2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
23 #include <linux/sched.h>
25 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/mempool.h>
38 #include <linux/hash.h>
39 #include <linux/compat.h>
41 #include <asm/kmap_types.h>
42 #include <asm/uaccess.h>
45 #define dprintk printk
47 #define dprintk(x...) do { ; } while (0)
50 /*------ sysctl variables----*/
51 static DEFINE_SPINLOCK(aio_nr_lock
);
52 unsigned long aio_nr
; /* current system wide number of aio requests */
53 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
54 /*----end sysctl variables---*/
56 static struct kmem_cache
*kiocb_cachep
;
57 static struct kmem_cache
*kioctx_cachep
;
59 static struct workqueue_struct
*aio_wq
;
61 /* Used for rare fput completion. */
62 static void aio_fput_routine(struct work_struct
*);
63 static DECLARE_WORK(fput_work
, aio_fput_routine
);
65 static DEFINE_SPINLOCK(fput_lock
);
66 static LIST_HEAD(fput_head
);
68 #define AIO_BATCH_HASH_BITS 3 /* allocated on-stack, so don't go crazy */
69 #define AIO_BATCH_HASH_SIZE (1 << AIO_BATCH_HASH_BITS)
70 struct aio_batch_entry
{
71 struct hlist_node list
;
72 struct address_space
*mapping
;
76 static void aio_kick_handler(struct work_struct
*);
77 static void aio_queue_work(struct kioctx
*);
80 * Creates the slab caches used by the aio routines, panic on
81 * failure as this is done early during the boot sequence.
83 static int __init
aio_setup(void)
85 kiocb_cachep
= KMEM_CACHE(kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
86 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
88 aio_wq
= create_workqueue("aio");
89 abe_pool
= mempool_create_kmalloc_pool(1, sizeof(struct aio_batch_entry
));
92 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page
));
96 __initcall(aio_setup
);
98 static void aio_free_ring(struct kioctx
*ctx
)
100 struct aio_ring_info
*info
= &ctx
->ring_info
;
103 for (i
=0; i
<info
->nr_pages
; i
++)
104 put_page(info
->ring_pages
[i
]);
106 if (info
->mmap_size
) {
107 down_write(&ctx
->mm
->mmap_sem
);
108 do_munmap(ctx
->mm
, info
->mmap_base
, info
->mmap_size
);
109 up_write(&ctx
->mm
->mmap_sem
);
112 if (info
->ring_pages
&& info
->ring_pages
!= info
->internal_pages
)
113 kfree(info
->ring_pages
);
114 info
->ring_pages
= NULL
;
118 static int aio_setup_ring(struct kioctx
*ctx
)
120 struct aio_ring
*ring
;
121 struct aio_ring_info
*info
= &ctx
->ring_info
;
122 unsigned nr_events
= ctx
->max_reqs
;
126 /* Compensate for the ring buffer's head/tail overlap entry */
127 nr_events
+= 2; /* 1 is required, 2 for good luck */
129 size
= sizeof(struct aio_ring
);
130 size
+= sizeof(struct io_event
) * nr_events
;
131 nr_pages
= (size
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
136 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
)) / sizeof(struct io_event
);
139 info
->ring_pages
= info
->internal_pages
;
140 if (nr_pages
> AIO_RING_PAGES
) {
141 info
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_KERNEL
);
142 if (!info
->ring_pages
)
146 info
->mmap_size
= nr_pages
* PAGE_SIZE
;
147 dprintk("attempting mmap of %lu bytes\n", info
->mmap_size
);
148 down_write(&ctx
->mm
->mmap_sem
);
149 info
->mmap_base
= do_mmap(NULL
, 0, info
->mmap_size
,
150 PROT_READ
|PROT_WRITE
, MAP_ANONYMOUS
|MAP_PRIVATE
,
152 if (IS_ERR((void *)info
->mmap_base
)) {
153 up_write(&ctx
->mm
->mmap_sem
);
159 dprintk("mmap address: 0x%08lx\n", info
->mmap_base
);
160 info
->nr_pages
= get_user_pages(current
, ctx
->mm
,
161 info
->mmap_base
, nr_pages
,
162 1, 0, info
->ring_pages
, NULL
);
163 up_write(&ctx
->mm
->mmap_sem
);
165 if (unlikely(info
->nr_pages
!= nr_pages
)) {
170 ctx
->user_id
= info
->mmap_base
;
172 info
->nr
= nr_events
; /* trusted copy */
174 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
175 ring
->nr
= nr_events
; /* user copy */
176 ring
->id
= ctx
->user_id
;
177 ring
->head
= ring
->tail
= 0;
178 ring
->magic
= AIO_RING_MAGIC
;
179 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
180 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
181 ring
->header_length
= sizeof(struct aio_ring
);
182 kunmap_atomic(ring
, KM_USER0
);
188 /* aio_ring_event: returns a pointer to the event at the given index from
189 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
191 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
192 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
193 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
195 #define aio_ring_event(info, nr, km) ({ \
196 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
197 struct io_event *__event; \
198 __event = kmap_atomic( \
199 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
200 __event += pos % AIO_EVENTS_PER_PAGE; \
204 #define put_aio_ring_event(event, km) do { \
205 struct io_event *__event = (event); \
207 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
210 static void ctx_rcu_free(struct rcu_head
*head
)
212 struct kioctx
*ctx
= container_of(head
, struct kioctx
, rcu_head
);
213 unsigned nr_events
= ctx
->max_reqs
;
215 kmem_cache_free(kioctx_cachep
, ctx
);
218 spin_lock(&aio_nr_lock
);
219 BUG_ON(aio_nr
- nr_events
> aio_nr
);
221 spin_unlock(&aio_nr_lock
);
226 * Called when the last user of an aio context has gone away,
227 * and the struct needs to be freed.
229 static void __put_ioctx(struct kioctx
*ctx
)
231 BUG_ON(ctx
->reqs_active
);
233 cancel_delayed_work(&ctx
->wq
);
234 cancel_work_sync(&ctx
->wq
.work
);
238 pr_debug("__put_ioctx: freeing %p\n", ctx
);
239 call_rcu(&ctx
->rcu_head
, ctx_rcu_free
);
242 #define get_ioctx(kioctx) do { \
243 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
244 atomic_inc(&(kioctx)->users); \
246 #define put_ioctx(kioctx) do { \
247 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
248 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \
249 __put_ioctx(kioctx); \
253 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
255 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
257 struct mm_struct
*mm
;
261 /* Prevent overflows */
262 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
263 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
264 pr_debug("ENOMEM: nr_events too high\n");
265 return ERR_PTR(-EINVAL
);
268 if ((unsigned long)nr_events
> aio_max_nr
)
269 return ERR_PTR(-EAGAIN
);
271 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
273 return ERR_PTR(-ENOMEM
);
275 ctx
->max_reqs
= nr_events
;
276 mm
= ctx
->mm
= current
->mm
;
277 atomic_inc(&mm
->mm_count
);
279 atomic_set(&ctx
->users
, 1);
280 spin_lock_init(&ctx
->ctx_lock
);
281 spin_lock_init(&ctx
->ring_info
.ring_lock
);
282 init_waitqueue_head(&ctx
->wait
);
284 INIT_LIST_HEAD(&ctx
->active_reqs
);
285 INIT_LIST_HEAD(&ctx
->run_list
);
286 INIT_DELAYED_WORK(&ctx
->wq
, aio_kick_handler
);
288 if (aio_setup_ring(ctx
) < 0)
291 /* limit the number of system wide aios */
293 spin_lock_bh(&aio_nr_lock
);
294 if (aio_nr
+ nr_events
> aio_max_nr
||
295 aio_nr
+ nr_events
< aio_nr
)
298 aio_nr
+= ctx
->max_reqs
;
299 spin_unlock_bh(&aio_nr_lock
);
300 if (ctx
->max_reqs
|| did_sync
)
303 /* wait for rcu callbacks to have completed before giving up */
306 ctx
->max_reqs
= nr_events
;
309 if (ctx
->max_reqs
== 0)
312 /* now link into global list. */
313 spin_lock(&mm
->ioctx_lock
);
314 hlist_add_head_rcu(&ctx
->list
, &mm
->ioctx_list
);
315 spin_unlock(&mm
->ioctx_lock
);
317 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
318 ctx
, ctx
->user_id
, current
->mm
, ctx
->ring_info
.nr
);
323 return ERR_PTR(-EAGAIN
);
327 kmem_cache_free(kioctx_cachep
, ctx
);
328 ctx
= ERR_PTR(-ENOMEM
);
330 dprintk("aio: error allocating ioctx %p\n", ctx
);
335 * Cancels all outstanding aio requests on an aio context. Used
336 * when the processes owning a context have all exited to encourage
337 * the rapid destruction of the kioctx.
339 static void aio_cancel_all(struct kioctx
*ctx
)
341 int (*cancel
)(struct kiocb
*, struct io_event
*);
343 spin_lock_irq(&ctx
->ctx_lock
);
345 while (!list_empty(&ctx
->active_reqs
)) {
346 struct list_head
*pos
= ctx
->active_reqs
.next
;
347 struct kiocb
*iocb
= list_kiocb(pos
);
348 list_del_init(&iocb
->ki_list
);
349 cancel
= iocb
->ki_cancel
;
350 kiocbSetCancelled(iocb
);
353 spin_unlock_irq(&ctx
->ctx_lock
);
355 spin_lock_irq(&ctx
->ctx_lock
);
358 spin_unlock_irq(&ctx
->ctx_lock
);
361 static void wait_for_all_aios(struct kioctx
*ctx
)
363 struct task_struct
*tsk
= current
;
364 DECLARE_WAITQUEUE(wait
, tsk
);
366 spin_lock_irq(&ctx
->ctx_lock
);
367 if (!ctx
->reqs_active
)
370 add_wait_queue(&ctx
->wait
, &wait
);
371 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
372 while (ctx
->reqs_active
) {
373 spin_unlock_irq(&ctx
->ctx_lock
);
375 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
376 spin_lock_irq(&ctx
->ctx_lock
);
378 __set_task_state(tsk
, TASK_RUNNING
);
379 remove_wait_queue(&ctx
->wait
, &wait
);
382 spin_unlock_irq(&ctx
->ctx_lock
);
385 /* wait_on_sync_kiocb:
386 * Waits on the given sync kiocb to complete.
388 ssize_t
wait_on_sync_kiocb(struct kiocb
*iocb
)
390 while (iocb
->ki_users
) {
391 set_current_state(TASK_UNINTERRUPTIBLE
);
396 __set_current_state(TASK_RUNNING
);
397 return iocb
->ki_user_data
;
399 EXPORT_SYMBOL(wait_on_sync_kiocb
);
401 /* exit_aio: called when the last user of mm goes away. At this point,
402 * there is no way for any new requests to be submited or any of the
403 * io_* syscalls to be called on the context. However, there may be
404 * outstanding requests which hold references to the context; as they
405 * go away, they will call put_ioctx and release any pinned memory
406 * associated with the request (held via struct page * references).
408 void exit_aio(struct mm_struct
*mm
)
412 while (!hlist_empty(&mm
->ioctx_list
)) {
413 ctx
= hlist_entry(mm
->ioctx_list
.first
, struct kioctx
, list
);
414 hlist_del_rcu(&ctx
->list
);
418 wait_for_all_aios(ctx
);
420 * Ensure we don't leave the ctx on the aio_wq
422 cancel_work_sync(&ctx
->wq
.work
);
424 if (1 != atomic_read(&ctx
->users
))
426 "exit_aio:ioctx still alive: %d %d %d\n",
427 atomic_read(&ctx
->users
), ctx
->dead
,
434 * Allocate a slot for an aio request. Increments the users count
435 * of the kioctx so that the kioctx stays around until all requests are
436 * complete. Returns NULL if no requests are free.
438 * Returns with kiocb->users set to 2. The io submit code path holds
439 * an extra reference while submitting the i/o.
440 * This prevents races between the aio code path referencing the
441 * req (after submitting it) and aio_complete() freeing the req.
443 static struct kiocb
*__aio_get_req(struct kioctx
*ctx
)
445 struct kiocb
*req
= NULL
;
446 struct aio_ring
*ring
;
449 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
457 req
->ki_cancel
= NULL
;
458 req
->ki_retry
= NULL
;
461 req
->ki_iovec
= NULL
;
462 INIT_LIST_HEAD(&req
->ki_run_list
);
463 req
->ki_eventfd
= NULL
;
465 /* Check if the completion queue has enough free space to
466 * accept an event from this io.
468 spin_lock_irq(&ctx
->ctx_lock
);
469 ring
= kmap_atomic(ctx
->ring_info
.ring_pages
[0], KM_USER0
);
470 if (ctx
->reqs_active
< aio_ring_avail(&ctx
->ring_info
, ring
)) {
471 list_add(&req
->ki_list
, &ctx
->active_reqs
);
475 kunmap_atomic(ring
, KM_USER0
);
476 spin_unlock_irq(&ctx
->ctx_lock
);
479 kmem_cache_free(kiocb_cachep
, req
);
486 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
489 /* Handle a potential starvation case -- should be exceedingly rare as
490 * requests will be stuck on fput_head only if the aio_fput_routine is
491 * delayed and the requests were the last user of the struct file.
493 req
= __aio_get_req(ctx
);
494 if (unlikely(NULL
== req
)) {
495 aio_fput_routine(NULL
);
496 req
= __aio_get_req(ctx
);
501 static inline void really_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
503 assert_spin_locked(&ctx
->ctx_lock
);
505 if (req
->ki_eventfd
!= NULL
)
506 eventfd_ctx_put(req
->ki_eventfd
);
509 if (req
->ki_iovec
!= &req
->ki_inline_vec
)
510 kfree(req
->ki_iovec
);
511 kmem_cache_free(kiocb_cachep
, req
);
514 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
518 static void aio_fput_routine(struct work_struct
*data
)
520 spin_lock_irq(&fput_lock
);
521 while (likely(!list_empty(&fput_head
))) {
522 struct kiocb
*req
= list_kiocb(fput_head
.next
);
523 struct kioctx
*ctx
= req
->ki_ctx
;
525 list_del(&req
->ki_list
);
526 spin_unlock_irq(&fput_lock
);
528 /* Complete the fput(s) */
529 if (req
->ki_filp
!= NULL
)
532 /* Link the iocb into the context's free list */
533 spin_lock_irq(&ctx
->ctx_lock
);
534 really_put_req(ctx
, req
);
535 spin_unlock_irq(&ctx
->ctx_lock
);
538 spin_lock_irq(&fput_lock
);
540 spin_unlock_irq(&fput_lock
);
544 * Returns true if this put was the last user of the request.
546 static int __aio_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
548 dprintk(KERN_DEBUG
"aio_put(%p): f_count=%ld\n",
549 req
, atomic_long_read(&req
->ki_filp
->f_count
));
551 assert_spin_locked(&ctx
->ctx_lock
);
554 BUG_ON(req
->ki_users
< 0);
555 if (likely(req
->ki_users
))
557 list_del(&req
->ki_list
); /* remove from active_reqs */
558 req
->ki_cancel
= NULL
;
559 req
->ki_retry
= NULL
;
562 * Try to optimize the aio and eventfd file* puts, by avoiding to
563 * schedule work in case it is not final fput() time. In normal cases,
564 * we would not be holding the last reference to the file*, so
565 * this function will be executed w/out any aio kthread wakeup.
567 if (unlikely(!fput_atomic(req
->ki_filp
))) {
569 spin_lock(&fput_lock
);
570 list_add(&req
->ki_list
, &fput_head
);
571 spin_unlock(&fput_lock
);
572 queue_work(aio_wq
, &fput_work
);
575 really_put_req(ctx
, req
);
581 * Returns true if this put was the last user of the kiocb,
582 * false if the request is still in use.
584 int aio_put_req(struct kiocb
*req
)
586 struct kioctx
*ctx
= req
->ki_ctx
;
588 spin_lock_irq(&ctx
->ctx_lock
);
589 ret
= __aio_put_req(ctx
, req
);
590 spin_unlock_irq(&ctx
->ctx_lock
);
593 EXPORT_SYMBOL(aio_put_req
);
595 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
597 struct mm_struct
*mm
= current
->mm
;
598 struct kioctx
*ctx
, *ret
= NULL
;
599 struct hlist_node
*n
;
603 hlist_for_each_entry_rcu(ctx
, n
, &mm
->ioctx_list
, list
) {
604 if (ctx
->user_id
== ctx_id
&& !ctx
->dead
) {
616 * Queue up a kiocb to be retried. Assumes that the kiocb
617 * has already been marked as kicked, and places it on
618 * the retry run list for the corresponding ioctx, if it
619 * isn't already queued. Returns 1 if it actually queued
620 * the kiocb (to tell the caller to activate the work
621 * queue to process it), or 0, if it found that it was
624 static inline int __queue_kicked_iocb(struct kiocb
*iocb
)
626 struct kioctx
*ctx
= iocb
->ki_ctx
;
628 assert_spin_locked(&ctx
->ctx_lock
);
630 if (list_empty(&iocb
->ki_run_list
)) {
631 list_add_tail(&iocb
->ki_run_list
,
639 * This is the core aio execution routine. It is
640 * invoked both for initial i/o submission and
641 * subsequent retries via the aio_kick_handler.
642 * Expects to be invoked with iocb->ki_ctx->lock
643 * already held. The lock is released and reacquired
644 * as needed during processing.
646 * Calls the iocb retry method (already setup for the
647 * iocb on initial submission) for operation specific
648 * handling, but takes care of most of common retry
649 * execution details for a given iocb. The retry method
650 * needs to be non-blocking as far as possible, to avoid
651 * holding up other iocbs waiting to be serviced by the
652 * retry kernel thread.
654 * The trickier parts in this code have to do with
655 * ensuring that only one retry instance is in progress
656 * for a given iocb at any time. Providing that guarantee
657 * simplifies the coding of individual aio operations as
658 * it avoids various potential races.
660 static ssize_t
aio_run_iocb(struct kiocb
*iocb
)
662 struct kioctx
*ctx
= iocb
->ki_ctx
;
663 ssize_t (*retry
)(struct kiocb
*);
666 if (!(retry
= iocb
->ki_retry
)) {
667 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
672 * We don't want the next retry iteration for this
673 * operation to start until this one has returned and
674 * updated the iocb state. However, wait_queue functions
675 * can trigger a kick_iocb from interrupt context in the
676 * meantime, indicating that data is available for the next
677 * iteration. We want to remember that and enable the
678 * next retry iteration _after_ we are through with
681 * So, in order to be able to register a "kick", but
682 * prevent it from being queued now, we clear the kick
683 * flag, but make the kick code *think* that the iocb is
684 * still on the run list until we are actually done.
685 * When we are done with this iteration, we check if
686 * the iocb was kicked in the meantime and if so, queue
690 kiocbClearKicked(iocb
);
693 * This is so that aio_complete knows it doesn't need to
694 * pull the iocb off the run list (We can't just call
695 * INIT_LIST_HEAD because we don't want a kick_iocb to
696 * queue this on the run list yet)
698 iocb
->ki_run_list
.next
= iocb
->ki_run_list
.prev
= NULL
;
699 spin_unlock_irq(&ctx
->ctx_lock
);
701 /* Quit retrying if the i/o has been cancelled */
702 if (kiocbIsCancelled(iocb
)) {
704 aio_complete(iocb
, ret
, 0);
705 /* must not access the iocb after this */
710 * Now we are all set to call the retry method in async
715 if (ret
!= -EIOCBRETRY
&& ret
!= -EIOCBQUEUED
)
716 aio_complete(iocb
, ret
, 0);
718 spin_lock_irq(&ctx
->ctx_lock
);
720 if (-EIOCBRETRY
== ret
) {
722 * OK, now that we are done with this iteration
723 * and know that there is more left to go,
724 * this is where we let go so that a subsequent
725 * "kick" can start the next iteration
728 /* will make __queue_kicked_iocb succeed from here on */
729 INIT_LIST_HEAD(&iocb
->ki_run_list
);
730 /* we must queue the next iteration ourselves, if it
731 * has already been kicked */
732 if (kiocbIsKicked(iocb
)) {
733 __queue_kicked_iocb(iocb
);
736 * __queue_kicked_iocb will always return 1 here, because
737 * iocb->ki_run_list is empty at this point so it should
738 * be safe to unconditionally queue the context into the
749 * Process all pending retries queued on the ioctx
751 * Assumes it is operating within the aio issuer's mm
754 static int __aio_run_iocbs(struct kioctx
*ctx
)
757 struct list_head run_list
;
759 assert_spin_locked(&ctx
->ctx_lock
);
761 list_replace_init(&ctx
->run_list
, &run_list
);
762 while (!list_empty(&run_list
)) {
763 iocb
= list_entry(run_list
.next
, struct kiocb
,
765 list_del(&iocb
->ki_run_list
);
767 * Hold an extra reference while retrying i/o.
769 iocb
->ki_users
++; /* grab extra reference */
771 __aio_put_req(ctx
, iocb
);
773 if (!list_empty(&ctx
->run_list
))
778 static void aio_queue_work(struct kioctx
* ctx
)
780 unsigned long timeout
;
782 * if someone is waiting, get the work started right
783 * away, otherwise, use a longer delay
786 if (waitqueue_active(&ctx
->wait
))
790 queue_delayed_work(aio_wq
, &ctx
->wq
, timeout
);
796 * Process all pending retries queued on the ioctx
798 * Assumes it is operating within the aio issuer's mm
801 static inline void aio_run_iocbs(struct kioctx
*ctx
)
805 spin_lock_irq(&ctx
->ctx_lock
);
807 requeue
= __aio_run_iocbs(ctx
);
808 spin_unlock_irq(&ctx
->ctx_lock
);
814 * just like aio_run_iocbs, but keeps running them until
815 * the list stays empty
817 static inline void aio_run_all_iocbs(struct kioctx
*ctx
)
819 spin_lock_irq(&ctx
->ctx_lock
);
820 while (__aio_run_iocbs(ctx
))
822 spin_unlock_irq(&ctx
->ctx_lock
);
827 * Work queue handler triggered to process pending
828 * retries on an ioctx. Takes on the aio issuer's
829 * mm context before running the iocbs, so that
830 * copy_xxx_user operates on the issuer's address
832 * Run on aiod's context.
834 static void aio_kick_handler(struct work_struct
*work
)
836 struct kioctx
*ctx
= container_of(work
, struct kioctx
, wq
.work
);
837 mm_segment_t oldfs
= get_fs();
838 struct mm_struct
*mm
;
843 spin_lock_irq(&ctx
->ctx_lock
);
844 requeue
=__aio_run_iocbs(ctx
);
846 spin_unlock_irq(&ctx
->ctx_lock
);
850 * we're in a worker thread already, don't use queue_delayed_work,
853 queue_delayed_work(aio_wq
, &ctx
->wq
, 0);
858 * Called by kick_iocb to queue the kiocb for retry
859 * and if required activate the aio work queue to process
862 static void try_queue_kicked_iocb(struct kiocb
*iocb
)
864 struct kioctx
*ctx
= iocb
->ki_ctx
;
868 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
869 /* set this inside the lock so that we can't race with aio_run_iocb()
870 * testing it and putting the iocb on the run list under the lock */
871 if (!kiocbTryKick(iocb
))
872 run
= __queue_kicked_iocb(iocb
);
873 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
880 * Called typically from a wait queue callback context
881 * to trigger a retry of the iocb.
882 * The retry is usually executed by aio workqueue
883 * threads (See aio_kick_handler).
885 void kick_iocb(struct kiocb
*iocb
)
887 /* sync iocbs are easy: they can only ever be executing from a
889 if (is_sync_kiocb(iocb
)) {
890 kiocbSetKicked(iocb
);
891 wake_up_process(iocb
->ki_obj
.tsk
);
895 try_queue_kicked_iocb(iocb
);
897 EXPORT_SYMBOL(kick_iocb
);
900 * Called when the io request on the given iocb is complete.
901 * Returns true if this is the last user of the request. The
902 * only other user of the request can be the cancellation code.
904 int aio_complete(struct kiocb
*iocb
, long res
, long res2
)
906 struct kioctx
*ctx
= iocb
->ki_ctx
;
907 struct aio_ring_info
*info
;
908 struct aio_ring
*ring
;
909 struct io_event
*event
;
915 * Special case handling for sync iocbs:
916 * - events go directly into the iocb for fast handling
917 * - the sync task with the iocb in its stack holds the single iocb
918 * ref, no other paths have a way to get another ref
919 * - the sync task helpfully left a reference to itself in the iocb
921 if (is_sync_kiocb(iocb
)) {
922 BUG_ON(iocb
->ki_users
!= 1);
923 iocb
->ki_user_data
= res
;
925 wake_up_process(iocb
->ki_obj
.tsk
);
929 info
= &ctx
->ring_info
;
931 /* add a completion event to the ring buffer.
932 * must be done holding ctx->ctx_lock to prevent
933 * other code from messing with the tail
934 * pointer since we might be called from irq
937 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
939 if (iocb
->ki_run_list
.prev
&& !list_empty(&iocb
->ki_run_list
))
940 list_del_init(&iocb
->ki_run_list
);
943 * cancelled requests don't get events, userland was given one
944 * when the event got cancelled.
946 if (kiocbIsCancelled(iocb
))
949 ring
= kmap_atomic(info
->ring_pages
[0], KM_IRQ1
);
952 event
= aio_ring_event(info
, tail
, KM_IRQ0
);
953 if (++tail
>= info
->nr
)
956 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
957 event
->data
= iocb
->ki_user_data
;
961 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
962 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
965 /* after flagging the request as done, we
966 * must never even look at it again
968 smp_wmb(); /* make event visible before updating tail */
973 put_aio_ring_event(event
, KM_IRQ0
);
974 kunmap_atomic(ring
, KM_IRQ1
);
976 pr_debug("added to ring %p at [%lu]\n", iocb
, tail
);
979 * Check if the user asked us to deliver the result through an
980 * eventfd. The eventfd_signal() function is safe to be called
983 if (iocb
->ki_eventfd
!= NULL
)
984 eventfd_signal(iocb
->ki_eventfd
, 1);
987 /* everything turned out well, dispose of the aiocb. */
988 ret
= __aio_put_req(ctx
, iocb
);
991 * We have to order our ring_info tail store above and test
992 * of the wait list below outside the wait lock. This is
993 * like in wake_up_bit() where clearing a bit has to be
994 * ordered with the unlocked test.
998 if (waitqueue_active(&ctx
->wait
))
1001 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1004 EXPORT_SYMBOL(aio_complete
);
1007 * Pull an event off of the ioctx's event ring. Returns the number of
1008 * events fetched (0 or 1 ;-)
1009 * FIXME: make this use cmpxchg.
1010 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1012 static int aio_read_evt(struct kioctx
*ioctx
, struct io_event
*ent
)
1014 struct aio_ring_info
*info
= &ioctx
->ring_info
;
1015 struct aio_ring
*ring
;
1019 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
1020 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1021 (unsigned long)ring
->head
, (unsigned long)ring
->tail
,
1022 (unsigned long)ring
->nr
);
1024 if (ring
->head
== ring
->tail
)
1027 spin_lock(&info
->ring_lock
);
1029 head
= ring
->head
% info
->nr
;
1030 if (head
!= ring
->tail
) {
1031 struct io_event
*evp
= aio_ring_event(info
, head
, KM_USER1
);
1033 head
= (head
+ 1) % info
->nr
;
1034 smp_mb(); /* finish reading the event before updatng the head */
1037 put_aio_ring_event(evp
, KM_USER1
);
1039 spin_unlock(&info
->ring_lock
);
1042 kunmap_atomic(ring
, KM_USER0
);
1043 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret
,
1044 (unsigned long)ring
->head
, (unsigned long)ring
->tail
);
1048 struct aio_timeout
{
1049 struct timer_list timer
;
1051 struct task_struct
*p
;
1054 static void timeout_func(unsigned long data
)
1056 struct aio_timeout
*to
= (struct aio_timeout
*)data
;
1059 wake_up_process(to
->p
);
1062 static inline void init_timeout(struct aio_timeout
*to
)
1064 setup_timer_on_stack(&to
->timer
, timeout_func
, (unsigned long) to
);
1069 static inline void set_timeout(long start_jiffies
, struct aio_timeout
*to
,
1070 const struct timespec
*ts
)
1072 to
->timer
.expires
= start_jiffies
+ timespec_to_jiffies(ts
);
1073 if (time_after(to
->timer
.expires
, jiffies
))
1074 add_timer(&to
->timer
);
1079 static inline void clear_timeout(struct aio_timeout
*to
)
1081 del_singleshot_timer_sync(&to
->timer
);
1084 static int read_events(struct kioctx
*ctx
,
1085 long min_nr
, long nr
,
1086 struct io_event __user
*event
,
1087 struct timespec __user
*timeout
)
1089 long start_jiffies
= jiffies
;
1090 struct task_struct
*tsk
= current
;
1091 DECLARE_WAITQUEUE(wait
, tsk
);
1094 struct io_event ent
;
1095 struct aio_timeout to
;
1098 /* needed to zero any padding within an entry (there shouldn't be
1099 * any, but C is fun!
1101 memset(&ent
, 0, sizeof(ent
));
1104 while (likely(i
< nr
)) {
1105 ret
= aio_read_evt(ctx
, &ent
);
1106 if (unlikely(ret
<= 0))
1109 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1110 ent
.data
, ent
.obj
, ent
.res
, ent
.res2
);
1112 /* Could we split the check in two? */
1114 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1115 dprintk("aio: lost an event due to EFAULT.\n");
1120 /* Good, event copied to userland, update counts. */
1132 /* racey check, but it gets redone */
1133 if (!retry
&& unlikely(!list_empty(&ctx
->run_list
))) {
1135 aio_run_all_iocbs(ctx
);
1143 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1146 set_timeout(start_jiffies
, &to
, &ts
);
1149 while (likely(i
< nr
)) {
1150 add_wait_queue_exclusive(&ctx
->wait
, &wait
);
1152 set_task_state(tsk
, TASK_INTERRUPTIBLE
);
1153 ret
= aio_read_evt(ctx
, &ent
);
1158 if (unlikely(ctx
->dead
)) {
1162 if (to
.timed_out
) /* Only check after read evt */
1164 /* Try to only show up in io wait if there are ops
1166 if (ctx
->reqs_active
)
1170 if (signal_pending(tsk
)) {
1174 /*ret = aio_read_evt(ctx, &ent);*/
1177 set_task_state(tsk
, TASK_RUNNING
);
1178 remove_wait_queue(&ctx
->wait
, &wait
);
1180 if (unlikely(ret
<= 0))
1184 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1185 dprintk("aio: lost an event due to EFAULT.\n");
1189 /* Good, event copied to userland, update counts. */
1197 destroy_timer_on_stack(&to
.timer
);
1201 /* Take an ioctx and remove it from the list of ioctx's. Protects
1202 * against races with itself via ->dead.
1204 static void io_destroy(struct kioctx
*ioctx
)
1206 struct mm_struct
*mm
= current
->mm
;
1209 /* delete the entry from the list is someone else hasn't already */
1210 spin_lock(&mm
->ioctx_lock
);
1211 was_dead
= ioctx
->dead
;
1213 hlist_del_rcu(&ioctx
->list
);
1214 spin_unlock(&mm
->ioctx_lock
);
1216 dprintk("aio_release(%p)\n", ioctx
);
1217 if (likely(!was_dead
))
1218 put_ioctx(ioctx
); /* twice for the list */
1220 aio_cancel_all(ioctx
);
1221 wait_for_all_aios(ioctx
);
1224 * Wake up any waiters. The setting of ctx->dead must be seen
1225 * by other CPUs at this point. Right now, we rely on the
1226 * locking done by the above calls to ensure this consistency.
1228 wake_up(&ioctx
->wait
);
1229 put_ioctx(ioctx
); /* once for the lookup */
1233 * Create an aio_context capable of receiving at least nr_events.
1234 * ctxp must not point to an aio_context that already exists, and
1235 * must be initialized to 0 prior to the call. On successful
1236 * creation of the aio_context, *ctxp is filled in with the resulting
1237 * handle. May fail with -EINVAL if *ctxp is not initialized,
1238 * if the specified nr_events exceeds internal limits. May fail
1239 * with -EAGAIN if the specified nr_events exceeds the user's limit
1240 * of available events. May fail with -ENOMEM if insufficient kernel
1241 * resources are available. May fail with -EFAULT if an invalid
1242 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1245 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1247 struct kioctx
*ioctx
= NULL
;
1251 ret
= get_user(ctx
, ctxp
);
1256 if (unlikely(ctx
|| nr_events
== 0)) {
1257 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1262 ioctx
= ioctx_alloc(nr_events
);
1263 ret
= PTR_ERR(ioctx
);
1264 if (!IS_ERR(ioctx
)) {
1265 ret
= put_user(ioctx
->user_id
, ctxp
);
1269 get_ioctx(ioctx
); /* io_destroy() expects us to hold a ref */
1278 * Destroy the aio_context specified. May cancel any outstanding
1279 * AIOs and block on completion. Will fail with -ENOSYS if not
1280 * implemented. May fail with -EINVAL if the context pointed to
1283 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1285 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1286 if (likely(NULL
!= ioctx
)) {
1290 pr_debug("EINVAL: io_destroy: invalid context id\n");
1294 static void aio_advance_iovec(struct kiocb
*iocb
, ssize_t ret
)
1296 struct iovec
*iov
= &iocb
->ki_iovec
[iocb
->ki_cur_seg
];
1300 while (iocb
->ki_cur_seg
< iocb
->ki_nr_segs
&& ret
> 0) {
1301 ssize_t
this = min((ssize_t
)iov
->iov_len
, ret
);
1302 iov
->iov_base
+= this;
1303 iov
->iov_len
-= this;
1304 iocb
->ki_left
-= this;
1306 if (iov
->iov_len
== 0) {
1312 /* the caller should not have done more io than what fit in
1313 * the remaining iovecs */
1314 BUG_ON(ret
> 0 && iocb
->ki_left
== 0);
1317 static ssize_t
aio_rw_vect_retry(struct kiocb
*iocb
)
1319 struct file
*file
= iocb
->ki_filp
;
1320 struct address_space
*mapping
= file
->f_mapping
;
1321 struct inode
*inode
= mapping
->host
;
1322 ssize_t (*rw_op
)(struct kiocb
*, const struct iovec
*,
1323 unsigned long, loff_t
);
1325 unsigned short opcode
;
1327 if ((iocb
->ki_opcode
== IOCB_CMD_PREADV
) ||
1328 (iocb
->ki_opcode
== IOCB_CMD_PREAD
)) {
1329 rw_op
= file
->f_op
->aio_read
;
1330 opcode
= IOCB_CMD_PREADV
;
1332 rw_op
= file
->f_op
->aio_write
;
1333 opcode
= IOCB_CMD_PWRITEV
;
1336 /* This matches the pread()/pwrite() logic */
1337 if (iocb
->ki_pos
< 0)
1341 ret
= rw_op(iocb
, &iocb
->ki_iovec
[iocb
->ki_cur_seg
],
1342 iocb
->ki_nr_segs
- iocb
->ki_cur_seg
,
1345 aio_advance_iovec(iocb
, ret
);
1347 /* retry all partial writes. retry partial reads as long as its a
1349 } while (ret
> 0 && iocb
->ki_left
> 0 &&
1350 (opcode
== IOCB_CMD_PWRITEV
||
1351 (!S_ISFIFO(inode
->i_mode
) && !S_ISSOCK(inode
->i_mode
))));
1353 /* This means we must have transferred all that we could */
1354 /* No need to retry anymore */
1355 if ((ret
== 0) || (iocb
->ki_left
== 0))
1356 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1358 /* If we managed to write some out we return that, rather than
1359 * the eventual error. */
1360 if (opcode
== IOCB_CMD_PWRITEV
1361 && ret
< 0 && ret
!= -EIOCBQUEUED
&& ret
!= -EIOCBRETRY
1362 && iocb
->ki_nbytes
- iocb
->ki_left
)
1363 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1368 static ssize_t
aio_fdsync(struct kiocb
*iocb
)
1370 struct file
*file
= iocb
->ki_filp
;
1371 ssize_t ret
= -EINVAL
;
1373 if (file
->f_op
->aio_fsync
)
1374 ret
= file
->f_op
->aio_fsync(iocb
, 1);
1378 static ssize_t
aio_fsync(struct kiocb
*iocb
)
1380 struct file
*file
= iocb
->ki_filp
;
1381 ssize_t ret
= -EINVAL
;
1383 if (file
->f_op
->aio_fsync
)
1384 ret
= file
->f_op
->aio_fsync(iocb
, 0);
1388 static ssize_t
aio_setup_vectored_rw(int type
, struct kiocb
*kiocb
, bool compat
)
1392 #ifdef CONFIG_COMPAT
1394 ret
= compat_rw_copy_check_uvector(type
,
1395 (struct compat_iovec __user
*)kiocb
->ki_buf
,
1396 kiocb
->ki_nbytes
, 1, &kiocb
->ki_inline_vec
,
1400 ret
= rw_copy_check_uvector(type
,
1401 (struct iovec __user
*)kiocb
->ki_buf
,
1402 kiocb
->ki_nbytes
, 1, &kiocb
->ki_inline_vec
,
1407 kiocb
->ki_nr_segs
= kiocb
->ki_nbytes
;
1408 kiocb
->ki_cur_seg
= 0;
1409 /* ki_nbytes/left now reflect bytes instead of segs */
1410 kiocb
->ki_nbytes
= ret
;
1411 kiocb
->ki_left
= ret
;
1418 static ssize_t
aio_setup_single_vector(struct kiocb
*kiocb
)
1420 kiocb
->ki_iovec
= &kiocb
->ki_inline_vec
;
1421 kiocb
->ki_iovec
->iov_base
= kiocb
->ki_buf
;
1422 kiocb
->ki_iovec
->iov_len
= kiocb
->ki_left
;
1423 kiocb
->ki_nr_segs
= 1;
1424 kiocb
->ki_cur_seg
= 0;
1430 * Performs the initial checks and aio retry method
1431 * setup for the kiocb at the time of io submission.
1433 static ssize_t
aio_setup_iocb(struct kiocb
*kiocb
, bool compat
)
1435 struct file
*file
= kiocb
->ki_filp
;
1438 switch (kiocb
->ki_opcode
) {
1439 case IOCB_CMD_PREAD
:
1441 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1444 if (unlikely(!access_ok(VERIFY_WRITE
, kiocb
->ki_buf
,
1447 ret
= security_file_permission(file
, MAY_READ
);
1450 ret
= aio_setup_single_vector(kiocb
);
1454 if (file
->f_op
->aio_read
)
1455 kiocb
->ki_retry
= aio_rw_vect_retry
;
1457 case IOCB_CMD_PWRITE
:
1459 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1462 if (unlikely(!access_ok(VERIFY_READ
, kiocb
->ki_buf
,
1465 ret
= security_file_permission(file
, MAY_WRITE
);
1468 ret
= aio_setup_single_vector(kiocb
);
1472 if (file
->f_op
->aio_write
)
1473 kiocb
->ki_retry
= aio_rw_vect_retry
;
1475 case IOCB_CMD_PREADV
:
1477 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1479 ret
= security_file_permission(file
, MAY_READ
);
1482 ret
= aio_setup_vectored_rw(READ
, kiocb
, compat
);
1486 if (file
->f_op
->aio_read
)
1487 kiocb
->ki_retry
= aio_rw_vect_retry
;
1489 case IOCB_CMD_PWRITEV
:
1491 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1493 ret
= security_file_permission(file
, MAY_WRITE
);
1496 ret
= aio_setup_vectored_rw(WRITE
, kiocb
, compat
);
1500 if (file
->f_op
->aio_write
)
1501 kiocb
->ki_retry
= aio_rw_vect_retry
;
1503 case IOCB_CMD_FDSYNC
:
1505 if (file
->f_op
->aio_fsync
)
1506 kiocb
->ki_retry
= aio_fdsync
;
1508 case IOCB_CMD_FSYNC
:
1510 if (file
->f_op
->aio_fsync
)
1511 kiocb
->ki_retry
= aio_fsync
;
1514 dprintk("EINVAL: io_submit: no operation provided\n");
1518 if (!kiocb
->ki_retry
)
1524 static void aio_batch_add(struct address_space
*mapping
,
1525 struct hlist_head
*batch_hash
)
1527 struct aio_batch_entry
*abe
;
1528 struct hlist_node
*pos
;
1531 bucket
= hash_ptr(mapping
, AIO_BATCH_HASH_BITS
);
1532 hlist_for_each_entry(abe
, pos
, &batch_hash
[bucket
], list
) {
1533 if (abe
->mapping
== mapping
)
1537 abe
= mempool_alloc(abe_pool
, GFP_KERNEL
);
1538 BUG_ON(!igrab(mapping
->host
));
1539 abe
->mapping
= mapping
;
1540 hlist_add_head(&abe
->list
, &batch_hash
[bucket
]);
1544 static void aio_batch_free(struct hlist_head
*batch_hash
)
1546 struct aio_batch_entry
*abe
;
1547 struct hlist_node
*pos
, *n
;
1550 for (i
= 0; i
< AIO_BATCH_HASH_SIZE
; i
++) {
1551 hlist_for_each_entry_safe(abe
, pos
, n
, &batch_hash
[i
], list
) {
1552 blk_run_address_space(abe
->mapping
);
1553 iput(abe
->mapping
->host
);
1554 hlist_del(&abe
->list
);
1555 mempool_free(abe
, abe_pool
);
1560 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1561 struct iocb
*iocb
, struct hlist_head
*batch_hash
,
1568 /* enforce forwards compatibility on users */
1569 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
)) {
1570 pr_debug("EINVAL: io_submit: reserve field set\n");
1574 /* prevent overflows */
1576 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1577 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1578 ((ssize_t
)iocb
->aio_nbytes
< 0)
1580 pr_debug("EINVAL: io_submit: overflow check\n");
1584 file
= fget(iocb
->aio_fildes
);
1585 if (unlikely(!file
))
1588 req
= aio_get_req(ctx
); /* returns with 2 references to req */
1589 if (unlikely(!req
)) {
1593 req
->ki_filp
= file
;
1594 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1596 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1597 * instance of the file* now. The file descriptor must be
1598 * an eventfd() fd, and will be signaled for each completed
1599 * event using the eventfd_signal() function.
1601 req
->ki_eventfd
= eventfd_ctx_fdget((int) iocb
->aio_resfd
);
1602 if (IS_ERR(req
->ki_eventfd
)) {
1603 ret
= PTR_ERR(req
->ki_eventfd
);
1604 req
->ki_eventfd
= NULL
;
1609 ret
= put_user(req
->ki_key
, &user_iocb
->aio_key
);
1610 if (unlikely(ret
)) {
1611 dprintk("EFAULT: aio_key\n");
1615 req
->ki_obj
.user
= user_iocb
;
1616 req
->ki_user_data
= iocb
->aio_data
;
1617 req
->ki_pos
= iocb
->aio_offset
;
1619 req
->ki_buf
= (char __user
*)(unsigned long)iocb
->aio_buf
;
1620 req
->ki_left
= req
->ki_nbytes
= iocb
->aio_nbytes
;
1621 req
->ki_opcode
= iocb
->aio_lio_opcode
;
1623 ret
= aio_setup_iocb(req
, compat
);
1628 spin_lock_irq(&ctx
->ctx_lock
);
1630 if (!list_empty(&ctx
->run_list
)) {
1631 /* drain the run list */
1632 while (__aio_run_iocbs(ctx
))
1635 spin_unlock_irq(&ctx
->ctx_lock
);
1636 if (req
->ki_opcode
== IOCB_CMD_PREAD
||
1637 req
->ki_opcode
== IOCB_CMD_PREADV
||
1638 req
->ki_opcode
== IOCB_CMD_PWRITE
||
1639 req
->ki_opcode
== IOCB_CMD_PWRITEV
)
1640 aio_batch_add(file
->f_mapping
, batch_hash
);
1642 aio_put_req(req
); /* drop extra ref to req */
1646 aio_put_req(req
); /* drop extra ref to req */
1647 aio_put_req(req
); /* drop i/o ref to req */
1651 long do_io_submit(aio_context_t ctx_id
, long nr
,
1652 struct iocb __user
*__user
*iocbpp
, bool compat
)
1657 struct hlist_head batch_hash
[AIO_BATCH_HASH_SIZE
] = { { 0, }, };
1659 if (unlikely(nr
< 0))
1662 if (unlikely(nr
> LONG_MAX
/sizeof(*iocbpp
)))
1663 nr
= LONG_MAX
/sizeof(*iocbpp
);
1665 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1668 ctx
= lookup_ioctx(ctx_id
);
1669 if (unlikely(!ctx
)) {
1670 pr_debug("EINVAL: io_submit: invalid context id\n");
1675 * AKPM: should this return a partial result if some of the IOs were
1676 * successfully submitted?
1678 for (i
=0; i
<nr
; i
++) {
1679 struct iocb __user
*user_iocb
;
1682 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1687 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1692 ret
= io_submit_one(ctx
, user_iocb
, &tmp
, batch_hash
, compat
);
1696 aio_batch_free(batch_hash
);
1703 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1704 * the number of iocbs queued. May return -EINVAL if the aio_context
1705 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1706 * *iocbpp[0] is not properly initialized, if the operation specified
1707 * is invalid for the file descriptor in the iocb. May fail with
1708 * -EFAULT if any of the data structures point to invalid data. May
1709 * fail with -EBADF if the file descriptor specified in the first
1710 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1711 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1712 * fail with -ENOSYS if not implemented.
1714 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1715 struct iocb __user
* __user
*, iocbpp
)
1717 return do_io_submit(ctx_id
, nr
, iocbpp
, 0);
1721 * Finds a given iocb for cancellation.
1723 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1726 struct list_head
*pos
;
1728 assert_spin_locked(&ctx
->ctx_lock
);
1730 /* TODO: use a hash or array, this sucks. */
1731 list_for_each(pos
, &ctx
->active_reqs
) {
1732 struct kiocb
*kiocb
= list_kiocb(pos
);
1733 if (kiocb
->ki_obj
.user
== iocb
&& kiocb
->ki_key
== key
)
1740 * Attempts to cancel an iocb previously passed to io_submit. If
1741 * the operation is successfully cancelled, the resulting event is
1742 * copied into the memory pointed to by result without being placed
1743 * into the completion queue and 0 is returned. May fail with
1744 * -EFAULT if any of the data structures pointed to are invalid.
1745 * May fail with -EINVAL if aio_context specified by ctx_id is
1746 * invalid. May fail with -EAGAIN if the iocb specified was not
1747 * cancelled. Will fail with -ENOSYS if not implemented.
1749 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
1750 struct io_event __user
*, result
)
1752 int (*cancel
)(struct kiocb
*iocb
, struct io_event
*res
);
1754 struct kiocb
*kiocb
;
1758 ret
= get_user(key
, &iocb
->aio_key
);
1762 ctx
= lookup_ioctx(ctx_id
);
1766 spin_lock_irq(&ctx
->ctx_lock
);
1768 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1769 if (kiocb
&& kiocb
->ki_cancel
) {
1770 cancel
= kiocb
->ki_cancel
;
1772 kiocbSetCancelled(kiocb
);
1775 spin_unlock_irq(&ctx
->ctx_lock
);
1777 if (NULL
!= cancel
) {
1778 struct io_event tmp
;
1779 pr_debug("calling cancel\n");
1780 memset(&tmp
, 0, sizeof(tmp
));
1781 tmp
.obj
= (u64
)(unsigned long)kiocb
->ki_obj
.user
;
1782 tmp
.data
= kiocb
->ki_user_data
;
1783 ret
= cancel(kiocb
, &tmp
);
1785 /* Cancellation succeeded -- copy the result
1786 * into the user's buffer.
1788 if (copy_to_user(result
, &tmp
, sizeof(tmp
)))
1800 * Attempts to read at least min_nr events and up to nr events from
1801 * the completion queue for the aio_context specified by ctx_id. If
1802 * it succeeds, the number of read events is returned. May fail with
1803 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1804 * out of range, if timeout is out of range. May fail with -EFAULT
1805 * if any of the memory specified is invalid. May return 0 or
1806 * < min_nr if the timeout specified by timeout has elapsed
1807 * before sufficient events are available, where timeout == NULL
1808 * specifies an infinite timeout. Note that the timeout pointed to by
1809 * timeout is relative and will be updated if not NULL and the
1810 * operation blocks. Will fail with -ENOSYS if not implemented.
1812 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
1815 struct io_event __user
*, events
,
1816 struct timespec __user
*, timeout
)
1818 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1821 if (likely(ioctx
)) {
1822 if (likely(min_nr
<= nr
&& min_nr
>= 0 && nr
>= 0))
1823 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1827 asmlinkage_protect(5, ret
, ctx_id
, min_nr
, nr
, events
, timeout
);