Linux 2.6.36-rc5
[linux-2.6/next.git] / drivers / input / touchscreen / ads7846.c
blob16031933a8f621266a555b09ff63979c0359ca0b
1 /*
2 * ADS7846 based touchscreen and sensor driver
4 * Copyright (c) 2005 David Brownell
5 * Copyright (c) 2006 Nokia Corporation
6 * Various changes: Imre Deak <imre.deak@nokia.com>
8 * Using code from:
9 * - corgi_ts.c
10 * Copyright (C) 2004-2005 Richard Purdie
11 * - omap_ts.[hc], ads7846.h, ts_osk.c
12 * Copyright (C) 2002 MontaVista Software
13 * Copyright (C) 2004 Texas Instruments
14 * Copyright (C) 2005 Dirk Behme
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License version 2 as
18 * published by the Free Software Foundation.
20 #include <linux/hwmon.h>
21 #include <linux/init.h>
22 #include <linux/err.h>
23 #include <linux/delay.h>
24 #include <linux/input.h>
25 #include <linux/interrupt.h>
26 #include <linux/slab.h>
27 #include <linux/gpio.h>
28 #include <linux/spi/spi.h>
29 #include <linux/spi/ads7846.h>
30 #include <linux/regulator/consumer.h>
31 #include <asm/irq.h>
34 * This code has been heavily tested on a Nokia 770, and lightly
35 * tested on other ads7846 devices (OSK/Mistral, Lubbock, Spitz).
36 * TSC2046 is just newer ads7846 silicon.
37 * Support for ads7843 tested on Atmel at91sam926x-EK.
38 * Support for ads7845 has only been stubbed in.
39 * Support for Analog Devices AD7873 and AD7843 tested.
41 * IRQ handling needs a workaround because of a shortcoming in handling
42 * edge triggered IRQs on some platforms like the OMAP1/2. These
43 * platforms don't handle the ARM lazy IRQ disabling properly, thus we
44 * have to maintain our own SW IRQ disabled status. This should be
45 * removed as soon as the affected platform's IRQ handling is fixed.
47 * App note sbaa036 talks in more detail about accurate sampling...
48 * that ought to help in situations like LCDs inducing noise (which
49 * can also be helped by using synch signals) and more generally.
50 * This driver tries to utilize the measures described in the app
51 * note. The strength of filtering can be set in the board-* specific
52 * files.
55 #define TS_POLL_DELAY (1 * 1000000) /* ns delay before the first sample */
56 #define TS_POLL_PERIOD (5 * 1000000) /* ns delay between samples */
58 /* this driver doesn't aim at the peak continuous sample rate */
59 #define SAMPLE_BITS (8 /*cmd*/ + 16 /*sample*/ + 2 /* before, after */)
61 struct ts_event {
62 /* For portability, we can't read 12 bit values using SPI (which
63 * would make the controller deliver them as native byteorder u16
64 * with msbs zeroed). Instead, we read them as two 8-bit values,
65 * *** WHICH NEED BYTESWAPPING *** and range adjustment.
67 u16 x;
68 u16 y;
69 u16 z1, z2;
70 int ignore;
71 u8 x_buf[3];
72 u8 y_buf[3];
76 * We allocate this separately to avoid cache line sharing issues when
77 * driver is used with DMA-based SPI controllers (like atmel_spi) on
78 * systems where main memory is not DMA-coherent (most non-x86 boards).
80 struct ads7846_packet {
81 u8 read_x, read_y, read_z1, read_z2, pwrdown;
82 u16 dummy; /* for the pwrdown read */
83 struct ts_event tc;
84 /* for ads7845 with mpc5121 psc spi we use 3-byte buffers */
85 u8 read_x_cmd[3], read_y_cmd[3], pwrdown_cmd[3];
88 struct ads7846 {
89 struct input_dev *input;
90 char phys[32];
91 char name[32];
93 struct spi_device *spi;
94 struct regulator *reg;
96 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
97 struct attribute_group *attr_group;
98 struct device *hwmon;
99 #endif
101 u16 model;
102 u16 vref_mv;
103 u16 vref_delay_usecs;
104 u16 x_plate_ohms;
105 u16 pressure_max;
107 bool swap_xy;
109 struct ads7846_packet *packet;
111 struct spi_transfer xfer[18];
112 struct spi_message msg[5];
113 struct spi_message *last_msg;
114 int msg_idx;
115 int read_cnt;
116 int read_rep;
117 int last_read;
119 u16 debounce_max;
120 u16 debounce_tol;
121 u16 debounce_rep;
123 u16 penirq_recheck_delay_usecs;
125 spinlock_t lock;
126 struct hrtimer timer;
127 unsigned pendown:1; /* P: lock */
128 unsigned pending:1; /* P: lock */
129 // FIXME remove "irq_disabled"
130 unsigned irq_disabled:1; /* P: lock */
131 unsigned disabled:1;
132 unsigned is_suspended:1;
134 int (*filter)(void *data, int data_idx, int *val);
135 void *filter_data;
136 void (*filter_cleanup)(void *data);
137 int (*get_pendown_state)(void);
138 int gpio_pendown;
140 void (*wait_for_sync)(void);
143 /* leave chip selected when we're done, for quicker re-select? */
144 #if 0
145 #define CS_CHANGE(xfer) ((xfer).cs_change = 1)
146 #else
147 #define CS_CHANGE(xfer) ((xfer).cs_change = 0)
148 #endif
150 /*--------------------------------------------------------------------------*/
152 /* The ADS7846 has touchscreen and other sensors.
153 * Earlier ads784x chips are somewhat compatible.
155 #define ADS_START (1 << 7)
156 #define ADS_A2A1A0_d_y (1 << 4) /* differential */
157 #define ADS_A2A1A0_d_z1 (3 << 4) /* differential */
158 #define ADS_A2A1A0_d_z2 (4 << 4) /* differential */
159 #define ADS_A2A1A0_d_x (5 << 4) /* differential */
160 #define ADS_A2A1A0_temp0 (0 << 4) /* non-differential */
161 #define ADS_A2A1A0_vbatt (2 << 4) /* non-differential */
162 #define ADS_A2A1A0_vaux (6 << 4) /* non-differential */
163 #define ADS_A2A1A0_temp1 (7 << 4) /* non-differential */
164 #define ADS_8_BIT (1 << 3)
165 #define ADS_12_BIT (0 << 3)
166 #define ADS_SER (1 << 2) /* non-differential */
167 #define ADS_DFR (0 << 2) /* differential */
168 #define ADS_PD10_PDOWN (0 << 0) /* lowpower mode + penirq */
169 #define ADS_PD10_ADC_ON (1 << 0) /* ADC on */
170 #define ADS_PD10_REF_ON (2 << 0) /* vREF on + penirq */
171 #define ADS_PD10_ALL_ON (3 << 0) /* ADC + vREF on */
173 #define MAX_12BIT ((1<<12)-1)
175 /* leave ADC powered up (disables penirq) between differential samples */
176 #define READ_12BIT_DFR(x, adc, vref) (ADS_START | ADS_A2A1A0_d_ ## x \
177 | ADS_12_BIT | ADS_DFR | \
178 (adc ? ADS_PD10_ADC_ON : 0) | (vref ? ADS_PD10_REF_ON : 0))
180 #define READ_Y(vref) (READ_12BIT_DFR(y, 1, vref))
181 #define READ_Z1(vref) (READ_12BIT_DFR(z1, 1, vref))
182 #define READ_Z2(vref) (READ_12BIT_DFR(z2, 1, vref))
184 #define READ_X(vref) (READ_12BIT_DFR(x, 1, vref))
185 #define PWRDOWN (READ_12BIT_DFR(y, 0, 0)) /* LAST */
187 /* single-ended samples need to first power up reference voltage;
188 * we leave both ADC and VREF powered
190 #define READ_12BIT_SER(x) (ADS_START | ADS_A2A1A0_ ## x \
191 | ADS_12_BIT | ADS_SER)
193 #define REF_ON (READ_12BIT_DFR(x, 1, 1))
194 #define REF_OFF (READ_12BIT_DFR(y, 0, 0))
196 /*--------------------------------------------------------------------------*/
199 * Non-touchscreen sensors only use single-ended conversions.
200 * The range is GND..vREF. The ads7843 and ads7835 must use external vREF;
201 * ads7846 lets that pin be unconnected, to use internal vREF.
204 struct ser_req {
205 u8 ref_on;
206 u8 command;
207 u8 ref_off;
208 u16 scratch;
209 __be16 sample;
210 struct spi_message msg;
211 struct spi_transfer xfer[6];
214 struct ads7845_ser_req {
215 u8 command[3];
216 u8 pwrdown[3];
217 u8 sample[3];
218 struct spi_message msg;
219 struct spi_transfer xfer[2];
222 static void ads7846_enable(struct ads7846 *ts);
223 static void ads7846_disable(struct ads7846 *ts);
225 static int device_suspended(struct device *dev)
227 struct ads7846 *ts = dev_get_drvdata(dev);
228 return ts->is_suspended || ts->disabled;
231 static int ads7846_read12_ser(struct device *dev, unsigned command)
233 struct spi_device *spi = to_spi_device(dev);
234 struct ads7846 *ts = dev_get_drvdata(dev);
235 struct ser_req *req = kzalloc(sizeof *req, GFP_KERNEL);
236 int status;
237 int use_internal;
239 if (!req)
240 return -ENOMEM;
242 spi_message_init(&req->msg);
244 /* FIXME boards with ads7846 might use external vref instead ... */
245 use_internal = (ts->model == 7846);
247 /* maybe turn on internal vREF, and let it settle */
248 if (use_internal) {
249 req->ref_on = REF_ON;
250 req->xfer[0].tx_buf = &req->ref_on;
251 req->xfer[0].len = 1;
252 spi_message_add_tail(&req->xfer[0], &req->msg);
254 req->xfer[1].rx_buf = &req->scratch;
255 req->xfer[1].len = 2;
257 /* for 1uF, settle for 800 usec; no cap, 100 usec. */
258 req->xfer[1].delay_usecs = ts->vref_delay_usecs;
259 spi_message_add_tail(&req->xfer[1], &req->msg);
262 /* take sample */
263 req->command = (u8) command;
264 req->xfer[2].tx_buf = &req->command;
265 req->xfer[2].len = 1;
266 spi_message_add_tail(&req->xfer[2], &req->msg);
268 req->xfer[3].rx_buf = &req->sample;
269 req->xfer[3].len = 2;
270 spi_message_add_tail(&req->xfer[3], &req->msg);
272 /* REVISIT: take a few more samples, and compare ... */
274 /* converter in low power mode & enable PENIRQ */
275 req->ref_off = PWRDOWN;
276 req->xfer[4].tx_buf = &req->ref_off;
277 req->xfer[4].len = 1;
278 spi_message_add_tail(&req->xfer[4], &req->msg);
280 req->xfer[5].rx_buf = &req->scratch;
281 req->xfer[5].len = 2;
282 CS_CHANGE(req->xfer[5]);
283 spi_message_add_tail(&req->xfer[5], &req->msg);
285 ts->irq_disabled = 1;
286 disable_irq(spi->irq);
287 status = spi_sync(spi, &req->msg);
288 ts->irq_disabled = 0;
289 enable_irq(spi->irq);
291 if (status == 0) {
292 /* on-wire is a must-ignore bit, a BE12 value, then padding */
293 status = be16_to_cpu(req->sample);
294 status = status >> 3;
295 status &= 0x0fff;
298 kfree(req);
299 return status;
302 static int ads7845_read12_ser(struct device *dev, unsigned command)
304 struct spi_device *spi = to_spi_device(dev);
305 struct ads7846 *ts = dev_get_drvdata(dev);
306 struct ads7845_ser_req *req = kzalloc(sizeof *req, GFP_KERNEL);
307 int status;
309 if (!req)
310 return -ENOMEM;
312 spi_message_init(&req->msg);
314 req->command[0] = (u8) command;
315 req->xfer[0].tx_buf = req->command;
316 req->xfer[0].rx_buf = req->sample;
317 req->xfer[0].len = 3;
318 spi_message_add_tail(&req->xfer[0], &req->msg);
320 ts->irq_disabled = 1;
321 disable_irq(spi->irq);
322 status = spi_sync(spi, &req->msg);
323 ts->irq_disabled = 0;
324 enable_irq(spi->irq);
326 if (status == 0) {
327 /* BE12 value, then padding */
328 status = be16_to_cpu(*((u16 *)&req->sample[1]));
329 status = status >> 3;
330 status &= 0x0fff;
333 kfree(req);
334 return status;
337 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
339 #define SHOW(name, var, adjust) static ssize_t \
340 name ## _show(struct device *dev, struct device_attribute *attr, char *buf) \
342 struct ads7846 *ts = dev_get_drvdata(dev); \
343 ssize_t v = ads7846_read12_ser(dev, \
344 READ_12BIT_SER(var) | ADS_PD10_ALL_ON); \
345 if (v < 0) \
346 return v; \
347 return sprintf(buf, "%u\n", adjust(ts, v)); \
349 static DEVICE_ATTR(name, S_IRUGO, name ## _show, NULL);
352 /* Sysfs conventions report temperatures in millidegrees Celsius.
353 * ADS7846 could use the low-accuracy two-sample scheme, but can't do the high
354 * accuracy scheme without calibration data. For now we won't try either;
355 * userspace sees raw sensor values, and must scale/calibrate appropriately.
357 static inline unsigned null_adjust(struct ads7846 *ts, ssize_t v)
359 return v;
362 SHOW(temp0, temp0, null_adjust) /* temp1_input */
363 SHOW(temp1, temp1, null_adjust) /* temp2_input */
366 /* sysfs conventions report voltages in millivolts. We can convert voltages
367 * if we know vREF. userspace may need to scale vAUX to match the board's
368 * external resistors; we assume that vBATT only uses the internal ones.
370 static inline unsigned vaux_adjust(struct ads7846 *ts, ssize_t v)
372 unsigned retval = v;
374 /* external resistors may scale vAUX into 0..vREF */
375 retval *= ts->vref_mv;
376 retval = retval >> 12;
377 return retval;
380 static inline unsigned vbatt_adjust(struct ads7846 *ts, ssize_t v)
382 unsigned retval = vaux_adjust(ts, v);
384 /* ads7846 has a resistor ladder to scale this signal down */
385 if (ts->model == 7846)
386 retval *= 4;
387 return retval;
390 SHOW(in0_input, vaux, vaux_adjust)
391 SHOW(in1_input, vbatt, vbatt_adjust)
394 static struct attribute *ads7846_attributes[] = {
395 &dev_attr_temp0.attr,
396 &dev_attr_temp1.attr,
397 &dev_attr_in0_input.attr,
398 &dev_attr_in1_input.attr,
399 NULL,
402 static struct attribute_group ads7846_attr_group = {
403 .attrs = ads7846_attributes,
406 static struct attribute *ads7843_attributes[] = {
407 &dev_attr_in0_input.attr,
408 &dev_attr_in1_input.attr,
409 NULL,
412 static struct attribute_group ads7843_attr_group = {
413 .attrs = ads7843_attributes,
416 static struct attribute *ads7845_attributes[] = {
417 &dev_attr_in0_input.attr,
418 NULL,
421 static struct attribute_group ads7845_attr_group = {
422 .attrs = ads7845_attributes,
425 static int ads784x_hwmon_register(struct spi_device *spi, struct ads7846 *ts)
427 struct device *hwmon;
428 int err;
430 /* hwmon sensors need a reference voltage */
431 switch (ts->model) {
432 case 7846:
433 if (!ts->vref_mv) {
434 dev_dbg(&spi->dev, "assuming 2.5V internal vREF\n");
435 ts->vref_mv = 2500;
437 break;
438 case 7845:
439 case 7843:
440 if (!ts->vref_mv) {
441 dev_warn(&spi->dev,
442 "external vREF for ADS%d not specified\n",
443 ts->model);
444 return 0;
446 break;
449 /* different chips have different sensor groups */
450 switch (ts->model) {
451 case 7846:
452 ts->attr_group = &ads7846_attr_group;
453 break;
454 case 7845:
455 ts->attr_group = &ads7845_attr_group;
456 break;
457 case 7843:
458 ts->attr_group = &ads7843_attr_group;
459 break;
460 default:
461 dev_dbg(&spi->dev, "ADS%d not recognized\n", ts->model);
462 return 0;
465 err = sysfs_create_group(&spi->dev.kobj, ts->attr_group);
466 if (err)
467 return err;
469 hwmon = hwmon_device_register(&spi->dev);
470 if (IS_ERR(hwmon)) {
471 sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
472 return PTR_ERR(hwmon);
475 ts->hwmon = hwmon;
476 return 0;
479 static void ads784x_hwmon_unregister(struct spi_device *spi,
480 struct ads7846 *ts)
482 if (ts->hwmon) {
483 sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
484 hwmon_device_unregister(ts->hwmon);
488 #else
489 static inline int ads784x_hwmon_register(struct spi_device *spi,
490 struct ads7846 *ts)
492 return 0;
495 static inline void ads784x_hwmon_unregister(struct spi_device *spi,
496 struct ads7846 *ts)
499 #endif
501 static int is_pen_down(struct device *dev)
503 struct ads7846 *ts = dev_get_drvdata(dev);
505 return ts->pendown;
508 static ssize_t ads7846_pen_down_show(struct device *dev,
509 struct device_attribute *attr, char *buf)
511 return sprintf(buf, "%u\n", is_pen_down(dev));
514 static DEVICE_ATTR(pen_down, S_IRUGO, ads7846_pen_down_show, NULL);
516 static ssize_t ads7846_disable_show(struct device *dev,
517 struct device_attribute *attr, char *buf)
519 struct ads7846 *ts = dev_get_drvdata(dev);
521 return sprintf(buf, "%u\n", ts->disabled);
524 static ssize_t ads7846_disable_store(struct device *dev,
525 struct device_attribute *attr,
526 const char *buf, size_t count)
528 struct ads7846 *ts = dev_get_drvdata(dev);
529 unsigned long i;
531 if (strict_strtoul(buf, 10, &i))
532 return -EINVAL;
534 spin_lock_irq(&ts->lock);
536 if (i)
537 ads7846_disable(ts);
538 else
539 ads7846_enable(ts);
541 spin_unlock_irq(&ts->lock);
543 return count;
546 static DEVICE_ATTR(disable, 0664, ads7846_disable_show, ads7846_disable_store);
548 static struct attribute *ads784x_attributes[] = {
549 &dev_attr_pen_down.attr,
550 &dev_attr_disable.attr,
551 NULL,
554 static struct attribute_group ads784x_attr_group = {
555 .attrs = ads784x_attributes,
558 /*--------------------------------------------------------------------------*/
560 static int get_pendown_state(struct ads7846 *ts)
562 if (ts->get_pendown_state)
563 return ts->get_pendown_state();
565 return !gpio_get_value(ts->gpio_pendown);
568 static void null_wait_for_sync(void)
573 * PENIRQ only kicks the timer. The timer only reissues the SPI transfer,
574 * to retrieve touchscreen status.
576 * The SPI transfer completion callback does the real work. It reports
577 * touchscreen events and reactivates the timer (or IRQ) as appropriate.
580 static void ads7846_rx(void *ads)
582 struct ads7846 *ts = ads;
583 struct ads7846_packet *packet = ts->packet;
584 unsigned Rt;
585 u16 x, y, z1, z2;
587 /* ads7846_rx_val() did in-place conversion (including byteswap) from
588 * on-the-wire format as part of debouncing to get stable readings.
590 if (ts->model == 7845) {
591 x = *(u16 *)packet->tc.x_buf;
592 y = *(u16 *)packet->tc.y_buf;
593 z1 = 0;
594 z2 = 0;
595 } else {
596 x = packet->tc.x;
597 y = packet->tc.y;
598 z1 = packet->tc.z1;
599 z2 = packet->tc.z2;
602 /* range filtering */
603 if (x == MAX_12BIT)
604 x = 0;
606 if (ts->model == 7843) {
607 Rt = ts->pressure_max / 2;
608 } else if (ts->model == 7845) {
609 if (get_pendown_state(ts))
610 Rt = ts->pressure_max / 2;
611 else
612 Rt = 0;
613 dev_vdbg(&ts->spi->dev, "x/y: %d/%d, PD %d\n", x, y, Rt);
614 } else if (likely(x && z1)) {
615 /* compute touch pressure resistance using equation #2 */
616 Rt = z2;
617 Rt -= z1;
618 Rt *= x;
619 Rt *= ts->x_plate_ohms;
620 Rt /= z1;
621 Rt = (Rt + 2047) >> 12;
622 } else {
623 Rt = 0;
626 /* Sample found inconsistent by debouncing or pressure is beyond
627 * the maximum. Don't report it to user space, repeat at least
628 * once more the measurement
630 if (packet->tc.ignore || Rt > ts->pressure_max) {
631 dev_vdbg(&ts->spi->dev, "ignored %d pressure %d\n",
632 packet->tc.ignore, Rt);
633 hrtimer_start(&ts->timer, ktime_set(0, TS_POLL_PERIOD),
634 HRTIMER_MODE_REL);
635 return;
638 /* Maybe check the pendown state before reporting. This discards
639 * false readings when the pen is lifted.
641 if (ts->penirq_recheck_delay_usecs) {
642 udelay(ts->penirq_recheck_delay_usecs);
643 if (!get_pendown_state(ts))
644 Rt = 0;
647 /* NOTE: We can't rely on the pressure to determine the pen down
648 * state, even this controller has a pressure sensor. The pressure
649 * value can fluctuate for quite a while after lifting the pen and
650 * in some cases may not even settle at the expected value.
652 * The only safe way to check for the pen up condition is in the
653 * timer by reading the pen signal state (it's a GPIO _and_ IRQ).
655 if (Rt) {
656 struct input_dev *input = ts->input;
658 if (!ts->pendown) {
659 input_report_key(input, BTN_TOUCH, 1);
660 ts->pendown = 1;
661 dev_vdbg(&ts->spi->dev, "DOWN\n");
664 if (ts->swap_xy)
665 swap(x, y);
667 input_report_abs(input, ABS_X, x);
668 input_report_abs(input, ABS_Y, y);
669 input_report_abs(input, ABS_PRESSURE, ts->pressure_max - Rt);
671 input_sync(input);
672 dev_vdbg(&ts->spi->dev, "%4d/%4d/%4d\n", x, y, Rt);
675 hrtimer_start(&ts->timer, ktime_set(0, TS_POLL_PERIOD),
676 HRTIMER_MODE_REL);
679 static int ads7846_debounce(void *ads, int data_idx, int *val)
681 struct ads7846 *ts = ads;
683 if (!ts->read_cnt || (abs(ts->last_read - *val) > ts->debounce_tol)) {
684 /* Start over collecting consistent readings. */
685 ts->read_rep = 0;
686 /* Repeat it, if this was the first read or the read
687 * wasn't consistent enough. */
688 if (ts->read_cnt < ts->debounce_max) {
689 ts->last_read = *val;
690 ts->read_cnt++;
691 return ADS7846_FILTER_REPEAT;
692 } else {
693 /* Maximum number of debouncing reached and still
694 * not enough number of consistent readings. Abort
695 * the whole sample, repeat it in the next sampling
696 * period.
698 ts->read_cnt = 0;
699 return ADS7846_FILTER_IGNORE;
701 } else {
702 if (++ts->read_rep > ts->debounce_rep) {
703 /* Got a good reading for this coordinate,
704 * go for the next one. */
705 ts->read_cnt = 0;
706 ts->read_rep = 0;
707 return ADS7846_FILTER_OK;
708 } else {
709 /* Read more values that are consistent. */
710 ts->read_cnt++;
711 return ADS7846_FILTER_REPEAT;
716 static int ads7846_no_filter(void *ads, int data_idx, int *val)
718 return ADS7846_FILTER_OK;
721 static void ads7846_rx_val(void *ads)
723 struct ads7846 *ts = ads;
724 struct ads7846_packet *packet = ts->packet;
725 struct spi_message *m;
726 struct spi_transfer *t;
727 int val;
728 int action;
729 int status;
731 m = &ts->msg[ts->msg_idx];
732 t = list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
734 if (ts->model == 7845) {
735 val = be16_to_cpup((__be16 *)&(((char*)t->rx_buf)[1])) >> 3;
736 } else {
737 /* adjust: on-wire is a must-ignore bit, a BE12 value, then
738 * padding; built from two 8 bit values written msb-first.
740 val = be16_to_cpup((__be16 *)t->rx_buf) >> 3;
743 action = ts->filter(ts->filter_data, ts->msg_idx, &val);
744 switch (action) {
745 case ADS7846_FILTER_REPEAT:
746 break;
747 case ADS7846_FILTER_IGNORE:
748 packet->tc.ignore = 1;
749 /* Last message will contain ads7846_rx() as the
750 * completion function.
752 m = ts->last_msg;
753 break;
754 case ADS7846_FILTER_OK:
755 *(u16 *)t->rx_buf = val;
756 packet->tc.ignore = 0;
757 m = &ts->msg[++ts->msg_idx];
758 break;
759 default:
760 BUG();
762 ts->wait_for_sync();
763 status = spi_async(ts->spi, m);
764 if (status)
765 dev_err(&ts->spi->dev, "spi_async --> %d\n",
766 status);
769 static enum hrtimer_restart ads7846_timer(struct hrtimer *handle)
771 struct ads7846 *ts = container_of(handle, struct ads7846, timer);
772 int status = 0;
774 spin_lock(&ts->lock);
776 if (unlikely(!get_pendown_state(ts) ||
777 device_suspended(&ts->spi->dev))) {
778 if (ts->pendown) {
779 struct input_dev *input = ts->input;
781 input_report_key(input, BTN_TOUCH, 0);
782 input_report_abs(input, ABS_PRESSURE, 0);
783 input_sync(input);
785 ts->pendown = 0;
786 dev_vdbg(&ts->spi->dev, "UP\n");
789 /* measurement cycle ended */
790 if (!device_suspended(&ts->spi->dev)) {
791 ts->irq_disabled = 0;
792 enable_irq(ts->spi->irq);
794 ts->pending = 0;
795 } else {
796 /* pen is still down, continue with the measurement */
797 ts->msg_idx = 0;
798 ts->wait_for_sync();
799 status = spi_async(ts->spi, &ts->msg[0]);
800 if (status)
801 dev_err(&ts->spi->dev, "spi_async --> %d\n", status);
804 spin_unlock(&ts->lock);
805 return HRTIMER_NORESTART;
808 static irqreturn_t ads7846_irq(int irq, void *handle)
810 struct ads7846 *ts = handle;
811 unsigned long flags;
813 spin_lock_irqsave(&ts->lock, flags);
814 if (likely(get_pendown_state(ts))) {
815 if (!ts->irq_disabled) {
816 /* The ARM do_simple_IRQ() dispatcher doesn't act
817 * like the other dispatchers: it will report IRQs
818 * even after they've been disabled. We work around
819 * that here. (The "generic irq" framework may help...)
821 ts->irq_disabled = 1;
822 disable_irq_nosync(ts->spi->irq);
823 ts->pending = 1;
824 hrtimer_start(&ts->timer, ktime_set(0, TS_POLL_DELAY),
825 HRTIMER_MODE_REL);
828 spin_unlock_irqrestore(&ts->lock, flags);
830 return IRQ_HANDLED;
833 /*--------------------------------------------------------------------------*/
835 /* Must be called with ts->lock held */
836 static void ads7846_disable(struct ads7846 *ts)
838 if (ts->disabled)
839 return;
841 ts->disabled = 1;
843 /* are we waiting for IRQ, or polling? */
844 if (!ts->pending) {
845 ts->irq_disabled = 1;
846 disable_irq(ts->spi->irq);
847 } else {
848 /* the timer will run at least once more, and
849 * leave everything in a clean state, IRQ disabled
851 while (ts->pending) {
852 spin_unlock_irq(&ts->lock);
853 msleep(1);
854 spin_lock_irq(&ts->lock);
858 regulator_disable(ts->reg);
860 /* we know the chip's in lowpower mode since we always
861 * leave it that way after every request
865 /* Must be called with ts->lock held */
866 static void ads7846_enable(struct ads7846 *ts)
868 if (!ts->disabled)
869 return;
871 regulator_enable(ts->reg);
873 ts->disabled = 0;
874 ts->irq_disabled = 0;
875 enable_irq(ts->spi->irq);
878 static int ads7846_suspend(struct spi_device *spi, pm_message_t message)
880 struct ads7846 *ts = dev_get_drvdata(&spi->dev);
882 spin_lock_irq(&ts->lock);
884 ts->is_suspended = 1;
885 ads7846_disable(ts);
887 spin_unlock_irq(&ts->lock);
889 if (device_may_wakeup(&ts->spi->dev))
890 enable_irq_wake(ts->spi->irq);
892 return 0;
896 static int ads7846_resume(struct spi_device *spi)
898 struct ads7846 *ts = dev_get_drvdata(&spi->dev);
900 if (device_may_wakeup(&ts->spi->dev))
901 disable_irq_wake(ts->spi->irq);
903 spin_lock_irq(&ts->lock);
905 ts->is_suspended = 0;
906 ads7846_enable(ts);
908 spin_unlock_irq(&ts->lock);
910 return 0;
913 static int __devinit setup_pendown(struct spi_device *spi, struct ads7846 *ts)
915 struct ads7846_platform_data *pdata = spi->dev.platform_data;
916 int err;
918 /* REVISIT when the irq can be triggered active-low, or if for some
919 * reason the touchscreen isn't hooked up, we don't need to access
920 * the pendown state.
922 if (!pdata->get_pendown_state && !gpio_is_valid(pdata->gpio_pendown)) {
923 dev_err(&spi->dev, "no get_pendown_state nor gpio_pendown?\n");
924 return -EINVAL;
927 if (pdata->get_pendown_state) {
928 ts->get_pendown_state = pdata->get_pendown_state;
929 return 0;
932 err = gpio_request(pdata->gpio_pendown, "ads7846_pendown");
933 if (err) {
934 dev_err(&spi->dev, "failed to request pendown GPIO%d\n",
935 pdata->gpio_pendown);
936 return err;
939 ts->gpio_pendown = pdata->gpio_pendown;
940 return 0;
943 static int __devinit ads7846_probe(struct spi_device *spi)
945 struct ads7846 *ts;
946 struct ads7846_packet *packet;
947 struct input_dev *input_dev;
948 const struct ads7846_platform_data *pdata = spi->dev.platform_data;
949 struct spi_message *m;
950 struct spi_transfer *x;
951 unsigned long irq_flags;
952 int vref;
953 int err;
955 if (!spi->irq) {
956 dev_dbg(&spi->dev, "no IRQ?\n");
957 return -ENODEV;
960 if (!pdata) {
961 dev_dbg(&spi->dev, "no platform data?\n");
962 return -ENODEV;
965 /* don't exceed max specified sample rate */
966 if (spi->max_speed_hz > (125000 * SAMPLE_BITS)) {
967 dev_dbg(&spi->dev, "f(sample) %d KHz?\n",
968 (spi->max_speed_hz/SAMPLE_BITS)/1000);
969 return -EINVAL;
972 /* We'd set TX wordsize 8 bits and RX wordsize to 13 bits ... except
973 * that even if the hardware can do that, the SPI controller driver
974 * may not. So we stick to very-portable 8 bit words, both RX and TX.
976 spi->bits_per_word = 8;
977 spi->mode = SPI_MODE_0;
978 err = spi_setup(spi);
979 if (err < 0)
980 return err;
982 ts = kzalloc(sizeof(struct ads7846), GFP_KERNEL);
983 packet = kzalloc(sizeof(struct ads7846_packet), GFP_KERNEL);
984 input_dev = input_allocate_device();
985 if (!ts || !packet || !input_dev) {
986 err = -ENOMEM;
987 goto err_free_mem;
990 dev_set_drvdata(&spi->dev, ts);
992 ts->packet = packet;
993 ts->spi = spi;
994 ts->input = input_dev;
995 ts->vref_mv = pdata->vref_mv;
996 ts->swap_xy = pdata->swap_xy;
998 hrtimer_init(&ts->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
999 ts->timer.function = ads7846_timer;
1001 spin_lock_init(&ts->lock);
1003 ts->model = pdata->model ? : 7846;
1004 ts->vref_delay_usecs = pdata->vref_delay_usecs ? : 100;
1005 ts->x_plate_ohms = pdata->x_plate_ohms ? : 400;
1006 ts->pressure_max = pdata->pressure_max ? : ~0;
1008 if (pdata->filter != NULL) {
1009 if (pdata->filter_init != NULL) {
1010 err = pdata->filter_init(pdata, &ts->filter_data);
1011 if (err < 0)
1012 goto err_free_mem;
1014 ts->filter = pdata->filter;
1015 ts->filter_cleanup = pdata->filter_cleanup;
1016 } else if (pdata->debounce_max) {
1017 ts->debounce_max = pdata->debounce_max;
1018 if (ts->debounce_max < 2)
1019 ts->debounce_max = 2;
1020 ts->debounce_tol = pdata->debounce_tol;
1021 ts->debounce_rep = pdata->debounce_rep;
1022 ts->filter = ads7846_debounce;
1023 ts->filter_data = ts;
1024 } else
1025 ts->filter = ads7846_no_filter;
1027 err = setup_pendown(spi, ts);
1028 if (err)
1029 goto err_cleanup_filter;
1031 if (pdata->penirq_recheck_delay_usecs)
1032 ts->penirq_recheck_delay_usecs =
1033 pdata->penirq_recheck_delay_usecs;
1035 ts->wait_for_sync = pdata->wait_for_sync ? : null_wait_for_sync;
1037 snprintf(ts->phys, sizeof(ts->phys), "%s/input0", dev_name(&spi->dev));
1038 snprintf(ts->name, sizeof(ts->name), "ADS%d Touchscreen", ts->model);
1040 input_dev->name = ts->name;
1041 input_dev->phys = ts->phys;
1042 input_dev->dev.parent = &spi->dev;
1044 input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
1045 input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
1046 input_set_abs_params(input_dev, ABS_X,
1047 pdata->x_min ? : 0,
1048 pdata->x_max ? : MAX_12BIT,
1049 0, 0);
1050 input_set_abs_params(input_dev, ABS_Y,
1051 pdata->y_min ? : 0,
1052 pdata->y_max ? : MAX_12BIT,
1053 0, 0);
1054 input_set_abs_params(input_dev, ABS_PRESSURE,
1055 pdata->pressure_min, pdata->pressure_max, 0, 0);
1057 vref = pdata->keep_vref_on;
1059 if (ts->model == 7873) {
1060 /* The AD7873 is almost identical to the ADS7846
1061 * keep VREF off during differential/ratiometric
1062 * conversion modes
1064 ts->model = 7846;
1065 vref = 0;
1068 /* set up the transfers to read touchscreen state; this assumes we
1069 * use formula #2 for pressure, not #3.
1071 m = &ts->msg[0];
1072 x = ts->xfer;
1074 spi_message_init(m);
1076 if (ts->model == 7845) {
1077 packet->read_y_cmd[0] = READ_Y(vref);
1078 packet->read_y_cmd[1] = 0;
1079 packet->read_y_cmd[2] = 0;
1080 x->tx_buf = &packet->read_y_cmd[0];
1081 x->rx_buf = &packet->tc.y_buf[0];
1082 x->len = 3;
1083 spi_message_add_tail(x, m);
1084 } else {
1085 /* y- still on; turn on only y+ (and ADC) */
1086 packet->read_y = READ_Y(vref);
1087 x->tx_buf = &packet->read_y;
1088 x->len = 1;
1089 spi_message_add_tail(x, m);
1091 x++;
1092 x->rx_buf = &packet->tc.y;
1093 x->len = 2;
1094 spi_message_add_tail(x, m);
1097 /* the first sample after switching drivers can be low quality;
1098 * optionally discard it, using a second one after the signals
1099 * have had enough time to stabilize.
1101 if (pdata->settle_delay_usecs) {
1102 x->delay_usecs = pdata->settle_delay_usecs;
1104 x++;
1105 x->tx_buf = &packet->read_y;
1106 x->len = 1;
1107 spi_message_add_tail(x, m);
1109 x++;
1110 x->rx_buf = &packet->tc.y;
1111 x->len = 2;
1112 spi_message_add_tail(x, m);
1115 m->complete = ads7846_rx_val;
1116 m->context = ts;
1118 m++;
1119 spi_message_init(m);
1121 if (ts->model == 7845) {
1122 x++;
1123 packet->read_x_cmd[0] = READ_X(vref);
1124 packet->read_x_cmd[1] = 0;
1125 packet->read_x_cmd[2] = 0;
1126 x->tx_buf = &packet->read_x_cmd[0];
1127 x->rx_buf = &packet->tc.x_buf[0];
1128 x->len = 3;
1129 spi_message_add_tail(x, m);
1130 } else {
1131 /* turn y- off, x+ on, then leave in lowpower */
1132 x++;
1133 packet->read_x = READ_X(vref);
1134 x->tx_buf = &packet->read_x;
1135 x->len = 1;
1136 spi_message_add_tail(x, m);
1138 x++;
1139 x->rx_buf = &packet->tc.x;
1140 x->len = 2;
1141 spi_message_add_tail(x, m);
1144 /* ... maybe discard first sample ... */
1145 if (pdata->settle_delay_usecs) {
1146 x->delay_usecs = pdata->settle_delay_usecs;
1148 x++;
1149 x->tx_buf = &packet->read_x;
1150 x->len = 1;
1151 spi_message_add_tail(x, m);
1153 x++;
1154 x->rx_buf = &packet->tc.x;
1155 x->len = 2;
1156 spi_message_add_tail(x, m);
1159 m->complete = ads7846_rx_val;
1160 m->context = ts;
1162 /* turn y+ off, x- on; we'll use formula #2 */
1163 if (ts->model == 7846) {
1164 m++;
1165 spi_message_init(m);
1167 x++;
1168 packet->read_z1 = READ_Z1(vref);
1169 x->tx_buf = &packet->read_z1;
1170 x->len = 1;
1171 spi_message_add_tail(x, m);
1173 x++;
1174 x->rx_buf = &packet->tc.z1;
1175 x->len = 2;
1176 spi_message_add_tail(x, m);
1178 /* ... maybe discard first sample ... */
1179 if (pdata->settle_delay_usecs) {
1180 x->delay_usecs = pdata->settle_delay_usecs;
1182 x++;
1183 x->tx_buf = &packet->read_z1;
1184 x->len = 1;
1185 spi_message_add_tail(x, m);
1187 x++;
1188 x->rx_buf = &packet->tc.z1;
1189 x->len = 2;
1190 spi_message_add_tail(x, m);
1193 m->complete = ads7846_rx_val;
1194 m->context = ts;
1196 m++;
1197 spi_message_init(m);
1199 x++;
1200 packet->read_z2 = READ_Z2(vref);
1201 x->tx_buf = &packet->read_z2;
1202 x->len = 1;
1203 spi_message_add_tail(x, m);
1205 x++;
1206 x->rx_buf = &packet->tc.z2;
1207 x->len = 2;
1208 spi_message_add_tail(x, m);
1210 /* ... maybe discard first sample ... */
1211 if (pdata->settle_delay_usecs) {
1212 x->delay_usecs = pdata->settle_delay_usecs;
1214 x++;
1215 x->tx_buf = &packet->read_z2;
1216 x->len = 1;
1217 spi_message_add_tail(x, m);
1219 x++;
1220 x->rx_buf = &packet->tc.z2;
1221 x->len = 2;
1222 spi_message_add_tail(x, m);
1225 m->complete = ads7846_rx_val;
1226 m->context = ts;
1229 /* power down */
1230 m++;
1231 spi_message_init(m);
1233 if (ts->model == 7845) {
1234 x++;
1235 packet->pwrdown_cmd[0] = PWRDOWN;
1236 packet->pwrdown_cmd[1] = 0;
1237 packet->pwrdown_cmd[2] = 0;
1238 x->tx_buf = &packet->pwrdown_cmd[0];
1239 x->len = 3;
1240 } else {
1241 x++;
1242 packet->pwrdown = PWRDOWN;
1243 x->tx_buf = &packet->pwrdown;
1244 x->len = 1;
1245 spi_message_add_tail(x, m);
1247 x++;
1248 x->rx_buf = &packet->dummy;
1249 x->len = 2;
1252 CS_CHANGE(*x);
1253 spi_message_add_tail(x, m);
1255 m->complete = ads7846_rx;
1256 m->context = ts;
1258 ts->last_msg = m;
1260 ts->reg = regulator_get(&spi->dev, "vcc");
1261 if (IS_ERR(ts->reg)) {
1262 err = PTR_ERR(ts->reg);
1263 dev_err(&spi->dev, "unable to get regulator: %d\n", err);
1264 goto err_free_gpio;
1267 err = regulator_enable(ts->reg);
1268 if (err) {
1269 dev_err(&spi->dev, "unable to enable regulator: %d\n", err);
1270 goto err_put_regulator;
1273 irq_flags = pdata->irq_flags ? : IRQF_TRIGGER_FALLING;
1275 err = request_irq(spi->irq, ads7846_irq, irq_flags,
1276 spi->dev.driver->name, ts);
1278 if (err && !pdata->irq_flags) {
1279 dev_info(&spi->dev,
1280 "trying pin change workaround on irq %d\n", spi->irq);
1281 err = request_irq(spi->irq, ads7846_irq,
1282 IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING,
1283 spi->dev.driver->name, ts);
1286 if (err) {
1287 dev_dbg(&spi->dev, "irq %d busy?\n", spi->irq);
1288 goto err_disable_regulator;
1291 err = ads784x_hwmon_register(spi, ts);
1292 if (err)
1293 goto err_free_irq;
1295 dev_info(&spi->dev, "touchscreen, irq %d\n", spi->irq);
1297 /* take a first sample, leaving nPENIRQ active and vREF off; avoid
1298 * the touchscreen, in case it's not connected.
1300 if (ts->model == 7845)
1301 ads7845_read12_ser(&spi->dev, PWRDOWN);
1302 else
1303 (void) ads7846_read12_ser(&spi->dev,
1304 READ_12BIT_SER(vaux) | ADS_PD10_ALL_ON);
1306 err = sysfs_create_group(&spi->dev.kobj, &ads784x_attr_group);
1307 if (err)
1308 goto err_remove_hwmon;
1310 err = input_register_device(input_dev);
1311 if (err)
1312 goto err_remove_attr_group;
1314 device_init_wakeup(&spi->dev, pdata->wakeup);
1316 return 0;
1318 err_remove_attr_group:
1319 sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1320 err_remove_hwmon:
1321 ads784x_hwmon_unregister(spi, ts);
1322 err_free_irq:
1323 free_irq(spi->irq, ts);
1324 err_disable_regulator:
1325 regulator_disable(ts->reg);
1326 err_put_regulator:
1327 regulator_put(ts->reg);
1328 err_free_gpio:
1329 if (ts->gpio_pendown != -1)
1330 gpio_free(ts->gpio_pendown);
1331 err_cleanup_filter:
1332 if (ts->filter_cleanup)
1333 ts->filter_cleanup(ts->filter_data);
1334 err_free_mem:
1335 input_free_device(input_dev);
1336 kfree(packet);
1337 kfree(ts);
1338 return err;
1341 static int __devexit ads7846_remove(struct spi_device *spi)
1343 struct ads7846 *ts = dev_get_drvdata(&spi->dev);
1345 device_init_wakeup(&spi->dev, false);
1347 ads784x_hwmon_unregister(spi, ts);
1348 input_unregister_device(ts->input);
1350 ads7846_suspend(spi, PMSG_SUSPEND);
1352 sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1354 free_irq(ts->spi->irq, ts);
1355 /* suspend left the IRQ disabled */
1356 enable_irq(ts->spi->irq);
1358 regulator_disable(ts->reg);
1359 regulator_put(ts->reg);
1361 if (ts->gpio_pendown != -1)
1362 gpio_free(ts->gpio_pendown);
1364 if (ts->filter_cleanup)
1365 ts->filter_cleanup(ts->filter_data);
1367 kfree(ts->packet);
1368 kfree(ts);
1370 dev_dbg(&spi->dev, "unregistered touchscreen\n");
1371 return 0;
1374 static struct spi_driver ads7846_driver = {
1375 .driver = {
1376 .name = "ads7846",
1377 .bus = &spi_bus_type,
1378 .owner = THIS_MODULE,
1380 .probe = ads7846_probe,
1381 .remove = __devexit_p(ads7846_remove),
1382 .suspend = ads7846_suspend,
1383 .resume = ads7846_resume,
1386 static int __init ads7846_init(void)
1388 return spi_register_driver(&ads7846_driver);
1390 module_init(ads7846_init);
1392 static void __exit ads7846_exit(void)
1394 spi_unregister_driver(&ads7846_driver);
1396 module_exit(ads7846_exit);
1398 MODULE_DESCRIPTION("ADS7846 TouchScreen Driver");
1399 MODULE_LICENSE("GPL");
1400 MODULE_ALIAS("spi:ads7846");