kmem_cache_debug(s) && !lock) {
1832 lock = 1;
1834 * This also ensures that the scanning of full
1835 * slabs from diagnostic functions will not see
1836 * any frozen slabs.
1838 spin_lock(&n->list_lock);
1842 if (l != m) {
1844 if (l == M_PARTIAL)
1846 remove_partial(n, page);
1848 else if (l == M_FULL)
1850 remove_full(s, page);
1852 if (m == M_PARTIAL) {
1854 add_partial(n, page, tail);
1855 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1857 } else if (m == M_FULL) {
1859 stat(s, DEACTIVATE_FULL);
1860 add_full(s, n, page);
1865 l = m;
1866 if (!cmpxchg_double_slab(s, page,
1867 old.freelist, old.counters,
1868 new.freelist, new.counters,
1869 "unfreezing slab"))
1870 goto redo;
1872 if (lock)
1873 spin_unlock(&n->list_lock);
1875 if (m == M_FREE) {
1876 stat(s, DEACTIVATE_EMPTY);
1877 discard_slab(s, page);
1878 stat(s, FREE_SLAB);
1882 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1884 stat(s, CPUSLAB_FLUSH);
1885 deactivate_slab(s, c);
1889 * Flush cpu slab.
1891 * Called from IPI handler with interrupts disabled.
1893 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1895 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1897 if (likely(c && c->page))
1898 flush_slab(s, c);
1901 static void flush_cpu_slab(void *d)
1903 struct kmem_cache *s = d;
1905 __flush_cpu_slab(s, smp_processor_id());
1908 static void flush_all(struct kmem_cache *s)
1910 on_each_cpu(flush_cpu_slab, s, 1);
1914 * Check if the objects in a per cpu structure fit numa
1915 * locality expectations.
1917 static inline int node_match(struct kmem_cache_cpu *c, int node)
1919 #ifdef CONFIG_NUMA
1920 if (node != NUMA_NO_NODE && c->node != node)
1921 return 0;
1922 #endif
1923 return 1;
1926 static int count_free(struct page *page)
1928 return page->objects - page->inuse;
1931 static unsigned long count_partial(struct kmem_cache_node *n,
1932 int (*get_count)(struct page *))
1934 unsigned long flags;
1935 unsigned long x = 0;
1936 struct page *page;
1938 spin_lock_irqsave(&n->list_lock, flags);
1939 list_for_each_entry(page, &n->partial, lru)
1940 x += get_count(page);
1941 spin_unlock_irqrestore(&n->list_lock, flags);
1942 return x;
1945 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1947 #ifdef CONFIG_SLUB_DEBUG
1948 return atomic_long_read(&n->total_objects);
1949 #else
1950 return 0;
1951 #endif
1954 static noinline void
1955 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1957 int node;
1959 printk(KERN_WARNING
1960 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1961 nid, gfpflags);
1962 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1963 "default order: %d, min order: %d\n", s->name, s->objsize,
1964 s->size, oo_order(s->oo), oo_order(s->min));
1966 if (oo_order(s->min) > get_order(s->objsize))
1967 printk(KERN_WARNING " %s debugging increased min order, use "
1968 "slub_debug=O to disable.\n", s->name);
1970 for_each_online_node(node) {
1971 struct kmem_cache_node *n = get_node(s, node);
1972 unsigned long nr_slabs;
1973 unsigned long nr_objs;
1974 unsigned long nr_free;
1976 if (!n)
1977 continue;
1979 nr_free = count_partial(n, count_free);
1980 nr_slabs = node_nr_slabs(n);
1981 nr_objs = node_nr_objs(n);
1983 printk(KERN_WARNING
1984 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1985 node, nr_slabs, nr_objs, nr_free);
1990 * Slow path. The lockless freelist is empty or we need to perform
1991 * debugging duties.
1993 * Interrupts are disabled.
1995 * Processing is still very fast if new objects have been freed to the
1996 * regular freelist. In that case we simply take over the regular freelist
1997 * as the lockless freelist and zap the regular freelist.
1999 * If that is not working then we fall back to the partial lists. We take the
2000 * first element of the freelist as the object to allocate now and move the
2001 * rest of the freelist to the lockless freelist.
2003 * And if we were unable to get a new slab from the partial slab lists then
2004 * we need to allocate a new slab. This is the slowest path since it involves
2005 * a call to the page allocator and the setup of a new slab.
2007 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2008 unsigned long addr, struct kmem_cache_cpu *c)
2010 void **object;
2011 struct page *page;
2012 unsigned long flags;
2013 struct page new;
2014 unsigned long counters;
2016 local_irq_save(flags);
2017 #ifdef CONFIG_PREEMPT
2019 * We may have been preempted and rescheduled on a different
2020 * cpu before disabling interrupts. Need to reload cpu area
2021 * pointer.
2023 c = this_cpu_ptr(s->cpu_slab);
2024 #endif
2026 /* We handle __GFP_ZERO in the caller */
2027 gfpflags &= ~__GFP_ZERO;
2029 page = c->page;
2030 if (!page)
2031 goto new_slab;
2033 if (unlikely(!node_match(c, node))) {
2034 stat(s, ALLOC_NODE_MISMATCH);
2035 deactivate_slab(s, c);
2036 goto new_slab;
2039 stat(s, ALLOC_SLOWPATH);
2041 do {
2042 object = page->freelist;
2043 counters = page->counters;
2044 new.counters = counters;
2045 VM_BUG_ON(!new.frozen);
2048 * If there is no object left then we use this loop to
2049 * deactivate the slab which is simple since no objects
2050 * are left in the slab and therefore we do not need to
2051 * put the page back onto the partial list.
2053 * If there are objects left then we retrieve them
2054 * and use them to refill the per cpu queue.
2057 new.inuse = page->objects;
2058 new.frozen = object != NULL;
2060 } while (!cmpxchg_double_slab(s, page,
2061 object, counters,
2062 NULL, new.counters,
2063 "__slab_alloc"));
2065 if (unlikely(!object)) {
2066 c->page = NULL;
2067 stat(s, DEACTIVATE_BYPASS);
2068 goto new_slab;
2071 stat(s, ALLOC_REFILL);
2073 load_freelist:
2074 VM_BUG_ON(!page->frozen);
2075 c->freelist = get_freepointer(s, object);
2076 c->tid = next_tid(c->tid);
2077 local_irq_restore(flags);
2078 return object;
2080 new_slab:
2081 page = get_partial(s, gfpflags, node);
2082 if (page) {
2083 stat(s, ALLOC_FROM_PARTIAL);
2084 object = c->freelist;
2086 if (kmem_cache_debug(s))
2087 goto debug;
2088 goto load_freelist;
2091 page = new_slab(s, gfpflags, node);
2093 if (page) {
2094 c = __this_cpu_ptr(s->cpu_slab);
2095 if (c->page)
2096 flush_slab(s, c);
2099 * No other reference to the page yet so we can
2100 * muck around with it freely without cmpxchg
2102 object = page->freelist;
2103 page->freelist = NULL;
2104 page->inuse = page->objects;
2106 stat(s, ALLOC_SLAB);
2107 c->node = page_to_nid(page);
2108 c->page = page;
2109 goto load_freelist;
2111 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2112 slab_out_of_memory(s, gfpflags, node);
2113 local_irq_restore(flags);
2114 return NULL;
2116 debug:
2117 if (!object || !alloc_debug_processing(s, page, object, addr))
2118 goto new_slab;
2120 c->freelist = get_freepointer(s, object);
2121 deactivate_slab(s, c);
2122 c->page = NULL;
2123 c->node = NUMA_NO_NODE;
2124 local_irq_restore(flags);
2125 return object;
2129 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2130 * have the fastpath folded into their functions. So no function call
2131 * overhead for requests that can be satisfied on the fastpath.
2133 * The fastpath works by first checking if the lockless freelist can be used.
2134 * If not then __slab_alloc is called for slow processing.
2136 * Otherwise we can simply pick the next object from the lockless free list.
2138 static __always_inline void *slab_alloc(struct kmem_cache *s,
2139 gfp_t gfpflags, int node, unsigned long addr)
2141 void **object;
2142 struct kmem_cache_cpu *c;
2143 unsigned long tid;
2145 if (slab_pre_alloc_hook(s, gfpflags))
2146 return NULL;
2148 redo:
2151 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2152 * enabled. We may switch back and forth between cpus while
2153 * reading from one cpu area. That does not matter as long
2154 * as we end up on the original cpu again when doing the cmpxchg.
2156 c = __this_cpu_ptr(s->cpu_slab);
2159 * The transaction ids are globally unique per cpu and per operation on
2160 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2161 * occurs on the right processor and that there was no operation on the
2162 * linked list in between.
2164 tid = c->tid;
2165 barrier();
2167 object = c->freelist;
2168 if (unlikely(!object || !node_match(c, node)))
2170 object = __slab_alloc(s, gfpflags, node, addr, c);
2172 else {
2174 * The cmpxchg will only match if there was no additional
2175 * operation and if we are on the right processor.
2177 * The cmpxchg does the following atomically (without lock semantics!)
2178 * 1. Relocate first pointer to the current per cpu area.
2179 * 2. Verify that tid and freelist have not been changed
2180 * 3. If they were not changed replace tid and freelist
2182 * Since this is without lock semantics the protection is only against
2183 * code executing on this cpu *not* from access by other cpus.
2185 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2186 s->cpu_slab->freelist, s->cpu_slab->tid,
2187 object, tid,
2188 get_freepointer_safe(s, object), next_tid(tid)))) {
2190 note_cmpxchg_failure("slab_alloc", s, tid);
2191 goto redo;
2193 stat(s, ALLOC_FASTPATH);
2196 if (unlikely(gfpflags & __GFP_ZERO) && object)
2197 memset(object, 0, s->objsize);
2199 slab_post_alloc_hook(s, gfpflags, object);
2201 return object;
2204 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2206 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2208 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2210 return ret;
2212 EXPORT_SYMBOL(kmem_cache_alloc);
2214 #ifdef CONFIG_TRACING
2215 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2217 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2218 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2219 return ret;
2221 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2223 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2225 void *ret = kmalloc_order(size, flags, order);
2226 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2227 return ret;
2229 EXPORT_SYMBOL(kmalloc_order_trace);
2230 #endif
2232 #ifdef CONFIG_NUMA
2233 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2235 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2237 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2238 s->objsize, s->size, gfpflags, node);
2240 return ret;
2242 EXPORT_SYMBOL(kmem_cache_alloc_node);
2244 #ifdef CONFIG_TRACING
2245 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2246 gfp_t gfpflags,
2247 int node, size_t size)
2249 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2251 trace_kmalloc_node(_RET_IP_, ret,
2252 size, s->size, gfpflags, node);
2253 return ret;
2255 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2256 #endif
2257 #endif
2260 * Slow patch handling. This may still be called frequently since objects
2261 * have a longer lifetime than the cpu slabs in most processing loads.
2263 * So we still attempt to reduce cache line usage. Just take the slab
2264 * lock and free the item. If there is no additional partial page
2265 * handling required then we can return immediately.
2267 static void __slab_free(struct kmem_cache *s, struct page *page,
2268 void *x, unsigned long addr)
2270 void *prior;
2271 void **object = (void *)x;
2272 int was_frozen;
2273 int inuse;
2274 struct page new;
2275 unsigned long counters;
2276 struct kmem_cache_node *n = NULL;
2277 unsigned long uninitialized_var(flags);
2279 stat(s, FREE_SLOWPATH);
2281 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2282 return;
2284 do {
2285 prior = page->freelist;
2286 counters = page->counters;
2287 set_freepointer(s, object, prior);
2288 new.counters = counters;
2289 was_frozen = new.frozen;
2290 new.inuse--;
2291 if ((!new.inuse || !prior) && !was_frozen && !n) {
2292 n = get_node(s, page_to_nid(page));
2294 * Speculatively acquire the list_lock.
2295 * If the cmpxchg does not succeed then we may
2296 * drop the list_lock without any processing.
2298 * Otherwise the list_lock will synchronize with
2299 * other processors updating the list of slabs.
2301 spin_lock_irqsave(&n->list_lock, flags);
2303 inuse = new.inuse;
2305 } while (!cmpxchg_double_slab(s, page,
2306 prior, counters,
2307 object, new.counters,
2308 "__slab_free"));
2310 if (likely(!n)) {
2312 * The list lock was not taken therefore no list
2313 * activity can be necessary.
2315 if (was_frozen)
2316 stat(s, FREE_FROZEN);
2317 return;
2321 * was_frozen may have been set after we acquired the list_lock in
2322 * an earlier loop. So we need to check it here again.
2324 if (was_frozen)
2325 stat(s, FREE_FROZEN);
2326 else {
2327 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2328 goto slab_empty;
2331 * Objects left in the slab. If it was not on the partial list before
2332 * then add it.
2334 if (unlikely(!prior)) {
2335 remove_full(s, page);
2336 add_partial(n, page, 0);
2337 stat(s, FREE_ADD_PARTIAL);
2340 spin_unlock_irqrestore(&n->list_lock, flags);
2341 return;
2343 slab_empty:
2344 if (prior) {
2346 * Slab still on the partial list.
2348 remove_partial(n, page);
2349 stat(s, FREE_REMOVE_PARTIAL);
2352 spin_unlock_irqrestore(&n->list_lock, flags);
2353 stat(s, FREE_SLAB);
2354 discard_slab(s, page);
2358 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2359 * can perform fastpath freeing without additional function calls.
2361 * The fastpath is only possible if we are freeing to the current cpu slab
2362 * of this processor. This typically the case if we have just allocated
2363 * the item before.
2365 * If fastpath is not possible then fall back to __slab_free where we deal
2366 * with all sorts of special processing.
2368 static __always_inline void slab_free(struct kmem_cache *s,
2369 struct page *page, void *x, unsigned long addr)
2371 void **object = (void *)x;
2372 struct kmem_cache_cpu *c;
2373 unsigned long tid;
2375 slab_free_hook(s, x);
2377 redo:
2380 * Determine the currently cpus per cpu slab.
2381 * The cpu may change afterward. However that does not matter since
2382 * data is retrieved via this pointer. If we are on the same cpu
2383 * during the cmpxchg then the free will succedd.
2385 c = __this_cpu_ptr(s->cpu_slab);
2387 tid = c->tid;
2388 barrier();
2390 if (likely(page == c->page)) {
2391 set_freepointer(s, object, c->freelist);
2393 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2394 s->cpu_slab->freelist, s->cpu_slab->tid,
2395 c->freelist, tid,
2396 object, next_tid(tid)))) {
2398 note_cmpxchg_failure("slab_free", s, tid);
2399 goto redo;
2401 stat(s, FREE_FASTPATH);
2402 } else
2403 __slab_free(s, page, x, addr);
2407 void kmem_cache_free(struct kmem_cache *s, void *x)
2409 struct page *page;
2411 page = virt_to_head_page(x);
2413 slab_free(s, page, x, _RET_IP_);
2415 trace_kmem_cache_free(_RET_IP_, x);
2417 EXPORT_SYMBOL(kmem_cache_free);
2420 * Object placement in a slab is made very easy because we always start at
2421 * offset 0. If we tune the size of the object to the alignment then we can
2422 * get the required alignment by putting one properly sized object after
2423 * another.
2425 * Notice that the allocation order determines the sizes of the per cpu
2426 * caches. Each processor has always one slab available for allocations.
2427 * Increasing the allocation order reduces the number of times that slabs
2428 * must be moved on and off the partial lists and is therefore a factor in
2429 * locking overhead.
2433 * Mininum / Maximum order of slab pages. This influences locking overhead
2434 * and slab fragmentation. A higher order reduces the number of partial slabs
2435 * and increases the number of allocations possible without having to
2436 * take the list_lock.
2438 static int slub_min_order;
2439 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2440 static int slub_min_objects;
2443 * Merge control. If this is set then no merging of slab caches will occur.
2444 * (Could be removed. This was introduced to pacify the merge skeptics.)
2446 static int slub_nomerge;
2449 * Calculate the order of allocation given an slab object size.
2451 * The order of allocation has significant impact on performance and other
2452 * system components. Generally order 0 allocations should be preferred since
2453 * order 0 does not cause fragmentation in the page allocator. Larger objects
2454 * be problematic to put into order 0 slabs because there may be too much
2455 * unused space left. We go to a higher order if more than 1/16th of the slab
2456 * would be wasted.
2458 * In order to reach satisfactory performance we must ensure that a minimum
2459 * number of objects is in one slab. Otherwise we may generate too much
2460 * activity on the partial lists which requires taking the list_lock. This is
2461 * less a concern for large slabs though which are rarely used.
2463 * slub_max_order specifies the order where we begin to stop considering the
2464 * number of objects in a slab as critical. If we reach slub_max_order then
2465 * we try to keep the page order as low as possible. So we accept more waste
2466 * of space in favor of a small page order.
2468 * Higher order allocations also allow the placement of more objects in a
2469 * slab and thereby reduce object handling overhead. If the user has
2470 * requested a higher mininum order then we start with that one instead of
2471 * the smallest order which will fit the object.
2473 static inline int slab_order(int size, int min_objects,
2474 int max_order, int fract_leftover, int reserved)
2476 int order;
2477 int rem;
2478 int min_order = slub_min_order;
2480 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2481 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2483 for (order = max(min_order,
2484 fls(min_objects * size - 1) - PAGE_SHIFT);
2485 order <= max_order; order++) {
2487 unsigned long slab_size = PAGE_SIZE << order;
2489 if (slab_size < min_objects * size + reserved)
2490 continue;
2492 rem = (slab_size - reserved) % size;
2494 if (rem <= slab_size / fract_leftover)
2495 break;
2499 return order;
2502 static inline int calculate_order(int size, int reserved)
2504 int order;
2505 int min_objects;
2506 int fraction;
2507 int max_objects;
2510 * Attempt to find best configuration for a slab. This
2511 * works by first attempting to generate a layout with
2512 * the best configuration and backing off gradually.
2514 * First we reduce the acceptable waste in a slab. Then
2515 * we reduce the minimum objects required in a slab.
2517 min_objects = slub_min_objects;
2518 if (!min_objects)
2519 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2520 max_objects = order_objects(slub_max_order, size, reserved);
2521 min_objects = min(min_objects, max_objects);
2523 while (min_objects > 1) {
2524 fraction = 16;
2525 while (fraction >= 4) {
2526 order = slab_order(size, min_objects,
2527 slub_max_order, fraction, reserved);
2528 if (order <= slub_max_order)
2529 return order;
2530 fraction /= 2;
2532 min_objects--;
2536 * We were unable to place multiple objects in a slab. Now
2537 * lets see if we can place a single object there.
2539 order = slab_order(size, 1, slub_max_order, 1, reserved);
2540 if (order <= slub_max_order)
2541 return order;
2544 * Doh this slab cannot be placed using slub_max_order.
2546 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2547 if (order < MAX_ORDER)
2548 return order;
2549 return -ENOSYS;
2553 * Figure out what the alignment of the objects will be.
2555 static unsigned long calculate_alignment(unsigned long flags,
2556 unsigned long align, unsigned long size)
2559 * If the user wants hardware cache aligned objects then follow that
2560 * suggestion if the object is sufficiently large.
2562 * The hardware cache alignment cannot override the specified
2563 * alignment though. If that is greater then use it.
2565 if (flags & SLAB_HWCACHE_ALIGN) {
2566 unsigned long ralign = cache_line_size();
2567 while (size <= ralign / 2)
2568 ralign /= 2;
2569 align = max(align, ralign);
2572 if (align < ARCH_SLAB_MINALIGN)
2573 align = ARCH_SLAB_MINALIGN;
2575 return ALIGN(align, sizeof(void *));
2578 static void
2579 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2581 n->nr_partial = 0;
2582 spin_lock_init(&n->list_lock);
2583 INIT_LIST_HEAD(&n->partial);
2584 #ifdef CONFIG_SLUB_DEBUG
2585 atomic_long_set(&n->nr_slabs, 0);
2586 atomic_long_set(&n->total_objects, 0);
2587 INIT_LIST_HEAD(&n->full);
2588 #endif
2591 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2593 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2594 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2597 * Must align to double word boundary for the double cmpxchg
2598 * instructions to work; see __pcpu_double_call_return_bool().
2600 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2601 2 * sizeof(void *));
2603 if (!s->cpu_slab)
2604 return 0;
2606 init_kmem_cache_cpus(s);
2608 return 1;
2611 static struct kmem_cache *kmem_cache_node;
2614 * No kmalloc_node yet so do it by hand. We know that this is the first
2615 * slab on the node for this slabcache. There are no concurrent accesses
2616 * possible.
2618 * Note that this function only works on the kmalloc_node_cache
2619 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2620 * memory on a fresh node that has no slab structures yet.
2622 static void early_kmem_cache_node_alloc(int node)
2624 struct page *page;
2625 struct kmem_cache_node *n;
2627 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2629 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2631 BUG_ON(!page);
2632 if (page_to_nid(page) != node) {
2633 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2634 "node %d\n", node);
2635 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2636 "in order to be able to continue\n");
2639 n = page->freelist;
2640 BUG_ON(!n);
2641 page->freelist = get_freepointer(kmem_cache_node, n);
2642 page->inuse++;
2643 page->frozen = 0;
2644 kmem_cache_node->node[node] = n;
2645 #ifdef CONFIG_SLUB_DEBUG
2646 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2647 init_tracking(kmem_cache_node, n);
2648 #endif
2649 init_kmem_cache_node(n, kmem_cache_node);
2650 inc_slabs_node(kmem_cache_node, node, page->objects);
2652 add_partial(n, page, 0);
2655 static void free_kmem_cache_nodes(struct kmem_cache *s)
2657 int node;
2659 for_each_node_state(node, N_NORMAL_MEMORY) {
2660 struct kmem_cache_node *n = s->node[node];
2662 if (n)
2663 kmem_cache_free(kmem_cache_node, n);
2665 s->node[node] = NULL;
2669 static int init_kmem_cache_nodes(struct kmem_cache *s)
2671 int node;
2673 for_each_node_state(node, N_NORMAL_MEMORY) {
2674 struct kmem_cache_node *n;
2676 if (slab_state == DOWN) {
2677 early_kmem_cache_node_alloc(node);
2678 continue;
2680 n = kmem_cache_alloc_node(kmem_cache_node,
2681 GFP_KERNEL, node);
2683 if (!n) {
2684 free_kmem_cache_nodes(s);
2685 return 0;
2688 s->node[node] = n;
2689 init_kmem_cache_node(n, s);
2691 return 1;
2694 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2696 if (min < MIN_PARTIAL)
2697 min = MIN_PARTIAL;
2698 else if (min > MAX_PARTIAL)
2699 min = MAX_PARTIAL;
2700 s->min_partial = min;
2704 * calculate_sizes() determines the order and the distribution of data within
2705 * a slab object.
2707 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2709 unsigned long flags = s->flags;
2710 unsigned long size = s->objsize;
2711 unsigned long align = s->align;
2712 int order;
2715 * Round up object size to the next word boundary. We can only
2716 * place the free pointer at word boundaries and this determines
2717 * the possible location of the free pointer.
2719 size = ALIGN(size, sizeof(void *));
2721 #ifdef CONFIG_SLUB_DEBUG
2723 * Determine if we can poison the object itself. If the user of
2724 * the slab may touch the object after free or before allocation
2725 * then we should never poison the object itself.
2727 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2728 !s->ctor)
2729 s->flags |= __OBJECT_POISON;
2730 else
2731 s->flags &= ~__OBJECT_POISON;
2735 * If we are Redzoning then check if there is some space between the
2736 * end of the object and the free pointer. If not then add an
2737 * additional word to have some bytes to store Redzone information.
2739 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2740 size += sizeof(void *);
2741 #endif
2744 * With that we have determined the number of bytes in actual use
2745 * by the object. This is the potential offset to the free pointer.
2747 s->inuse = size;
2749 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2750 s->ctor)) {
2752 * Relocate free pointer after the object if it is not
2753 * permitted to overwrite the first word of the object on
2754 * kmem_cache_free.
2756 * This is the case if we do RCU, have a constructor or
2757 * destructor or are poisoning the objects.
2759 s->offset = size;
2760 size += sizeof(void *);
2763 #ifdef CONFIG_SLUB_DEBUG
2764 if (flags & SLAB_STORE_USER)
2766 * Need to store information about allocs and frees after
2767 * the object.
2769 size += 2 * sizeof(struct track);
2771 if (flags & SLAB_RED_ZONE)
2773 * Add some empty padding so that we can catch
2774 * overwrites from earlier objects rather than let
2775 * tracking information or the free pointer be
2776 * corrupted if a user writes before the start
2777 * of the object.
2779 size += sizeof(void *);
2780 #endif
2783 * Determine the alignment based on various parameters that the
2784 * user specified and the dynamic determination of cache line size
2785 * on bootup.
2787 align = calculate_alignment(flags, align, s->objsize);
2788 s->align = align;
2791 * SLUB stores one object immediately after another beginning from
2792 * offset 0. In order to align the objects we have to simply size
2793 * each object to conform to the alignment.
2795 size = ALIGN(size, align);
2796 s->size = size;
2797 if (forced_order >= 0)
2798 order = forced_order;
2799 else
2800 order = calculate_order(size, s->reserved);
2802 if (order < 0)
2803 return 0;
2805 s->allocflags = 0;
2806 if (order)
2807 s->allocflags |= __GFP_COMP;
2809 if (s->flags & SLAB_CACHE_DMA)
2810 s->allocflags |= SLUB_DMA;
2812 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2813 s->allocflags |= __GFP_RECLAIMABLE;
2816 * Determine the number of objects per slab
2818 s->oo = oo_make(order, size, s->reserved);
2819 s->min = oo_make(get_order(size), size, s->reserved);
2820 if (oo_objects(s->oo) > oo_objects(s->max))
2821 s->max = s->oo;
2823 return !!oo_objects(s->oo);
2827 static int kmem_cache_open(struct kmem_cache *s,
2828 const char *name, size_t size,
2829 size_t align, unsigned long flags,
2830 void (*ctor)(void *))
2832 memset(s, 0, kmem_size);
2833 s->name = name;
2834 s->ctor = ctor;
2835 s->objsize = size;
2836 s->align = align;
2837 s->flags = kmem_cache_flags(size, flags, name, ctor);
2838 s->reserved = 0;
2840 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2841 s->reserved = sizeof(struct rcu_head);
2843 if (!calculate_sizes(s, -1))
2844 goto error;
2845 if (disable_higher_order_debug) {
2847 * Disable debugging flags that store metadata if the min slab
2848 * order increased.
2850 if (get_order(s->size) > get_order(s->objsize)) {
2851 s->flags &= ~DEBUG_METADATA_FLAGS;
2852 s->offset = 0;
2853 if (!calculate_sizes(s, -1))
2854 goto error;
2858 #ifdef CONFIG_CMPXCHG_DOUBLE
2859 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
2860 /* Enable fast mode */
2861 s->flags |= __CMPXCHG_DOUBLE;
2862 #endif
2865 * The larger the object size is, the more pages we want on the partial
2866 * list to avoid pounding the page allocator excessively.
2868 set_min_partial(s, ilog2(s->size));
2869 s->refcount = 1;
2870 #ifdef CONFIG_NUMA
2871 s->remote_node_defrag_ratio = 1000;
2872 #endif
2873 if (!init_kmem_cache_nodes(s))
2874 goto error;
2876 if (alloc_kmem_cache_cpus(s))
2877 return 1;
2879 free_kmem_cache_nodes(s);
2880 error:
2881 if (flags & SLAB_PANIC)
2882 panic("Cannot create slab %s size=%lu realsize=%u "
2883 "order=%u offset=%u flags=%lx\n",
2884 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2885 s->offset, flags);
2886 return 0;
2890 * Determine the size of a slab object
2892 unsigned int kmem_cache_size(struct kmem_cache *s)
2894 return s->objsize;
2896 EXPORT_SYMBOL(kmem_cache_size);
2898 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2899 const char *text)
2901 #ifdef CONFIG_SLUB_DEBUG
2902 void *addr = page_address(page);
2903 void *p;
2904 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2905 sizeof(long), GFP_ATOMIC);
2906 if (!map)
2907 return;
2908 slab_err(s, page, "%s", text);
2909 slab_lock(page);
2911 get_map(s, page, map);
2912 for_each_object(p, s, addr, page->objects) {
2914 if (!test_bit(slab_index(p, s, addr), map)) {
2915 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2916 p, p - addr);
2917 print_tracking(s, p);
2920 slab_unlock(page);
2921 kfree(map);
2922 #endif
2926 * Attempt to free all partial slabs on a node.
2928 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2930 unsigned long flags;
2931 struct page *page, *h;
2933 spin_lock_irqsave(&n->list_lock, flags);
2934 list_for_each_entry_safe(page, h, &n->partial, lru) {
2935 if (!page->inuse) {
2936 remove_partial(n, page);
2937 discard_slab(s, page);
2938 } else {
2939 list_slab_objects(s, page,
2940 "Objects remaining on kmem_cache_close()");
2943 spin_unlock_irqrestore(&n->list_lock, flags);
2947 * Release all resources used by a slab cache.
2949 static inline int kmem_cache_close(struct kmem_cache *s)
2951 int node;
2953 flush_all(s);
2954 free_percpu(s->cpu_slab);
2955 /* Attempt to free all objects */
2956 for_each_node_state(node, N_NORMAL_MEMORY) {
2957 struct kmem_cache_node *n = get_node(s, node);
2959 free_partial(s, n);
2960 if (n->nr_partial || slabs_node(s, node))
2961 return 1;
2963 free_kmem_cache_nodes(s);
2964 return 0;
2968 * Close a cache and release the kmem_cache structure
2969 * (must be used for caches created using kmem_cache_create)
2971 void kmem_cache_destroy(struct kmem_cache *s)
2973 down_write(&slub_lock);
2974 s->refcount--;
2975 if (!s->refcount) {
2976 list_del(&s->list);
2977 if (kmem_cache_close(s)) {
2978 printk(KERN_ERR "SLUB %s: %s called for cache that "
2979 "still has objects.\n", s->name, __func__);
2980 dump_stack();
2982 if (s->flags & SLAB_DESTROY_BY_RCU)
2983 rcu_barrier();
2984 sysfs_slab_remove(s);
2986 up_write(&slub_lock);
2988 EXPORT_SYMBOL(kmem_cache_destroy);
2990 /********************************************************************
2991 * Kmalloc subsystem
2992 *******************************************************************/
2994 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2995 EXPORT_SYMBOL(kmalloc_caches);
2997 static struct kmem_cache *kmem_cache;
2999 #ifdef CONFIG_ZONE_DMA
3000 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3001 #endif
3003 static int __init setup_slub_min_order(char *str)
3005 get_option(&str, &slub_min_order);
3007 return 1;
3010 __setup("slub_min_order=", setup_slub_min_order);
3012 static int __init setup_slub_max_order(char *str)
3014 get_option(&str, &slub_max_order);
3015 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3017 return 1;
3020 __setup("slub_max_order=", setup_slub_max_order);
3022 static int __init setup_slub_min_objects(char *str)
3024 get_option(&str, &slub_min_objects);
3026 return 1;
3029 __setup("slub_min_objects=", setup_slub_min_objects);
3031 static int __init setup_slub_nomerge(char *str)
3033 slub_nomerge = 1;
3034 return 1;
3037 __setup("slub_nomerge", setup_slub_nomerge);
3039 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3040 int size, unsigned int flags)
3042 struct kmem_cache *s;
3044 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3047 * This function is called with IRQs disabled during early-boot on
3048 * single CPU so there's no need to take slub_lock here.
3050 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3051 flags, NULL))
3052 goto panic;
3054 list_add(&s->list, &slab_caches);
3055 return s;
3057 panic:
3058 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3059 return NULL;
3063 * Conversion table for small slabs sizes / 8 to the index in the
3064 * kmalloc array. This is necessary for slabs < 192 since we have non power
3065 * of two cache sizes there. The size of larger slabs can be determined using
3066 * fls.
3068 static s8 size_index[24] = {
3069 3, /* 8 */
3070 4, /* 16 */
3071 5, /* 24 */
3072 5, /* 32 */
3073 6, /* 40 */
3074 6, /* 48 */
3075 6, /* 56 */
3076 6, /* 64 */
3077 1, /* 72 */
3078 1, /* 80 */
3079 1, /* 88 */
3080 1, /* 96 */
3081 7, /* 104 */
3082 7, /* 112 */
3083 7, /* 120 */
3084 7, /* 128 */
3085 2, /* 136 */
3086 2, /* 144 */
3087 2, /* 152 */
3088 2, /* 160 */
3089 2, /* 168 */
3090 2, /* 176 */
3091 2, /* 184 */
3092 2 /* 192 */
3095 static inline int size_index_elem(size_t bytes)
3097 return (bytes - 1) / 8;
3100 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3102 int index;
3104 if (size <= 192) {
3105 if (!size)
3106 return ZERO_SIZE_PTR;
3108 index = size_index[size_index_elem(size)];
3109 } else
3110 index = fls(size - 1);
3112 #ifdef CONFIG_ZONE_DMA
3113 if (unlikely((flags & SLUB_DMA)))
3114 return kmalloc_dma_caches[index];
3116 #endif
3117 return kmalloc_caches[index];
3120 void *__kmalloc(size_t size, gfp_t flags)
3122 struct kmem_cache *s;
3123 void *ret;
3125 if (unlikely(size > SLUB_MAX_SIZE))
3126 return kmalloc_large(size, flags);
3128 s = get_slab(size, flags);
3130 if (unlikely(ZERO_OR_NULL_PTR(s)))
3131 return s;
3133 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3135 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3137 return ret;
3139 EXPORT_SYMBOL(__kmalloc);
3141 #ifdef CONFIG_NUMA
3142 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3144 struct page *page;
3145 void *ptr = NULL;
3147 flags |= __GFP_COMP | __GFP_NOTRACK;
3148 page = alloc_pages_node(node, flags, get_order(size));
3149 if (page)
3150 ptr = page_address(page);
3152 kmemleak_alloc(ptr, size, 1, flags);
3153 return ptr;
3156 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3158 struct kmem_cache *s;
3159 void *ret;
3161 if (unlikely(size > SLUB_MAX_SIZE)) {
3162 ret = kmalloc_large_node(size, flags, node);
3164 trace_kmalloc_node(_RET_IP_, ret,
3165 size, PAGE_SIZE << get_order(size),
3166 flags, node);
3168 return ret;
3171 s = get_slab(size, flags);
3173 if (unlikely(ZERO_OR_NULL_PTR(s)))
3174 return s;
3176 ret = slab_alloc(s, flags, node, _RET_IP_);
3178 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3180 return ret;
3182 EXPORT_SYMBOL(__kmalloc_node);
3183 #endif
3185 size_t ksize(const void *object)
3187 struct page *page;
3189 if (unlikely(object == ZERO_SIZE_PTR))
3190 return 0;
3192 page = virt_to_head_page(object);
3194 if (unlikely(!PageSlab(page))) {
3195 WARN_ON(!PageCompound(page));
3196 return PAGE_SIZE << compound_order(page);
3199 return slab_ksize(page->slab);
3201 EXPORT_SYMBOL(ksize);
3203 #ifdef CONFIG_SLUB_DEBUG
3204 bool verify_mem_not_deleted(const void *x)
3206 struct page *page;
3207 void *object = (void *)x;
3208 unsigned long flags;
3209 bool rv;
3211 if (unlikely(ZERO_OR_NULL_PTR(x)))
3212 return false;
3214 local_irq_save(flags);
3216 page = virt_to_head_page(x);
3217 if (unlikely(!PageSlab(page))) {
3218 /* maybe it was from stack? */
3219 rv = true;
3220 goto out_unlock;
3223 slab_lock(page);
3224 if (on_freelist(page->slab, page, object)) {
3225 object_err(page->slab, page, object, "Object is on free-list");
3226 rv = false;
3227 } else {
3228 rv = true;
3230 slab_unlock(page);
3232 out_unlock:
3233 local_irq_restore(flags);
3234 return rv;
3236 EXPORT_SYMBOL(verify_mem_not_deleted);
3237 #endif
3239 void kfree(const void *x)
3241 struct page *page;
3242 void *object = (void *)x;
3244 trace_kfree(_RET_IP_, x);
3246 if (unlikely(ZERO_OR_NULL_PTR(x)))
3247 return;
3249 page = virt_to_head_page(x);
3250 if (unlikely(!PageSlab(page))) {
3251 BUG_ON(!PageCompound(page));
3252 kmemleak_free(x);
3253 put_page(page);
3254 return;
3256 slab_free(page->slab, page, object, _RET_IP_);
3258 EXPORT_SYMBOL(kfree);
3261 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3262 * the remaining slabs by the number of items in use. The slabs with the
3263 * most items in use come first. New allocations will then fill those up
3264 * and thus they can be removed from the partial lists.
3266 * The slabs with the least items are placed last. This results in them
3267 * being allocated from last increasing the chance that the last objects
3268 * are freed in them.
3270 int kmem_cache_shrink(struct kmem_cache *s)
3272 int node;
3273 int i;
3274 struct kmem_cache_node *n;
3275 struct page *page;
3276 struct page *t;
3277 int objects = oo_objects(s->max);
3278 struct list_head *slabs_by_inuse =
3279 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3280 unsigned long flags;
3282 if (!slabs_by_inuse)
3283 return -ENOMEM;
3285 flush_all(s);
3286 for_each_node_state(node, N_NORMAL_MEMORY) {
3287 n = get_node(s, node);
3289 if (!n->nr_partial)
3290 continue;
3292 for (i = 0; i < objects; i++)
3293 INIT_LIST_HEAD(slabs_by_inuse + i);
3295 spin_lock_irqsave(&n->list_lock, flags);
3298 * Build lists indexed by the items in use in each slab.
3300 * Note that concurrent frees may occur while we hold the
3301 * list_lock. page->inuse here is the upper limit.
3303 list_for_each_entry_safe(page, t, &n->partial, lru) {
3304 if (!page->inuse) {
3305 remove_partial(n, page);
3306 discard_slab(s, page);
3307 } else {
3308 list_move(&page->lru,
3309 slabs_by_inuse + page->inuse);
3314 * Rebuild the partial list with the slabs filled up most
3315 * first and the least used slabs at the end.
3317 for (i = objects - 1; i >= 0; i--)
3318 list_splice(slabs_by_inuse + i, n->partial.prev);
3320 spin_unlock_irqrestore(&n->list_lock, flags);
3323 kfree(slabs_by_inuse);
3324 return 0;
3326 EXPORT_SYMBOL(kmem_cache_shrink);
3328 #if defined(CONFIG_MEMORY_HOTPLUG)
3329 static int slab_mem_going_offline_callback(void *arg)
3331 struct kmem_cache *s;
3333 down_read(&slub_lock);
3334 list_for_each_entry(s, &slab_caches, list)
3335 kmem_cache_shrink(s);
3336 up_read(&slub_lock);
3338 return 0;
3341 static void slab_mem_offline_callback(void *arg)
3343 struct kmem_cache_node *n;
3344 struct kmem_cache *s;
3345 struct memory_notify *marg = arg;
3346 int offline_node;
3348 offline_node = marg->status_change_nid;
3351 * If the node still has available memory. we need kmem_cache_node
3352 * for it yet.
3354 if (offline_node < 0)
3355 return;
3357 down_read(&slub_lock);
3358 list_for_each_entry(s, &slab_caches, list) {
3359 n = get_node(s, offline_node);
3360 if (n) {
3362 * if n->nr_slabs > 0, slabs still exist on the node
3363 * that is going down. We were unable to free them,
3364 * and offline_pages() function shouldn't call this
3365 * callback. So, we must fail.
3367 BUG_ON(slabs_node(s, offline_node));
3369 s->node[offline_node] = NULL;
3370 kmem_cache_free(kmem_cache_node, n);
3373 up_read(&slub_lock);
3376 static int slab_mem_going_online_callback(void *arg)
3378 struct kmem_cache_node *n;
3379 struct kmem_cache *s;
3380 struct memory_notify *marg = arg;
3381 int nid = marg->status_change_nid;
3382 int ret = 0;
3385 * If the node's memory is already available, then kmem_cache_node is
3386 * already created. Nothing to do.
3388 if (nid < 0)
3389 return 0;
3392 * We are bringing a node online. No memory is available yet. We must
3393 * allocate a kmem_cache_node structure in order to bring the node
3394 * online.
3396 down_read(&slub_lock);
3397 list_for_each_entry(s, &slab_caches, list) {
3399 * XXX: kmem_cache_alloc_node will fallback to other nodes
3400 * since memory is not yet available from the node that
3401 * is brought up.
3403 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3404 if (!n) {
3405 ret = -ENOMEM;
3406 goto out;
3408 init_kmem_cache_node(n, s);
3409 s->node[nid] = n;
3411 out:
3412 up_read(&slub_lock);
3413 return ret;
3416 static int slab_memory_callback(struct notifier_block *self,
3417 unsigned long action, void *arg)
3419 int ret = 0;
3421 switch (action) {
3422 case MEM_GOING_ONLINE:
3423 ret = slab_mem_going_online_callback(arg);
3424 break;
3425 case MEM_GOING_OFFLINE:
3426 ret = slab_mem_going_offline_callback(arg);
3427 break;
3428 case MEM_OFFLINE:
3429 case MEM_CANCEL_ONLINE:
3430 slab_mem_offline_callback(arg);
3431 break;
3432 case MEM_ONLINE:
3433 case MEM_CANCEL_OFFLINE:
3434 break;
3436 if (ret)
3437 ret = notifier_from_errno(ret);
3438 else
3439 ret = NOTIFY_OK;
3440 return ret;
3443 #endif /* CONFIG_MEMORY_HOTPLUG */
3445 /********************************************************************
3446 * Basic setup of slabs
3447 *******************************************************************/
3450 * Used for early kmem_cache structures that were allocated using
3451 * the page allocator
3454 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3456 int node;
3458 list_add(&s->list, &slab_caches);
3459 s->refcount = -1;
3461 for_each_node_state(node, N_NORMAL_MEMORY) {
3462 struct kmem_cache_node *n = get_node(s, node);
3463 struct page *p;
3465 if (n) {
3466 list_for_each_entry(p, &n->partial, lru)
3467 p->slab = s;
3469 #ifdef CONFIG_SLUB_DEBUG
3470 list_for_each_entry(p, &n->full, lru)
3471 p->slab = s;
3472 #endif
3477 void __init kmem_cache_init(void)
3479 int i;
3480 int caches = 0;
3481 struct kmem_cache *temp_kmem_cache;
3482 int order;
3483 struct kmem_cache *temp_kmem_cache_node;
3484 unsigned long kmalloc_size;
3486 kmem_size = offsetof(struct kmem_cache, node) +
3487 nr_node_ids * sizeof(struct kmem_cache_node *);
3489 /* Allocate two kmem_caches from the page allocator */
3490 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3491 order = get_order(2 * kmalloc_size);
3492 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3495 * Must first have the slab cache available for the allocations of the
3496 * struct kmem_cache_node's. There is special bootstrap code in
3497 * kmem_cache_open for slab_state == DOWN.
3499 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3501 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3502 sizeof(struct kmem_cache_node),
3503 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3505 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3507 /* Able to allocate the per node structures */
3508 slab_state = PARTIAL;
3510 temp_kmem_cache = kmem_cache;
3511 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3512 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3513 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3514 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3517 * Allocate kmem_cache_node properly from the kmem_cache slab.
3518 * kmem_cache_node is separately allocated so no need to
3519 * update any list pointers.
3521 temp_kmem_cache_node = kmem_cache_node;
3523 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3524 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3526 kmem_cache_bootstrap_fixup(kmem_cache_node);
3528 caches++;
3529 kmem_cache_bootstrap_fixup(kmem_cache);
3530 caches++;
3531 /* Free temporary boot structure */
3532 free_pages((unsigned long)temp_kmem_cache, order);
3534 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3537 * Patch up the size_index table if we have strange large alignment
3538 * requirements for the kmalloc array. This is only the case for
3539 * MIPS it seems. The standard arches will not generate any code here.
3541 * Largest permitted alignment is 256 bytes due to the way we
3542 * handle the index determination for the smaller caches.
3544 * Make sure that nothing crazy happens if someone starts tinkering
3545 * around with ARCH_KMALLOC_MINALIGN
3547 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3548 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3550 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3551 int elem = size_index_elem(i);
3552 if (elem >= ARRAY_SIZE(size_index))
3553 break;
3554 size_index[elem] = KMALLOC_SHIFT_LOW;
3557 if (KMALLOC_MIN_SIZE == 64) {
3559 * The 96 byte size cache is not used if the alignment
3560 * is 64 byte.
3562 for (i = 64 + 8; i <= 96; i += 8)
3563 size_index[size_index_elem(i)] = 7;
3564 } else if (KMALLOC_MIN_SIZE == 128) {
3566 * The 192 byte sized cache is not used if the alignment
3567 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3568 * instead.
3570 for (i = 128 + 8; i <= 192; i += 8)
3571 size_index[size_index_elem(i)] = 8;
3574 /* Caches that are not of the two-to-the-power-of size */
3575 if (KMALLOC_MIN_SIZE <= 32) {
3576 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3577 caches++;
3580 if (KMALLOC_MIN_SIZE <= 64) {
3581 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3582 caches++;
3585 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3586 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3587 caches++;
3590 slab_state = UP;
3592 /* Provide the correct kmalloc names now that the caches are up */
3593 if (KMALLOC_MIN_SIZE <= 32) {
3594 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3595 BUG_ON(!kmalloc_caches[1]->name);
3598 if (KMALLOC_MIN_SIZE <= 64) {
3599 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3600 BUG_ON(!kmalloc_caches[2]->name);
3603 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3604 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3606 BUG_ON(!s);
3607 kmalloc_caches[i]->name = s;
3610 #ifdef CONFIG_SMP
3611 register_cpu_notifier(&slab_notifier);
3612 #endif
3614 #ifdef CONFIG_ZONE_DMA
3615 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3616 struct kmem_cache *s = kmalloc_caches[i];
3618 if (s && s->size) {
3619 char *name = kasprintf(GFP_NOWAIT,
3620 "dma-kmalloc-%d", s->objsize);
3622 BUG_ON(!name);
3623 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3624 s->objsize, SLAB_CACHE_DMA);
3627 #endif
3628 printk(KERN_INFO
3629 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3630 " CPUs=%d, Nodes=%d\n",
3631 caches, cache_line_size(),
3632 slub_min_order, slub_max_order, slub_min_objects,
3633 nr_cpu_ids, nr_node_ids);
3636 void __init kmem_cache_init_late(void)
3641 * Find a mergeable slab cache
3643 static int slab_unmergeable(struct kmem_cache *s)
3645 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3646 return 1;
3648 if (s->ctor)
3649 return 1;
3652 * We may have set a slab to be unmergeable during bootstrap.
3654 if (s->refcount < 0)
3655 return 1;
3657 return 0;
3660 static struct kmem_cache *find_mergeable(size_t size,
3661 size_t align, unsigned long flags, const char *name,
3662 void (*ctor)(void *))
3664 struct kmem_cache *s;
3666 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3667 return NULL;
3669 if (ctor)
3670 return NULL;
3672 size = ALIGN(size, sizeof(void *));
3673 align = calculate_alignment(flags, align, size);
3674 size = ALIGN(size, align);
3675 flags = kmem_cache_flags(size, flags, name, NULL);
3677 list_for_each_entry(s, &slab_caches, list) {
3678 if (slab_unmergeable(s))
3679 continue;
3681 if (size > s->size)
3682 continue;
3684 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3685 continue;
3687 * Check if alignment is compatible.
3688 * Courtesy of Adrian Drzewiecki
3690 if ((s->size & ~(align - 1)) != s->size)
3691 continue;
3693 if (s->size - size >= sizeof(void *))
3694 continue;
3696 return s;
3698 return NULL;
3701 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3702 size_t align, unsigned long flags, void (*ctor)(void *))
3704 struct kmem_cache *s;
3705 char *n;
3707 if (WARN_ON(!name))
3708 return NULL;
3710 down_write(&slub_lock);
3711 s = find_mergeable(size, align, flags, name, ctor);
3712 if (s) {
3713 s->refcount++;
3715 * Adjust the object sizes so that we clear
3716 * the complete object on kzalloc.
3718 s->objsize = max(s->objsize, (int)size);
3719 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3721 if (sysfs_slab_alias(s, name)) {
3722 s->refcount--;
3723 goto err;
3725 up_write(&slub_lock);
3726 return s;
3729 n = kstrdup(name, GFP_KERNEL);
3730 if (!n)
3731 goto err;
3733 s = kmalloc(kmem_size, GFP_KERNEL);
3734 if (s) {
3735 if (kmem_cache_open(s, n,
3736 size, align, flags, ctor)) {
3737 list_add(&s->list, &slab_caches);
3738 if (sysfs_slab_add(s)) {
3739 list_del(&s->list);
3740 kfree(n);
3741 kfree(s);
3742 goto err;
3744 up_write(&slub_lock);
3745 return s;
3747 kfree(n);
3748 kfree(s);
3750 err:
3751 up_write(&slub_lock);
3753 if (flags & SLAB_PANIC)
3754 panic("Cannot create slabcache %s\n", name);
3755 else
3756 s = NULL;
3757 return s;
3759 EXPORT_SYMBOL(kmem_cache_create);
3761 #ifdef CONFIG_SMP
3763 * Use the cpu notifier to insure that the cpu slabs are flushed when
3764 * necessary.
3766 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3767 unsigned long action, void *hcpu)
3769 long cpu = (long)hcpu;
3770 struct kmem_cache *s;
3771 unsigned long flags;
3773 switch (action) {
3774 case CPU_UP_CANCELED:
3775 case CPU_UP_CANCELED_FROZEN:
3776 case CPU_DEAD:
3777 case CPU_DEAD_FROZEN:
3778 down_read(&slub_lock);
3779 list_for_each_entry(s, &slab_caches, list) {
3780 local_irq_save(flags);
3781 __flush_cpu_slab(s, cpu);
3782 local_irq_restore(flags);
3784 up_read(&slub_lock);
3785 break;
3786 default:
3787 break;
3789 return NOTIFY_OK;
3792 static struct notifier_block __cpuinitdata slab_notifier = {
3793 .notifier_call = slab_cpuup_callback
3796 #endif
3798 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3800 struct kmem_cache *s;
3801 void *ret;
3803 if (unlikely(size > SLUB_MAX_SIZE))
3804 return kmalloc_large(size, gfpflags);
3806 s = get_slab(size, gfpflags);
3808 if (unlikely(ZERO_OR_NULL_PTR(s)))
3809 return s;
3811 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3813 /* Honor the call site pointer we received. */
3814 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3816 return ret;
3819 #ifdef CONFIG_NUMA
3820 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3821 int node, unsigned long caller)
3823 struct kmem_cache *s;
3824 void *ret;
3826 if (unlikely(size > SLUB_MAX_SIZE)) {
3827 ret = kmalloc_large_node(size, gfpflags, node);
3829 trace_kmalloc_node(caller, ret,
3830 size, PAGE_SIZE << get_order(size),
3831 gfpflags, node);
3833 return ret;
3836 s = get_slab(size, gfpflags);
3838 if (unlikely(ZERO_OR_NULL_PTR(s)))
3839 return s;
3841 ret = slab_alloc(s, gfpflags, node, caller);
3843 /* Honor the call site pointer we received. */
3844 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3846 return ret;
3848 #endif
3850 #ifdef CONFIG_SYSFS
3851 static int count_inuse(struct page *page)
3853 return page->inuse;
3856 static int count_total(struct page *page)
3858 return page->objects;
3860 #endif
3862 #ifdef CONFIG_SLUB_DEBUG
3863 static int validate_slab(struct kmem_cache *s, struct page *page,
3864 unsigned long *map)
3866 void *p;
3867 void *addr = page_address(page);
3869 if (!check_slab(s, page) ||
3870 !on_freelist(s, page, NULL))
3871 return 0;
3873 /* Now we know that a valid freelist exists */
3874 bitmap_zero(map, page->objects);
3876 get_map(s, page, map);
3877 for_each_object(p, s, addr, page->objects) {
3878 if (test_bit(slab_index(p, s, addr), map))
3879 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3880 return 0;
3883 for_each_object(p, s, addr, page->objects)
3884 if (!test_bit(slab_index(p, s, addr), map))
3885 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3886 return 0;
3887 return 1;
3890 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3891 unsigned long *map)
3893 slab_lock(page);
3894 validate_slab(s, page, map);
3895 slab_unlock(page);
3898 static int validate_slab_node(struct kmem_cache *s,
3899 struct kmem_cache_node *n, unsigned long *map)
3901 unsigned long count = 0;
3902 struct page *page;
3903 unsigned long flags;
3905 spin_lock_irqsave(&n->list_lock, flags);
3907 list_for_each_entry(page, &n->partial, lru) {
3908 validate_slab_slab(s, page, map);
3909 count++;
3911 if (count != n->nr_partial)
3912 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3913 "counter=%ld\n", s->name, count, n->nr_partial);
3915 if (!(s->flags & SLAB_STORE_USER))
3916 goto out;
3918 list_for_each_entry(page, &n->full, lru) {
3919 validate_slab_slab(s, page, map);
3920 count++;
3922 if (count != atomic_long_read(&n->nr_slabs))
3923 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3924 "counter=%ld\n", s->name, count,
3925 atomic_long_read(&n->nr_slabs));
3927 out:
3928 spin_unlock_irqrestore(&n->list_lock, flags);
3929 return count;
3932 static long validate_slab_cache(struct kmem_cache *s)
3934 int node;
3935 unsigned long count = 0;
3936 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3937 sizeof(unsigned long), GFP_KERNEL);
3939 if (!map)
3940 return -ENOMEM;
3942 flush_all(s);
3943 for_each_node_state(node, N_NORMAL_MEMORY) {
3944 struct kmem_cache_node *n = get_node(s, node);
3946 count += validate_slab_node(s, n, map);
3948 kfree(map);
3949 return count;
3952 * Generate lists of code addresses where slabcache objects are allocated
3953 * and freed.
3956 struct location {
3957 unsigned long count;
3958 unsigned long addr;
3959 long long sum_time;
3960 long min_time;
3961 long max_time;
3962 long min_pid;
3963 long max_pid;
3964 DECLARE_BITMAP(cpus, NR_CPUS);
3965 nodemask_t nodes;
3968 struct loc_track {
3969 unsigned long max;
3970 unsigned long count;
3971 struct location *loc;
3974 static void free_loc_track(struct loc_track *t)
3976 if (t->max)
3977 free_pages((unsigned long)t->loc,
3978 get_order(sizeof(struct location) * t->max));
3981 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3983 struct location *l;
3984 int order;
3986 order = get_order(sizeof(struct location) * max);
3988 l = (void *)__get_free_pages(flags, order);
3989 if (!l)
3990 return 0;
3992 if (t->count) {
3993 memcpy(l, t->loc, sizeof(struct location) * t->count);
3994 free_loc_track(t);
3996 t->max = max;
3997 t->loc = l;
3998 return 1;
4001 static int add_location(struct loc_track *t, struct kmem_cache *s,
4002 const struct track *track)
4004 long start, end, pos;
4005 struct location *l;
4006 unsigned long caddr;
4007 unsigned long age = jiffies - track->when;
4009 start = -1;
4010 end = t->count;
4012 for ( ; ; ) {
4013 pos = start + (end - start + 1) / 2;
4016 * There is nothing at "end". If we end up there
4017 * we need to add something to before end.
4019 if (pos == end)
4020 break;
4022 caddr = t->loc[pos].addr;
4023 if (track->addr == caddr) {
4025 l = &t->loc[pos];
4026 l->count++;
4027 if (track->when) {
4028 l->sum_time += age;
4029 if (age < l->min_time)
4030 l->min_time = age;
4031 if (age > l->max_time)
4032 l->max_time = age;
4034 if (track->pid < l->min_pid)
4035 l->min_pid = track->pid;
4036 if (track->pid > l->max_pid)
4037 l->max_pid = track->pid;
4039 cpumask_set_cpu(track->cpu,
4040 to_cpumask(l->cpus));
4042 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4043 return 1;
4046 if (track->addr < caddr)
4047 end = pos;
4048 else
4049 start = pos;
4053 * Not found. Insert new tracking element.
4055 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4056 return 0;
4058 l = t->loc + pos;
4059 if (pos < t->count)
4060 memmove(l + 1, l,
4061 (t->count - pos) * sizeof(struct location));
4062 t->count++;
4063 l->count = 1;
4064 l->addr = track->addr;
4065 l->sum_time = age;
4066 l->min_time = age;
4067 l->max_time = age;
4068 l->min_pid = track->pid;
4069 l->max_pid = track->pid;
4070 cpumask_clear(to_cpumask(l->cpus));
4071 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4072 nodes_clear(l->nodes);
4073 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4074 return 1;
4077 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4078 struct page *page, enum track_item alloc,
4079 unsigned long *map)
4081 void *addr = page_address(page);
4082 void *p;
4084 bitmap_zero(map, page->objects);
4085 get_map(s, page, map);
4087 for_each_object(p, s, addr, page->objects)
4088 if (!test_bit(slab_index(p, s, addr), map))
4089 add_location(t, s, get_track(s, p, alloc));
4092 static int list_locations(struct kmem_cache *s, char *buf,
4093 enum track_item alloc)
4095 int len = 0;
4096 unsigned long i;
4097 struct loc_track t = { 0, 0, NULL };
4098 int node;
4099 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4100 sizeof(unsigned long), GFP_KERNEL);
4102 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4103 GFP_TEMPORARY)) {
4104 kfree(map);
4105 return sprintf(buf, "Out of memory\n");
4107 /* Push back cpu slabs */
4108 flush_all(s);
4110 for_each_node_state(node, N_NORMAL_MEMORY) {
4111 struct kmem_cache_node *n = get_node(s, node);
4112 unsigned long flags;
4113 struct page *page;
4115 if (!atomic_long_read(&n->nr_slabs))
4116 continue;
4118 spin_lock_irqsave(&n->list_lock, flags);
4119 list_for_each_entry(page, &n->partial, lru)
4120 process_slab(&t, s, page, alloc, map);
4121 list_for_each_entry(page, &n->full, lru)
4122 process_slab(&t, s, page, alloc, map);
4123 spin_unlock_irqrestore(&n->list_lock, flags);
4126 for (i = 0; i < t.count; i++) {
4127 struct location *l = &t.loc[i];
4129 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4130 break;
4131 len += sprintf(buf + len, "%7ld ", l->count);
4133 if (l->addr)
4134 len += sprintf(buf + len, "%pS", (void *)l->addr);
4135 else
4136 len += sprintf(buf + len, "<not-available>");
4138 if (l->sum_time != l->min_time) {
4139 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4140 l->min_time,
4141 (long)div_u64(l->sum_time, l->count),
4142 l->max_time);
4143 } else
4144 len += sprintf(buf + len, " age=%ld",
4145 l->min_time);
4147 if (l->min_pid != l->max_pid)
4148 len += sprintf(buf + len, " pid=%ld-%ld",
4149 l->min_pid, l->max_pid);
4150 else
4151 len += sprintf(buf + len, " pid=%ld",
4152 l->min_pid);
4154 if (num_online_cpus() > 1 &&
4155 !cpumask_empty(to_cpumask(l->cpus)) &&
4156 len < PAGE_SIZE - 60) {
4157 len += sprintf(buf + len, " cpus=");
4158 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4159 to_cpumask(l->cpus));
4162 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4163 len < PAGE_SIZE - 60) {
4164 len += sprintf(buf + len, " nodes=");
4165 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4166 l->nodes);
4169 len += sprintf(buf + len, "\n");
4172 free_loc_track(&t);
4173 kfree(map);
4174 if (!t.count)
4175 len += sprintf(buf, "No data\n");
4176 return len;
4178 #endif
4180 #ifdef SLUB_RESILIENCY_TEST
4181 static void resiliency_test(void)
4183 u8 *p;
4185 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4187 printk(KERN_ERR "SLUB resiliency testing\n");
4188 printk(KERN_ERR "-----------------------\n");
4189 printk(KERN_ERR "A. Corruption after allocation\n");
4191 p = kzalloc(16, GFP_KERNEL);
4192 p[16] = 0x12;
4193 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4194 " 0x12->0x%p\n\n", p + 16);
4196 validate_slab_cache(kmalloc_caches[4]);
4198 /* Hmmm... The next two are dangerous */
4199 p = kzalloc(32, GFP_KERNEL);
4200 p[32 + sizeof(void *)] = 0x34;
4201 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4202 " 0x34 -> -0x%p\n", p);
4203 printk(KERN_ERR
4204 "If allocated object is overwritten then not detectable\n\n");
4206 validate_slab_cache(kmalloc_caches[5]);
4207 p = kzalloc(64, GFP_KERNEL);
4208 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4209 *p = 0x56;
4210 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4212 printk(KERN_ERR
4213 "If allocated object is overwritten then not detectable\n\n");
4214 validate_slab_cache(kmalloc_caches[6]);
4216 printk(KERN_ERR "\nB. Corruption after free\n");
4217 p = kzalloc(128, GFP_KERNEL);
4218 kfree(p);
4219 *p = 0x78;
4220 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4221 validate_slab_cache(kmalloc_caches[7]);
4223 p = kzalloc(256, GFP_KERNEL);
4224 kfree(p);
4225 p[50] = 0x9a;
4226 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4228 validate_slab_cache(kmalloc_caches[8]);
4230 p = kzalloc(512, GFP_KERNEL);
4231 kfree(p);
4232 p[512] = 0xab;
4233 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4234 validate_slab_cache(kmalloc_caches[9]);
4236 #else
4237 #ifdef CONFIG_SYSFS
4238 static void resiliency_test(void) {};
4239 #endif
4240 #endif
4242 #ifdef CONFIG_SYSFS
4243 enum slab_stat_type {
4244 SL_ALL, /* All slabs */
4245 SL_PARTIAL, /* Only partially allocated slabs */
4246 SL_CPU, /* Only slabs used for cpu caches */
4247 SL_OBJECTS, /* Determine allocated objects not slabs */
4248 SL_TOTAL /* Determine object capacity not slabs */
4251 #define SO_ALL (1 << SL_ALL)
4252 #define SO_PARTIAL (1 << SL_PARTIAL)
4253 #define SO_CPU (1 << SL_CPU)
4254 #define SO_OBJECTS (1 << SL_OBJECTS)
4255 #define SO_TOTAL (1 << SL_TOTAL)
4257 static ssize_t show_slab_objects(struct kmem_cache *s,
4258 char *buf, unsigned long flags)
4260 unsigned long total = 0;
4261 int node;
4262 int x;
4263 unsigned long *nodes;
4264 unsigned long *per_cpu;
4266 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4267 if (!nodes)
4268 return -ENOMEM;
4269 per_cpu = nodes + nr_node_ids;
4271 if (flags & SO_CPU) {
4272 int cpu;
4274 for_each_possible_cpu(cpu) {
4275 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4277 if (!c || c->node < 0)
4278 continue;
4280 if (c->page) {
4281 if (flags & SO_TOTAL)
4282 x = c->page->objects;
4283 else if (flags & SO_OBJECTS)
4284 x = c->page->inuse;
4285 else
4286 x = 1;
4288 total += x;
4289 nodes[c->node] += x;
4291 per_cpu[c->node]++;
4295 lock_memory_hotplug();
4296 #ifdef CONFIG_SLUB_DEBUG
4297 if (flags & SO_ALL) {
4298 for_each_node_state(node, N_NORMAL_MEMORY) {
4299 struct kmem_cache_node *n = get_node(s, node);
4301 if (flags & SO_TOTAL)
4302 x = atomic_long_read(&n->total_objects);
4303 else if (flags & SO_OBJECTS)
4304 x = atomic_long_read(&n->total_objects) -
4305 count_partial(n, count_free);
4307 else
4308 x = atomic_long_read(&n->nr_slabs);
4309 total += x;
4310 nodes[node] += x;
4313 } else
4314 #endif
4315 if (flags & SO_PARTIAL) {
4316 for_each_node_state(node, N_NORMAL_MEMORY) {
4317 struct kmem_cache_node *n = get_node(s, node);
4319 if (flags & SO_TOTAL)
4320 x = count_partial(n, count_total);
4321 else if (flags & SO_OBJECTS)
4322 x = count_partial(n, count_inuse);
4323 else
4324 x = n->nr_partial;
4325 total += x;
4326 nodes[node] += x;
4329 x = sprintf(buf, "%lu", total);
4330 #ifdef CONFIG_NUMA
4331 for_each_node_state(node, N_NORMAL_MEMORY)
4332 if (nodes[node])
4333 x += sprintf(buf + x, " N%d=%lu",
4334 node, nodes[node]);
4335 #endif
4336 unlock_memory_hotplug();
4337 kfree(nodes);
4338 return x + sprintf(buf + x, "\n");
4341 #ifdef CONFIG_SLUB_DEBUG
4342 static int any_slab_objects(struct kmem_cache *s)
4344 int node;
4346 for_each_online_node(node) {
4347 struct kmem_cache_node *n = get_node(s, node);
4349 if (!n)
4350 continue;
4352 if (atomic_long_read(&n->total_objects))
4353 return 1;
4355 return 0;
4357 #endif
4359 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4360 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
4362 struct slab_attribute {
4363 struct attribute attr;
4364 ssize_t (*show)(struct kmem_cache *s, char *buf);
4365 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4368 #define SLAB_ATTR_RO(_name) \
4369 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4371 #define SLAB_ATTR(_name) \
4372 static struct slab_attribute _name##_attr = \
4373 __ATTR(_name, 0644, _name##_show, _name##_store)
4375 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4377 return sprintf(buf, "%d\n", s->size);
4379 SLAB_ATTR_RO(slab_size);
4381 static ssize_t align_show(struct kmem_cache *s, char *buf)
4383 return sprintf(buf, "%d\n", s->align);
4385 SLAB_ATTR_RO(align);
4387 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4389 return sprintf(buf, "%d\n", s->objsize);
4391 SLAB_ATTR_RO(object_size);
4393 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4395 return sprintf(buf, "%d\n", oo_objects(s->oo));
4397 SLAB_ATTR_RO(objs_per_slab);
4399 static ssize_t order_store(struct kmem_cache *s,
4400 const char *buf, size_t length)
4402 unsigned long order;
4403 int err;
4405 err = strict_strtoul(buf, 10, &order);
4406 if (err)
4407 return err;
4409 if (order > slub_max_order || order < slub_min_order)
4410 return -EINVAL;
4412 calculate_sizes(s, order);
4413 return length;
4416 static ssize_t order_show(struct kmem_cache *s, char *buf)
4418 return sprintf(buf, "%d\n", oo_order(s->oo));
4420 SLAB_ATTR(order);
4422 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4424 return sprintf(buf, "%lu\n", s->min_partial);
4427 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4428 size_t length)
4430 unsigned long min;
4431 int err;
4433 err = strict_strtoul(buf, 10, &min);
4434 if (err)
4435 return err;
4437 set_min_partial(s, min);
4438 return length;
4440 SLAB_ATTR(min_partial);
4442 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4444 if (!s->ctor)
4445 return 0;
4446 return sprintf(buf, "%pS\n", s->ctor);
4448 SLAB_ATTR_RO(ctor);
4450 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4452 return sprintf(buf, "%d\n", s->refcount - 1);
4454 SLAB_ATTR_RO(aliases);
4456 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4458 return show_slab_objects(s, buf, SO_PARTIAL);
4460 SLAB_ATTR_RO(partial);
4462 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4464 return show_slab_objects(s, buf, SO_CPU);
4466 SLAB_ATTR_RO(cpu_slabs);
4468 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4470 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4472 SLAB_ATTR_RO(objects);
4474 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4476 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4478 SLAB_ATTR_RO(objects_partial);
4480 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4482 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4485 static ssize_t reclaim_account_store(struct kmem_cache *s,
4486 const char *buf, size_t length)
4488 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4489 if (buf[0] == '1')
4490 s->flags |= SLAB_RECLAIM_ACCOUNT;
4491 return length;
4493 SLAB_ATTR(reclaim_account);
4495 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4497 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4499 SLAB_ATTR_RO(hwcache_align);
4501 #ifdef CONFIG_ZONE_DMA
4502 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4504 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4506 SLAB_ATTR_RO(cache_dma);
4507 #endif
4509 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4511 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4513 SLAB_ATTR_RO(destroy_by_rcu);
4515 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4517 return sprintf(buf, "%d\n", s->reserved);
4519 SLAB_ATTR_RO(reserved);
4521 #ifdef CONFIG_SLUB_DEBUG
4522 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4524 return show_slab_objects(s, buf, SO_ALL);
4526 SLAB_ATTR_RO(slabs);
4528 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4530 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4532 SLAB_ATTR_RO(total_objects);
4534 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4536 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4539 static ssize_t sanity_checks_store(struct kmem_cache *s,
4540 const char *buf, size_t length)
4542 s->flags &= ~SLAB_DEBUG_FREE;
4543 if (buf[0] == '1') {
4544 s->flags &= ~__CMPXCHG_DOUBLE;
4545 s->flags |= SLAB_DEBUG_FREE;
4547 return length;
4549 SLAB_ATTR(sanity_checks);
4551 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4553 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4556 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4557 size_t length)
4559 s->flags &= ~SLAB_TRACE;
4560 if (buf[0] == '1') {
4561 s->flags &= ~__CMPXCHG_DOUBLE;
4562 s->flags |= SLAB_TRACE;
4564 return length;
4566 SLAB_ATTR(trace);
4568 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4570 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4573 static ssize_t red_zone_store(struct kmem_cache *s,
4574 const char *buf, size_t length)
4576 if (any_slab_objects(s))
4577 return -EBUSY;
4579 s->flags &= ~SLAB_RED_ZONE;
4580 if (buf[0] == '1') {
4581 s->flags &= ~__CMPXCHG_DOUBLE;
4582 s->flags |= SLAB_RED_ZONE;
4584 calculate_sizes(s, -1);
4585 return length;
4587 SLAB_ATTR(red_zone);
4589 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4591 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4594 static ssize_t poison_store(struct kmem_cache *s,
4595 const char *buf, size_t length)
4597 if (any_slab_objects(s))
4598 return -EBUSY;
4600 s->flags &= ~SLAB_POISON;
4601 if (buf[0] == '1') {
4602 s->flags &= ~__CMPXCHG_DOUBLE;
4603 s->flags |= SLAB_POISON;
4605 calculate_sizes(s, -1);
4606 return length;
4608 SLAB_ATTR(poison);
4610 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4612 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4615 static ssize_t store_user_store(struct kmem_cache *s,
4616 const char *buf, size_t length)
4618 if (any_slab_objects(s))
4619 return -EBUSY;
4621 s->flags &= ~SLAB_STORE_USER;
4622 if (buf[0] == '1') {
4623 s->flags &= ~__CMPXCHG_DOUBLE;
4624 s->flags |= SLAB_STORE_USER;
4626 calculate_sizes(s, -1);
4627 return length;
4629 SLAB_ATTR(store_user);
4631 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4633 return 0;
4636 static ssize_t validate_store(struct kmem_cache *s,
4637 const char *buf, size_t length)
4639 int ret = -EINVAL;
4641 if (buf[0] == '1') {
4642 ret = validate_slab_cache(s);
4643 if (ret >= 0)
4644 ret = length;
4646 return ret;
4648 SLAB_ATTR(validate);
4650 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4652 if (!(s->flags & SLAB_STORE_USER))
4653 return -ENOSYS;
4654 return list_locations(s, buf, TRACK_ALLOC);
4656 SLAB_ATTR_RO(alloc_calls);
4658 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4660 if (!(s->flags & SLAB_STORE_USER))
4661 return -ENOSYS;
4662 return list_locations(s, buf, TRACK_FREE);
4664 SLAB_ATTR_RO(free_calls);
4665 #endif /* CONFIG_SLUB_DEBUG */
4667 #ifdef CONFIG_FAILSLAB
4668 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4670 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4673 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4674 size_t length)
4676 s->flags &= ~SLAB_FAILSLAB;
4677 if (buf[0] == '1')
4678 s->flags |= SLAB_FAILSLAB;
4679 return length;
4681 SLAB_ATTR(failslab);
4682 #endif
4684 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4686 return 0;
4689 static ssize_t shrink_store(struct kmem_cache *s,
4690 const char *buf, size_t length)
4692 if (buf[0] == '1') {
4693 int rc = kmem_cache_shrink(s);
4695 if (rc)
4696 return rc;
4697 } else
4698 return -EINVAL;
4699 return length;
4701 SLAB_ATTR(shrink);
4703 #ifdef CONFIG_NUMA
4704 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4706 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4709 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4710 const char *buf, size_t length)
4712 unsigned long ratio;
4713 int err;
4715 err = strict_strtoul(buf, 10, &ratio);
4716 if (err)
4717 return err;
4719 if (ratio <= 100)
4720 s->remote_node_defrag_ratio = ratio * 10;
4722 return length;
4724 SLAB_ATTR(remote_node_defrag_ratio);
4725 #endif
4727 #ifdef CONFIG_SLUB_STATS
4728 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4730 unsigned long sum = 0;
4731 int cpu;
4732 int len;
4733 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4735 if (!data)
4736 return -ENOMEM;
4738 for_each_online_cpu(cpu) {
4739 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4741 data[cpu] = x;
4742 sum += x;
4745 len = sprintf(buf, "%lu", sum);
4747 #ifdef CONFIG_SMP
4748 for_each_online_cpu(cpu) {
4749 if (data[cpu] && len < PAGE_SIZE - 20)
4750 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4752 #endif
4753 kfree(data);
4754 return len + sprintf(buf + len, "\n");
4757 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4759 int cpu;
4761 for_each_online_cpu(cpu)
4762 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4765 #define STAT_ATTR(si, text) \
4766 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4768 return show_stat(s, buf, si); \
4770 static ssize_t text##_store(struct kmem_cache *s, \
4771 const char *buf, size_t length) \
4773 if (buf[0] != '0') \
4774 return -EINVAL; \
4775 clear_stat(s, si); \
4776 return length; \
4778 SLAB_ATTR(text); \
4780 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4781 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4782 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4783 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4784 STAT_ATTR(FREE_FROZEN, free_frozen);
4785 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4786 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4787 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4788 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4789 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4790 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4791 STAT_ATTR(FREE_SLAB, free_slab);
4792 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4793 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4794 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4795 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4796 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4797 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4798 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4799 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4800 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4801 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4802 #endif
4804 static struct attribute *slab_attrs[] = {
4805 &slab_size_attr.attr,
4806 &object_size_attr.attr,
4807 &objs_per_slab_attr.attr,
4808 &order_attr.attr,
4809 &min_partial_attr.attr,
4810 &objects_attr.attr,
4811 &objects_partial_attr.attr,
4812 &partial_attr.attr,
4813 &cpu_slabs_attr.attr,
4814 &ctor_attr.attr,
4815 &aliases_attr.attr,
4816 &align_attr.attr,
4817 &hwcache_align_attr.attr,
4818 &reclaim_account_attr.attr,
4819 &destroy_by_rcu_attr.attr,
4820 &shrink_attr.attr,
4821 &reserved_attr.attr,
4822 #ifdef CONFIG_SLUB_DEBUG
4823 &total_objects_attr.attr,
4824 &slabs_attr.attr,
4825 &sanity_checks_attr.attr,
4826 &trace_attr.attr,
4827 &red_zone_attr.attr,
4828 &poison_attr.attr,
4829 &store_user_attr.attr,
4830 &validate_attr.attr,
4831 &alloc_calls_attr.attr,
4832 &free_calls_attr.attr,
4833 #endif
4834 #ifdef CONFIG_ZONE_DMA
4835 &cache_dma_attr.attr,
4836 #endif
4837 #ifdef CONFIG_NUMA
4838 &remote_node_defrag_ratio_attr.attr,
4839 #endif
4840 #ifdef CONFIG_SLUB_STATS
4841 &alloc_fastpath_attr.attr,
4842 &alloc_slowpath_attr.attr,
4843 &free_fastpath_attr.attr,
4844 &free_slowpath_attr.attr,
4845 &free_frozen_attr.attr,
4846 &free_add_partial_attr.attr,
4847 &free_remove_partial_attr.attr,
4848 &alloc_from_partial_attr.attr,
4849 &alloc_slab_attr.attr,
4850 &alloc_refill_attr.attr,
4851 &alloc_node_mismatch_attr.attr,
4852 &free_slab_attr.attr,
4853 &cpuslab_flush_attr.attr,
4854 &deactivate_full_attr.attr,
4855 &deactivate_empty_attr.attr,
4856 &deactivate_to_head_attr.attr,
4857 &deactivate_to_tail_attr.attr,
4858 &deactivate_remote_frees_attr.attr,
4859 &deactivate_bypass_attr.attr,
4860 &order_fallback_attr.attr,
4861 &cmpxchg_double_fail_attr.attr,
4862 &cmpxchg_double_cpu_fail_attr.attr,
4863 #endif
4864 #ifdef CONFIG_FAILSLAB
4865 &failslab_attr.attr,
4866 #endif
4868 NULL
4871 static struct attribute_group slab_attr_group = {
4872 .attrs = slab_attrs,
4875 static ssize_t slab_attr_show(struct kobject *kobj,
4876 struct attribute *attr,
4877 char *buf)
4879 struct slab_attribute *attribute;
4880 struct kmem_cache *s;
4881 int err;
4883 attribute = to_slab_attr(attr);
4884 s = to_slab(kobj);
4886 if (!attribute->show)
4887 return -EIO;
4889 err = attribute->show(s, buf);
4891 return err;
4894 static ssize_t slab_attr_store(struct kobject *kobj,
4895 struct attribute *attr,
4896 const char *buf, size_t len)
4898 struct slab_attribute *attribute;
4899 struct kmem_cache *s;
4900 int err;
4902 attribute = to_slab_attr(attr);
4903 s = to_slab(kobj);
4905 if (!attribute->store)
4906 return -EIO;
4908 err = attribute->store(s, buf, len);
4910 return err;
4913 static void kmem_cache_release(struct kobject *kobj)
4915 struct kmem_cache *s = to_slab(kobj);
4917 kfree(s->name);
4918 kfree(s);
4921 static const struct sysfs_ops slab_sysfs_ops = {
4922 .show = slab_attr_show,
4923 .store = slab_attr_store,
4926 static struct kobj_type slab_ktype = {
4927 .sysfs_ops = &slab_sysfs_ops,
4928 .release = kmem_cache_release
4931 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4933 struct kobj_type *ktype = get_ktype(kobj);
4935 if (ktype == &slab_ktype)
4936 return 1;
4937 return 0;
4940 static const struct kset_uevent_ops slab_uevent_ops = {
4941 .filter = uevent_filter,
4944 static struct kset *slab_kset;
4946 #define ID_STR_LENGTH 64
4948 /* Create a unique string id for a slab cache:
4950 * Format :[flags-]size
4952 static char *create_unique_id(struct kmem_cache *s)
4954 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4955 char *p = name;
4957 BUG_ON(!name);
4959 *p++ = ':';
4961 * First flags affecting slabcache operations. We will only
4962 * get here for aliasable slabs so we do not need to support
4963 * too many flags. The flags here must cover all flags that
4964 * are matched during merging to guarantee that the id is
4965 * unique.
4967 if (s->flags & SLAB_CACHE_DMA)
4968 *p++ = 'd';
4969 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4970 *p++ = 'a';
4971 if (s->flags & SLAB_DEBUG_FREE)
4972 *p++ = 'F';
4973 if (!(s->flags & SLAB_NOTRACK))
4974 *p++ = 't';
4975 if (p != name + 1)
4976 *p++ = '-';
4977 p += sprintf(p, "%07d", s->size);
4978 BUG_ON(p > name + ID_STR_LENGTH - 1);
4979 return name;
4982 static int sysfs_slab_add(struct kmem_cache *s)
4984 int err;
4985 const char *name;
4986 int unmergeable;
4988 if (slab_state < SYSFS)
4989 /* Defer until later */
4990 return 0;
4992 unmergeable = slab_unmergeable(s);
4993 if (unmergeable) {
4995 * Slabcache can never be merged so we can use the name proper.
4996 * This is typically the case for debug situations. In that
4997 * case we can catch duplicate names easily.
4999 sysfs_remove_link(&slab_kset->kobj, s->name);
5000 name = s->name;
5001 } else {
5003 * Create a unique name for the slab as a target
5004 * for the symlinks.
5006 name = create_unique_id(s);
5009 s->kobj.kset = slab_kset;
5010 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5011 if (err) {
5012 kobject_put(&s->kobj);
5013 return err;
5016 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5017 if (err) {
5018 kobject_del(&s->kobj);
5019 kobject_put(&s->kobj);
5020 return err;
5022 kobject_uevent(&s->kobj, KOBJ_ADD);
5023 if (!unmergeable) {
5024 /* Setup first alias */
5025 sysfs_slab_alias(s, s->name);
5026 kfree(name);
5028 return 0;
5031 static void sysfs_slab_remove(struct kmem_cache *s)
5033 if (slab_state < SYSFS)
5035 * Sysfs has not been setup yet so no need to remove the
5036 * cache from sysfs.
5038 return;
5040 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5041 kobject_del(&s->kobj);
5042 kobject_put(&s->kobj);
5046 * Need to buffer aliases during bootup until sysfs becomes
5047 * available lest we lose that information.
5049 struct saved_alias {
5050 struct kmem_cache *s;
5051 const char *name;
5052 struct saved_alias *next;
5055 static struct saved_alias *alias_list;
5057 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5059 struct saved_alias *al;
5061 if (slab_state == SYSFS) {
5063 * If we have a leftover link then remove it.
5065 sysfs_remove_link(&slab_kset->kobj, name);
5066 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5069 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5070 if (!al)
5071 return -ENOMEM;
5073 al->s = s;
5074 al->name = name;
5075 al->next = alias_list;
5076 alias_list = al;
5077 return 0;
5080 static int __init slab_sysfs_init(void)
5082 struct kmem_cache *s;
5083 int err;
5085 down_write(&slub_lock);
5087 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5088 if (!slab_kset) {
5089 up_write(&slub_lock);
5090 printk(KERN_ERR "Cannot register slab subsystem.\n");
5091 return -ENOSYS;
5094 slab_state = SYSFS;
5096 list_for_each_entry(s, &slab_caches, list) {
5097 err = sysfs_slab_add(s);
5098 if (err)
5099 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5100 " to sysfs\n", s->name);
5103 while (alias_list) {
5104 struct saved_alias *al = alias_list;
5106 alias_list = alias_list->next;
5107 err = sysfs_slab_alias(al->s, al->name);
5108 if (err)
5109 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5110 " %s to sysfs\n", s->name);
5111 kfree(al);
5114 up_write(&slub_lock);
5115 resiliency_test();
5116 return 0;
5119 __initcall(slab_sysfs_init);
5120 #endif /* CONFIG_SYSFS */
5123 * The /proc/slabinfo ABI
5125 #ifdef CONFIG_SLABINFO
5126 static void print_slabinfo_header(struct seq_file *m)
5128 seq_puts(m, "slabinfo - version: 2.1\n");
5129 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5130 "<objperslab> <pagesperslab>");
5131 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5132 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5133 seq_putc(m, '\n');
5136 static void *s_start(struct seq_file *m, loff_t *pos)
5138 loff_t n = *pos;
5140 down_read(&slub_lock);
5141 if (!n)
5142 print_slabinfo_header(m);
5144 return seq_list_start(&slab_caches, *pos);
5147 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5149 return seq_list_next(p, &slab_caches, pos);
5152 static void s_stop(struct seq_file *m, void *p)
5154 up_read(&slub_lock);
5157 static int s_show(struct seq_file *m, void *p)
5159 unsigned long nr_partials = 0;
5160 unsigned long nr_slabs = 0;
5161 unsigned long nr_inuse = 0;
5162 unsigned long nr_objs = 0;
5163 unsigned long nr_free = 0;
5164 struct kmem_cache *s;
5165 int node;
5167 s = list_entry(p, struct kmem_cache, list);
5169 for_each_online_node(node) {
5170 struct kmem_cache_node *n = get_node(s, node);
5172 if (!n)
5173 continue;
5175 nr_partials += n->nr_partial;
5176 nr_slabs += atomic_long_read(&n->nr_slabs);
5177 nr_objs += atomic_long_read(&n->total_objects);
5178 nr_free += count_partial(n, count_free);
5181 nr_inuse = nr_objs - nr_free;
5183 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5184 nr_objs, s->size, oo_objects(s->oo),
5185 (1 << oo_order(s->oo)));
5186 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5187 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5188 0UL);
5189 seq_putc(m, '\n');
5190 return 0;
5193 static const struct seq_operations slabinfo_op = {
5194 .start = s_start,
5195 .next = s_next,
5196 .stop = s_stop,
5197 .show = s_show,
5200 static int slabinfo_open(struct inode *inode, struct file *file)
5202 return seq_open(file, &slabinfo_op);
5205 static const struct file_operations proc_slabinfo_operations = {
5206 .open = slabinfo_open,
5207 .read = seq_read,
5208 .llseek = seq_lseek,
5209 .release = seq_release,
5212 static int __init slab_proc_init(void)
5214 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
5215 return 0;
5217 module_init(slab_proc_init);
5218 #endif /* CONFIG_SLABINFO */