Linux 2.6.36-rc5
[linux-2.6/next.git] / drivers / w1 / masters / ds2490.c
blob02bf7bf7160bcbb79e2d94b36e4fa32022ff3be0
1 /*
2 * dscore.c
4 * Copyright (c) 2004 Evgeniy Polyakov <johnpol@2ka.mipt.ru>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/usb.h>
26 #include <linux/slab.h>
28 #include "../w1_int.h"
29 #include "../w1.h"
31 /* COMMAND TYPE CODES */
32 #define CONTROL_CMD 0x00
33 #define COMM_CMD 0x01
34 #define MODE_CMD 0x02
36 /* CONTROL COMMAND CODES */
37 #define CTL_RESET_DEVICE 0x0000
38 #define CTL_START_EXE 0x0001
39 #define CTL_RESUME_EXE 0x0002
40 #define CTL_HALT_EXE_IDLE 0x0003
41 #define CTL_HALT_EXE_DONE 0x0004
42 #define CTL_FLUSH_COMM_CMDS 0x0007
43 #define CTL_FLUSH_RCV_BUFFER 0x0008
44 #define CTL_FLUSH_XMT_BUFFER 0x0009
45 #define CTL_GET_COMM_CMDS 0x000A
47 /* MODE COMMAND CODES */
48 #define MOD_PULSE_EN 0x0000
49 #define MOD_SPEED_CHANGE_EN 0x0001
50 #define MOD_1WIRE_SPEED 0x0002
51 #define MOD_STRONG_PU_DURATION 0x0003
52 #define MOD_PULLDOWN_SLEWRATE 0x0004
53 #define MOD_PROG_PULSE_DURATION 0x0005
54 #define MOD_WRITE1_LOWTIME 0x0006
55 #define MOD_DSOW0_TREC 0x0007
57 /* COMMUNICATION COMMAND CODES */
58 #define COMM_ERROR_ESCAPE 0x0601
59 #define COMM_SET_DURATION 0x0012
60 #define COMM_BIT_IO 0x0020
61 #define COMM_PULSE 0x0030
62 #define COMM_1_WIRE_RESET 0x0042
63 #define COMM_BYTE_IO 0x0052
64 #define COMM_MATCH_ACCESS 0x0064
65 #define COMM_BLOCK_IO 0x0074
66 #define COMM_READ_STRAIGHT 0x0080
67 #define COMM_DO_RELEASE 0x6092
68 #define COMM_SET_PATH 0x00A2
69 #define COMM_WRITE_SRAM_PAGE 0x00B2
70 #define COMM_WRITE_EPROM 0x00C4
71 #define COMM_READ_CRC_PROT_PAGE 0x00D4
72 #define COMM_READ_REDIRECT_PAGE_CRC 0x21E4
73 #define COMM_SEARCH_ACCESS 0x00F4
75 /* Communication command bits */
76 #define COMM_TYPE 0x0008
77 #define COMM_SE 0x0008
78 #define COMM_D 0x0008
79 #define COMM_Z 0x0008
80 #define COMM_CH 0x0008
81 #define COMM_SM 0x0008
82 #define COMM_R 0x0008
83 #define COMM_IM 0x0001
85 #define COMM_PS 0x4000
86 #define COMM_PST 0x4000
87 #define COMM_CIB 0x4000
88 #define COMM_RTS 0x4000
89 #define COMM_DT 0x2000
90 #define COMM_SPU 0x1000
91 #define COMM_F 0x0800
92 #define COMM_NTF 0x0400
93 #define COMM_ICP 0x0200
94 #define COMM_RST 0x0100
96 #define PULSE_PROG 0x01
97 #define PULSE_SPUE 0x02
99 #define BRANCH_MAIN 0xCC
100 #define BRANCH_AUX 0x33
102 /* Status flags */
103 #define ST_SPUA 0x01 /* Strong Pull-up is active */
104 #define ST_PRGA 0x02 /* 12V programming pulse is being generated */
105 #define ST_12VP 0x04 /* external 12V programming voltage is present */
106 #define ST_PMOD 0x08 /* DS2490 powered from USB and external sources */
107 #define ST_HALT 0x10 /* DS2490 is currently halted */
108 #define ST_IDLE 0x20 /* DS2490 is currently idle */
109 #define ST_EPOF 0x80
111 /* Result Register flags */
112 #define RR_DETECT 0xA5 /* New device detected */
113 #define RR_NRS 0x01 /* Reset no presence or ... */
114 #define RR_SH 0x02 /* short on reset or set path */
115 #define RR_APP 0x04 /* alarming presence on reset */
116 #define RR_VPP 0x08 /* 12V expected not seen */
117 #define RR_CMP 0x10 /* compare error */
118 #define RR_CRC 0x20 /* CRC error detected */
119 #define RR_RDP 0x40 /* redirected page */
120 #define RR_EOS 0x80 /* end of search error */
122 #define SPEED_NORMAL 0x00
123 #define SPEED_FLEXIBLE 0x01
124 #define SPEED_OVERDRIVE 0x02
126 #define NUM_EP 4
127 #define EP_CONTROL 0
128 #define EP_STATUS 1
129 #define EP_DATA_OUT 2
130 #define EP_DATA_IN 3
132 struct ds_device
134 struct list_head ds_entry;
136 struct usb_device *udev;
137 struct usb_interface *intf;
139 int ep[NUM_EP];
141 /* Strong PullUp
142 * 0: pullup not active, else duration in milliseconds
144 int spu_sleep;
145 /* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
146 * should be active or not for writes.
148 u16 spu_bit;
150 struct w1_bus_master master;
153 struct ds_status
155 u8 enable;
156 u8 speed;
157 u8 pullup_dur;
158 u8 ppuls_dur;
159 u8 pulldown_slew;
160 u8 write1_time;
161 u8 write0_time;
162 u8 reserved0;
163 u8 status;
164 u8 command0;
165 u8 command1;
166 u8 command_buffer_status;
167 u8 data_out_buffer_status;
168 u8 data_in_buffer_status;
169 u8 reserved1;
170 u8 reserved2;
174 static struct usb_device_id ds_id_table [] = {
175 { USB_DEVICE(0x04fa, 0x2490) },
176 { },
178 MODULE_DEVICE_TABLE(usb, ds_id_table);
180 static int ds_probe(struct usb_interface *, const struct usb_device_id *);
181 static void ds_disconnect(struct usb_interface *);
183 static int ds_send_control(struct ds_device *, u16, u16);
184 static int ds_send_control_cmd(struct ds_device *, u16, u16);
186 static LIST_HEAD(ds_devices);
187 static DEFINE_MUTEX(ds_mutex);
189 static struct usb_driver ds_driver = {
190 .name = "DS9490R",
191 .probe = ds_probe,
192 .disconnect = ds_disconnect,
193 .id_table = ds_id_table,
196 static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
198 int err;
200 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
201 CONTROL_CMD, 0x40, value, index, NULL, 0, 1000);
202 if (err < 0) {
203 printk(KERN_ERR "Failed to send command control message %x.%x: err=%d.\n",
204 value, index, err);
205 return err;
208 return err;
211 static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
213 int err;
215 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
216 MODE_CMD, 0x40, value, index, NULL, 0, 1000);
217 if (err < 0) {
218 printk(KERN_ERR "Failed to send mode control message %x.%x: err=%d.\n",
219 value, index, err);
220 return err;
223 return err;
226 static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
228 int err;
230 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
231 COMM_CMD, 0x40, value, index, NULL, 0, 1000);
232 if (err < 0) {
233 printk(KERN_ERR "Failed to send control message %x.%x: err=%d.\n",
234 value, index, err);
235 return err;
238 return err;
241 static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
242 unsigned char *buf, int size)
244 int count, err;
246 memset(st, 0, sizeof(*st));
248 count = 0;
249 err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_STATUS]), buf, size, &count, 100);
250 if (err < 0) {
251 printk(KERN_ERR "Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err);
252 return err;
255 if (count >= sizeof(*st))
256 memcpy(st, buf, sizeof(*st));
258 return count;
261 static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off)
263 printk(KERN_INFO "%45s: %8x\n", str, buf[off]);
266 static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count)
268 int i;
270 printk(KERN_INFO "0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
271 for (i=0; i<count; ++i)
272 printk("%02x ", buf[i]);
273 printk(KERN_INFO "\n");
275 if (count >= 16) {
276 ds_print_msg(buf, "enable flag", 0);
277 ds_print_msg(buf, "1-wire speed", 1);
278 ds_print_msg(buf, "strong pullup duration", 2);
279 ds_print_msg(buf, "programming pulse duration", 3);
280 ds_print_msg(buf, "pulldown slew rate control", 4);
281 ds_print_msg(buf, "write-1 low time", 5);
282 ds_print_msg(buf, "data sample offset/write-0 recovery time",
284 ds_print_msg(buf, "reserved (test register)", 7);
285 ds_print_msg(buf, "device status flags", 8);
286 ds_print_msg(buf, "communication command byte 1", 9);
287 ds_print_msg(buf, "communication command byte 2", 10);
288 ds_print_msg(buf, "communication command buffer status", 11);
289 ds_print_msg(buf, "1-wire data output buffer status", 12);
290 ds_print_msg(buf, "1-wire data input buffer status", 13);
291 ds_print_msg(buf, "reserved", 14);
292 ds_print_msg(buf, "reserved", 15);
294 for (i = 16; i < count; ++i) {
295 if (buf[i] == RR_DETECT) {
296 ds_print_msg(buf, "new device detect", i);
297 continue;
299 ds_print_msg(buf, "Result Register Value: ", i);
300 if (buf[i] & RR_NRS)
301 printk(KERN_INFO "NRS: Reset no presence or ...\n");
302 if (buf[i] & RR_SH)
303 printk(KERN_INFO "SH: short on reset or set path\n");
304 if (buf[i] & RR_APP)
305 printk(KERN_INFO "APP: alarming presence on reset\n");
306 if (buf[i] & RR_VPP)
307 printk(KERN_INFO "VPP: 12V expected not seen\n");
308 if (buf[i] & RR_CMP)
309 printk(KERN_INFO "CMP: compare error\n");
310 if (buf[i] & RR_CRC)
311 printk(KERN_INFO "CRC: CRC error detected\n");
312 if (buf[i] & RR_RDP)
313 printk(KERN_INFO "RDP: redirected page\n");
314 if (buf[i] & RR_EOS)
315 printk(KERN_INFO "EOS: end of search error\n");
319 static void ds_reset_device(struct ds_device *dev)
321 ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
322 /* Always allow strong pullup which allow individual writes to use
323 * the strong pullup.
325 if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
326 printk(KERN_ERR "ds_reset_device: "
327 "Error allowing strong pullup\n");
328 /* Chip strong pullup time was cleared. */
329 if (dev->spu_sleep) {
330 /* lower 4 bits are 0, see ds_set_pullup */
331 u8 del = dev->spu_sleep>>4;
332 if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
333 printk(KERN_ERR "ds_reset_device: "
334 "Error setting duration\n");
338 static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
340 int count, err;
341 struct ds_status st;
343 /* Careful on size. If size is less than what is available in
344 * the input buffer, the device fails the bulk transfer and
345 * clears the input buffer. It could read the maximum size of
346 * the data buffer, but then do you return the first, last, or
347 * some set of the middle size bytes? As long as the rest of
348 * the code is correct there will be size bytes waiting. A
349 * call to ds_wait_status will wait until the device is idle
350 * and any data to be received would have been available.
352 count = 0;
353 err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
354 buf, size, &count, 1000);
355 if (err < 0) {
356 u8 buf[0x20];
357 int count;
359 printk(KERN_INFO "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
360 usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
362 count = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
363 ds_dump_status(dev, buf, count);
364 return err;
367 #if 0
369 int i;
371 printk("%s: count=%d: ", __func__, count);
372 for (i=0; i<count; ++i)
373 printk("%02x ", buf[i]);
374 printk("\n");
376 #endif
377 return count;
380 static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
382 int count, err;
384 count = 0;
385 err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
386 if (err < 0) {
387 printk(KERN_ERR "Failed to write 1-wire data to ep0x%x: "
388 "err=%d.\n", dev->ep[EP_DATA_OUT], err);
389 return err;
392 return err;
395 #if 0
397 int ds_stop_pulse(struct ds_device *dev, int limit)
399 struct ds_status st;
400 int count = 0, err = 0;
401 u8 buf[0x20];
403 do {
404 err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
405 if (err)
406 break;
407 err = ds_send_control(dev, CTL_RESUME_EXE, 0);
408 if (err)
409 break;
410 err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
411 if (err)
412 break;
414 if ((st.status & ST_SPUA) == 0) {
415 err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
416 if (err)
417 break;
419 } while(++count < limit);
421 return err;
424 int ds_detect(struct ds_device *dev, struct ds_status *st)
426 int err;
428 err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
429 if (err)
430 return err;
432 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
433 if (err)
434 return err;
436 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
437 if (err)
438 return err;
440 err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
441 if (err)
442 return err;
444 err = ds_dump_status(dev, st);
446 return err;
449 #endif /* 0 */
451 static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
453 u8 buf[0x20];
454 int err, count = 0;
456 do {
457 err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
458 #if 0
459 if (err >= 0) {
460 int i;
461 printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
462 for (i=0; i<err; ++i)
463 printk("%02x ", buf[i]);
464 printk("\n");
466 #endif
467 } while (!(buf[0x08] & ST_IDLE) && !(err < 0) && ++count < 100);
469 if (err >= 16 && st->status & ST_EPOF) {
470 printk(KERN_INFO "Resetting device after ST_EPOF.\n");
471 ds_reset_device(dev);
472 /* Always dump the device status. */
473 count = 101;
476 /* Dump the status for errors or if there is extended return data.
477 * The extended status includes new device detection (maybe someone
478 * can do something with it).
480 if (err > 16 || count >= 100 || err < 0)
481 ds_dump_status(dev, buf, err);
483 /* Extended data isn't an error. Well, a short is, but the dump
484 * would have already told the user that and we can't do anything
485 * about it in software anyway.
487 if (count >= 100 || err < 0)
488 return -1;
489 else
490 return 0;
493 static int ds_reset(struct ds_device *dev)
495 int err;
497 /* Other potentionally interesting flags for reset.
499 * COMM_NTF: Return result register feedback. This could be used to
500 * detect some conditions such as short, alarming presence, or
501 * detect if a new device was detected.
503 * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
504 * Select the data transfer rate.
506 err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
507 if (err)
508 return err;
510 return 0;
513 #if 0
514 static int ds_set_speed(struct ds_device *dev, int speed)
516 int err;
518 if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
519 return -EINVAL;
521 if (speed != SPEED_OVERDRIVE)
522 speed = SPEED_FLEXIBLE;
524 speed &= 0xff;
526 err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
527 if (err)
528 return err;
530 return err;
532 #endif /* 0 */
534 static int ds_set_pullup(struct ds_device *dev, int delay)
536 int err = 0;
537 u8 del = 1 + (u8)(delay >> 4);
538 /* Just storing delay would not get the trunication and roundup. */
539 int ms = del<<4;
541 /* Enable spu_bit if a delay is set. */
542 dev->spu_bit = delay ? COMM_SPU : 0;
543 /* If delay is zero, it has already been disabled, if the time is
544 * the same as the hardware was last programmed to, there is also
545 * nothing more to do. Compare with the recalculated value ms
546 * rather than del or delay which can have a different value.
548 if (delay == 0 || ms == dev->spu_sleep)
549 return err;
551 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
552 if (err)
553 return err;
555 dev->spu_sleep = ms;
557 return err;
560 static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
562 int err;
563 struct ds_status st;
565 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
567 if (err)
568 return err;
570 ds_wait_status(dev, &st);
572 err = ds_recv_data(dev, tbit, sizeof(*tbit));
573 if (err < 0)
574 return err;
576 return 0;
579 #if 0
580 static int ds_write_bit(struct ds_device *dev, u8 bit)
582 int err;
583 struct ds_status st;
585 /* Set COMM_ICP to write without a readback. Note, this will
586 * produce one time slot, a down followed by an up with COMM_D
587 * only determing the timing.
589 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
590 (bit ? COMM_D : 0), 0);
591 if (err)
592 return err;
594 ds_wait_status(dev, &st);
596 return 0;
598 #endif
600 static int ds_write_byte(struct ds_device *dev, u8 byte)
602 int err;
603 struct ds_status st;
604 u8 rbyte;
606 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
607 if (err)
608 return err;
610 if (dev->spu_bit)
611 msleep(dev->spu_sleep);
613 err = ds_wait_status(dev, &st);
614 if (err)
615 return err;
617 err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
618 if (err < 0)
619 return err;
621 return !(byte == rbyte);
624 static int ds_read_byte(struct ds_device *dev, u8 *byte)
626 int err;
627 struct ds_status st;
629 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
630 if (err)
631 return err;
633 ds_wait_status(dev, &st);
635 err = ds_recv_data(dev, byte, sizeof(*byte));
636 if (err < 0)
637 return err;
639 return 0;
642 static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
644 struct ds_status st;
645 int err;
647 if (len > 64*1024)
648 return -E2BIG;
650 memset(buf, 0xFF, len);
652 err = ds_send_data(dev, buf, len);
653 if (err < 0)
654 return err;
656 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
657 if (err)
658 return err;
660 ds_wait_status(dev, &st);
662 memset(buf, 0x00, len);
663 err = ds_recv_data(dev, buf, len);
665 return err;
668 static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
670 int err;
671 struct ds_status st;
673 err = ds_send_data(dev, buf, len);
674 if (err < 0)
675 return err;
677 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
678 if (err)
679 return err;
681 if (dev->spu_bit)
682 msleep(dev->spu_sleep);
684 ds_wait_status(dev, &st);
686 err = ds_recv_data(dev, buf, len);
687 if (err < 0)
688 return err;
690 return !(err == len);
693 #if 0
695 static int ds_search(struct ds_device *dev, u64 init, u64 *buf, u8 id_number, int conditional_search)
697 int err;
698 u16 value, index;
699 struct ds_status st;
701 memset(buf, 0, sizeof(buf));
703 err = ds_send_data(ds_dev, (unsigned char *)&init, 8);
704 if (err)
705 return err;
707 ds_wait_status(ds_dev, &st);
709 value = COMM_SEARCH_ACCESS | COMM_IM | COMM_SM | COMM_F | COMM_RTS;
710 index = (conditional_search ? 0xEC : 0xF0) | (id_number << 8);
711 err = ds_send_control(ds_dev, value, index);
712 if (err)
713 return err;
715 ds_wait_status(ds_dev, &st);
717 err = ds_recv_data(ds_dev, (unsigned char *)buf, 8*id_number);
718 if (err < 0)
719 return err;
721 return err/8;
724 static int ds_match_access(struct ds_device *dev, u64 init)
726 int err;
727 struct ds_status st;
729 err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
730 if (err)
731 return err;
733 ds_wait_status(dev, &st);
735 err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
736 if (err)
737 return err;
739 ds_wait_status(dev, &st);
741 return 0;
744 static int ds_set_path(struct ds_device *dev, u64 init)
746 int err;
747 struct ds_status st;
748 u8 buf[9];
750 memcpy(buf, &init, 8);
751 buf[8] = BRANCH_MAIN;
753 err = ds_send_data(dev, buf, sizeof(buf));
754 if (err)
755 return err;
757 ds_wait_status(dev, &st);
759 err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
760 if (err)
761 return err;
763 ds_wait_status(dev, &st);
765 return 0;
768 #endif /* 0 */
770 static u8 ds9490r_touch_bit(void *data, u8 bit)
772 u8 ret;
773 struct ds_device *dev = data;
775 if (ds_touch_bit(dev, bit, &ret))
776 return 0;
778 return ret;
781 #if 0
782 static void ds9490r_write_bit(void *data, u8 bit)
784 struct ds_device *dev = data;
786 ds_write_bit(dev, bit);
789 static u8 ds9490r_read_bit(void *data)
791 struct ds_device *dev = data;
792 int err;
793 u8 bit = 0;
795 err = ds_touch_bit(dev, 1, &bit);
796 if (err)
797 return 0;
799 return bit & 1;
801 #endif
803 static void ds9490r_write_byte(void *data, u8 byte)
805 struct ds_device *dev = data;
807 ds_write_byte(dev, byte);
810 static u8 ds9490r_read_byte(void *data)
812 struct ds_device *dev = data;
813 int err;
814 u8 byte = 0;
816 err = ds_read_byte(dev, &byte);
817 if (err)
818 return 0;
820 return byte;
823 static void ds9490r_write_block(void *data, const u8 *buf, int len)
825 struct ds_device *dev = data;
827 ds_write_block(dev, (u8 *)buf, len);
830 static u8 ds9490r_read_block(void *data, u8 *buf, int len)
832 struct ds_device *dev = data;
833 int err;
835 err = ds_read_block(dev, buf, len);
836 if (err < 0)
837 return 0;
839 return len;
842 static u8 ds9490r_reset(void *data)
844 struct ds_device *dev = data;
845 int err;
847 err = ds_reset(dev);
848 if (err)
849 return 1;
851 return 0;
854 static u8 ds9490r_set_pullup(void *data, int delay)
856 struct ds_device *dev = data;
858 if (ds_set_pullup(dev, delay))
859 return 1;
861 return 0;
864 static int ds_w1_init(struct ds_device *dev)
866 memset(&dev->master, 0, sizeof(struct w1_bus_master));
868 /* Reset the device as it can be in a bad state.
869 * This is necessary because a block write will wait for data
870 * to be placed in the output buffer and block any later
871 * commands which will keep accumulating and the device will
872 * not be idle. Another case is removing the ds2490 module
873 * while a bus search is in progress, somehow a few commands
874 * get through, but the input transfers fail leaving data in
875 * the input buffer. This will cause the next read to fail
876 * see the note in ds_recv_data.
878 ds_reset_device(dev);
880 dev->master.data = dev;
881 dev->master.touch_bit = &ds9490r_touch_bit;
882 /* read_bit and write_bit in w1_bus_master are expected to set and
883 * sample the line level. For write_bit that means it is expected to
884 * set it to that value and leave it there. ds2490 only supports an
885 * individual time slot at the lowest level. The requirement from
886 * pulling the bus state down to reading the state is 15us, something
887 * that isn't realistic on the USB bus anyway.
888 dev->master.read_bit = &ds9490r_read_bit;
889 dev->master.write_bit = &ds9490r_write_bit;
891 dev->master.read_byte = &ds9490r_read_byte;
892 dev->master.write_byte = &ds9490r_write_byte;
893 dev->master.read_block = &ds9490r_read_block;
894 dev->master.write_block = &ds9490r_write_block;
895 dev->master.reset_bus = &ds9490r_reset;
896 dev->master.set_pullup = &ds9490r_set_pullup;
898 return w1_add_master_device(&dev->master);
901 static void ds_w1_fini(struct ds_device *dev)
903 w1_remove_master_device(&dev->master);
906 static int ds_probe(struct usb_interface *intf,
907 const struct usb_device_id *udev_id)
909 struct usb_device *udev = interface_to_usbdev(intf);
910 struct usb_endpoint_descriptor *endpoint;
911 struct usb_host_interface *iface_desc;
912 struct ds_device *dev;
913 int i, err;
915 dev = kmalloc(sizeof(struct ds_device), GFP_KERNEL);
916 if (!dev) {
917 printk(KERN_INFO "Failed to allocate new DS9490R structure.\n");
918 return -ENOMEM;
920 dev->spu_sleep = 0;
921 dev->spu_bit = 0;
922 dev->udev = usb_get_dev(udev);
923 if (!dev->udev) {
924 err = -ENOMEM;
925 goto err_out_free;
927 memset(dev->ep, 0, sizeof(dev->ep));
929 usb_set_intfdata(intf, dev);
931 err = usb_set_interface(dev->udev, intf->altsetting[0].desc.bInterfaceNumber, 3);
932 if (err) {
933 printk(KERN_ERR "Failed to set alternative setting 3 for %d interface: err=%d.\n",
934 intf->altsetting[0].desc.bInterfaceNumber, err);
935 goto err_out_clear;
938 err = usb_reset_configuration(dev->udev);
939 if (err) {
940 printk(KERN_ERR "Failed to reset configuration: err=%d.\n", err);
941 goto err_out_clear;
944 iface_desc = &intf->altsetting[0];
945 if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
946 printk(KERN_INFO "Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints);
947 err = -EINVAL;
948 goto err_out_clear;
952 * This loop doesn'd show control 0 endpoint,
953 * so we will fill only 1-3 endpoints entry.
955 for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
956 endpoint = &iface_desc->endpoint[i].desc;
958 dev->ep[i+1] = endpoint->bEndpointAddress;
959 #if 0
960 printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
961 i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
962 (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
963 endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
964 #endif
967 err = ds_w1_init(dev);
968 if (err)
969 goto err_out_clear;
971 mutex_lock(&ds_mutex);
972 list_add_tail(&dev->ds_entry, &ds_devices);
973 mutex_unlock(&ds_mutex);
975 return 0;
977 err_out_clear:
978 usb_set_intfdata(intf, NULL);
979 usb_put_dev(dev->udev);
980 err_out_free:
981 kfree(dev);
982 return err;
985 static void ds_disconnect(struct usb_interface *intf)
987 struct ds_device *dev;
989 dev = usb_get_intfdata(intf);
990 if (!dev)
991 return;
993 mutex_lock(&ds_mutex);
994 list_del(&dev->ds_entry);
995 mutex_unlock(&ds_mutex);
997 ds_w1_fini(dev);
999 usb_set_intfdata(intf, NULL);
1001 usb_put_dev(dev->udev);
1002 kfree(dev);
1005 static int ds_init(void)
1007 int err;
1009 err = usb_register(&ds_driver);
1010 if (err) {
1011 printk(KERN_INFO "Failed to register DS9490R USB device: err=%d.\n", err);
1012 return err;
1015 return 0;
1018 static void ds_fini(void)
1020 usb_deregister(&ds_driver);
1023 module_init(ds_init);
1024 module_exit(ds_fini);
1026 MODULE_LICENSE("GPL");
1027 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
1028 MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");