Add linux-next specific files for 20110716
[linux-2.6/next.git] / mm / swapfile.c
blobfb7d2686e842acee587b365eb9c6086561478e2e
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33 #include <linux/poll.h>
34 #include <linux/oom.h>
35 #include <linux/frontswap.h>
36 #include <linux/swapfile.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 long nr_swap_pages;
51 long total_swap_pages;
52 static int least_priority;
54 static const char Bad_file[] = "Bad swap file entry ";
55 static const char Unused_file[] = "Unused swap file entry ";
56 static const char Bad_offset[] = "Bad swap offset entry ";
57 static const char Unused_offset[] = "Unused swap offset entry ";
59 struct swap_list_t swap_list = {-1, -1};
61 struct swap_info_struct *swap_info[MAX_SWAPFILES];
63 static DEFINE_MUTEX(swapon_mutex);
65 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
66 /* Activity counter to indicate that a swapon or swapoff has occurred */
67 static atomic_t proc_poll_event = ATOMIC_INIT(0);
69 static inline unsigned char swap_count(unsigned char ent)
71 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
74 /* returns 1 if swap entry is freed */
75 static int
76 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
78 swp_entry_t entry = swp_entry(si->type, offset);
79 struct page *page;
80 int ret = 0;
82 page = find_get_page(&swapper_space, entry.val);
83 if (!page)
84 return 0;
86 * This function is called from scan_swap_map() and it's called
87 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
88 * We have to use trylock for avoiding deadlock. This is a special
89 * case and you should use try_to_free_swap() with explicit lock_page()
90 * in usual operations.
92 if (trylock_page(page)) {
93 ret = try_to_free_swap(page);
94 unlock_page(page);
96 page_cache_release(page);
97 return ret;
101 * swapon tell device that all the old swap contents can be discarded,
102 * to allow the swap device to optimize its wear-levelling.
104 static int discard_swap(struct swap_info_struct *si)
106 struct swap_extent *se;
107 sector_t start_block;
108 sector_t nr_blocks;
109 int err = 0;
111 /* Do not discard the swap header page! */
112 se = &si->first_swap_extent;
113 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
114 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
115 if (nr_blocks) {
116 err = blkdev_issue_discard(si->bdev, start_block,
117 nr_blocks, GFP_KERNEL, 0);
118 if (err)
119 return err;
120 cond_resched();
123 list_for_each_entry(se, &si->first_swap_extent.list, list) {
124 start_block = se->start_block << (PAGE_SHIFT - 9);
125 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
127 err = blkdev_issue_discard(si->bdev, start_block,
128 nr_blocks, GFP_KERNEL, 0);
129 if (err)
130 break;
132 cond_resched();
134 return err; /* That will often be -EOPNOTSUPP */
138 * swap allocation tell device that a cluster of swap can now be discarded,
139 * to allow the swap device to optimize its wear-levelling.
141 static void discard_swap_cluster(struct swap_info_struct *si,
142 pgoff_t start_page, pgoff_t nr_pages)
144 struct swap_extent *se = si->curr_swap_extent;
145 int found_extent = 0;
147 while (nr_pages) {
148 struct list_head *lh;
150 if (se->start_page <= start_page &&
151 start_page < se->start_page + se->nr_pages) {
152 pgoff_t offset = start_page - se->start_page;
153 sector_t start_block = se->start_block + offset;
154 sector_t nr_blocks = se->nr_pages - offset;
156 if (nr_blocks > nr_pages)
157 nr_blocks = nr_pages;
158 start_page += nr_blocks;
159 nr_pages -= nr_blocks;
161 if (!found_extent++)
162 si->curr_swap_extent = se;
164 start_block <<= PAGE_SHIFT - 9;
165 nr_blocks <<= PAGE_SHIFT - 9;
166 if (blkdev_issue_discard(si->bdev, start_block,
167 nr_blocks, GFP_NOIO, 0))
168 break;
171 lh = se->list.next;
172 se = list_entry(lh, struct swap_extent, list);
176 static int wait_for_discard(void *word)
178 schedule();
179 return 0;
182 #define SWAPFILE_CLUSTER 256
183 #define LATENCY_LIMIT 256
185 static unsigned long scan_swap_map(struct swap_info_struct *si,
186 unsigned char usage)
188 unsigned long offset;
189 unsigned long scan_base;
190 unsigned long last_in_cluster = 0;
191 int latency_ration = LATENCY_LIMIT;
192 int found_free_cluster = 0;
195 * We try to cluster swap pages by allocating them sequentially
196 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
197 * way, however, we resort to first-free allocation, starting
198 * a new cluster. This prevents us from scattering swap pages
199 * all over the entire swap partition, so that we reduce
200 * overall disk seek times between swap pages. -- sct
201 * But we do now try to find an empty cluster. -Andrea
202 * And we let swap pages go all over an SSD partition. Hugh
205 si->flags += SWP_SCANNING;
206 scan_base = offset = si->cluster_next;
208 if (unlikely(!si->cluster_nr--)) {
209 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
210 si->cluster_nr = SWAPFILE_CLUSTER - 1;
211 goto checks;
213 if (si->flags & SWP_DISCARDABLE) {
215 * Start range check on racing allocations, in case
216 * they overlap the cluster we eventually decide on
217 * (we scan without swap_lock to allow preemption).
218 * It's hardly conceivable that cluster_nr could be
219 * wrapped during our scan, but don't depend on it.
221 if (si->lowest_alloc)
222 goto checks;
223 si->lowest_alloc = si->max;
224 si->highest_alloc = 0;
226 spin_unlock(&swap_lock);
229 * If seek is expensive, start searching for new cluster from
230 * start of partition, to minimize the span of allocated swap.
231 * But if seek is cheap, search from our current position, so
232 * that swap is allocated from all over the partition: if the
233 * Flash Translation Layer only remaps within limited zones,
234 * we don't want to wear out the first zone too quickly.
236 if (!(si->flags & SWP_SOLIDSTATE))
237 scan_base = offset = si->lowest_bit;
238 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
240 /* Locate the first empty (unaligned) cluster */
241 for (; last_in_cluster <= si->highest_bit; offset++) {
242 if (si->swap_map[offset])
243 last_in_cluster = offset + SWAPFILE_CLUSTER;
244 else if (offset == last_in_cluster) {
245 spin_lock(&swap_lock);
246 offset -= SWAPFILE_CLUSTER - 1;
247 si->cluster_next = offset;
248 si->cluster_nr = SWAPFILE_CLUSTER - 1;
249 found_free_cluster = 1;
250 goto checks;
252 if (unlikely(--latency_ration < 0)) {
253 cond_resched();
254 latency_ration = LATENCY_LIMIT;
258 offset = si->lowest_bit;
259 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
261 /* Locate the first empty (unaligned) cluster */
262 for (; last_in_cluster < scan_base; offset++) {
263 if (si->swap_map[offset])
264 last_in_cluster = offset + SWAPFILE_CLUSTER;
265 else if (offset == last_in_cluster) {
266 spin_lock(&swap_lock);
267 offset -= SWAPFILE_CLUSTER - 1;
268 si->cluster_next = offset;
269 si->cluster_nr = SWAPFILE_CLUSTER - 1;
270 found_free_cluster = 1;
271 goto checks;
273 if (unlikely(--latency_ration < 0)) {
274 cond_resched();
275 latency_ration = LATENCY_LIMIT;
279 offset = scan_base;
280 spin_lock(&swap_lock);
281 si->cluster_nr = SWAPFILE_CLUSTER - 1;
282 si->lowest_alloc = 0;
285 checks:
286 if (!(si->flags & SWP_WRITEOK))
287 goto no_page;
288 if (!si->highest_bit)
289 goto no_page;
290 if (offset > si->highest_bit)
291 scan_base = offset = si->lowest_bit;
293 /* reuse swap entry of cache-only swap if not busy. */
294 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
295 int swap_was_freed;
296 spin_unlock(&swap_lock);
297 swap_was_freed = __try_to_reclaim_swap(si, offset);
298 spin_lock(&swap_lock);
299 /* entry was freed successfully, try to use this again */
300 if (swap_was_freed)
301 goto checks;
302 goto scan; /* check next one */
305 if (si->swap_map[offset])
306 goto scan;
308 if (offset == si->lowest_bit)
309 si->lowest_bit++;
310 if (offset == si->highest_bit)
311 si->highest_bit--;
312 si->inuse_pages++;
313 if (si->inuse_pages == si->pages) {
314 si->lowest_bit = si->max;
315 si->highest_bit = 0;
317 si->swap_map[offset] = usage;
318 si->cluster_next = offset + 1;
319 si->flags -= SWP_SCANNING;
321 if (si->lowest_alloc) {
323 * Only set when SWP_DISCARDABLE, and there's a scan
324 * for a free cluster in progress or just completed.
326 if (found_free_cluster) {
328 * To optimize wear-levelling, discard the
329 * old data of the cluster, taking care not to
330 * discard any of its pages that have already
331 * been allocated by racing tasks (offset has
332 * already stepped over any at the beginning).
334 if (offset < si->highest_alloc &&
335 si->lowest_alloc <= last_in_cluster)
336 last_in_cluster = si->lowest_alloc - 1;
337 si->flags |= SWP_DISCARDING;
338 spin_unlock(&swap_lock);
340 if (offset < last_in_cluster)
341 discard_swap_cluster(si, offset,
342 last_in_cluster - offset + 1);
344 spin_lock(&swap_lock);
345 si->lowest_alloc = 0;
346 si->flags &= ~SWP_DISCARDING;
348 smp_mb(); /* wake_up_bit advises this */
349 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
351 } else if (si->flags & SWP_DISCARDING) {
353 * Delay using pages allocated by racing tasks
354 * until the whole discard has been issued. We
355 * could defer that delay until swap_writepage,
356 * but it's easier to keep this self-contained.
358 spin_unlock(&swap_lock);
359 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
360 wait_for_discard, TASK_UNINTERRUPTIBLE);
361 spin_lock(&swap_lock);
362 } else {
364 * Note pages allocated by racing tasks while
365 * scan for a free cluster is in progress, so
366 * that its final discard can exclude them.
368 if (offset < si->lowest_alloc)
369 si->lowest_alloc = offset;
370 if (offset > si->highest_alloc)
371 si->highest_alloc = offset;
374 return offset;
376 scan:
377 spin_unlock(&swap_lock);
378 while (++offset <= si->highest_bit) {
379 if (!si->swap_map[offset]) {
380 spin_lock(&swap_lock);
381 goto checks;
383 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
384 spin_lock(&swap_lock);
385 goto checks;
387 if (unlikely(--latency_ration < 0)) {
388 cond_resched();
389 latency_ration = LATENCY_LIMIT;
392 offset = si->lowest_bit;
393 while (++offset < scan_base) {
394 if (!si->swap_map[offset]) {
395 spin_lock(&swap_lock);
396 goto checks;
398 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
399 spin_lock(&swap_lock);
400 goto checks;
402 if (unlikely(--latency_ration < 0)) {
403 cond_resched();
404 latency_ration = LATENCY_LIMIT;
407 spin_lock(&swap_lock);
409 no_page:
410 si->flags -= SWP_SCANNING;
411 return 0;
414 swp_entry_t get_swap_page(void)
416 struct swap_info_struct *si;
417 pgoff_t offset;
418 int type, next;
419 int wrapped = 0;
421 spin_lock(&swap_lock);
422 if (nr_swap_pages <= 0)
423 goto noswap;
424 nr_swap_pages--;
426 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
427 si = swap_info[type];
428 next = si->next;
429 if (next < 0 ||
430 (!wrapped && si->prio != swap_info[next]->prio)) {
431 next = swap_list.head;
432 wrapped++;
435 if (!si->highest_bit)
436 continue;
437 if (!(si->flags & SWP_WRITEOK))
438 continue;
440 swap_list.next = next;
441 /* This is called for allocating swap entry for cache */
442 offset = scan_swap_map(si, SWAP_HAS_CACHE);
443 if (offset) {
444 spin_unlock(&swap_lock);
445 return swp_entry(type, offset);
447 next = swap_list.next;
450 nr_swap_pages++;
451 noswap:
452 spin_unlock(&swap_lock);
453 return (swp_entry_t) {0};
456 /* The only caller of this function is now susupend routine */
457 swp_entry_t get_swap_page_of_type(int type)
459 struct swap_info_struct *si;
460 pgoff_t offset;
462 spin_lock(&swap_lock);
463 si = swap_info[type];
464 if (si && (si->flags & SWP_WRITEOK)) {
465 nr_swap_pages--;
466 /* This is called for allocating swap entry, not cache */
467 offset = scan_swap_map(si, 1);
468 if (offset) {
469 spin_unlock(&swap_lock);
470 return swp_entry(type, offset);
472 nr_swap_pages++;
474 spin_unlock(&swap_lock);
475 return (swp_entry_t) {0};
478 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
480 struct swap_info_struct *p;
481 unsigned long offset, type;
483 if (!entry.val)
484 goto out;
485 type = swp_type(entry);
486 if (type >= nr_swapfiles)
487 goto bad_nofile;
488 p = swap_info[type];
489 if (!(p->flags & SWP_USED))
490 goto bad_device;
491 offset = swp_offset(entry);
492 if (offset >= p->max)
493 goto bad_offset;
494 if (!p->swap_map[offset])
495 goto bad_free;
496 spin_lock(&swap_lock);
497 return p;
499 bad_free:
500 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
501 goto out;
502 bad_offset:
503 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
504 goto out;
505 bad_device:
506 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
507 goto out;
508 bad_nofile:
509 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
510 out:
511 return NULL;
514 static unsigned char swap_entry_free(struct swap_info_struct *p,
515 swp_entry_t entry, unsigned char usage)
517 unsigned long offset = swp_offset(entry);
518 unsigned char count;
519 unsigned char has_cache;
521 count = p->swap_map[offset];
522 has_cache = count & SWAP_HAS_CACHE;
523 count &= ~SWAP_HAS_CACHE;
525 if (usage == SWAP_HAS_CACHE) {
526 VM_BUG_ON(!has_cache);
527 has_cache = 0;
528 } else if (count == SWAP_MAP_SHMEM) {
530 * Or we could insist on shmem.c using a special
531 * swap_shmem_free() and free_shmem_swap_and_cache()...
533 count = 0;
534 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
535 if (count == COUNT_CONTINUED) {
536 if (swap_count_continued(p, offset, count))
537 count = SWAP_MAP_MAX | COUNT_CONTINUED;
538 else
539 count = SWAP_MAP_MAX;
540 } else
541 count--;
544 if (!count)
545 mem_cgroup_uncharge_swap(entry);
547 usage = count | has_cache;
548 p->swap_map[offset] = usage;
550 /* free if no reference */
551 if (!usage) {
552 struct gendisk *disk = p->bdev->bd_disk;
553 if (offset < p->lowest_bit)
554 p->lowest_bit = offset;
555 if (offset > p->highest_bit)
556 p->highest_bit = offset;
557 if (swap_list.next >= 0 &&
558 p->prio > swap_info[swap_list.next]->prio)
559 swap_list.next = p->type;
560 nr_swap_pages++;
561 p->inuse_pages--;
562 frontswap_flush_page(p->type, offset);
563 if ((p->flags & SWP_BLKDEV) &&
564 disk->fops->swap_slot_free_notify)
565 disk->fops->swap_slot_free_notify(p->bdev, offset);
568 return usage;
572 * Caller has made sure that the swapdevice corresponding to entry
573 * is still around or has not been recycled.
575 void swap_free(swp_entry_t entry)
577 struct swap_info_struct *p;
579 p = swap_info_get(entry);
580 if (p) {
581 swap_entry_free(p, entry, 1);
582 spin_unlock(&swap_lock);
587 * Called after dropping swapcache to decrease refcnt to swap entries.
589 void swapcache_free(swp_entry_t entry, struct page *page)
591 struct swap_info_struct *p;
592 unsigned char count;
594 p = swap_info_get(entry);
595 if (p) {
596 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
597 if (page)
598 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
599 spin_unlock(&swap_lock);
604 * How many references to page are currently swapped out?
605 * This does not give an exact answer when swap count is continued,
606 * but does include the high COUNT_CONTINUED flag to allow for that.
608 static inline int page_swapcount(struct page *page)
610 int count = 0;
611 struct swap_info_struct *p;
612 swp_entry_t entry;
614 entry.val = page_private(page);
615 p = swap_info_get(entry);
616 if (p) {
617 count = swap_count(p->swap_map[swp_offset(entry)]);
618 spin_unlock(&swap_lock);
620 return count;
624 * We can write to an anon page without COW if there are no other references
625 * to it. And as a side-effect, free up its swap: because the old content
626 * on disk will never be read, and seeking back there to write new content
627 * later would only waste time away from clustering.
629 int reuse_swap_page(struct page *page)
631 int count;
633 VM_BUG_ON(!PageLocked(page));
634 if (unlikely(PageKsm(page)))
635 return 0;
636 count = page_mapcount(page);
637 if (count <= 1 && PageSwapCache(page)) {
638 count += page_swapcount(page);
639 if (count == 1 && !PageWriteback(page)) {
640 delete_from_swap_cache(page);
641 SetPageDirty(page);
644 return count <= 1;
648 * If swap is getting full, or if there are no more mappings of this page,
649 * then try_to_free_swap is called to free its swap space.
651 int try_to_free_swap(struct page *page)
653 VM_BUG_ON(!PageLocked(page));
655 if (!PageSwapCache(page))
656 return 0;
657 if (PageWriteback(page))
658 return 0;
659 if (page_swapcount(page))
660 return 0;
663 * Once hibernation has begun to create its image of memory,
664 * there's a danger that one of the calls to try_to_free_swap()
665 * - most probably a call from __try_to_reclaim_swap() while
666 * hibernation is allocating its own swap pages for the image,
667 * but conceivably even a call from memory reclaim - will free
668 * the swap from a page which has already been recorded in the
669 * image as a clean swapcache page, and then reuse its swap for
670 * another page of the image. On waking from hibernation, the
671 * original page might be freed under memory pressure, then
672 * later read back in from swap, now with the wrong data.
674 * Hibernation clears bits from gfp_allowed_mask to prevent
675 * memory reclaim from writing to disk, so check that here.
677 if (!(gfp_allowed_mask & __GFP_IO))
678 return 0;
680 delete_from_swap_cache(page);
681 SetPageDirty(page);
682 return 1;
686 * Free the swap entry like above, but also try to
687 * free the page cache entry if it is the last user.
689 int free_swap_and_cache(swp_entry_t entry)
691 struct swap_info_struct *p;
692 struct page *page = NULL;
694 if (non_swap_entry(entry))
695 return 1;
697 p = swap_info_get(entry);
698 if (p) {
699 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
700 page = find_get_page(&swapper_space, entry.val);
701 if (page && !trylock_page(page)) {
702 page_cache_release(page);
703 page = NULL;
706 spin_unlock(&swap_lock);
708 if (page) {
710 * Not mapped elsewhere, or swap space full? Free it!
711 * Also recheck PageSwapCache now page is locked (above).
713 if (PageSwapCache(page) && !PageWriteback(page) &&
714 (!page_mapped(page) || vm_swap_full())) {
715 delete_from_swap_cache(page);
716 SetPageDirty(page);
718 unlock_page(page);
719 page_cache_release(page);
721 return p != NULL;
724 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
726 * mem_cgroup_count_swap_user - count the user of a swap entry
727 * @ent: the swap entry to be checked
728 * @pagep: the pointer for the swap cache page of the entry to be stored
730 * Returns the number of the user of the swap entry. The number is valid only
731 * for swaps of anonymous pages.
732 * If the entry is found on swap cache, the page is stored to pagep with
733 * refcount of it being incremented.
735 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
737 struct page *page;
738 struct swap_info_struct *p;
739 int count = 0;
741 page = find_get_page(&swapper_space, ent.val);
742 if (page)
743 count += page_mapcount(page);
744 p = swap_info_get(ent);
745 if (p) {
746 count += swap_count(p->swap_map[swp_offset(ent)]);
747 spin_unlock(&swap_lock);
750 *pagep = page;
751 return count;
753 #endif
755 #ifdef CONFIG_HIBERNATION
757 * Find the swap type that corresponds to given device (if any).
759 * @offset - number of the PAGE_SIZE-sized block of the device, starting
760 * from 0, in which the swap header is expected to be located.
762 * This is needed for the suspend to disk (aka swsusp).
764 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
766 struct block_device *bdev = NULL;
767 int type;
769 if (device)
770 bdev = bdget(device);
772 spin_lock(&swap_lock);
773 for (type = 0; type < nr_swapfiles; type++) {
774 struct swap_info_struct *sis = swap_info[type];
776 if (!(sis->flags & SWP_WRITEOK))
777 continue;
779 if (!bdev) {
780 if (bdev_p)
781 *bdev_p = bdgrab(sis->bdev);
783 spin_unlock(&swap_lock);
784 return type;
786 if (bdev == sis->bdev) {
787 struct swap_extent *se = &sis->first_swap_extent;
789 if (se->start_block == offset) {
790 if (bdev_p)
791 *bdev_p = bdgrab(sis->bdev);
793 spin_unlock(&swap_lock);
794 bdput(bdev);
795 return type;
799 spin_unlock(&swap_lock);
800 if (bdev)
801 bdput(bdev);
803 return -ENODEV;
807 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
808 * corresponding to given index in swap_info (swap type).
810 sector_t swapdev_block(int type, pgoff_t offset)
812 struct block_device *bdev;
814 if ((unsigned int)type >= nr_swapfiles)
815 return 0;
816 if (!(swap_info[type]->flags & SWP_WRITEOK))
817 return 0;
818 return map_swap_entry(swp_entry(type, offset), &bdev);
822 * Return either the total number of swap pages of given type, or the number
823 * of free pages of that type (depending on @free)
825 * This is needed for software suspend
827 unsigned int count_swap_pages(int type, int free)
829 unsigned int n = 0;
831 spin_lock(&swap_lock);
832 if ((unsigned int)type < nr_swapfiles) {
833 struct swap_info_struct *sis = swap_info[type];
835 if (sis->flags & SWP_WRITEOK) {
836 n = sis->pages;
837 if (free)
838 n -= sis->inuse_pages;
841 spin_unlock(&swap_lock);
842 return n;
844 #endif /* CONFIG_HIBERNATION */
847 * No need to decide whether this PTE shares the swap entry with others,
848 * just let do_wp_page work it out if a write is requested later - to
849 * force COW, vm_page_prot omits write permission from any private vma.
851 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
852 unsigned long addr, swp_entry_t entry, struct page *page)
854 struct mem_cgroup *ptr;
855 spinlock_t *ptl;
856 pte_t *pte;
857 int ret = 1;
859 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
860 ret = -ENOMEM;
861 goto out_nolock;
864 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
865 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
866 if (ret > 0)
867 mem_cgroup_cancel_charge_swapin(ptr);
868 ret = 0;
869 goto out;
872 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
873 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
874 get_page(page);
875 set_pte_at(vma->vm_mm, addr, pte,
876 pte_mkold(mk_pte(page, vma->vm_page_prot)));
877 page_add_anon_rmap(page, vma, addr);
878 mem_cgroup_commit_charge_swapin(page, ptr);
879 swap_free(entry);
881 * Move the page to the active list so it is not
882 * immediately swapped out again after swapon.
884 activate_page(page);
885 out:
886 pte_unmap_unlock(pte, ptl);
887 out_nolock:
888 return ret;
891 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
892 unsigned long addr, unsigned long end,
893 swp_entry_t entry, struct page *page)
895 pte_t swp_pte = swp_entry_to_pte(entry);
896 pte_t *pte;
897 int ret = 0;
900 * We don't actually need pte lock while scanning for swp_pte: since
901 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
902 * page table while we're scanning; though it could get zapped, and on
903 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
904 * of unmatched parts which look like swp_pte, so unuse_pte must
905 * recheck under pte lock. Scanning without pte lock lets it be
906 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
908 pte = pte_offset_map(pmd, addr);
909 do {
911 * swapoff spends a _lot_ of time in this loop!
912 * Test inline before going to call unuse_pte.
914 if (unlikely(pte_same(*pte, swp_pte))) {
915 pte_unmap(pte);
916 ret = unuse_pte(vma, pmd, addr, entry, page);
917 if (ret)
918 goto out;
919 pte = pte_offset_map(pmd, addr);
921 } while (pte++, addr += PAGE_SIZE, addr != end);
922 pte_unmap(pte - 1);
923 out:
924 return ret;
927 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
928 unsigned long addr, unsigned long end,
929 swp_entry_t entry, struct page *page)
931 pmd_t *pmd;
932 unsigned long next;
933 int ret;
935 pmd = pmd_offset(pud, addr);
936 do {
937 next = pmd_addr_end(addr, end);
938 if (unlikely(pmd_trans_huge(*pmd)))
939 continue;
940 if (pmd_none_or_clear_bad(pmd))
941 continue;
942 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
943 if (ret)
944 return ret;
945 } while (pmd++, addr = next, addr != end);
946 return 0;
949 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
950 unsigned long addr, unsigned long end,
951 swp_entry_t entry, struct page *page)
953 pud_t *pud;
954 unsigned long next;
955 int ret;
957 pud = pud_offset(pgd, addr);
958 do {
959 next = pud_addr_end(addr, end);
960 if (pud_none_or_clear_bad(pud))
961 continue;
962 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
963 if (ret)
964 return ret;
965 } while (pud++, addr = next, addr != end);
966 return 0;
969 static int unuse_vma(struct vm_area_struct *vma,
970 swp_entry_t entry, struct page *page)
972 pgd_t *pgd;
973 unsigned long addr, end, next;
974 int ret;
976 if (page_anon_vma(page)) {
977 addr = page_address_in_vma(page, vma);
978 if (addr == -EFAULT)
979 return 0;
980 else
981 end = addr + PAGE_SIZE;
982 } else {
983 addr = vma->vm_start;
984 end = vma->vm_end;
987 pgd = pgd_offset(vma->vm_mm, addr);
988 do {
989 next = pgd_addr_end(addr, end);
990 if (pgd_none_or_clear_bad(pgd))
991 continue;
992 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
993 if (ret)
994 return ret;
995 } while (pgd++, addr = next, addr != end);
996 return 0;
999 static int unuse_mm(struct mm_struct *mm,
1000 swp_entry_t entry, struct page *page)
1002 struct vm_area_struct *vma;
1003 int ret = 0;
1005 if (!down_read_trylock(&mm->mmap_sem)) {
1007 * Activate page so shrink_inactive_list is unlikely to unmap
1008 * its ptes while lock is dropped, so swapoff can make progress.
1010 activate_page(page);
1011 unlock_page(page);
1012 down_read(&mm->mmap_sem);
1013 lock_page(page);
1015 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1016 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1017 break;
1019 up_read(&mm->mmap_sem);
1020 return (ret < 0)? ret: 0;
1024 * Scan swap_map from current position to next entry still in use.
1025 * Recycle to start on reaching the end, returning 0 when empty.
1027 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1028 unsigned int prev, bool frontswap)
1030 unsigned int max = si->max;
1031 unsigned int i = prev;
1032 unsigned char count;
1035 * No need for swap_lock here: we're just looking
1036 * for whether an entry is in use, not modifying it; false
1037 * hits are okay, and sys_swapoff() has already prevented new
1038 * allocations from this area (while holding swap_lock).
1040 for (;;) {
1041 if (++i >= max) {
1042 if (!prev) {
1043 i = 0;
1044 break;
1047 * No entries in use at top of swap_map,
1048 * loop back to start and recheck there.
1050 max = prev + 1;
1051 prev = 0;
1052 i = 1;
1054 if (frontswap) {
1055 if (frontswap_test(si, i))
1056 break;
1057 else
1058 continue;
1060 count = si->swap_map[i];
1061 if (count && swap_count(count) != SWAP_MAP_BAD)
1062 break;
1064 return i;
1068 * We completely avoid races by reading each swap page in advance,
1069 * and then search for the process using it. All the necessary
1070 * page table adjustments can then be made atomically.
1072 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1073 * pages_to_unuse==0 means all pages
1075 int try_to_unuse(unsigned int type, bool frontswap,
1076 unsigned long pages_to_unuse)
1078 struct swap_info_struct *si = swap_info[type];
1079 struct mm_struct *start_mm;
1080 unsigned char *swap_map;
1081 unsigned char swcount;
1082 struct page *page;
1083 swp_entry_t entry;
1084 unsigned int i = 0;
1085 int retval = 0;
1088 * When searching mms for an entry, a good strategy is to
1089 * start at the first mm we freed the previous entry from
1090 * (though actually we don't notice whether we or coincidence
1091 * freed the entry). Initialize this start_mm with a hold.
1093 * A simpler strategy would be to start at the last mm we
1094 * freed the previous entry from; but that would take less
1095 * advantage of mmlist ordering, which clusters forked mms
1096 * together, child after parent. If we race with dup_mmap(), we
1097 * prefer to resolve parent before child, lest we miss entries
1098 * duplicated after we scanned child: using last mm would invert
1099 * that.
1101 start_mm = &init_mm;
1102 atomic_inc(&init_mm.mm_users);
1105 * Keep on scanning until all entries have gone. Usually,
1106 * one pass through swap_map is enough, but not necessarily:
1107 * there are races when an instance of an entry might be missed.
1109 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1110 if (signal_pending(current)) {
1111 retval = -EINTR;
1112 break;
1116 * Get a page for the entry, using the existing swap
1117 * cache page if there is one. Otherwise, get a clean
1118 * page and read the swap into it.
1120 swap_map = &si->swap_map[i];
1121 entry = swp_entry(type, i);
1122 page = read_swap_cache_async(entry,
1123 GFP_HIGHUSER_MOVABLE, NULL, 0);
1124 if (!page) {
1126 * Either swap_duplicate() failed because entry
1127 * has been freed independently, and will not be
1128 * reused since sys_swapoff() already disabled
1129 * allocation from here, or alloc_page() failed.
1131 if (!*swap_map)
1132 continue;
1133 retval = -ENOMEM;
1134 break;
1138 * Don't hold on to start_mm if it looks like exiting.
1140 if (atomic_read(&start_mm->mm_users) == 1) {
1141 mmput(start_mm);
1142 start_mm = &init_mm;
1143 atomic_inc(&init_mm.mm_users);
1147 * Wait for and lock page. When do_swap_page races with
1148 * try_to_unuse, do_swap_page can handle the fault much
1149 * faster than try_to_unuse can locate the entry. This
1150 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1151 * defer to do_swap_page in such a case - in some tests,
1152 * do_swap_page and try_to_unuse repeatedly compete.
1154 wait_on_page_locked(page);
1155 wait_on_page_writeback(page);
1156 lock_page(page);
1157 wait_on_page_writeback(page);
1160 * Remove all references to entry.
1162 swcount = *swap_map;
1163 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1164 retval = shmem_unuse(entry, page);
1165 /* page has already been unlocked and released */
1166 if (retval < 0)
1167 break;
1168 continue;
1170 if (swap_count(swcount) && start_mm != &init_mm)
1171 retval = unuse_mm(start_mm, entry, page);
1173 if (swap_count(*swap_map)) {
1174 int set_start_mm = (*swap_map >= swcount);
1175 struct list_head *p = &start_mm->mmlist;
1176 struct mm_struct *new_start_mm = start_mm;
1177 struct mm_struct *prev_mm = start_mm;
1178 struct mm_struct *mm;
1180 atomic_inc(&new_start_mm->mm_users);
1181 atomic_inc(&prev_mm->mm_users);
1182 spin_lock(&mmlist_lock);
1183 while (swap_count(*swap_map) && !retval &&
1184 (p = p->next) != &start_mm->mmlist) {
1185 mm = list_entry(p, struct mm_struct, mmlist);
1186 if (!atomic_inc_not_zero(&mm->mm_users))
1187 continue;
1188 spin_unlock(&mmlist_lock);
1189 mmput(prev_mm);
1190 prev_mm = mm;
1192 cond_resched();
1194 swcount = *swap_map;
1195 if (!swap_count(swcount)) /* any usage ? */
1197 else if (mm == &init_mm)
1198 set_start_mm = 1;
1199 else
1200 retval = unuse_mm(mm, entry, page);
1202 if (set_start_mm && *swap_map < swcount) {
1203 mmput(new_start_mm);
1204 atomic_inc(&mm->mm_users);
1205 new_start_mm = mm;
1206 set_start_mm = 0;
1208 spin_lock(&mmlist_lock);
1210 spin_unlock(&mmlist_lock);
1211 mmput(prev_mm);
1212 mmput(start_mm);
1213 start_mm = new_start_mm;
1215 if (retval) {
1216 unlock_page(page);
1217 page_cache_release(page);
1218 break;
1222 * If a reference remains (rare), we would like to leave
1223 * the page in the swap cache; but try_to_unmap could
1224 * then re-duplicate the entry once we drop page lock,
1225 * so we might loop indefinitely; also, that page could
1226 * not be swapped out to other storage meanwhile. So:
1227 * delete from cache even if there's another reference,
1228 * after ensuring that the data has been saved to disk -
1229 * since if the reference remains (rarer), it will be
1230 * read from disk into another page. Splitting into two
1231 * pages would be incorrect if swap supported "shared
1232 * private" pages, but they are handled by tmpfs files.
1234 * Given how unuse_vma() targets one particular offset
1235 * in an anon_vma, once the anon_vma has been determined,
1236 * this splitting happens to be just what is needed to
1237 * handle where KSM pages have been swapped out: re-reading
1238 * is unnecessarily slow, but we can fix that later on.
1240 if (swap_count(*swap_map) &&
1241 PageDirty(page) && PageSwapCache(page)) {
1242 struct writeback_control wbc = {
1243 .sync_mode = WB_SYNC_NONE,
1246 swap_writepage(page, &wbc);
1247 lock_page(page);
1248 wait_on_page_writeback(page);
1252 * It is conceivable that a racing task removed this page from
1253 * swap cache just before we acquired the page lock at the top,
1254 * or while we dropped it in unuse_mm(). The page might even
1255 * be back in swap cache on another swap area: that we must not
1256 * delete, since it may not have been written out to swap yet.
1258 if (PageSwapCache(page) &&
1259 likely(page_private(page) == entry.val))
1260 delete_from_swap_cache(page);
1263 * So we could skip searching mms once swap count went
1264 * to 1, we did not mark any present ptes as dirty: must
1265 * mark page dirty so shrink_page_list will preserve it.
1267 SetPageDirty(page);
1268 unlock_page(page);
1269 page_cache_release(page);
1272 * Make sure that we aren't completely killing
1273 * interactive performance.
1275 cond_resched();
1276 if (frontswap && pages_to_unuse > 0) {
1277 if (!--pages_to_unuse)
1278 break;
1282 mmput(start_mm);
1283 return retval;
1287 * After a successful try_to_unuse, if no swap is now in use, we know
1288 * we can empty the mmlist. swap_lock must be held on entry and exit.
1289 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1290 * added to the mmlist just after page_duplicate - before would be racy.
1292 static void drain_mmlist(void)
1294 struct list_head *p, *next;
1295 unsigned int type;
1297 for (type = 0; type < nr_swapfiles; type++)
1298 if (swap_info[type]->inuse_pages)
1299 return;
1300 spin_lock(&mmlist_lock);
1301 list_for_each_safe(p, next, &init_mm.mmlist)
1302 list_del_init(p);
1303 spin_unlock(&mmlist_lock);
1307 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1308 * corresponds to page offset for the specified swap entry.
1309 * Note that the type of this function is sector_t, but it returns page offset
1310 * into the bdev, not sector offset.
1312 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1314 struct swap_info_struct *sis;
1315 struct swap_extent *start_se;
1316 struct swap_extent *se;
1317 pgoff_t offset;
1319 sis = swap_info[swp_type(entry)];
1320 *bdev = sis->bdev;
1322 offset = swp_offset(entry);
1323 start_se = sis->curr_swap_extent;
1324 se = start_se;
1326 for ( ; ; ) {
1327 struct list_head *lh;
1329 if (se->start_page <= offset &&
1330 offset < (se->start_page + se->nr_pages)) {
1331 return se->start_block + (offset - se->start_page);
1333 lh = se->list.next;
1334 se = list_entry(lh, struct swap_extent, list);
1335 sis->curr_swap_extent = se;
1336 BUG_ON(se == start_se); /* It *must* be present */
1341 * Returns the page offset into bdev for the specified page's swap entry.
1343 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1345 swp_entry_t entry;
1346 entry.val = page_private(page);
1347 return map_swap_entry(entry, bdev);
1351 * Free all of a swapdev's extent information
1353 static void destroy_swap_extents(struct swap_info_struct *sis)
1355 while (!list_empty(&sis->first_swap_extent.list)) {
1356 struct swap_extent *se;
1358 se = list_entry(sis->first_swap_extent.list.next,
1359 struct swap_extent, list);
1360 list_del(&se->list);
1361 kfree(se);
1366 * Add a block range (and the corresponding page range) into this swapdev's
1367 * extent list. The extent list is kept sorted in page order.
1369 * This function rather assumes that it is called in ascending page order.
1371 static int
1372 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1373 unsigned long nr_pages, sector_t start_block)
1375 struct swap_extent *se;
1376 struct swap_extent *new_se;
1377 struct list_head *lh;
1379 if (start_page == 0) {
1380 se = &sis->first_swap_extent;
1381 sis->curr_swap_extent = se;
1382 se->start_page = 0;
1383 se->nr_pages = nr_pages;
1384 se->start_block = start_block;
1385 return 1;
1386 } else {
1387 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1388 se = list_entry(lh, struct swap_extent, list);
1389 BUG_ON(se->start_page + se->nr_pages != start_page);
1390 if (se->start_block + se->nr_pages == start_block) {
1391 /* Merge it */
1392 se->nr_pages += nr_pages;
1393 return 0;
1398 * No merge. Insert a new extent, preserving ordering.
1400 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1401 if (new_se == NULL)
1402 return -ENOMEM;
1403 new_se->start_page = start_page;
1404 new_se->nr_pages = nr_pages;
1405 new_se->start_block = start_block;
1407 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1408 return 1;
1412 * A `swap extent' is a simple thing which maps a contiguous range of pages
1413 * onto a contiguous range of disk blocks. An ordered list of swap extents
1414 * is built at swapon time and is then used at swap_writepage/swap_readpage
1415 * time for locating where on disk a page belongs.
1417 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1418 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1419 * swap files identically.
1421 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1422 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1423 * swapfiles are handled *identically* after swapon time.
1425 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1426 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1427 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1428 * requirements, they are simply tossed out - we will never use those blocks
1429 * for swapping.
1431 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1432 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1433 * which will scribble on the fs.
1435 * The amount of disk space which a single swap extent represents varies.
1436 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1437 * extents in the list. To avoid much list walking, we cache the previous
1438 * search location in `curr_swap_extent', and start new searches from there.
1439 * This is extremely effective. The average number of iterations in
1440 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1442 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1444 struct inode *inode;
1445 unsigned blocks_per_page;
1446 unsigned long page_no;
1447 unsigned blkbits;
1448 sector_t probe_block;
1449 sector_t last_block;
1450 sector_t lowest_block = -1;
1451 sector_t highest_block = 0;
1452 int nr_extents = 0;
1453 int ret;
1455 inode = sis->swap_file->f_mapping->host;
1456 if (S_ISBLK(inode->i_mode)) {
1457 ret = add_swap_extent(sis, 0, sis->max, 0);
1458 *span = sis->pages;
1459 goto out;
1462 blkbits = inode->i_blkbits;
1463 blocks_per_page = PAGE_SIZE >> blkbits;
1466 * Map all the blocks into the extent list. This code doesn't try
1467 * to be very smart.
1469 probe_block = 0;
1470 page_no = 0;
1471 last_block = i_size_read(inode) >> blkbits;
1472 while ((probe_block + blocks_per_page) <= last_block &&
1473 page_no < sis->max) {
1474 unsigned block_in_page;
1475 sector_t first_block;
1477 first_block = bmap(inode, probe_block);
1478 if (first_block == 0)
1479 goto bad_bmap;
1482 * It must be PAGE_SIZE aligned on-disk
1484 if (first_block & (blocks_per_page - 1)) {
1485 probe_block++;
1486 goto reprobe;
1489 for (block_in_page = 1; block_in_page < blocks_per_page;
1490 block_in_page++) {
1491 sector_t block;
1493 block = bmap(inode, probe_block + block_in_page);
1494 if (block == 0)
1495 goto bad_bmap;
1496 if (block != first_block + block_in_page) {
1497 /* Discontiguity */
1498 probe_block++;
1499 goto reprobe;
1503 first_block >>= (PAGE_SHIFT - blkbits);
1504 if (page_no) { /* exclude the header page */
1505 if (first_block < lowest_block)
1506 lowest_block = first_block;
1507 if (first_block > highest_block)
1508 highest_block = first_block;
1512 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1514 ret = add_swap_extent(sis, page_no, 1, first_block);
1515 if (ret < 0)
1516 goto out;
1517 nr_extents += ret;
1518 page_no++;
1519 probe_block += blocks_per_page;
1520 reprobe:
1521 continue;
1523 ret = nr_extents;
1524 *span = 1 + highest_block - lowest_block;
1525 if (page_no == 0)
1526 page_no = 1; /* force Empty message */
1527 sis->max = page_no;
1528 sis->pages = page_no - 1;
1529 sis->highest_bit = page_no - 1;
1530 out:
1531 return ret;
1532 bad_bmap:
1533 printk(KERN_ERR "swapon: swapfile has holes\n");
1534 ret = -EINVAL;
1535 goto out;
1538 static void enable_swap_info(struct swap_info_struct *p, int prio,
1539 unsigned char *swap_map,
1540 unsigned long *frontswap_map)
1542 int i, prev;
1544 spin_lock(&swap_lock);
1545 if (prio >= 0)
1546 p->prio = prio;
1547 else
1548 p->prio = --least_priority;
1549 p->swap_map = swap_map;
1550 p->frontswap_map = frontswap_map;
1551 p->flags |= SWP_WRITEOK;
1552 nr_swap_pages += p->pages;
1553 total_swap_pages += p->pages;
1555 /* insert swap space into swap_list: */
1556 prev = -1;
1557 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1558 if (p->prio >= swap_info[i]->prio)
1559 break;
1560 prev = i;
1562 p->next = i;
1563 if (prev < 0)
1564 swap_list.head = swap_list.next = p->type;
1565 else
1566 swap_info[prev]->next = p->type;
1567 frontswap_init(p->type);
1568 spin_unlock(&swap_lock);
1571 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1573 struct swap_info_struct *p = NULL;
1574 unsigned char *swap_map;
1575 struct file *swap_file, *victim;
1576 struct address_space *mapping;
1577 struct inode *inode;
1578 char *pathname;
1579 int oom_score_adj;
1580 int i, type, prev;
1581 int err;
1583 if (!capable(CAP_SYS_ADMIN))
1584 return -EPERM;
1586 pathname = getname(specialfile);
1587 err = PTR_ERR(pathname);
1588 if (IS_ERR(pathname))
1589 goto out;
1591 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1592 putname(pathname);
1593 err = PTR_ERR(victim);
1594 if (IS_ERR(victim))
1595 goto out;
1597 mapping = victim->f_mapping;
1598 prev = -1;
1599 spin_lock(&swap_lock);
1600 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1601 p = swap_info[type];
1602 if (p->flags & SWP_WRITEOK) {
1603 if (p->swap_file->f_mapping == mapping)
1604 break;
1606 prev = type;
1608 if (type < 0) {
1609 err = -EINVAL;
1610 spin_unlock(&swap_lock);
1611 goto out_dput;
1613 if (!security_vm_enough_memory(p->pages))
1614 vm_unacct_memory(p->pages);
1615 else {
1616 err = -ENOMEM;
1617 spin_unlock(&swap_lock);
1618 goto out_dput;
1620 if (prev < 0)
1621 swap_list.head = p->next;
1622 else
1623 swap_info[prev]->next = p->next;
1624 if (type == swap_list.next) {
1625 /* just pick something that's safe... */
1626 swap_list.next = swap_list.head;
1628 if (p->prio < 0) {
1629 for (i = p->next; i >= 0; i = swap_info[i]->next)
1630 swap_info[i]->prio = p->prio--;
1631 least_priority++;
1633 nr_swap_pages -= p->pages;
1634 total_swap_pages -= p->pages;
1635 p->flags &= ~SWP_WRITEOK;
1636 spin_unlock(&swap_lock);
1638 oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1639 err = try_to_unuse(type, false, 0);
1640 test_set_oom_score_adj(oom_score_adj);
1642 if (err) {
1644 * reading p->prio and p->swap_map outside the lock is
1645 * safe here because only sys_swapon and sys_swapoff
1646 * change them, and there can be no other sys_swapon or
1647 * sys_swapoff for this swap_info_struct at this point.
1649 /* re-insert swap space back into swap_list */
1650 enable_swap_info(p, p->prio, p->swap_map, p->frontswap_map);
1651 goto out_dput;
1654 destroy_swap_extents(p);
1655 if (p->flags & SWP_CONTINUED)
1656 free_swap_count_continuations(p);
1658 mutex_lock(&swapon_mutex);
1659 spin_lock(&swap_lock);
1660 drain_mmlist();
1662 /* wait for anyone still in scan_swap_map */
1663 p->highest_bit = 0; /* cuts scans short */
1664 while (p->flags >= SWP_SCANNING) {
1665 spin_unlock(&swap_lock);
1666 schedule_timeout_uninterruptible(1);
1667 spin_lock(&swap_lock);
1670 swap_file = p->swap_file;
1671 p->swap_file = NULL;
1672 p->max = 0;
1673 swap_map = p->swap_map;
1674 p->swap_map = NULL;
1675 p->flags = 0;
1676 frontswap_flush_area(type);
1677 spin_unlock(&swap_lock);
1678 mutex_unlock(&swapon_mutex);
1679 vfree(swap_map);
1680 if (p->frontswap_map)
1681 vfree(p->frontswap_map);
1682 /* Destroy swap account informatin */
1683 swap_cgroup_swapoff(type);
1685 inode = mapping->host;
1686 if (S_ISBLK(inode->i_mode)) {
1687 struct block_device *bdev = I_BDEV(inode);
1688 set_blocksize(bdev, p->old_block_size);
1689 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1690 } else {
1691 mutex_lock(&inode->i_mutex);
1692 inode->i_flags &= ~S_SWAPFILE;
1693 mutex_unlock(&inode->i_mutex);
1695 filp_close(swap_file, NULL);
1696 err = 0;
1697 atomic_inc(&proc_poll_event);
1698 wake_up_interruptible(&proc_poll_wait);
1700 out_dput:
1701 filp_close(victim, NULL);
1702 out:
1703 return err;
1706 #ifdef CONFIG_PROC_FS
1707 struct proc_swaps {
1708 struct seq_file seq;
1709 int event;
1712 static unsigned swaps_poll(struct file *file, poll_table *wait)
1714 struct proc_swaps *s = file->private_data;
1716 poll_wait(file, &proc_poll_wait, wait);
1718 if (s->event != atomic_read(&proc_poll_event)) {
1719 s->event = atomic_read(&proc_poll_event);
1720 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1723 return POLLIN | POLLRDNORM;
1726 /* iterator */
1727 static void *swap_start(struct seq_file *swap, loff_t *pos)
1729 struct swap_info_struct *si;
1730 int type;
1731 loff_t l = *pos;
1733 mutex_lock(&swapon_mutex);
1735 if (!l)
1736 return SEQ_START_TOKEN;
1738 for (type = 0; type < nr_swapfiles; type++) {
1739 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1740 si = swap_info[type];
1741 if (!(si->flags & SWP_USED) || !si->swap_map)
1742 continue;
1743 if (!--l)
1744 return si;
1747 return NULL;
1750 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1752 struct swap_info_struct *si = v;
1753 int type;
1755 if (v == SEQ_START_TOKEN)
1756 type = 0;
1757 else
1758 type = si->type + 1;
1760 for (; type < nr_swapfiles; type++) {
1761 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1762 si = swap_info[type];
1763 if (!(si->flags & SWP_USED) || !si->swap_map)
1764 continue;
1765 ++*pos;
1766 return si;
1769 return NULL;
1772 static void swap_stop(struct seq_file *swap, void *v)
1774 mutex_unlock(&swapon_mutex);
1777 static int swap_show(struct seq_file *swap, void *v)
1779 struct swap_info_struct *si = v;
1780 struct file *file;
1781 int len;
1783 if (si == SEQ_START_TOKEN) {
1784 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1785 return 0;
1788 file = si->swap_file;
1789 len = seq_path(swap, &file->f_path, " \t\n\\");
1790 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1791 len < 40 ? 40 - len : 1, " ",
1792 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1793 "partition" : "file\t",
1794 si->pages << (PAGE_SHIFT - 10),
1795 si->inuse_pages << (PAGE_SHIFT - 10),
1796 si->prio);
1797 return 0;
1800 static const struct seq_operations swaps_op = {
1801 .start = swap_start,
1802 .next = swap_next,
1803 .stop = swap_stop,
1804 .show = swap_show
1807 static int swaps_open(struct inode *inode, struct file *file)
1809 struct proc_swaps *s;
1810 int ret;
1812 s = kmalloc(sizeof(struct proc_swaps), GFP_KERNEL);
1813 if (!s)
1814 return -ENOMEM;
1816 file->private_data = s;
1818 ret = seq_open(file, &swaps_op);
1819 if (ret) {
1820 kfree(s);
1821 return ret;
1824 s->seq.private = s;
1825 s->event = atomic_read(&proc_poll_event);
1826 return ret;
1829 static const struct file_operations proc_swaps_operations = {
1830 .open = swaps_open,
1831 .read = seq_read,
1832 .llseek = seq_lseek,
1833 .release = seq_release,
1834 .poll = swaps_poll,
1837 static int __init procswaps_init(void)
1839 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1840 return 0;
1842 __initcall(procswaps_init);
1843 #endif /* CONFIG_PROC_FS */
1845 #ifdef MAX_SWAPFILES_CHECK
1846 static int __init max_swapfiles_check(void)
1848 MAX_SWAPFILES_CHECK();
1849 return 0;
1851 late_initcall(max_swapfiles_check);
1852 #endif
1854 static struct swap_info_struct *alloc_swap_info(void)
1856 struct swap_info_struct *p;
1857 unsigned int type;
1859 p = kzalloc(sizeof(*p), GFP_KERNEL);
1860 if (!p)
1861 return ERR_PTR(-ENOMEM);
1863 spin_lock(&swap_lock);
1864 for (type = 0; type < nr_swapfiles; type++) {
1865 if (!(swap_info[type]->flags & SWP_USED))
1866 break;
1868 if (type >= MAX_SWAPFILES) {
1869 spin_unlock(&swap_lock);
1870 kfree(p);
1871 return ERR_PTR(-EPERM);
1873 if (type >= nr_swapfiles) {
1874 p->type = type;
1875 swap_info[type] = p;
1877 * Write swap_info[type] before nr_swapfiles, in case a
1878 * racing procfs swap_start() or swap_next() is reading them.
1879 * (We never shrink nr_swapfiles, we never free this entry.)
1881 smp_wmb();
1882 nr_swapfiles++;
1883 } else {
1884 kfree(p);
1885 p = swap_info[type];
1887 * Do not memset this entry: a racing procfs swap_next()
1888 * would be relying on p->type to remain valid.
1891 INIT_LIST_HEAD(&p->first_swap_extent.list);
1892 p->flags = SWP_USED;
1893 p->next = -1;
1894 spin_unlock(&swap_lock);
1896 return p;
1899 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1901 int error;
1903 if (S_ISBLK(inode->i_mode)) {
1904 p->bdev = bdgrab(I_BDEV(inode));
1905 error = blkdev_get(p->bdev,
1906 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1907 sys_swapon);
1908 if (error < 0) {
1909 p->bdev = NULL;
1910 return -EINVAL;
1912 p->old_block_size = block_size(p->bdev);
1913 error = set_blocksize(p->bdev, PAGE_SIZE);
1914 if (error < 0)
1915 return error;
1916 p->flags |= SWP_BLKDEV;
1917 } else if (S_ISREG(inode->i_mode)) {
1918 p->bdev = inode->i_sb->s_bdev;
1919 mutex_lock(&inode->i_mutex);
1920 if (IS_SWAPFILE(inode))
1921 return -EBUSY;
1922 } else
1923 return -EINVAL;
1925 return 0;
1928 static unsigned long read_swap_header(struct swap_info_struct *p,
1929 union swap_header *swap_header,
1930 struct inode *inode)
1932 int i;
1933 unsigned long maxpages;
1934 unsigned long swapfilepages;
1936 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1937 printk(KERN_ERR "Unable to find swap-space signature\n");
1938 return 0;
1941 /* swap partition endianess hack... */
1942 if (swab32(swap_header->info.version) == 1) {
1943 swab32s(&swap_header->info.version);
1944 swab32s(&swap_header->info.last_page);
1945 swab32s(&swap_header->info.nr_badpages);
1946 for (i = 0; i < swap_header->info.nr_badpages; i++)
1947 swab32s(&swap_header->info.badpages[i]);
1949 /* Check the swap header's sub-version */
1950 if (swap_header->info.version != 1) {
1951 printk(KERN_WARNING
1952 "Unable to handle swap header version %d\n",
1953 swap_header->info.version);
1954 return 0;
1957 p->lowest_bit = 1;
1958 p->cluster_next = 1;
1959 p->cluster_nr = 0;
1962 * Find out how many pages are allowed for a single swap
1963 * device. There are two limiting factors: 1) the number of
1964 * bits for the swap offset in the swp_entry_t type and
1965 * 2) the number of bits in the a swap pte as defined by
1966 * the different architectures. In order to find the
1967 * largest possible bit mask a swap entry with swap type 0
1968 * and swap offset ~0UL is created, encoded to a swap pte,
1969 * decoded to a swp_entry_t again and finally the swap
1970 * offset is extracted. This will mask all the bits from
1971 * the initial ~0UL mask that can't be encoded in either
1972 * the swp_entry_t or the architecture definition of a
1973 * swap pte.
1975 maxpages = swp_offset(pte_to_swp_entry(
1976 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1977 if (maxpages > swap_header->info.last_page) {
1978 maxpages = swap_header->info.last_page + 1;
1979 /* p->max is an unsigned int: don't overflow it */
1980 if ((unsigned int)maxpages == 0)
1981 maxpages = UINT_MAX;
1983 p->highest_bit = maxpages - 1;
1985 if (!maxpages)
1986 return 0;
1987 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1988 if (swapfilepages && maxpages > swapfilepages) {
1989 printk(KERN_WARNING
1990 "Swap area shorter than signature indicates\n");
1991 return 0;
1993 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1994 return 0;
1995 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1996 return 0;
1998 return maxpages;
2001 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2002 union swap_header *swap_header,
2003 unsigned char *swap_map,
2004 unsigned long maxpages,
2005 sector_t *span)
2007 int i;
2008 unsigned int nr_good_pages;
2009 int nr_extents;
2011 nr_good_pages = maxpages - 1; /* omit header page */
2013 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2014 unsigned int page_nr = swap_header->info.badpages[i];
2015 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2016 return -EINVAL;
2017 if (page_nr < maxpages) {
2018 swap_map[page_nr] = SWAP_MAP_BAD;
2019 nr_good_pages--;
2023 if (nr_good_pages) {
2024 swap_map[0] = SWAP_MAP_BAD;
2025 p->max = maxpages;
2026 p->pages = nr_good_pages;
2027 nr_extents = setup_swap_extents(p, span);
2028 if (nr_extents < 0)
2029 return nr_extents;
2030 nr_good_pages = p->pages;
2032 if (!nr_good_pages) {
2033 printk(KERN_WARNING "Empty swap-file\n");
2034 return -EINVAL;
2037 return nr_extents;
2040 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2042 struct swap_info_struct *p;
2043 char *name;
2044 struct file *swap_file = NULL;
2045 struct address_space *mapping;
2046 int i;
2047 int prio;
2048 int error;
2049 union swap_header *swap_header;
2050 int nr_extents;
2051 sector_t span;
2052 unsigned long maxpages;
2053 unsigned char *swap_map = NULL;
2054 unsigned long *frontswap_map = NULL;
2055 struct page *page = NULL;
2056 struct inode *inode = NULL;
2058 if (!capable(CAP_SYS_ADMIN))
2059 return -EPERM;
2061 p = alloc_swap_info();
2062 if (IS_ERR(p))
2063 return PTR_ERR(p);
2065 name = getname(specialfile);
2066 if (IS_ERR(name)) {
2067 error = PTR_ERR(name);
2068 name = NULL;
2069 goto bad_swap;
2071 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
2072 if (IS_ERR(swap_file)) {
2073 error = PTR_ERR(swap_file);
2074 swap_file = NULL;
2075 goto bad_swap;
2078 p->swap_file = swap_file;
2079 mapping = swap_file->f_mapping;
2081 for (i = 0; i < nr_swapfiles; i++) {
2082 struct swap_info_struct *q = swap_info[i];
2084 if (q == p || !q->swap_file)
2085 continue;
2086 if (mapping == q->swap_file->f_mapping) {
2087 error = -EBUSY;
2088 goto bad_swap;
2092 inode = mapping->host;
2093 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2094 error = claim_swapfile(p, inode);
2095 if (unlikely(error))
2096 goto bad_swap;
2099 * Read the swap header.
2101 if (!mapping->a_ops->readpage) {
2102 error = -EINVAL;
2103 goto bad_swap;
2105 page = read_mapping_page(mapping, 0, swap_file);
2106 if (IS_ERR(page)) {
2107 error = PTR_ERR(page);
2108 goto bad_swap;
2110 swap_header = kmap(page);
2112 maxpages = read_swap_header(p, swap_header, inode);
2113 if (unlikely(!maxpages)) {
2114 error = -EINVAL;
2115 goto bad_swap;
2118 /* OK, set up the swap map and apply the bad block list */
2119 swap_map = vzalloc(maxpages);
2120 if (!swap_map) {
2121 error = -ENOMEM;
2122 goto bad_swap;
2125 error = swap_cgroup_swapon(p->type, maxpages);
2126 if (error)
2127 goto bad_swap;
2129 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2130 maxpages, &span);
2131 if (unlikely(nr_extents < 0)) {
2132 error = nr_extents;
2133 goto bad_swap;
2135 /* frontswap enabled? set up bit-per-page map for frontswap */
2136 if (frontswap_enabled) {
2137 frontswap_map = vmalloc(maxpages / sizeof(long));
2138 if (frontswap_map)
2139 memset(frontswap_map, 0, maxpages / sizeof(long));
2142 if (p->bdev) {
2143 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2144 p->flags |= SWP_SOLIDSTATE;
2145 p->cluster_next = 1 + (random32() % p->highest_bit);
2147 if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
2148 p->flags |= SWP_DISCARDABLE;
2151 mutex_lock(&swapon_mutex);
2152 prio = -1;
2153 if (swap_flags & SWAP_FLAG_PREFER)
2154 prio =
2155 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2156 enable_swap_info(p, prio, swap_map, frontswap_map);
2158 printk(KERN_INFO "Adding %uk swap on %s. "
2159 "Priority:%d extents:%d across:%lluk %s%s%s\n",
2160 p->pages<<(PAGE_SHIFT-10), name, p->prio,
2161 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2162 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2163 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2164 (p->frontswap_map) ? "FS" : "");
2166 mutex_unlock(&swapon_mutex);
2167 atomic_inc(&proc_poll_event);
2168 wake_up_interruptible(&proc_poll_wait);
2170 if (S_ISREG(inode->i_mode))
2171 inode->i_flags |= S_SWAPFILE;
2172 error = 0;
2173 goto out;
2174 bad_swap:
2175 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2176 set_blocksize(p->bdev, p->old_block_size);
2177 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2179 destroy_swap_extents(p);
2180 swap_cgroup_swapoff(p->type);
2181 spin_lock(&swap_lock);
2182 p->swap_file = NULL;
2183 p->flags = 0;
2184 spin_unlock(&swap_lock);
2185 vfree(swap_map);
2186 if (swap_file) {
2187 if (inode && S_ISREG(inode->i_mode)) {
2188 mutex_unlock(&inode->i_mutex);
2189 inode = NULL;
2191 filp_close(swap_file, NULL);
2193 out:
2194 if (page && !IS_ERR(page)) {
2195 kunmap(page);
2196 page_cache_release(page);
2198 if (name)
2199 putname(name);
2200 if (inode && S_ISREG(inode->i_mode))
2201 mutex_unlock(&inode->i_mutex);
2202 return error;
2205 void si_swapinfo(struct sysinfo *val)
2207 unsigned int type;
2208 unsigned long nr_to_be_unused = 0;
2210 spin_lock(&swap_lock);
2211 for (type = 0; type < nr_swapfiles; type++) {
2212 struct swap_info_struct *si = swap_info[type];
2214 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2215 nr_to_be_unused += si->inuse_pages;
2217 val->freeswap = nr_swap_pages + nr_to_be_unused;
2218 val->totalswap = total_swap_pages + nr_to_be_unused;
2219 spin_unlock(&swap_lock);
2223 * Verify that a swap entry is valid and increment its swap map count.
2225 * Returns error code in following case.
2226 * - success -> 0
2227 * - swp_entry is invalid -> EINVAL
2228 * - swp_entry is migration entry -> EINVAL
2229 * - swap-cache reference is requested but there is already one. -> EEXIST
2230 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2231 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2233 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2235 struct swap_info_struct *p;
2236 unsigned long offset, type;
2237 unsigned char count;
2238 unsigned char has_cache;
2239 int err = -EINVAL;
2241 if (non_swap_entry(entry))
2242 goto out;
2244 type = swp_type(entry);
2245 if (type >= nr_swapfiles)
2246 goto bad_file;
2247 p = swap_info[type];
2248 offset = swp_offset(entry);
2250 spin_lock(&swap_lock);
2251 if (unlikely(offset >= p->max))
2252 goto unlock_out;
2254 count = p->swap_map[offset];
2255 has_cache = count & SWAP_HAS_CACHE;
2256 count &= ~SWAP_HAS_CACHE;
2257 err = 0;
2259 if (usage == SWAP_HAS_CACHE) {
2261 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2262 if (!has_cache && count)
2263 has_cache = SWAP_HAS_CACHE;
2264 else if (has_cache) /* someone else added cache */
2265 err = -EEXIST;
2266 else /* no users remaining */
2267 err = -ENOENT;
2269 } else if (count || has_cache) {
2271 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2272 count += usage;
2273 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2274 err = -EINVAL;
2275 else if (swap_count_continued(p, offset, count))
2276 count = COUNT_CONTINUED;
2277 else
2278 err = -ENOMEM;
2279 } else
2280 err = -ENOENT; /* unused swap entry */
2282 p->swap_map[offset] = count | has_cache;
2284 unlock_out:
2285 spin_unlock(&swap_lock);
2286 out:
2287 return err;
2289 bad_file:
2290 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2291 goto out;
2295 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2296 * (in which case its reference count is never incremented).
2298 void swap_shmem_alloc(swp_entry_t entry)
2300 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2304 * Increase reference count of swap entry by 1.
2305 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2306 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2307 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2308 * might occur if a page table entry has got corrupted.
2310 int swap_duplicate(swp_entry_t entry)
2312 int err = 0;
2314 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2315 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2316 return err;
2320 * @entry: swap entry for which we allocate swap cache.
2322 * Called when allocating swap cache for existing swap entry,
2323 * This can return error codes. Returns 0 at success.
2324 * -EBUSY means there is a swap cache.
2325 * Note: return code is different from swap_duplicate().
2327 int swapcache_prepare(swp_entry_t entry)
2329 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2333 * swap_lock prevents swap_map being freed. Don't grab an extra
2334 * reference on the swaphandle, it doesn't matter if it becomes unused.
2336 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2338 struct swap_info_struct *si;
2339 int our_page_cluster = page_cluster;
2340 pgoff_t target, toff;
2341 pgoff_t base, end;
2342 int nr_pages = 0;
2344 if (!our_page_cluster) /* no readahead */
2345 return 0;
2347 si = swap_info[swp_type(entry)];
2348 target = swp_offset(entry);
2349 base = (target >> our_page_cluster) << our_page_cluster;
2350 end = base + (1 << our_page_cluster);
2351 if (!base) /* first page is swap header */
2352 base++;
2354 spin_lock(&swap_lock);
2355 if (frontswap_test(si, target)) {
2356 spin_unlock(&swap_lock);
2357 return 0;
2359 if (end > si->max) /* don't go beyond end of map */
2360 end = si->max;
2362 /* Count contiguous allocated slots above our target */
2363 for (toff = target; ++toff < end; nr_pages++) {
2364 /* Don't read in free or bad pages */
2365 if (!si->swap_map[toff])
2366 break;
2367 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2368 break;
2369 /* Don't read in frontswap pages */
2370 if (frontswap_test(si, toff))
2371 break;
2373 /* Count contiguous allocated slots below our target */
2374 for (toff = target; --toff >= base; nr_pages++) {
2375 /* Don't read in free or bad pages */
2376 if (!si->swap_map[toff])
2377 break;
2378 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2379 break;
2380 /* Don't read in frontswap pages */
2381 if (frontswap_test(si, toff))
2382 break;
2384 spin_unlock(&swap_lock);
2387 * Indicate starting offset, and return number of pages to get:
2388 * if only 1, say 0, since there's then no readahead to be done.
2390 *offset = ++toff;
2391 return nr_pages? ++nr_pages: 0;
2395 * add_swap_count_continuation - called when a swap count is duplicated
2396 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2397 * page of the original vmalloc'ed swap_map, to hold the continuation count
2398 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2399 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2401 * These continuation pages are seldom referenced: the common paths all work
2402 * on the original swap_map, only referring to a continuation page when the
2403 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2405 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2406 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2407 * can be called after dropping locks.
2409 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2411 struct swap_info_struct *si;
2412 struct page *head;
2413 struct page *page;
2414 struct page *list_page;
2415 pgoff_t offset;
2416 unsigned char count;
2419 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2420 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2422 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2424 si = swap_info_get(entry);
2425 if (!si) {
2427 * An acceptable race has occurred since the failing
2428 * __swap_duplicate(): the swap entry has been freed,
2429 * perhaps even the whole swap_map cleared for swapoff.
2431 goto outer;
2434 offset = swp_offset(entry);
2435 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2437 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2439 * The higher the swap count, the more likely it is that tasks
2440 * will race to add swap count continuation: we need to avoid
2441 * over-provisioning.
2443 goto out;
2446 if (!page) {
2447 spin_unlock(&swap_lock);
2448 return -ENOMEM;
2452 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2453 * no architecture is using highmem pages for kernel pagetables: so it
2454 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2456 head = vmalloc_to_page(si->swap_map + offset);
2457 offset &= ~PAGE_MASK;
2460 * Page allocation does not initialize the page's lru field,
2461 * but it does always reset its private field.
2463 if (!page_private(head)) {
2464 BUG_ON(count & COUNT_CONTINUED);
2465 INIT_LIST_HEAD(&head->lru);
2466 set_page_private(head, SWP_CONTINUED);
2467 si->flags |= SWP_CONTINUED;
2470 list_for_each_entry(list_page, &head->lru, lru) {
2471 unsigned char *map;
2474 * If the previous map said no continuation, but we've found
2475 * a continuation page, free our allocation and use this one.
2477 if (!(count & COUNT_CONTINUED))
2478 goto out;
2480 map = kmap_atomic(list_page, KM_USER0) + offset;
2481 count = *map;
2482 kunmap_atomic(map, KM_USER0);
2485 * If this continuation count now has some space in it,
2486 * free our allocation and use this one.
2488 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2489 goto out;
2492 list_add_tail(&page->lru, &head->lru);
2493 page = NULL; /* now it's attached, don't free it */
2494 out:
2495 spin_unlock(&swap_lock);
2496 outer:
2497 if (page)
2498 __free_page(page);
2499 return 0;
2503 * swap_count_continued - when the original swap_map count is incremented
2504 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2505 * into, carry if so, or else fail until a new continuation page is allocated;
2506 * when the original swap_map count is decremented from 0 with continuation,
2507 * borrow from the continuation and report whether it still holds more.
2508 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2510 static bool swap_count_continued(struct swap_info_struct *si,
2511 pgoff_t offset, unsigned char count)
2513 struct page *head;
2514 struct page *page;
2515 unsigned char *map;
2517 head = vmalloc_to_page(si->swap_map + offset);
2518 if (page_private(head) != SWP_CONTINUED) {
2519 BUG_ON(count & COUNT_CONTINUED);
2520 return false; /* need to add count continuation */
2523 offset &= ~PAGE_MASK;
2524 page = list_entry(head->lru.next, struct page, lru);
2525 map = kmap_atomic(page, KM_USER0) + offset;
2527 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2528 goto init_map; /* jump over SWAP_CONT_MAX checks */
2530 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2532 * Think of how you add 1 to 999
2534 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2535 kunmap_atomic(map, KM_USER0);
2536 page = list_entry(page->lru.next, struct page, lru);
2537 BUG_ON(page == head);
2538 map = kmap_atomic(page, KM_USER0) + offset;
2540 if (*map == SWAP_CONT_MAX) {
2541 kunmap_atomic(map, KM_USER0);
2542 page = list_entry(page->lru.next, struct page, lru);
2543 if (page == head)
2544 return false; /* add count continuation */
2545 map = kmap_atomic(page, KM_USER0) + offset;
2546 init_map: *map = 0; /* we didn't zero the page */
2548 *map += 1;
2549 kunmap_atomic(map, KM_USER0);
2550 page = list_entry(page->lru.prev, struct page, lru);
2551 while (page != head) {
2552 map = kmap_atomic(page, KM_USER0) + offset;
2553 *map = COUNT_CONTINUED;
2554 kunmap_atomic(map, KM_USER0);
2555 page = list_entry(page->lru.prev, struct page, lru);
2557 return true; /* incremented */
2559 } else { /* decrementing */
2561 * Think of how you subtract 1 from 1000
2563 BUG_ON(count != COUNT_CONTINUED);
2564 while (*map == COUNT_CONTINUED) {
2565 kunmap_atomic(map, KM_USER0);
2566 page = list_entry(page->lru.next, struct page, lru);
2567 BUG_ON(page == head);
2568 map = kmap_atomic(page, KM_USER0) + offset;
2570 BUG_ON(*map == 0);
2571 *map -= 1;
2572 if (*map == 0)
2573 count = 0;
2574 kunmap_atomic(map, KM_USER0);
2575 page = list_entry(page->lru.prev, struct page, lru);
2576 while (page != head) {
2577 map = kmap_atomic(page, KM_USER0) + offset;
2578 *map = SWAP_CONT_MAX | count;
2579 count = COUNT_CONTINUED;
2580 kunmap_atomic(map, KM_USER0);
2581 page = list_entry(page->lru.prev, struct page, lru);
2583 return count == COUNT_CONTINUED;
2588 * free_swap_count_continuations - swapoff free all the continuation pages
2589 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2591 static void free_swap_count_continuations(struct swap_info_struct *si)
2593 pgoff_t offset;
2595 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2596 struct page *head;
2597 head = vmalloc_to_page(si->swap_map + offset);
2598 if (page_private(head)) {
2599 struct list_head *this, *next;
2600 list_for_each_safe(this, next, &head->lru) {
2601 struct page *page;
2602 page = list_entry(this, struct page, lru);
2603 list_del(this);
2604 __free_page(page);