2 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2007 Anton Altaparmakov
5 * Copyright (c) 2001,2002 Richard Russon
7 * This program/include file is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as published
9 * by the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program/include file is distributed in the hope that it will be
13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program (in the main directory of the Linux-NTFS
19 * distribution in the file COPYING); if not, write to the Free Software
20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/stddef.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/string.h>
27 #include <linux/spinlock.h>
28 #include <linux/blkdev.h> /* For bdev_logical_block_size(). */
29 #include <linux/backing-dev.h>
30 #include <linux/buffer_head.h>
31 #include <linux/vfs.h>
32 #include <linux/moduleparam.h>
33 #include <linux/smp_lock.h>
34 #include <linux/bitmap.h>
49 /* Number of mounted filesystems which have compression enabled. */
50 static unsigned long ntfs_nr_compression_users
;
52 /* A global default upcase table and a corresponding reference count. */
53 static ntfschar
*default_upcase
= NULL
;
54 static unsigned long ntfs_nr_upcase_users
= 0;
56 /* Error constants/strings used in inode.c::ntfs_show_options(). */
58 /* One of these must be present, default is ON_ERRORS_CONTINUE. */
59 ON_ERRORS_PANIC
= 0x01,
60 ON_ERRORS_REMOUNT_RO
= 0x02,
61 ON_ERRORS_CONTINUE
= 0x04,
62 /* Optional, can be combined with any of the above. */
63 ON_ERRORS_RECOVER
= 0x10,
66 const option_t on_errors_arr
[] = {
67 { ON_ERRORS_PANIC
, "panic" },
68 { ON_ERRORS_REMOUNT_RO
, "remount-ro", },
69 { ON_ERRORS_CONTINUE
, "continue", },
70 { ON_ERRORS_RECOVER
, "recover" },
77 * Copied from old ntfs driver (which copied from vfat driver).
79 static int simple_getbool(char *s
, bool *setval
)
82 if (!strcmp(s
, "1") || !strcmp(s
, "yes") || !strcmp(s
, "true"))
84 else if (!strcmp(s
, "0") || !strcmp(s
, "no") ||
95 * parse_options - parse the (re)mount options
97 * @opt: string containing the (re)mount options
99 * Parse the recognized options in @opt for the ntfs volume described by @vol.
101 static bool parse_options(ntfs_volume
*vol
, char *opt
)
104 static char *utf8
= "utf8";
105 int errors
= 0, sloppy
= 0;
106 uid_t uid
= (uid_t
)-1;
107 gid_t gid
= (gid_t
)-1;
108 mode_t fmask
= (mode_t
)-1, dmask
= (mode_t
)-1;
109 int mft_zone_multiplier
= -1, on_errors
= -1;
110 int show_sys_files
= -1, case_sensitive
= -1, disable_sparse
= -1;
111 struct nls_table
*nls_map
= NULL
, *old_nls
;
113 /* I am lazy... (-8 */
114 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \
115 if (!strcmp(p, option)) { \
117 variable = default_value; \
119 variable = simple_strtoul(ov = v, &v, 0); \
124 #define NTFS_GETOPT(option, variable) \
125 if (!strcmp(p, option)) { \
128 variable = simple_strtoul(ov = v, &v, 0); \
132 #define NTFS_GETOPT_OCTAL(option, variable) \
133 if (!strcmp(p, option)) { \
136 variable = simple_strtoul(ov = v, &v, 8); \
140 #define NTFS_GETOPT_BOOL(option, variable) \
141 if (!strcmp(p, option)) { \
143 if (!simple_getbool(v, &val)) \
147 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \
148 if (!strcmp(p, option)) { \
153 if (variable == -1) \
155 for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
156 if (!strcmp(opt_array[_i].str, v)) { \
157 variable |= opt_array[_i].val; \
160 if (!opt_array[_i].str || !*opt_array[_i].str) \
164 goto no_mount_options
;
165 ntfs_debug("Entering with mount options string: %s", opt
);
166 while ((p
= strsep(&opt
, ","))) {
167 if ((v
= strchr(p
, '=')))
169 NTFS_GETOPT("uid", uid
)
170 else NTFS_GETOPT("gid", gid
)
171 else NTFS_GETOPT_OCTAL("umask", fmask
= dmask
)
172 else NTFS_GETOPT_OCTAL("fmask", fmask
)
173 else NTFS_GETOPT_OCTAL("dmask", dmask
)
174 else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier
)
175 else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy
, true)
176 else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files
)
177 else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive
)
178 else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse
)
179 else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors
,
181 else if (!strcmp(p
, "posix") || !strcmp(p
, "show_inodes"))
182 ntfs_warning(vol
->sb
, "Ignoring obsolete option %s.",
184 else if (!strcmp(p
, "nls") || !strcmp(p
, "iocharset")) {
185 if (!strcmp(p
, "iocharset"))
186 ntfs_warning(vol
->sb
, "Option iocharset is "
187 "deprecated. Please use "
188 "option nls=<charsetname> in "
194 nls_map
= load_nls(v
);
197 ntfs_error(vol
->sb
, "NLS character set "
201 ntfs_error(vol
->sb
, "NLS character set %s not "
202 "found. Using previous one %s.",
203 v
, old_nls
->charset
);
205 } else /* nls_map */ {
208 } else if (!strcmp(p
, "utf8")) {
210 ntfs_warning(vol
->sb
, "Option utf8 is no longer "
211 "supported, using option nls=utf8. Please "
212 "use option nls=utf8 in the future and "
213 "make sure utf8 is compiled either as a "
214 "module or into the kernel.");
217 else if (!simple_getbool(v
, &val
))
224 ntfs_error(vol
->sb
, "Unrecognized mount option %s.", p
);
225 if (errors
< INT_MAX
)
228 #undef NTFS_GETOPT_OPTIONS_ARRAY
229 #undef NTFS_GETOPT_BOOL
231 #undef NTFS_GETOPT_WITH_DEFAULT
234 if (errors
&& !sloppy
)
237 ntfs_warning(vol
->sb
, "Sloppy option given. Ignoring "
238 "unrecognized mount option(s) and continuing.");
239 /* Keep this first! */
240 if (on_errors
!= -1) {
242 ntfs_error(vol
->sb
, "Invalid errors option argument "
243 "or bug in options parser.");
248 if (vol
->nls_map
&& vol
->nls_map
!= nls_map
) {
249 ntfs_error(vol
->sb
, "Cannot change NLS character set "
252 } /* else (!vol->nls_map) */
253 ntfs_debug("Using NLS character set %s.", nls_map
->charset
);
254 vol
->nls_map
= nls_map
;
255 } else /* (!nls_map) */ {
257 vol
->nls_map
= load_nls_default();
259 ntfs_error(vol
->sb
, "Failed to load default "
260 "NLS character set.");
263 ntfs_debug("Using default NLS character set (%s).",
264 vol
->nls_map
->charset
);
267 if (mft_zone_multiplier
!= -1) {
268 if (vol
->mft_zone_multiplier
&& vol
->mft_zone_multiplier
!=
269 mft_zone_multiplier
) {
270 ntfs_error(vol
->sb
, "Cannot change mft_zone_multiplier "
274 if (mft_zone_multiplier
< 1 || mft_zone_multiplier
> 4) {
275 ntfs_error(vol
->sb
, "Invalid mft_zone_multiplier. "
276 "Using default value, i.e. 1.");
277 mft_zone_multiplier
= 1;
279 vol
->mft_zone_multiplier
= mft_zone_multiplier
;
281 if (!vol
->mft_zone_multiplier
)
282 vol
->mft_zone_multiplier
= 1;
284 vol
->on_errors
= on_errors
;
285 if (!vol
->on_errors
|| vol
->on_errors
== ON_ERRORS_RECOVER
)
286 vol
->on_errors
|= ON_ERRORS_CONTINUE
;
287 if (uid
!= (uid_t
)-1)
289 if (gid
!= (gid_t
)-1)
291 if (fmask
!= (mode_t
)-1)
293 if (dmask
!= (mode_t
)-1)
295 if (show_sys_files
!= -1) {
297 NVolSetShowSystemFiles(vol
);
299 NVolClearShowSystemFiles(vol
);
301 if (case_sensitive
!= -1) {
303 NVolSetCaseSensitive(vol
);
305 NVolClearCaseSensitive(vol
);
307 if (disable_sparse
!= -1) {
309 NVolClearSparseEnabled(vol
);
311 if (!NVolSparseEnabled(vol
) &&
312 vol
->major_ver
&& vol
->major_ver
< 3)
313 ntfs_warning(vol
->sb
, "Not enabling sparse "
314 "support due to NTFS volume "
315 "version %i.%i (need at least "
316 "version 3.0).", vol
->major_ver
,
319 NVolSetSparseEnabled(vol
);
324 ntfs_error(vol
->sb
, "The %s option requires an argument.", p
);
327 ntfs_error(vol
->sb
, "The %s option requires a boolean argument.", p
);
330 ntfs_error(vol
->sb
, "Invalid %s option argument: %s", p
, ov
);
337 * ntfs_write_volume_flags - write new flags to the volume information flags
338 * @vol: ntfs volume on which to modify the flags
339 * @flags: new flags value for the volume information flags
341 * Internal function. You probably want to use ntfs_{set,clear}_volume_flags()
342 * instead (see below).
344 * Replace the volume information flags on the volume @vol with the value
345 * supplied in @flags. Note, this overwrites the volume information flags, so
346 * make sure to combine the flags you want to modify with the old flags and use
347 * the result when calling ntfs_write_volume_flags().
349 * Return 0 on success and -errno on error.
351 static int ntfs_write_volume_flags(ntfs_volume
*vol
, const VOLUME_FLAGS flags
)
353 ntfs_inode
*ni
= NTFS_I(vol
->vol_ino
);
355 VOLUME_INFORMATION
*vi
;
356 ntfs_attr_search_ctx
*ctx
;
359 ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
360 le16_to_cpu(vol
->vol_flags
), le16_to_cpu(flags
));
361 if (vol
->vol_flags
== flags
)
364 m
= map_mft_record(ni
);
369 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
372 goto put_unm_err_out
;
374 err
= ntfs_attr_lookup(AT_VOLUME_INFORMATION
, NULL
, 0, 0, 0, NULL
, 0,
377 goto put_unm_err_out
;
378 vi
= (VOLUME_INFORMATION
*)((u8
*)ctx
->attr
+
379 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
));
380 vol
->vol_flags
= vi
->flags
= flags
;
381 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
382 mark_mft_record_dirty(ctx
->ntfs_ino
);
383 ntfs_attr_put_search_ctx(ctx
);
384 unmap_mft_record(ni
);
390 ntfs_attr_put_search_ctx(ctx
);
391 unmap_mft_record(ni
);
393 ntfs_error(vol
->sb
, "Failed with error code %i.", -err
);
398 * ntfs_set_volume_flags - set bits in the volume information flags
399 * @vol: ntfs volume on which to modify the flags
400 * @flags: flags to set on the volume
402 * Set the bits in @flags in the volume information flags on the volume @vol.
404 * Return 0 on success and -errno on error.
406 static inline int ntfs_set_volume_flags(ntfs_volume
*vol
, VOLUME_FLAGS flags
)
408 flags
&= VOLUME_FLAGS_MASK
;
409 return ntfs_write_volume_flags(vol
, vol
->vol_flags
| flags
);
413 * ntfs_clear_volume_flags - clear bits in the volume information flags
414 * @vol: ntfs volume on which to modify the flags
415 * @flags: flags to clear on the volume
417 * Clear the bits in @flags in the volume information flags on the volume @vol.
419 * Return 0 on success and -errno on error.
421 static inline int ntfs_clear_volume_flags(ntfs_volume
*vol
, VOLUME_FLAGS flags
)
423 flags
&= VOLUME_FLAGS_MASK
;
424 flags
= vol
->vol_flags
& cpu_to_le16(~le16_to_cpu(flags
));
425 return ntfs_write_volume_flags(vol
, flags
);
431 * ntfs_remount - change the mount options of a mounted ntfs filesystem
432 * @sb: superblock of mounted ntfs filesystem
433 * @flags: remount flags
434 * @opt: remount options string
436 * Change the mount options of an already mounted ntfs filesystem.
438 * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after
439 * ntfs_remount() returns successfully (i.e. returns 0). Otherwise,
440 * @sb->s_flags are not changed.
442 static int ntfs_remount(struct super_block
*sb
, int *flags
, char *opt
)
444 ntfs_volume
*vol
= NTFS_SB(sb
);
446 ntfs_debug("Entering with remount options string: %s", opt
);
450 /* For read-only compiled driver, enforce read-only flag. */
454 * For the read-write compiled driver, if we are remounting read-write,
455 * make sure there are no volume errors and that no unsupported volume
456 * flags are set. Also, empty the logfile journal as it would become
457 * stale as soon as something is written to the volume and mark the
458 * volume dirty so that chkdsk is run if the volume is not umounted
459 * cleanly. Finally, mark the quotas out of date so Windows rescans
460 * the volume on boot and updates them.
462 * When remounting read-only, mark the volume clean if no volume errors
465 if ((sb
->s_flags
& MS_RDONLY
) && !(*flags
& MS_RDONLY
)) {
466 static const char *es
= ". Cannot remount read-write.";
468 /* Remounting read-write. */
469 if (NVolErrors(vol
)) {
470 ntfs_error(sb
, "Volume has errors and is read-only%s",
475 if (vol
->vol_flags
& VOLUME_IS_DIRTY
) {
476 ntfs_error(sb
, "Volume is dirty and read-only%s", es
);
480 if (vol
->vol_flags
& VOLUME_MODIFIED_BY_CHKDSK
) {
481 ntfs_error(sb
, "Volume has been modified by chkdsk "
482 "and is read-only%s", es
);
486 if (vol
->vol_flags
& VOLUME_MUST_MOUNT_RO_MASK
) {
487 ntfs_error(sb
, "Volume has unsupported flags set "
488 "(0x%x) and is read-only%s",
489 (unsigned)le16_to_cpu(vol
->vol_flags
),
494 if (ntfs_set_volume_flags(vol
, VOLUME_IS_DIRTY
)) {
495 ntfs_error(sb
, "Failed to set dirty bit in volume "
496 "information flags%s", es
);
501 // TODO: Enable this code once we start modifying anything that
502 // is different between NTFS 1.2 and 3.x...
503 /* Set NT4 compatibility flag on newer NTFS version volumes. */
504 if ((vol
->major_ver
> 1)) {
505 if (ntfs_set_volume_flags(vol
, VOLUME_MOUNTED_ON_NT4
)) {
506 ntfs_error(sb
, "Failed to set NT4 "
507 "compatibility flag%s", es
);
513 if (!ntfs_empty_logfile(vol
->logfile_ino
)) {
514 ntfs_error(sb
, "Failed to empty journal $LogFile%s",
520 if (!ntfs_mark_quotas_out_of_date(vol
)) {
521 ntfs_error(sb
, "Failed to mark quotas out of date%s",
527 if (!ntfs_stamp_usnjrnl(vol
)) {
528 ntfs_error(sb
, "Failed to stamp transation log "
534 } else if (!(sb
->s_flags
& MS_RDONLY
) && (*flags
& MS_RDONLY
)) {
535 /* Remounting read-only. */
536 if (!NVolErrors(vol
)) {
537 if (ntfs_clear_volume_flags(vol
, VOLUME_IS_DIRTY
))
538 ntfs_warning(sb
, "Failed to clear dirty bit "
539 "in volume information "
540 "flags. Run chkdsk.");
545 // TODO: Deal with *flags.
547 if (!parse_options(vol
, opt
)) {
557 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
558 * @sb: Super block of the device to which @b belongs.
559 * @b: Boot sector of device @sb to check.
560 * @silent: If 'true', all output will be silenced.
562 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
563 * sector. Returns 'true' if it is valid and 'false' if not.
565 * @sb is only needed for warning/error output, i.e. it can be NULL when silent
568 static bool is_boot_sector_ntfs(const struct super_block
*sb
,
569 const NTFS_BOOT_SECTOR
*b
, const bool silent
)
572 * Check that checksum == sum of u32 values from b to the checksum
573 * field. If checksum is zero, no checking is done. We will work when
574 * the checksum test fails, since some utilities update the boot sector
575 * ignoring the checksum which leaves the checksum out-of-date. We
576 * report a warning if this is the case.
578 if ((void*)b
< (void*)&b
->checksum
&& b
->checksum
&& !silent
) {
582 for (i
= 0, u
= (le32
*)b
; u
< (le32
*)(&b
->checksum
); ++u
)
583 i
+= le32_to_cpup(u
);
584 if (le32_to_cpu(b
->checksum
) != i
)
585 ntfs_warning(sb
, "Invalid boot sector checksum.");
587 /* Check OEMidentifier is "NTFS " */
588 if (b
->oem_id
!= magicNTFS
)
590 /* Check bytes per sector value is between 256 and 4096. */
591 if (le16_to_cpu(b
->bpb
.bytes_per_sector
) < 0x100 ||
592 le16_to_cpu(b
->bpb
.bytes_per_sector
) > 0x1000)
594 /* Check sectors per cluster value is valid. */
595 switch (b
->bpb
.sectors_per_cluster
) {
596 case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
601 /* Check the cluster size is not above the maximum (64kiB). */
602 if ((u32
)le16_to_cpu(b
->bpb
.bytes_per_sector
) *
603 b
->bpb
.sectors_per_cluster
> NTFS_MAX_CLUSTER_SIZE
)
605 /* Check reserved/unused fields are really zero. */
606 if (le16_to_cpu(b
->bpb
.reserved_sectors
) ||
607 le16_to_cpu(b
->bpb
.root_entries
) ||
608 le16_to_cpu(b
->bpb
.sectors
) ||
609 le16_to_cpu(b
->bpb
.sectors_per_fat
) ||
610 le32_to_cpu(b
->bpb
.large_sectors
) || b
->bpb
.fats
)
612 /* Check clusters per file mft record value is valid. */
613 if ((u8
)b
->clusters_per_mft_record
< 0xe1 ||
614 (u8
)b
->clusters_per_mft_record
> 0xf7)
615 switch (b
->clusters_per_mft_record
) {
616 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
621 /* Check clusters per index block value is valid. */
622 if ((u8
)b
->clusters_per_index_record
< 0xe1 ||
623 (u8
)b
->clusters_per_index_record
> 0xf7)
624 switch (b
->clusters_per_index_record
) {
625 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
631 * Check for valid end of sector marker. We will work without it, but
632 * many BIOSes will refuse to boot from a bootsector if the magic is
633 * incorrect, so we emit a warning.
635 if (!silent
&& b
->end_of_sector_marker
!= cpu_to_le16(0xaa55))
636 ntfs_warning(sb
, "Invalid end of sector marker.");
643 * read_ntfs_boot_sector - read the NTFS boot sector of a device
644 * @sb: super block of device to read the boot sector from
645 * @silent: if true, suppress all output
647 * Reads the boot sector from the device and validates it. If that fails, tries
648 * to read the backup boot sector, first from the end of the device a-la NT4 and
649 * later and then from the middle of the device a-la NT3.51 and before.
651 * If a valid boot sector is found but it is not the primary boot sector, we
652 * repair the primary boot sector silently (unless the device is read-only or
653 * the primary boot sector is not accessible).
655 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
656 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
657 * to their respective values.
659 * Return the unlocked buffer head containing the boot sector or NULL on error.
661 static struct buffer_head
*read_ntfs_boot_sector(struct super_block
*sb
,
664 const char *read_err_str
= "Unable to read %s boot sector.";
665 struct buffer_head
*bh_primary
, *bh_backup
;
666 sector_t nr_blocks
= NTFS_SB(sb
)->nr_blocks
;
668 /* Try to read primary boot sector. */
669 if ((bh_primary
= sb_bread(sb
, 0))) {
670 if (is_boot_sector_ntfs(sb
, (NTFS_BOOT_SECTOR
*)
671 bh_primary
->b_data
, silent
))
674 ntfs_error(sb
, "Primary boot sector is invalid.");
676 ntfs_error(sb
, read_err_str
, "primary");
677 if (!(NTFS_SB(sb
)->on_errors
& ON_ERRORS_RECOVER
)) {
681 ntfs_error(sb
, "Mount option errors=recover not used. "
682 "Aborting without trying to recover.");
685 /* Try to read NT4+ backup boot sector. */
686 if ((bh_backup
= sb_bread(sb
, nr_blocks
- 1))) {
687 if (is_boot_sector_ntfs(sb
, (NTFS_BOOT_SECTOR
*)
688 bh_backup
->b_data
, silent
))
689 goto hotfix_primary_boot_sector
;
692 ntfs_error(sb
, read_err_str
, "backup");
693 /* Try to read NT3.51- backup boot sector. */
694 if ((bh_backup
= sb_bread(sb
, nr_blocks
>> 1))) {
695 if (is_boot_sector_ntfs(sb
, (NTFS_BOOT_SECTOR
*)
696 bh_backup
->b_data
, silent
))
697 goto hotfix_primary_boot_sector
;
699 ntfs_error(sb
, "Could not find a valid backup boot "
703 ntfs_error(sb
, read_err_str
, "backup");
704 /* We failed. Cleanup and return. */
708 hotfix_primary_boot_sector
:
711 * If we managed to read sector zero and the volume is not
712 * read-only, copy the found, valid backup boot sector to the
713 * primary boot sector. Note we only copy the actual boot
714 * sector structure, not the actual whole device sector as that
715 * may be bigger and would potentially damage the $Boot system
716 * file (FIXME: Would be nice to know if the backup boot sector
717 * on a large sector device contains the whole boot loader or
718 * just the first 512 bytes).
720 if (!(sb
->s_flags
& MS_RDONLY
)) {
721 ntfs_warning(sb
, "Hot-fix: Recovering invalid primary "
722 "boot sector from backup copy.");
723 memcpy(bh_primary
->b_data
, bh_backup
->b_data
,
725 mark_buffer_dirty(bh_primary
);
726 sync_dirty_buffer(bh_primary
);
727 if (buffer_uptodate(bh_primary
)) {
731 ntfs_error(sb
, "Hot-fix: Device write error while "
732 "recovering primary boot sector.");
734 ntfs_warning(sb
, "Hot-fix: Recovery of primary boot "
735 "sector failed: Read-only mount.");
739 ntfs_warning(sb
, "Using backup boot sector.");
744 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
745 * @vol: volume structure to initialise with data from boot sector
746 * @b: boot sector to parse
748 * Parse the ntfs boot sector @b and store all imporant information therein in
749 * the ntfs super block @vol. Return 'true' on success and 'false' on error.
751 static bool parse_ntfs_boot_sector(ntfs_volume
*vol
, const NTFS_BOOT_SECTOR
*b
)
753 unsigned int sectors_per_cluster_bits
, nr_hidden_sects
;
754 int clusters_per_mft_record
, clusters_per_index_record
;
757 vol
->sector_size
= le16_to_cpu(b
->bpb
.bytes_per_sector
);
758 vol
->sector_size_bits
= ffs(vol
->sector_size
) - 1;
759 ntfs_debug("vol->sector_size = %i (0x%x)", vol
->sector_size
,
761 ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol
->sector_size_bits
,
762 vol
->sector_size_bits
);
763 if (vol
->sector_size
< vol
->sb
->s_blocksize
) {
764 ntfs_error(vol
->sb
, "Sector size (%i) is smaller than the "
765 "device block size (%lu). This is not "
766 "supported. Sorry.", vol
->sector_size
,
767 vol
->sb
->s_blocksize
);
770 ntfs_debug("sectors_per_cluster = 0x%x", b
->bpb
.sectors_per_cluster
);
771 sectors_per_cluster_bits
= ffs(b
->bpb
.sectors_per_cluster
) - 1;
772 ntfs_debug("sectors_per_cluster_bits = 0x%x",
773 sectors_per_cluster_bits
);
774 nr_hidden_sects
= le32_to_cpu(b
->bpb
.hidden_sectors
);
775 ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects
);
776 vol
->cluster_size
= vol
->sector_size
<< sectors_per_cluster_bits
;
777 vol
->cluster_size_mask
= vol
->cluster_size
- 1;
778 vol
->cluster_size_bits
= ffs(vol
->cluster_size
) - 1;
779 ntfs_debug("vol->cluster_size = %i (0x%x)", vol
->cluster_size
,
781 ntfs_debug("vol->cluster_size_mask = 0x%x", vol
->cluster_size_mask
);
782 ntfs_debug("vol->cluster_size_bits = %i", vol
->cluster_size_bits
);
783 if (vol
->cluster_size
< vol
->sector_size
) {
784 ntfs_error(vol
->sb
, "Cluster size (%i) is smaller than the "
785 "sector size (%i). This is not supported. "
786 "Sorry.", vol
->cluster_size
, vol
->sector_size
);
789 clusters_per_mft_record
= b
->clusters_per_mft_record
;
790 ntfs_debug("clusters_per_mft_record = %i (0x%x)",
791 clusters_per_mft_record
, clusters_per_mft_record
);
792 if (clusters_per_mft_record
> 0)
793 vol
->mft_record_size
= vol
->cluster_size
<<
794 (ffs(clusters_per_mft_record
) - 1);
797 * When mft_record_size < cluster_size, clusters_per_mft_record
798 * = -log2(mft_record_size) bytes. mft_record_size normaly is
799 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
801 vol
->mft_record_size
= 1 << -clusters_per_mft_record
;
802 vol
->mft_record_size_mask
= vol
->mft_record_size
- 1;
803 vol
->mft_record_size_bits
= ffs(vol
->mft_record_size
) - 1;
804 ntfs_debug("vol->mft_record_size = %i (0x%x)", vol
->mft_record_size
,
805 vol
->mft_record_size
);
806 ntfs_debug("vol->mft_record_size_mask = 0x%x",
807 vol
->mft_record_size_mask
);
808 ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
809 vol
->mft_record_size_bits
, vol
->mft_record_size_bits
);
811 * We cannot support mft record sizes above the PAGE_CACHE_SIZE since
812 * we store $MFT/$DATA, the table of mft records in the page cache.
814 if (vol
->mft_record_size
> PAGE_CACHE_SIZE
) {
815 ntfs_error(vol
->sb
, "Mft record size (%i) exceeds the "
816 "PAGE_CACHE_SIZE on your system (%lu). "
817 "This is not supported. Sorry.",
818 vol
->mft_record_size
, PAGE_CACHE_SIZE
);
821 /* We cannot support mft record sizes below the sector size. */
822 if (vol
->mft_record_size
< vol
->sector_size
) {
823 ntfs_error(vol
->sb
, "Mft record size (%i) is smaller than the "
824 "sector size (%i). This is not supported. "
825 "Sorry.", vol
->mft_record_size
,
829 clusters_per_index_record
= b
->clusters_per_index_record
;
830 ntfs_debug("clusters_per_index_record = %i (0x%x)",
831 clusters_per_index_record
, clusters_per_index_record
);
832 if (clusters_per_index_record
> 0)
833 vol
->index_record_size
= vol
->cluster_size
<<
834 (ffs(clusters_per_index_record
) - 1);
837 * When index_record_size < cluster_size,
838 * clusters_per_index_record = -log2(index_record_size) bytes.
839 * index_record_size normaly equals 4096 bytes, which is
840 * encoded as 0xF4 (-12 in decimal).
842 vol
->index_record_size
= 1 << -clusters_per_index_record
;
843 vol
->index_record_size_mask
= vol
->index_record_size
- 1;
844 vol
->index_record_size_bits
= ffs(vol
->index_record_size
) - 1;
845 ntfs_debug("vol->index_record_size = %i (0x%x)",
846 vol
->index_record_size
, vol
->index_record_size
);
847 ntfs_debug("vol->index_record_size_mask = 0x%x",
848 vol
->index_record_size_mask
);
849 ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
850 vol
->index_record_size_bits
,
851 vol
->index_record_size_bits
);
852 /* We cannot support index record sizes below the sector size. */
853 if (vol
->index_record_size
< vol
->sector_size
) {
854 ntfs_error(vol
->sb
, "Index record size (%i) is smaller than "
855 "the sector size (%i). This is not "
856 "supported. Sorry.", vol
->index_record_size
,
861 * Get the size of the volume in clusters and check for 64-bit-ness.
862 * Windows currently only uses 32 bits to save the clusters so we do
863 * the same as it is much faster on 32-bit CPUs.
865 ll
= sle64_to_cpu(b
->number_of_sectors
) >> sectors_per_cluster_bits
;
866 if ((u64
)ll
>= 1ULL << 32) {
867 ntfs_error(vol
->sb
, "Cannot handle 64-bit clusters. Sorry.");
870 vol
->nr_clusters
= ll
;
871 ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol
->nr_clusters
);
873 * On an architecture where unsigned long is 32-bits, we restrict the
874 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
875 * will hopefully optimize the whole check away.
877 if (sizeof(unsigned long) < 8) {
878 if ((ll
<< vol
->cluster_size_bits
) >= (1ULL << 41)) {
879 ntfs_error(vol
->sb
, "Volume size (%lluTiB) is too "
880 "large for this architecture. "
881 "Maximum supported is 2TiB. Sorry.",
882 (unsigned long long)ll
>> (40 -
883 vol
->cluster_size_bits
));
887 ll
= sle64_to_cpu(b
->mft_lcn
);
888 if (ll
>= vol
->nr_clusters
) {
889 ntfs_error(vol
->sb
, "MFT LCN (%lli, 0x%llx) is beyond end of "
890 "volume. Weird.", (unsigned long long)ll
,
891 (unsigned long long)ll
);
895 ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol
->mft_lcn
);
896 ll
= sle64_to_cpu(b
->mftmirr_lcn
);
897 if (ll
>= vol
->nr_clusters
) {
898 ntfs_error(vol
->sb
, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
899 "of volume. Weird.", (unsigned long long)ll
,
900 (unsigned long long)ll
);
903 vol
->mftmirr_lcn
= ll
;
904 ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol
->mftmirr_lcn
);
907 * Work out the size of the mft mirror in number of mft records. If the
908 * cluster size is less than or equal to the size taken by four mft
909 * records, the mft mirror stores the first four mft records. If the
910 * cluster size is bigger than the size taken by four mft records, the
911 * mft mirror contains as many mft records as will fit into one
914 if (vol
->cluster_size
<= (4 << vol
->mft_record_size_bits
))
915 vol
->mftmirr_size
= 4;
917 vol
->mftmirr_size
= vol
->cluster_size
>>
918 vol
->mft_record_size_bits
;
919 ntfs_debug("vol->mftmirr_size = %i", vol
->mftmirr_size
);
921 vol
->serial_no
= le64_to_cpu(b
->volume_serial_number
);
922 ntfs_debug("vol->serial_no = 0x%llx",
923 (unsigned long long)vol
->serial_no
);
928 * ntfs_setup_allocators - initialize the cluster and mft allocators
929 * @vol: volume structure for which to setup the allocators
931 * Setup the cluster (lcn) and mft allocators to the starting values.
933 static void ntfs_setup_allocators(ntfs_volume
*vol
)
936 LCN mft_zone_size
, mft_lcn
;
939 ntfs_debug("vol->mft_zone_multiplier = 0x%x",
940 vol
->mft_zone_multiplier
);
942 /* Determine the size of the MFT zone. */
943 mft_zone_size
= vol
->nr_clusters
;
944 switch (vol
->mft_zone_multiplier
) { /* % of volume size in clusters */
946 mft_zone_size
>>= 1; /* 50% */
949 mft_zone_size
= (mft_zone_size
+
950 (mft_zone_size
>> 1)) >> 2; /* 37.5% */
953 mft_zone_size
>>= 2; /* 25% */
957 mft_zone_size
>>= 3; /* 12.5% */
960 /* Setup the mft zone. */
961 vol
->mft_zone_start
= vol
->mft_zone_pos
= vol
->mft_lcn
;
962 ntfs_debug("vol->mft_zone_pos = 0x%llx",
963 (unsigned long long)vol
->mft_zone_pos
);
965 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
966 * source) and if the actual mft_lcn is in the expected place or even
967 * further to the front of the volume, extend the mft_zone to cover the
968 * beginning of the volume as well. This is in order to protect the
969 * area reserved for the mft bitmap as well within the mft_zone itself.
970 * On non-standard volumes we do not protect it as the overhead would
971 * be higher than the speed increase we would get by doing it.
973 mft_lcn
= (8192 + 2 * vol
->cluster_size
- 1) / vol
->cluster_size
;
974 if (mft_lcn
* vol
->cluster_size
< 16 * 1024)
975 mft_lcn
= (16 * 1024 + vol
->cluster_size
- 1) /
977 if (vol
->mft_zone_start
<= mft_lcn
)
978 vol
->mft_zone_start
= 0;
979 ntfs_debug("vol->mft_zone_start = 0x%llx",
980 (unsigned long long)vol
->mft_zone_start
);
982 * Need to cap the mft zone on non-standard volumes so that it does
983 * not point outside the boundaries of the volume. We do this by
984 * halving the zone size until we are inside the volume.
986 vol
->mft_zone_end
= vol
->mft_lcn
+ mft_zone_size
;
987 while (vol
->mft_zone_end
>= vol
->nr_clusters
) {
989 vol
->mft_zone_end
= vol
->mft_lcn
+ mft_zone_size
;
991 ntfs_debug("vol->mft_zone_end = 0x%llx",
992 (unsigned long long)vol
->mft_zone_end
);
994 * Set the current position within each data zone to the start of the
997 vol
->data1_zone_pos
= vol
->mft_zone_end
;
998 ntfs_debug("vol->data1_zone_pos = 0x%llx",
999 (unsigned long long)vol
->data1_zone_pos
);
1000 vol
->data2_zone_pos
= 0;
1001 ntfs_debug("vol->data2_zone_pos = 0x%llx",
1002 (unsigned long long)vol
->data2_zone_pos
);
1004 /* Set the mft data allocation position to mft record 24. */
1005 vol
->mft_data_pos
= 24;
1006 ntfs_debug("vol->mft_data_pos = 0x%llx",
1007 (unsigned long long)vol
->mft_data_pos
);
1008 #endif /* NTFS_RW */
1014 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
1015 * @vol: ntfs super block describing device whose mft mirror to load
1017 * Return 'true' on success or 'false' on error.
1019 static bool load_and_init_mft_mirror(ntfs_volume
*vol
)
1021 struct inode
*tmp_ino
;
1024 ntfs_debug("Entering.");
1025 /* Get mft mirror inode. */
1026 tmp_ino
= ntfs_iget(vol
->sb
, FILE_MFTMirr
);
1027 if (IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
)) {
1028 if (!IS_ERR(tmp_ino
))
1030 /* Caller will display error message. */
1034 * Re-initialize some specifics about $MFTMirr's inode as
1035 * ntfs_read_inode() will have set up the default ones.
1037 /* Set uid and gid to root. */
1038 tmp_ino
->i_uid
= tmp_ino
->i_gid
= 0;
1039 /* Regular file. No access for anyone. */
1040 tmp_ino
->i_mode
= S_IFREG
;
1041 /* No VFS initiated operations allowed for $MFTMirr. */
1042 tmp_ino
->i_op
= &ntfs_empty_inode_ops
;
1043 tmp_ino
->i_fop
= &ntfs_empty_file_ops
;
1044 /* Put in our special address space operations. */
1045 tmp_ino
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1046 tmp_ni
= NTFS_I(tmp_ino
);
1047 /* The $MFTMirr, like the $MFT is multi sector transfer protected. */
1048 NInoSetMstProtected(tmp_ni
);
1049 NInoSetSparseDisabled(tmp_ni
);
1051 * Set up our little cheat allowing us to reuse the async read io
1052 * completion handler for directories.
1054 tmp_ni
->itype
.index
.block_size
= vol
->mft_record_size
;
1055 tmp_ni
->itype
.index
.block_size_bits
= vol
->mft_record_size_bits
;
1056 vol
->mftmirr_ino
= tmp_ino
;
1057 ntfs_debug("Done.");
1062 * check_mft_mirror - compare contents of the mft mirror with the mft
1063 * @vol: ntfs super block describing device whose mft mirror to check
1065 * Return 'true' on success or 'false' on error.
1067 * Note, this function also results in the mft mirror runlist being completely
1068 * mapped into memory. The mft mirror write code requires this and will BUG()
1069 * should it find an unmapped runlist element.
1071 static bool check_mft_mirror(ntfs_volume
*vol
)
1073 struct super_block
*sb
= vol
->sb
;
1074 ntfs_inode
*mirr_ni
;
1075 struct page
*mft_page
, *mirr_page
;
1077 runlist_element
*rl
, rl2
[2];
1079 int mrecs_per_page
, i
;
1081 ntfs_debug("Entering.");
1082 /* Compare contents of $MFT and $MFTMirr. */
1083 mrecs_per_page
= PAGE_CACHE_SIZE
/ vol
->mft_record_size
;
1084 BUG_ON(!mrecs_per_page
);
1085 BUG_ON(!vol
->mftmirr_size
);
1086 mft_page
= mirr_page
= NULL
;
1087 kmft
= kmirr
= NULL
;
1092 /* Switch pages if necessary. */
1093 if (!(i
% mrecs_per_page
)) {
1095 ntfs_unmap_page(mft_page
);
1096 ntfs_unmap_page(mirr_page
);
1098 /* Get the $MFT page. */
1099 mft_page
= ntfs_map_page(vol
->mft_ino
->i_mapping
,
1101 if (IS_ERR(mft_page
)) {
1102 ntfs_error(sb
, "Failed to read $MFT.");
1105 kmft
= page_address(mft_page
);
1106 /* Get the $MFTMirr page. */
1107 mirr_page
= ntfs_map_page(vol
->mftmirr_ino
->i_mapping
,
1109 if (IS_ERR(mirr_page
)) {
1110 ntfs_error(sb
, "Failed to read $MFTMirr.");
1113 kmirr
= page_address(mirr_page
);
1116 /* Do not check the record if it is not in use. */
1117 if (((MFT_RECORD
*)kmft
)->flags
& MFT_RECORD_IN_USE
) {
1118 /* Make sure the record is ok. */
1119 if (ntfs_is_baad_recordp((le32
*)kmft
)) {
1120 ntfs_error(sb
, "Incomplete multi sector "
1121 "transfer detected in mft "
1124 ntfs_unmap_page(mirr_page
);
1126 ntfs_unmap_page(mft_page
);
1130 /* Do not check the mirror record if it is not in use. */
1131 if (((MFT_RECORD
*)kmirr
)->flags
& MFT_RECORD_IN_USE
) {
1132 if (ntfs_is_baad_recordp((le32
*)kmirr
)) {
1133 ntfs_error(sb
, "Incomplete multi sector "
1134 "transfer detected in mft "
1135 "mirror record %i.", i
);
1139 /* Get the amount of data in the current record. */
1140 bytes
= le32_to_cpu(((MFT_RECORD
*)kmft
)->bytes_in_use
);
1141 if (bytes
< sizeof(MFT_RECORD_OLD
) ||
1142 bytes
> vol
->mft_record_size
||
1143 ntfs_is_baad_recordp((le32
*)kmft
)) {
1144 bytes
= le32_to_cpu(((MFT_RECORD
*)kmirr
)->bytes_in_use
);
1145 if (bytes
< sizeof(MFT_RECORD_OLD
) ||
1146 bytes
> vol
->mft_record_size
||
1147 ntfs_is_baad_recordp((le32
*)kmirr
))
1148 bytes
= vol
->mft_record_size
;
1150 /* Compare the two records. */
1151 if (memcmp(kmft
, kmirr
, bytes
)) {
1152 ntfs_error(sb
, "$MFT and $MFTMirr (record %i) do not "
1153 "match. Run ntfsfix or chkdsk.", i
);
1156 kmft
+= vol
->mft_record_size
;
1157 kmirr
+= vol
->mft_record_size
;
1158 } while (++i
< vol
->mftmirr_size
);
1159 /* Release the last pages. */
1160 ntfs_unmap_page(mft_page
);
1161 ntfs_unmap_page(mirr_page
);
1163 /* Construct the mft mirror runlist by hand. */
1165 rl2
[0].lcn
= vol
->mftmirr_lcn
;
1166 rl2
[0].length
= (vol
->mftmirr_size
* vol
->mft_record_size
+
1167 vol
->cluster_size
- 1) / vol
->cluster_size
;
1168 rl2
[1].vcn
= rl2
[0].length
;
1169 rl2
[1].lcn
= LCN_ENOENT
;
1172 * Because we have just read all of the mft mirror, we know we have
1173 * mapped the full runlist for it.
1175 mirr_ni
= NTFS_I(vol
->mftmirr_ino
);
1176 down_read(&mirr_ni
->runlist
.lock
);
1177 rl
= mirr_ni
->runlist
.rl
;
1178 /* Compare the two runlists. They must be identical. */
1181 if (rl2
[i
].vcn
!= rl
[i
].vcn
|| rl2
[i
].lcn
!= rl
[i
].lcn
||
1182 rl2
[i
].length
!= rl
[i
].length
) {
1183 ntfs_error(sb
, "$MFTMirr location mismatch. "
1185 up_read(&mirr_ni
->runlist
.lock
);
1188 } while (rl2
[i
++].length
);
1189 up_read(&mirr_ni
->runlist
.lock
);
1190 ntfs_debug("Done.");
1195 * load_and_check_logfile - load and check the logfile inode for a volume
1196 * @vol: ntfs super block describing device whose logfile to load
1198 * Return 'true' on success or 'false' on error.
1200 static bool load_and_check_logfile(ntfs_volume
*vol
,
1201 RESTART_PAGE_HEADER
**rp
)
1203 struct inode
*tmp_ino
;
1205 ntfs_debug("Entering.");
1206 tmp_ino
= ntfs_iget(vol
->sb
, FILE_LogFile
);
1207 if (IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
)) {
1208 if (!IS_ERR(tmp_ino
))
1210 /* Caller will display error message. */
1213 if (!ntfs_check_logfile(tmp_ino
, rp
)) {
1215 /* ntfs_check_logfile() will have displayed error output. */
1218 NInoSetSparseDisabled(NTFS_I(tmp_ino
));
1219 vol
->logfile_ino
= tmp_ino
;
1220 ntfs_debug("Done.");
1224 #define NTFS_HIBERFIL_HEADER_SIZE 4096
1227 * check_windows_hibernation_status - check if Windows is suspended on a volume
1228 * @vol: ntfs super block of device to check
1230 * Check if Windows is hibernated on the ntfs volume @vol. This is done by
1231 * looking for the file hiberfil.sys in the root directory of the volume. If
1232 * the file is not present Windows is definitely not suspended.
1234 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
1235 * definitely suspended (this volume is not the system volume). Caveat: on a
1236 * system with many volumes it is possible that the < 4kiB check is bogus but
1237 * for now this should do fine.
1239 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
1240 * hiberfil header (which is the first 4kiB). If this begins with "hibr",
1241 * Windows is definitely suspended. If it is completely full of zeroes,
1242 * Windows is definitely not hibernated. Any other case is treated as if
1243 * Windows is suspended. This caters for the above mentioned caveat of a
1244 * system with many volumes where no "hibr" magic would be present and there is
1247 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
1248 * hibernated on the volume, and -errno on error.
1250 static int check_windows_hibernation_status(ntfs_volume
*vol
)
1257 ntfs_name
*name
= NULL
;
1259 static const ntfschar hiberfil
[13] = { cpu_to_le16('h'),
1260 cpu_to_le16('i'), cpu_to_le16('b'),
1261 cpu_to_le16('e'), cpu_to_le16('r'),
1262 cpu_to_le16('f'), cpu_to_le16('i'),
1263 cpu_to_le16('l'), cpu_to_le16('.'),
1264 cpu_to_le16('s'), cpu_to_le16('y'),
1265 cpu_to_le16('s'), 0 };
1267 ntfs_debug("Entering.");
1269 * Find the inode number for the hibernation file by looking up the
1270 * filename hiberfil.sys in the root directory.
1272 mutex_lock(&vol
->root_ino
->i_mutex
);
1273 mref
= ntfs_lookup_inode_by_name(NTFS_I(vol
->root_ino
), hiberfil
, 12,
1275 mutex_unlock(&vol
->root_ino
->i_mutex
);
1276 if (IS_ERR_MREF(mref
)) {
1277 ret
= MREF_ERR(mref
);
1278 /* If the file does not exist, Windows is not hibernated. */
1279 if (ret
== -ENOENT
) {
1280 ntfs_debug("hiberfil.sys not present. Windows is not "
1281 "hibernated on the volume.");
1284 /* A real error occured. */
1285 ntfs_error(vol
->sb
, "Failed to find inode number for "
1289 /* We do not care for the type of match that was found. */
1291 /* Get the inode. */
1292 vi
= ntfs_iget(vol
->sb
, MREF(mref
));
1293 if (IS_ERR(vi
) || is_bad_inode(vi
)) {
1296 ntfs_error(vol
->sb
, "Failed to load hiberfil.sys.");
1297 return IS_ERR(vi
) ? PTR_ERR(vi
) : -EIO
;
1299 if (unlikely(i_size_read(vi
) < NTFS_HIBERFIL_HEADER_SIZE
)) {
1300 ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). "
1301 "Windows is hibernated on the volume. This "
1302 "is not the system volume.", i_size_read(vi
));
1306 page
= ntfs_map_page(vi
->i_mapping
, 0);
1308 ntfs_error(vol
->sb
, "Failed to read from hiberfil.sys.");
1309 ret
= PTR_ERR(page
);
1312 kaddr
= (u32
*)page_address(page
);
1313 if (*(le32
*)kaddr
== cpu_to_le32(0x72626968)/*'hibr'*/) {
1314 ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is "
1315 "hibernated on the volume. This is the "
1319 kend
= kaddr
+ NTFS_HIBERFIL_HEADER_SIZE
/sizeof(*kaddr
);
1321 if (unlikely(*kaddr
)) {
1322 ntfs_debug("hiberfil.sys is larger than 4kiB "
1323 "(0x%llx), does not contain the "
1324 "\"hibr\" magic, and does not have a "
1325 "zero header. Windows is hibernated "
1326 "on the volume. This is not the "
1327 "system volume.", i_size_read(vi
));
1330 } while (++kaddr
< kend
);
1331 ntfs_debug("hiberfil.sys contains a zero header. Windows is not "
1332 "hibernated on the volume. This is the system "
1336 ntfs_unmap_page(page
);
1343 * load_and_init_quota - load and setup the quota file for a volume if present
1344 * @vol: ntfs super block describing device whose quota file to load
1346 * Return 'true' on success or 'false' on error. If $Quota is not present, we
1347 * leave vol->quota_ino as NULL and return success.
1349 static bool load_and_init_quota(ntfs_volume
*vol
)
1352 struct inode
*tmp_ino
;
1353 ntfs_name
*name
= NULL
;
1354 static const ntfschar Quota
[7] = { cpu_to_le16('$'),
1355 cpu_to_le16('Q'), cpu_to_le16('u'),
1356 cpu_to_le16('o'), cpu_to_le16('t'),
1357 cpu_to_le16('a'), 0 };
1358 static ntfschar Q
[3] = { cpu_to_le16('$'),
1359 cpu_to_le16('Q'), 0 };
1361 ntfs_debug("Entering.");
1363 * Find the inode number for the quota file by looking up the filename
1364 * $Quota in the extended system files directory $Extend.
1366 mutex_lock(&vol
->extend_ino
->i_mutex
);
1367 mref
= ntfs_lookup_inode_by_name(NTFS_I(vol
->extend_ino
), Quota
, 6,
1369 mutex_unlock(&vol
->extend_ino
->i_mutex
);
1370 if (IS_ERR_MREF(mref
)) {
1372 * If the file does not exist, quotas are disabled and have
1373 * never been enabled on this volume, just return success.
1375 if (MREF_ERR(mref
) == -ENOENT
) {
1376 ntfs_debug("$Quota not present. Volume does not have "
1379 * No need to try to set quotas out of date if they are
1382 NVolSetQuotaOutOfDate(vol
);
1385 /* A real error occured. */
1386 ntfs_error(vol
->sb
, "Failed to find inode number for $Quota.");
1389 /* We do not care for the type of match that was found. */
1391 /* Get the inode. */
1392 tmp_ino
= ntfs_iget(vol
->sb
, MREF(mref
));
1393 if (IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
)) {
1394 if (!IS_ERR(tmp_ino
))
1396 ntfs_error(vol
->sb
, "Failed to load $Quota.");
1399 vol
->quota_ino
= tmp_ino
;
1400 /* Get the $Q index allocation attribute. */
1401 tmp_ino
= ntfs_index_iget(vol
->quota_ino
, Q
, 2);
1402 if (IS_ERR(tmp_ino
)) {
1403 ntfs_error(vol
->sb
, "Failed to load $Quota/$Q index.");
1406 vol
->quota_q_ino
= tmp_ino
;
1407 ntfs_debug("Done.");
1412 * load_and_init_usnjrnl - load and setup the transaction log if present
1413 * @vol: ntfs super block describing device whose usnjrnl file to load
1415 * Return 'true' on success or 'false' on error.
1417 * If $UsnJrnl is not present or in the process of being disabled, we set
1418 * NVolUsnJrnlStamped() and return success.
1420 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
1421 * i.e. transaction logging has only just been enabled or the journal has been
1422 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
1423 * and return success.
1425 static bool load_and_init_usnjrnl(ntfs_volume
*vol
)
1428 struct inode
*tmp_ino
;
1431 ntfs_name
*name
= NULL
;
1433 static const ntfschar UsnJrnl
[9] = { cpu_to_le16('$'),
1434 cpu_to_le16('U'), cpu_to_le16('s'),
1435 cpu_to_le16('n'), cpu_to_le16('J'),
1436 cpu_to_le16('r'), cpu_to_le16('n'),
1437 cpu_to_le16('l'), 0 };
1438 static ntfschar Max
[5] = { cpu_to_le16('$'),
1439 cpu_to_le16('M'), cpu_to_le16('a'),
1440 cpu_to_le16('x'), 0 };
1441 static ntfschar J
[3] = { cpu_to_le16('$'),
1442 cpu_to_le16('J'), 0 };
1444 ntfs_debug("Entering.");
1446 * Find the inode number for the transaction log file by looking up the
1447 * filename $UsnJrnl in the extended system files directory $Extend.
1449 mutex_lock(&vol
->extend_ino
->i_mutex
);
1450 mref
= ntfs_lookup_inode_by_name(NTFS_I(vol
->extend_ino
), UsnJrnl
, 8,
1452 mutex_unlock(&vol
->extend_ino
->i_mutex
);
1453 if (IS_ERR_MREF(mref
)) {
1455 * If the file does not exist, transaction logging is disabled,
1456 * just return success.
1458 if (MREF_ERR(mref
) == -ENOENT
) {
1459 ntfs_debug("$UsnJrnl not present. Volume does not "
1460 "have transaction logging enabled.");
1463 * No need to try to stamp the transaction log if
1464 * transaction logging is not enabled.
1466 NVolSetUsnJrnlStamped(vol
);
1469 /* A real error occured. */
1470 ntfs_error(vol
->sb
, "Failed to find inode number for "
1474 /* We do not care for the type of match that was found. */
1476 /* Get the inode. */
1477 tmp_ino
= ntfs_iget(vol
->sb
, MREF(mref
));
1478 if (unlikely(IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
))) {
1479 if (!IS_ERR(tmp_ino
))
1481 ntfs_error(vol
->sb
, "Failed to load $UsnJrnl.");
1484 vol
->usnjrnl_ino
= tmp_ino
;
1486 * If the transaction log is in the process of being deleted, we can
1489 if (unlikely(vol
->vol_flags
& VOLUME_DELETE_USN_UNDERWAY
)) {
1490 ntfs_debug("$UsnJrnl in the process of being disabled. "
1491 "Volume does not have transaction logging "
1495 /* Get the $DATA/$Max attribute. */
1496 tmp_ino
= ntfs_attr_iget(vol
->usnjrnl_ino
, AT_DATA
, Max
, 4);
1497 if (IS_ERR(tmp_ino
)) {
1498 ntfs_error(vol
->sb
, "Failed to load $UsnJrnl/$DATA/$Max "
1502 vol
->usnjrnl_max_ino
= tmp_ino
;
1503 if (unlikely(i_size_read(tmp_ino
) < sizeof(USN_HEADER
))) {
1504 ntfs_error(vol
->sb
, "Found corrupt $UsnJrnl/$DATA/$Max "
1505 "attribute (size is 0x%llx but should be at "
1506 "least 0x%zx bytes).", i_size_read(tmp_ino
),
1507 sizeof(USN_HEADER
));
1510 /* Get the $DATA/$J attribute. */
1511 tmp_ino
= ntfs_attr_iget(vol
->usnjrnl_ino
, AT_DATA
, J
, 2);
1512 if (IS_ERR(tmp_ino
)) {
1513 ntfs_error(vol
->sb
, "Failed to load $UsnJrnl/$DATA/$J "
1517 vol
->usnjrnl_j_ino
= tmp_ino
;
1518 /* Verify $J is non-resident and sparse. */
1519 tmp_ni
= NTFS_I(vol
->usnjrnl_j_ino
);
1520 if (unlikely(!NInoNonResident(tmp_ni
) || !NInoSparse(tmp_ni
))) {
1521 ntfs_error(vol
->sb
, "$UsnJrnl/$DATA/$J attribute is resident "
1522 "and/or not sparse.");
1525 /* Read the USN_HEADER from $DATA/$Max. */
1526 page
= ntfs_map_page(vol
->usnjrnl_max_ino
->i_mapping
, 0);
1528 ntfs_error(vol
->sb
, "Failed to read from $UsnJrnl/$DATA/$Max "
1532 uh
= (USN_HEADER
*)page_address(page
);
1533 /* Sanity check the $Max. */
1534 if (unlikely(sle64_to_cpu(uh
->allocation_delta
) >
1535 sle64_to_cpu(uh
->maximum_size
))) {
1536 ntfs_error(vol
->sb
, "Allocation delta (0x%llx) exceeds "
1537 "maximum size (0x%llx). $UsnJrnl is corrupt.",
1538 (long long)sle64_to_cpu(uh
->allocation_delta
),
1539 (long long)sle64_to_cpu(uh
->maximum_size
));
1540 ntfs_unmap_page(page
);
1544 * If the transaction log has been stamped and nothing has been written
1545 * to it since, we do not need to stamp it.
1547 if (unlikely(sle64_to_cpu(uh
->lowest_valid_usn
) >=
1548 i_size_read(vol
->usnjrnl_j_ino
))) {
1549 if (likely(sle64_to_cpu(uh
->lowest_valid_usn
) ==
1550 i_size_read(vol
->usnjrnl_j_ino
))) {
1551 ntfs_unmap_page(page
);
1552 ntfs_debug("$UsnJrnl is enabled but nothing has been "
1553 "logged since it was last stamped. "
1554 "Treating this as if the volume does "
1555 "not have transaction logging "
1559 ntfs_error(vol
->sb
, "$UsnJrnl has lowest valid usn (0x%llx) "
1560 "which is out of bounds (0x%llx). $UsnJrnl "
1562 (long long)sle64_to_cpu(uh
->lowest_valid_usn
),
1563 i_size_read(vol
->usnjrnl_j_ino
));
1564 ntfs_unmap_page(page
);
1567 ntfs_unmap_page(page
);
1568 ntfs_debug("Done.");
1573 * load_and_init_attrdef - load the attribute definitions table for a volume
1574 * @vol: ntfs super block describing device whose attrdef to load
1576 * Return 'true' on success or 'false' on error.
1578 static bool load_and_init_attrdef(ntfs_volume
*vol
)
1581 struct super_block
*sb
= vol
->sb
;
1584 pgoff_t index
, max_index
;
1587 ntfs_debug("Entering.");
1588 /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1589 ino
= ntfs_iget(sb
, FILE_AttrDef
);
1590 if (IS_ERR(ino
) || is_bad_inode(ino
)) {
1595 NInoSetSparseDisabled(NTFS_I(ino
));
1596 /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1597 i_size
= i_size_read(ino
);
1598 if (i_size
<= 0 || i_size
> 0x7fffffff)
1600 vol
->attrdef
= (ATTR_DEF
*)ntfs_malloc_nofs(i_size
);
1604 max_index
= i_size
>> PAGE_CACHE_SHIFT
;
1605 size
= PAGE_CACHE_SIZE
;
1606 while (index
< max_index
) {
1607 /* Read the attrdef table and copy it into the linear buffer. */
1608 read_partial_attrdef_page
:
1609 page
= ntfs_map_page(ino
->i_mapping
, index
);
1611 goto free_iput_failed
;
1612 memcpy((u8
*)vol
->attrdef
+ (index
++ << PAGE_CACHE_SHIFT
),
1613 page_address(page
), size
);
1614 ntfs_unmap_page(page
);
1616 if (size
== PAGE_CACHE_SIZE
) {
1617 size
= i_size
& ~PAGE_CACHE_MASK
;
1619 goto read_partial_attrdef_page
;
1621 vol
->attrdef_size
= i_size
;
1622 ntfs_debug("Read %llu bytes from $AttrDef.", i_size
);
1626 ntfs_free(vol
->attrdef
);
1627 vol
->attrdef
= NULL
;
1631 ntfs_error(sb
, "Failed to initialize attribute definition table.");
1635 #endif /* NTFS_RW */
1638 * load_and_init_upcase - load the upcase table for an ntfs volume
1639 * @vol: ntfs super block describing device whose upcase to load
1641 * Return 'true' on success or 'false' on error.
1643 static bool load_and_init_upcase(ntfs_volume
*vol
)
1646 struct super_block
*sb
= vol
->sb
;
1649 pgoff_t index
, max_index
;
1653 ntfs_debug("Entering.");
1654 /* Read upcase table and setup vol->upcase and vol->upcase_len. */
1655 ino
= ntfs_iget(sb
, FILE_UpCase
);
1656 if (IS_ERR(ino
) || is_bad_inode(ino
)) {
1662 * The upcase size must not be above 64k Unicode characters, must not
1663 * be zero and must be a multiple of sizeof(ntfschar).
1665 i_size
= i_size_read(ino
);
1666 if (!i_size
|| i_size
& (sizeof(ntfschar
) - 1) ||
1667 i_size
> 64ULL * 1024 * sizeof(ntfschar
))
1668 goto iput_upcase_failed
;
1669 vol
->upcase
= (ntfschar
*)ntfs_malloc_nofs(i_size
);
1671 goto iput_upcase_failed
;
1673 max_index
= i_size
>> PAGE_CACHE_SHIFT
;
1674 size
= PAGE_CACHE_SIZE
;
1675 while (index
< max_index
) {
1676 /* Read the upcase table and copy it into the linear buffer. */
1677 read_partial_upcase_page
:
1678 page
= ntfs_map_page(ino
->i_mapping
, index
);
1680 goto iput_upcase_failed
;
1681 memcpy((char*)vol
->upcase
+ (index
++ << PAGE_CACHE_SHIFT
),
1682 page_address(page
), size
);
1683 ntfs_unmap_page(page
);
1685 if (size
== PAGE_CACHE_SIZE
) {
1686 size
= i_size
& ~PAGE_CACHE_MASK
;
1688 goto read_partial_upcase_page
;
1690 vol
->upcase_len
= i_size
>> UCHAR_T_SIZE_BITS
;
1691 ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1692 i_size
, 64 * 1024 * sizeof(ntfschar
));
1694 mutex_lock(&ntfs_lock
);
1695 if (!default_upcase
) {
1696 ntfs_debug("Using volume specified $UpCase since default is "
1698 mutex_unlock(&ntfs_lock
);
1701 max
= default_upcase_len
;
1702 if (max
> vol
->upcase_len
)
1703 max
= vol
->upcase_len
;
1704 for (i
= 0; i
< max
; i
++)
1705 if (vol
->upcase
[i
] != default_upcase
[i
])
1708 ntfs_free(vol
->upcase
);
1709 vol
->upcase
= default_upcase
;
1710 vol
->upcase_len
= max
;
1711 ntfs_nr_upcase_users
++;
1712 mutex_unlock(&ntfs_lock
);
1713 ntfs_debug("Volume specified $UpCase matches default. Using "
1717 mutex_unlock(&ntfs_lock
);
1718 ntfs_debug("Using volume specified $UpCase since it does not match "
1723 ntfs_free(vol
->upcase
);
1726 mutex_lock(&ntfs_lock
);
1727 if (default_upcase
) {
1728 vol
->upcase
= default_upcase
;
1729 vol
->upcase_len
= default_upcase_len
;
1730 ntfs_nr_upcase_users
++;
1731 mutex_unlock(&ntfs_lock
);
1732 ntfs_error(sb
, "Failed to load $UpCase from the volume. Using "
1736 mutex_unlock(&ntfs_lock
);
1737 ntfs_error(sb
, "Failed to initialize upcase table.");
1742 * The lcn and mft bitmap inodes are NTFS-internal inodes with
1743 * their own special locking rules:
1745 static struct lock_class_key
1746 lcnbmp_runlist_lock_key
, lcnbmp_mrec_lock_key
,
1747 mftbmp_runlist_lock_key
, mftbmp_mrec_lock_key
;
1750 * load_system_files - open the system files using normal functions
1751 * @vol: ntfs super block describing device whose system files to load
1753 * Open the system files with normal access functions and complete setting up
1754 * the ntfs super block @vol.
1756 * Return 'true' on success or 'false' on error.
1758 static bool load_system_files(ntfs_volume
*vol
)
1760 struct super_block
*sb
= vol
->sb
;
1762 VOLUME_INFORMATION
*vi
;
1763 ntfs_attr_search_ctx
*ctx
;
1765 RESTART_PAGE_HEADER
*rp
;
1767 #endif /* NTFS_RW */
1769 ntfs_debug("Entering.");
1771 /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1772 if (!load_and_init_mft_mirror(vol
) || !check_mft_mirror(vol
)) {
1773 static const char *es1
= "Failed to load $MFTMirr";
1774 static const char *es2
= "$MFTMirr does not match $MFT";
1775 static const char *es3
= ". Run ntfsfix and/or chkdsk.";
1777 /* If a read-write mount, convert it to a read-only mount. */
1778 if (!(sb
->s_flags
& MS_RDONLY
)) {
1779 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1780 ON_ERRORS_CONTINUE
))) {
1781 ntfs_error(sb
, "%s and neither on_errors="
1782 "continue nor on_errors="
1783 "remount-ro was specified%s",
1784 !vol
->mftmirr_ino
? es1
: es2
,
1786 goto iput_mirr_err_out
;
1788 sb
->s_flags
|= MS_RDONLY
;
1789 ntfs_error(sb
, "%s. Mounting read-only%s",
1790 !vol
->mftmirr_ino
? es1
: es2
, es3
);
1792 ntfs_warning(sb
, "%s. Will not be able to remount "
1794 !vol
->mftmirr_ino
? es1
: es2
, es3
);
1795 /* This will prevent a read-write remount. */
1798 #endif /* NTFS_RW */
1799 /* Get mft bitmap attribute inode. */
1800 vol
->mftbmp_ino
= ntfs_attr_iget(vol
->mft_ino
, AT_BITMAP
, NULL
, 0);
1801 if (IS_ERR(vol
->mftbmp_ino
)) {
1802 ntfs_error(sb
, "Failed to load $MFT/$BITMAP attribute.");
1803 goto iput_mirr_err_out
;
1805 lockdep_set_class(&NTFS_I(vol
->mftbmp_ino
)->runlist
.lock
,
1806 &mftbmp_runlist_lock_key
);
1807 lockdep_set_class(&NTFS_I(vol
->mftbmp_ino
)->mrec_lock
,
1808 &mftbmp_mrec_lock_key
);
1809 /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1810 if (!load_and_init_upcase(vol
))
1811 goto iput_mftbmp_err_out
;
1814 * Read attribute definitions table and setup @vol->attrdef and
1815 * @vol->attrdef_size.
1817 if (!load_and_init_attrdef(vol
))
1818 goto iput_upcase_err_out
;
1819 #endif /* NTFS_RW */
1821 * Get the cluster allocation bitmap inode and verify the size, no
1822 * need for any locking at this stage as we are already running
1823 * exclusively as we are mount in progress task.
1825 vol
->lcnbmp_ino
= ntfs_iget(sb
, FILE_Bitmap
);
1826 if (IS_ERR(vol
->lcnbmp_ino
) || is_bad_inode(vol
->lcnbmp_ino
)) {
1827 if (!IS_ERR(vol
->lcnbmp_ino
))
1828 iput(vol
->lcnbmp_ino
);
1831 lockdep_set_class(&NTFS_I(vol
->lcnbmp_ino
)->runlist
.lock
,
1832 &lcnbmp_runlist_lock_key
);
1833 lockdep_set_class(&NTFS_I(vol
->lcnbmp_ino
)->mrec_lock
,
1834 &lcnbmp_mrec_lock_key
);
1836 NInoSetSparseDisabled(NTFS_I(vol
->lcnbmp_ino
));
1837 if ((vol
->nr_clusters
+ 7) >> 3 > i_size_read(vol
->lcnbmp_ino
)) {
1838 iput(vol
->lcnbmp_ino
);
1840 ntfs_error(sb
, "Failed to load $Bitmap.");
1841 goto iput_attrdef_err_out
;
1844 * Get the volume inode and setup our cache of the volume flags and
1847 vol
->vol_ino
= ntfs_iget(sb
, FILE_Volume
);
1848 if (IS_ERR(vol
->vol_ino
) || is_bad_inode(vol
->vol_ino
)) {
1849 if (!IS_ERR(vol
->vol_ino
))
1852 ntfs_error(sb
, "Failed to load $Volume.");
1853 goto iput_lcnbmp_err_out
;
1855 m
= map_mft_record(NTFS_I(vol
->vol_ino
));
1861 if (!(ctx
= ntfs_attr_get_search_ctx(NTFS_I(vol
->vol_ino
), m
))) {
1862 ntfs_error(sb
, "Failed to get attribute search context.");
1863 goto get_ctx_vol_failed
;
1865 if (ntfs_attr_lookup(AT_VOLUME_INFORMATION
, NULL
, 0, 0, 0, NULL
, 0,
1866 ctx
) || ctx
->attr
->non_resident
|| ctx
->attr
->flags
) {
1868 ntfs_attr_put_search_ctx(ctx
);
1870 unmap_mft_record(NTFS_I(vol
->vol_ino
));
1871 goto iput_volume_failed
;
1873 vi
= (VOLUME_INFORMATION
*)((char*)ctx
->attr
+
1874 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
));
1875 /* Some bounds checks. */
1876 if ((u8
*)vi
< (u8
*)ctx
->attr
|| (u8
*)vi
+
1877 le32_to_cpu(ctx
->attr
->data
.resident
.value_length
) >
1878 (u8
*)ctx
->attr
+ le32_to_cpu(ctx
->attr
->length
))
1880 /* Copy the volume flags and version to the ntfs_volume structure. */
1881 vol
->vol_flags
= vi
->flags
;
1882 vol
->major_ver
= vi
->major_ver
;
1883 vol
->minor_ver
= vi
->minor_ver
;
1884 ntfs_attr_put_search_ctx(ctx
);
1885 unmap_mft_record(NTFS_I(vol
->vol_ino
));
1886 printk(KERN_INFO
"NTFS volume version %i.%i.\n", vol
->major_ver
,
1888 if (vol
->major_ver
< 3 && NVolSparseEnabled(vol
)) {
1889 ntfs_warning(vol
->sb
, "Disabling sparse support due to NTFS "
1890 "volume version %i.%i (need at least version "
1891 "3.0).", vol
->major_ver
, vol
->minor_ver
);
1892 NVolClearSparseEnabled(vol
);
1895 /* Make sure that no unsupported volume flags are set. */
1896 if (vol
->vol_flags
& VOLUME_MUST_MOUNT_RO_MASK
) {
1897 static const char *es1a
= "Volume is dirty";
1898 static const char *es1b
= "Volume has been modified by chkdsk";
1899 static const char *es1c
= "Volume has unsupported flags set";
1900 static const char *es2a
= ". Run chkdsk and mount in Windows.";
1901 static const char *es2b
= ". Mount in Windows.";
1902 const char *es1
, *es2
;
1905 if (vol
->vol_flags
& VOLUME_IS_DIRTY
)
1907 else if (vol
->vol_flags
& VOLUME_MODIFIED_BY_CHKDSK
) {
1912 ntfs_warning(sb
, "Unsupported volume flags 0x%x "
1914 (unsigned)le16_to_cpu(vol
->vol_flags
));
1916 /* If a read-write mount, convert it to a read-only mount. */
1917 if (!(sb
->s_flags
& MS_RDONLY
)) {
1918 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1919 ON_ERRORS_CONTINUE
))) {
1920 ntfs_error(sb
, "%s and neither on_errors="
1921 "continue nor on_errors="
1922 "remount-ro was specified%s",
1924 goto iput_vol_err_out
;
1926 sb
->s_flags
|= MS_RDONLY
;
1927 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
1929 ntfs_warning(sb
, "%s. Will not be able to remount "
1930 "read-write%s", es1
, es2
);
1932 * Do not set NVolErrors() because ntfs_remount() re-checks the
1933 * flags which we need to do in case any flags have changed.
1937 * Get the inode for the logfile, check it and determine if the volume
1938 * was shutdown cleanly.
1941 if (!load_and_check_logfile(vol
, &rp
) ||
1942 !ntfs_is_logfile_clean(vol
->logfile_ino
, rp
)) {
1943 static const char *es1a
= "Failed to load $LogFile";
1944 static const char *es1b
= "$LogFile is not clean";
1945 static const char *es2
= ". Mount in Windows.";
1948 es1
= !vol
->logfile_ino
? es1a
: es1b
;
1949 /* If a read-write mount, convert it to a read-only mount. */
1950 if (!(sb
->s_flags
& MS_RDONLY
)) {
1951 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1952 ON_ERRORS_CONTINUE
))) {
1953 ntfs_error(sb
, "%s and neither on_errors="
1954 "continue nor on_errors="
1955 "remount-ro was specified%s",
1957 if (vol
->logfile_ino
) {
1961 goto iput_logfile_err_out
;
1963 sb
->s_flags
|= MS_RDONLY
;
1964 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
1966 ntfs_warning(sb
, "%s. Will not be able to remount "
1967 "read-write%s", es1
, es2
);
1968 /* This will prevent a read-write remount. */
1972 #endif /* NTFS_RW */
1973 /* Get the root directory inode so we can do path lookups. */
1974 vol
->root_ino
= ntfs_iget(sb
, FILE_root
);
1975 if (IS_ERR(vol
->root_ino
) || is_bad_inode(vol
->root_ino
)) {
1976 if (!IS_ERR(vol
->root_ino
))
1977 iput(vol
->root_ino
);
1978 ntfs_error(sb
, "Failed to load root directory.");
1979 goto iput_logfile_err_out
;
1983 * Check if Windows is suspended to disk on the target volume. If it
1984 * is hibernated, we must not write *anything* to the disk so set
1985 * NVolErrors() without setting the dirty volume flag and mount
1986 * read-only. This will prevent read-write remounting and it will also
1987 * prevent all writes.
1989 err
= check_windows_hibernation_status(vol
);
1990 if (unlikely(err
)) {
1991 static const char *es1a
= "Failed to determine if Windows is "
1993 static const char *es1b
= "Windows is hibernated";
1994 static const char *es2
= ". Run chkdsk.";
1997 es1
= err
< 0 ? es1a
: es1b
;
1998 /* If a read-write mount, convert it to a read-only mount. */
1999 if (!(sb
->s_flags
& MS_RDONLY
)) {
2000 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2001 ON_ERRORS_CONTINUE
))) {
2002 ntfs_error(sb
, "%s and neither on_errors="
2003 "continue nor on_errors="
2004 "remount-ro was specified%s",
2006 goto iput_root_err_out
;
2008 sb
->s_flags
|= MS_RDONLY
;
2009 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2011 ntfs_warning(sb
, "%s. Will not be able to remount "
2012 "read-write%s", es1
, es2
);
2013 /* This will prevent a read-write remount. */
2016 /* If (still) a read-write mount, mark the volume dirty. */
2017 if (!(sb
->s_flags
& MS_RDONLY
) &&
2018 ntfs_set_volume_flags(vol
, VOLUME_IS_DIRTY
)) {
2019 static const char *es1
= "Failed to set dirty bit in volume "
2020 "information flags";
2021 static const char *es2
= ". Run chkdsk.";
2023 /* Convert to a read-only mount. */
2024 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2025 ON_ERRORS_CONTINUE
))) {
2026 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2027 "on_errors=remount-ro was specified%s",
2029 goto iput_root_err_out
;
2031 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2032 sb
->s_flags
|= MS_RDONLY
;
2034 * Do not set NVolErrors() because ntfs_remount() might manage
2035 * to set the dirty flag in which case all would be well.
2039 // TODO: Enable this code once we start modifying anything that is
2040 // different between NTFS 1.2 and 3.x...
2042 * If (still) a read-write mount, set the NT4 compatibility flag on
2043 * newer NTFS version volumes.
2045 if (!(sb
->s_flags
& MS_RDONLY
) && (vol
->major_ver
> 1) &&
2046 ntfs_set_volume_flags(vol
, VOLUME_MOUNTED_ON_NT4
)) {
2047 static const char *es1
= "Failed to set NT4 compatibility flag";
2048 static const char *es2
= ". Run chkdsk.";
2050 /* Convert to a read-only mount. */
2051 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2052 ON_ERRORS_CONTINUE
))) {
2053 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2054 "on_errors=remount-ro was specified%s",
2056 goto iput_root_err_out
;
2058 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2059 sb
->s_flags
|= MS_RDONLY
;
2063 /* If (still) a read-write mount, empty the logfile. */
2064 if (!(sb
->s_flags
& MS_RDONLY
) &&
2065 !ntfs_empty_logfile(vol
->logfile_ino
)) {
2066 static const char *es1
= "Failed to empty $LogFile";
2067 static const char *es2
= ". Mount in Windows.";
2069 /* Convert to a read-only mount. */
2070 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2071 ON_ERRORS_CONTINUE
))) {
2072 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2073 "on_errors=remount-ro was specified%s",
2075 goto iput_root_err_out
;
2077 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2078 sb
->s_flags
|= MS_RDONLY
;
2081 #endif /* NTFS_RW */
2082 /* If on NTFS versions before 3.0, we are done. */
2083 if (unlikely(vol
->major_ver
< 3))
2085 /* NTFS 3.0+ specific initialization. */
2086 /* Get the security descriptors inode. */
2087 vol
->secure_ino
= ntfs_iget(sb
, FILE_Secure
);
2088 if (IS_ERR(vol
->secure_ino
) || is_bad_inode(vol
->secure_ino
)) {
2089 if (!IS_ERR(vol
->secure_ino
))
2090 iput(vol
->secure_ino
);
2091 ntfs_error(sb
, "Failed to load $Secure.");
2092 goto iput_root_err_out
;
2094 // TODO: Initialize security.
2095 /* Get the extended system files' directory inode. */
2096 vol
->extend_ino
= ntfs_iget(sb
, FILE_Extend
);
2097 if (IS_ERR(vol
->extend_ino
) || is_bad_inode(vol
->extend_ino
)) {
2098 if (!IS_ERR(vol
->extend_ino
))
2099 iput(vol
->extend_ino
);
2100 ntfs_error(sb
, "Failed to load $Extend.");
2101 goto iput_sec_err_out
;
2104 /* Find the quota file, load it if present, and set it up. */
2105 if (!load_and_init_quota(vol
)) {
2106 static const char *es1
= "Failed to load $Quota";
2107 static const char *es2
= ". Run chkdsk.";
2109 /* If a read-write mount, convert it to a read-only mount. */
2110 if (!(sb
->s_flags
& MS_RDONLY
)) {
2111 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2112 ON_ERRORS_CONTINUE
))) {
2113 ntfs_error(sb
, "%s and neither on_errors="
2114 "continue nor on_errors="
2115 "remount-ro was specified%s",
2117 goto iput_quota_err_out
;
2119 sb
->s_flags
|= MS_RDONLY
;
2120 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2122 ntfs_warning(sb
, "%s. Will not be able to remount "
2123 "read-write%s", es1
, es2
);
2124 /* This will prevent a read-write remount. */
2127 /* If (still) a read-write mount, mark the quotas out of date. */
2128 if (!(sb
->s_flags
& MS_RDONLY
) &&
2129 !ntfs_mark_quotas_out_of_date(vol
)) {
2130 static const char *es1
= "Failed to mark quotas out of date";
2131 static const char *es2
= ". Run chkdsk.";
2133 /* Convert to a read-only mount. */
2134 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2135 ON_ERRORS_CONTINUE
))) {
2136 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2137 "on_errors=remount-ro was specified%s",
2139 goto iput_quota_err_out
;
2141 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2142 sb
->s_flags
|= MS_RDONLY
;
2146 * Find the transaction log file ($UsnJrnl), load it if present, check
2147 * it, and set it up.
2149 if (!load_and_init_usnjrnl(vol
)) {
2150 static const char *es1
= "Failed to load $UsnJrnl";
2151 static const char *es2
= ". Run chkdsk.";
2153 /* If a read-write mount, convert it to a read-only mount. */
2154 if (!(sb
->s_flags
& MS_RDONLY
)) {
2155 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2156 ON_ERRORS_CONTINUE
))) {
2157 ntfs_error(sb
, "%s and neither on_errors="
2158 "continue nor on_errors="
2159 "remount-ro was specified%s",
2161 goto iput_usnjrnl_err_out
;
2163 sb
->s_flags
|= MS_RDONLY
;
2164 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2166 ntfs_warning(sb
, "%s. Will not be able to remount "
2167 "read-write%s", es1
, es2
);
2168 /* This will prevent a read-write remount. */
2171 /* If (still) a read-write mount, stamp the transaction log. */
2172 if (!(sb
->s_flags
& MS_RDONLY
) && !ntfs_stamp_usnjrnl(vol
)) {
2173 static const char *es1
= "Failed to stamp transaction log "
2175 static const char *es2
= ". Run chkdsk.";
2177 /* Convert to a read-only mount. */
2178 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2179 ON_ERRORS_CONTINUE
))) {
2180 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2181 "on_errors=remount-ro was specified%s",
2183 goto iput_usnjrnl_err_out
;
2185 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2186 sb
->s_flags
|= MS_RDONLY
;
2189 #endif /* NTFS_RW */
2192 iput_usnjrnl_err_out
:
2193 if (vol
->usnjrnl_j_ino
)
2194 iput(vol
->usnjrnl_j_ino
);
2195 if (vol
->usnjrnl_max_ino
)
2196 iput(vol
->usnjrnl_max_ino
);
2197 if (vol
->usnjrnl_ino
)
2198 iput(vol
->usnjrnl_ino
);
2200 if (vol
->quota_q_ino
)
2201 iput(vol
->quota_q_ino
);
2203 iput(vol
->quota_ino
);
2204 iput(vol
->extend_ino
);
2205 #endif /* NTFS_RW */
2207 iput(vol
->secure_ino
);
2209 iput(vol
->root_ino
);
2210 iput_logfile_err_out
:
2212 if (vol
->logfile_ino
)
2213 iput(vol
->logfile_ino
);
2215 #endif /* NTFS_RW */
2217 iput_lcnbmp_err_out
:
2218 iput(vol
->lcnbmp_ino
);
2219 iput_attrdef_err_out
:
2220 vol
->attrdef_size
= 0;
2222 ntfs_free(vol
->attrdef
);
2223 vol
->attrdef
= NULL
;
2226 iput_upcase_err_out
:
2227 #endif /* NTFS_RW */
2228 vol
->upcase_len
= 0;
2229 mutex_lock(&ntfs_lock
);
2230 if (vol
->upcase
== default_upcase
) {
2231 ntfs_nr_upcase_users
--;
2234 mutex_unlock(&ntfs_lock
);
2236 ntfs_free(vol
->upcase
);
2239 iput_mftbmp_err_out
:
2240 iput(vol
->mftbmp_ino
);
2243 if (vol
->mftmirr_ino
)
2244 iput(vol
->mftmirr_ino
);
2245 #endif /* NTFS_RW */
2250 * ntfs_put_super - called by the vfs to unmount a volume
2251 * @sb: vfs superblock of volume to unmount
2253 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
2254 * the volume is being unmounted (umount system call has been invoked) and it
2255 * releases all inodes and memory belonging to the NTFS specific part of the
2258 static void ntfs_put_super(struct super_block
*sb
)
2260 ntfs_volume
*vol
= NTFS_SB(sb
);
2262 ntfs_debug("Entering.");
2268 * Commit all inodes while they are still open in case some of them
2269 * cause others to be dirtied.
2271 ntfs_commit_inode(vol
->vol_ino
);
2273 /* NTFS 3.0+ specific. */
2274 if (vol
->major_ver
>= 3) {
2275 if (vol
->usnjrnl_j_ino
)
2276 ntfs_commit_inode(vol
->usnjrnl_j_ino
);
2277 if (vol
->usnjrnl_max_ino
)
2278 ntfs_commit_inode(vol
->usnjrnl_max_ino
);
2279 if (vol
->usnjrnl_ino
)
2280 ntfs_commit_inode(vol
->usnjrnl_ino
);
2281 if (vol
->quota_q_ino
)
2282 ntfs_commit_inode(vol
->quota_q_ino
);
2284 ntfs_commit_inode(vol
->quota_ino
);
2285 if (vol
->extend_ino
)
2286 ntfs_commit_inode(vol
->extend_ino
);
2287 if (vol
->secure_ino
)
2288 ntfs_commit_inode(vol
->secure_ino
);
2291 ntfs_commit_inode(vol
->root_ino
);
2293 down_write(&vol
->lcnbmp_lock
);
2294 ntfs_commit_inode(vol
->lcnbmp_ino
);
2295 up_write(&vol
->lcnbmp_lock
);
2297 down_write(&vol
->mftbmp_lock
);
2298 ntfs_commit_inode(vol
->mftbmp_ino
);
2299 up_write(&vol
->mftbmp_lock
);
2301 if (vol
->logfile_ino
)
2302 ntfs_commit_inode(vol
->logfile_ino
);
2304 if (vol
->mftmirr_ino
)
2305 ntfs_commit_inode(vol
->mftmirr_ino
);
2306 ntfs_commit_inode(vol
->mft_ino
);
2309 * If a read-write mount and no volume errors have occured, mark the
2310 * volume clean. Also, re-commit all affected inodes.
2312 if (!(sb
->s_flags
& MS_RDONLY
)) {
2313 if (!NVolErrors(vol
)) {
2314 if (ntfs_clear_volume_flags(vol
, VOLUME_IS_DIRTY
))
2315 ntfs_warning(sb
, "Failed to clear dirty bit "
2316 "in volume information "
2317 "flags. Run chkdsk.");
2318 ntfs_commit_inode(vol
->vol_ino
);
2319 ntfs_commit_inode(vol
->root_ino
);
2320 if (vol
->mftmirr_ino
)
2321 ntfs_commit_inode(vol
->mftmirr_ino
);
2322 ntfs_commit_inode(vol
->mft_ino
);
2324 ntfs_warning(sb
, "Volume has errors. Leaving volume "
2325 "marked dirty. Run chkdsk.");
2328 #endif /* NTFS_RW */
2331 vol
->vol_ino
= NULL
;
2333 /* NTFS 3.0+ specific clean up. */
2334 if (vol
->major_ver
>= 3) {
2336 if (vol
->usnjrnl_j_ino
) {
2337 iput(vol
->usnjrnl_j_ino
);
2338 vol
->usnjrnl_j_ino
= NULL
;
2340 if (vol
->usnjrnl_max_ino
) {
2341 iput(vol
->usnjrnl_max_ino
);
2342 vol
->usnjrnl_max_ino
= NULL
;
2344 if (vol
->usnjrnl_ino
) {
2345 iput(vol
->usnjrnl_ino
);
2346 vol
->usnjrnl_ino
= NULL
;
2348 if (vol
->quota_q_ino
) {
2349 iput(vol
->quota_q_ino
);
2350 vol
->quota_q_ino
= NULL
;
2352 if (vol
->quota_ino
) {
2353 iput(vol
->quota_ino
);
2354 vol
->quota_ino
= NULL
;
2356 #endif /* NTFS_RW */
2357 if (vol
->extend_ino
) {
2358 iput(vol
->extend_ino
);
2359 vol
->extend_ino
= NULL
;
2361 if (vol
->secure_ino
) {
2362 iput(vol
->secure_ino
);
2363 vol
->secure_ino
= NULL
;
2367 iput(vol
->root_ino
);
2368 vol
->root_ino
= NULL
;
2370 down_write(&vol
->lcnbmp_lock
);
2371 iput(vol
->lcnbmp_ino
);
2372 vol
->lcnbmp_ino
= NULL
;
2373 up_write(&vol
->lcnbmp_lock
);
2375 down_write(&vol
->mftbmp_lock
);
2376 iput(vol
->mftbmp_ino
);
2377 vol
->mftbmp_ino
= NULL
;
2378 up_write(&vol
->mftbmp_lock
);
2381 if (vol
->logfile_ino
) {
2382 iput(vol
->logfile_ino
);
2383 vol
->logfile_ino
= NULL
;
2385 if (vol
->mftmirr_ino
) {
2386 /* Re-commit the mft mirror and mft just in case. */
2387 ntfs_commit_inode(vol
->mftmirr_ino
);
2388 ntfs_commit_inode(vol
->mft_ino
);
2389 iput(vol
->mftmirr_ino
);
2390 vol
->mftmirr_ino
= NULL
;
2393 * We should have no dirty inodes left, due to
2394 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
2395 * the underlying mft records are written out and cleaned.
2397 ntfs_commit_inode(vol
->mft_ino
);
2398 write_inode_now(vol
->mft_ino
, 1);
2399 #endif /* NTFS_RW */
2402 vol
->mft_ino
= NULL
;
2404 /* Throw away the table of attribute definitions. */
2405 vol
->attrdef_size
= 0;
2407 ntfs_free(vol
->attrdef
);
2408 vol
->attrdef
= NULL
;
2410 vol
->upcase_len
= 0;
2412 * Destroy the global default upcase table if necessary. Also decrease
2413 * the number of upcase users if we are a user.
2415 mutex_lock(&ntfs_lock
);
2416 if (vol
->upcase
== default_upcase
) {
2417 ntfs_nr_upcase_users
--;
2420 if (!ntfs_nr_upcase_users
&& default_upcase
) {
2421 ntfs_free(default_upcase
);
2422 default_upcase
= NULL
;
2424 if (vol
->cluster_size
<= 4096 && !--ntfs_nr_compression_users
)
2425 free_compression_buffers();
2426 mutex_unlock(&ntfs_lock
);
2428 ntfs_free(vol
->upcase
);
2432 unload_nls(vol
->nls_map
);
2434 sb
->s_fs_info
= NULL
;
2441 * get_nr_free_clusters - return the number of free clusters on a volume
2442 * @vol: ntfs volume for which to obtain free cluster count
2444 * Calculate the number of free clusters on the mounted NTFS volume @vol. We
2445 * actually calculate the number of clusters in use instead because this
2446 * allows us to not care about partial pages as these will be just zero filled
2447 * and hence not be counted as allocated clusters.
2449 * The only particularity is that clusters beyond the end of the logical ntfs
2450 * volume will be marked as allocated to prevent errors which means we have to
2451 * discount those at the end. This is important as the cluster bitmap always
2452 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
2453 * the logical volume and marked in use when they are not as they do not exist.
2455 * If any pages cannot be read we assume all clusters in the erroring pages are
2456 * in use. This means we return an underestimate on errors which is better than
2459 static s64
get_nr_free_clusters(ntfs_volume
*vol
)
2461 s64 nr_free
= vol
->nr_clusters
;
2462 struct address_space
*mapping
= vol
->lcnbmp_ino
->i_mapping
;
2464 pgoff_t index
, max_index
;
2466 ntfs_debug("Entering.");
2467 /* Serialize accesses to the cluster bitmap. */
2468 down_read(&vol
->lcnbmp_lock
);
2470 * Convert the number of bits into bytes rounded up, then convert into
2471 * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one
2472 * full and one partial page max_index = 2.
2474 max_index
= (((vol
->nr_clusters
+ 7) >> 3) + PAGE_CACHE_SIZE
- 1) >>
2476 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2477 ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2478 max_index
, PAGE_CACHE_SIZE
/ 4);
2479 for (index
= 0; index
< max_index
; index
++) {
2480 unsigned long *kaddr
;
2483 * Read the page from page cache, getting it from backing store
2484 * if necessary, and increment the use count.
2486 page
= read_mapping_page(mapping
, index
, NULL
);
2487 /* Ignore pages which errored synchronously. */
2489 ntfs_debug("read_mapping_page() error. Skipping "
2490 "page (index 0x%lx).", index
);
2491 nr_free
-= PAGE_CACHE_SIZE
* 8;
2494 kaddr
= kmap_atomic(page
, KM_USER0
);
2496 * Subtract the number of set bits. If this
2497 * is the last page and it is partial we don't really care as
2498 * it just means we do a little extra work but it won't affect
2499 * the result as all out of range bytes are set to zero by
2502 nr_free
-= bitmap_weight(kaddr
,
2503 PAGE_CACHE_SIZE
* BITS_PER_BYTE
);
2504 kunmap_atomic(kaddr
, KM_USER0
);
2505 page_cache_release(page
);
2507 ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index
- 1);
2509 * Fixup for eventual bits outside logical ntfs volume (see function
2510 * description above).
2512 if (vol
->nr_clusters
& 63)
2513 nr_free
+= 64 - (vol
->nr_clusters
& 63);
2514 up_read(&vol
->lcnbmp_lock
);
2515 /* If errors occured we may well have gone below zero, fix this. */
2518 ntfs_debug("Exiting.");
2523 * __get_nr_free_mft_records - return the number of free inodes on a volume
2524 * @vol: ntfs volume for which to obtain free inode count
2525 * @nr_free: number of mft records in filesystem
2526 * @max_index: maximum number of pages containing set bits
2528 * Calculate the number of free mft records (inodes) on the mounted NTFS
2529 * volume @vol. We actually calculate the number of mft records in use instead
2530 * because this allows us to not care about partial pages as these will be just
2531 * zero filled and hence not be counted as allocated mft record.
2533 * If any pages cannot be read we assume all mft records in the erroring pages
2534 * are in use. This means we return an underestimate on errors which is better
2535 * than an overestimate.
2537 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2539 static unsigned long __get_nr_free_mft_records(ntfs_volume
*vol
,
2540 s64 nr_free
, const pgoff_t max_index
)
2542 struct address_space
*mapping
= vol
->mftbmp_ino
->i_mapping
;
2546 ntfs_debug("Entering.");
2547 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2548 ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2549 "0x%lx.", max_index
, PAGE_CACHE_SIZE
/ 4);
2550 for (index
= 0; index
< max_index
; index
++) {
2551 unsigned long *kaddr
;
2554 * Read the page from page cache, getting it from backing store
2555 * if necessary, and increment the use count.
2557 page
= read_mapping_page(mapping
, index
, NULL
);
2558 /* Ignore pages which errored synchronously. */
2560 ntfs_debug("read_mapping_page() error. Skipping "
2561 "page (index 0x%lx).", index
);
2562 nr_free
-= PAGE_CACHE_SIZE
* 8;
2565 kaddr
= kmap_atomic(page
, KM_USER0
);
2567 * Subtract the number of set bits. If this
2568 * is the last page and it is partial we don't really care as
2569 * it just means we do a little extra work but it won't affect
2570 * the result as all out of range bytes are set to zero by
2573 nr_free
-= bitmap_weight(kaddr
,
2574 PAGE_CACHE_SIZE
* BITS_PER_BYTE
);
2575 kunmap_atomic(kaddr
, KM_USER0
);
2576 page_cache_release(page
);
2578 ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2580 /* If errors occured we may well have gone below zero, fix this. */
2583 ntfs_debug("Exiting.");
2588 * ntfs_statfs - return information about mounted NTFS volume
2589 * @dentry: dentry from mounted volume
2590 * @sfs: statfs structure in which to return the information
2592 * Return information about the mounted NTFS volume @dentry in the statfs structure
2593 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2594 * called). We interpret the values to be correct of the moment in time at
2595 * which we are called. Most values are variable otherwise and this isn't just
2596 * the free values but the totals as well. For example we can increase the
2597 * total number of file nodes if we run out and we can keep doing this until
2598 * there is no more space on the volume left at all.
2600 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2601 * ustat system calls.
2603 * Return 0 on success or -errno on error.
2605 static int ntfs_statfs(struct dentry
*dentry
, struct kstatfs
*sfs
)
2607 struct super_block
*sb
= dentry
->d_sb
;
2609 ntfs_volume
*vol
= NTFS_SB(sb
);
2610 ntfs_inode
*mft_ni
= NTFS_I(vol
->mft_ino
);
2612 unsigned long flags
;
2614 ntfs_debug("Entering.");
2615 /* Type of filesystem. */
2616 sfs
->f_type
= NTFS_SB_MAGIC
;
2617 /* Optimal transfer block size. */
2618 sfs
->f_bsize
= PAGE_CACHE_SIZE
;
2620 * Total data blocks in filesystem in units of f_bsize and since
2621 * inodes are also stored in data blocs ($MFT is a file) this is just
2622 * the total clusters.
2624 sfs
->f_blocks
= vol
->nr_clusters
<< vol
->cluster_size_bits
>>
2626 /* Free data blocks in filesystem in units of f_bsize. */
2627 size
= get_nr_free_clusters(vol
) << vol
->cluster_size_bits
>>
2631 /* Free blocks avail to non-superuser, same as above on NTFS. */
2632 sfs
->f_bavail
= sfs
->f_bfree
= size
;
2633 /* Serialize accesses to the inode bitmap. */
2634 down_read(&vol
->mftbmp_lock
);
2635 read_lock_irqsave(&mft_ni
->size_lock
, flags
);
2636 size
= i_size_read(vol
->mft_ino
) >> vol
->mft_record_size_bits
;
2638 * Convert the maximum number of set bits into bytes rounded up, then
2639 * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we
2640 * have one full and one partial page max_index = 2.
2642 max_index
= ((((mft_ni
->initialized_size
>> vol
->mft_record_size_bits
)
2643 + 7) >> 3) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
2644 read_unlock_irqrestore(&mft_ni
->size_lock
, flags
);
2645 /* Number of inodes in filesystem (at this point in time). */
2646 sfs
->f_files
= size
;
2647 /* Free inodes in fs (based on current total count). */
2648 sfs
->f_ffree
= __get_nr_free_mft_records(vol
, size
, max_index
);
2649 up_read(&vol
->mftbmp_lock
);
2651 * File system id. This is extremely *nix flavour dependent and even
2652 * within Linux itself all fs do their own thing. I interpret this to
2653 * mean a unique id associated with the mounted fs and not the id
2654 * associated with the filesystem driver, the latter is already given
2655 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
2656 * volume serial number splitting it into two 32-bit parts. We enter
2657 * the least significant 32-bits in f_fsid[0] and the most significant
2658 * 32-bits in f_fsid[1].
2660 sfs
->f_fsid
.val
[0] = vol
->serial_no
& 0xffffffff;
2661 sfs
->f_fsid
.val
[1] = (vol
->serial_no
>> 32) & 0xffffffff;
2662 /* Maximum length of filenames. */
2663 sfs
->f_namelen
= NTFS_MAX_NAME_LEN
;
2668 static int ntfs_write_inode(struct inode
*vi
, struct writeback_control
*wbc
)
2670 return __ntfs_write_inode(vi
, wbc
->sync_mode
== WB_SYNC_ALL
);
2675 * The complete super operations.
2677 static const struct super_operations ntfs_sops
= {
2678 .alloc_inode
= ntfs_alloc_big_inode
, /* VFS: Allocate new inode. */
2679 .destroy_inode
= ntfs_destroy_big_inode
, /* VFS: Deallocate inode. */
2681 //.dirty_inode = NULL, /* VFS: Called from
2682 // __mark_inode_dirty(). */
2683 .write_inode
= ntfs_write_inode
, /* VFS: Write dirty inode to
2685 //.drop_inode = NULL, /* VFS: Called just after the
2686 // inode reference count has
2687 // been decreased to zero.
2688 // NOTE: The inode lock is
2689 // held. See fs/inode.c::
2690 // generic_drop_inode(). */
2691 //.delete_inode = NULL, /* VFS: Delete inode from disk.
2692 // Called when i_count becomes
2693 // 0 and i_nlink is also 0. */
2694 //.write_super = NULL, /* Flush dirty super block to
2696 //.sync_fs = NULL, /* ? */
2697 //.write_super_lockfs = NULL, /* ? */
2698 //.unlockfs = NULL, /* ? */
2699 #endif /* NTFS_RW */
2700 .put_super
= ntfs_put_super
, /* Syscall: umount. */
2701 .statfs
= ntfs_statfs
, /* Syscall: statfs */
2702 .remount_fs
= ntfs_remount
, /* Syscall: mount -o remount. */
2703 .evict_inode
= ntfs_evict_big_inode
, /* VFS: Called when an inode is
2704 removed from memory. */
2705 //.umount_begin = NULL, /* Forced umount. */
2706 .show_options
= ntfs_show_options
, /* Show mount options in
2711 * ntfs_fill_super - mount an ntfs filesystem
2712 * @sb: super block of ntfs filesystem to mount
2713 * @opt: string containing the mount options
2714 * @silent: silence error output
2716 * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2717 * with the mount otions in @data with the NTFS filesystem.
2719 * If @silent is true, remain silent even if errors are detected. This is used
2720 * during bootup, when the kernel tries to mount the root filesystem with all
2721 * registered filesystems one after the other until one succeeds. This implies
2722 * that all filesystems except the correct one will quite correctly and
2723 * expectedly return an error, but nobody wants to see error messages when in
2724 * fact this is what is supposed to happen.
2726 * NOTE: @sb->s_flags contains the mount options flags.
2728 static int ntfs_fill_super(struct super_block
*sb
, void *opt
, const int silent
)
2731 struct buffer_head
*bh
;
2732 struct inode
*tmp_ino
;
2733 int blocksize
, result
;
2736 * We do a pretty difficult piece of bootstrap by reading the
2737 * MFT (and other metadata) from disk into memory. We'll only
2738 * release this metadata during umount, so the locking patterns
2739 * observed during bootstrap do not count. So turn off the
2740 * observation of locking patterns (strictly for this context
2741 * only) while mounting NTFS. [The validator is still active
2742 * otherwise, even for this context: it will for example record
2743 * lock class registrations.]
2746 ntfs_debug("Entering.");
2748 sb
->s_flags
|= MS_RDONLY
;
2749 #endif /* ! NTFS_RW */
2750 /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2751 sb
->s_fs_info
= kmalloc(sizeof(ntfs_volume
), GFP_NOFS
);
2755 ntfs_error(sb
, "Allocation of NTFS volume structure "
2756 "failed. Aborting mount...");
2760 /* Initialize ntfs_volume structure. */
2761 *vol
= (ntfs_volume
) {
2764 * Default is group and other don't have any access to files or
2765 * directories while owner has full access. Further, files by
2766 * default are not executable but directories are of course
2772 init_rwsem(&vol
->mftbmp_lock
);
2773 init_rwsem(&vol
->lcnbmp_lock
);
2777 /* By default, enable sparse support. */
2778 NVolSetSparseEnabled(vol
);
2780 /* Important to get the mount options dealt with now. */
2781 if (!parse_options(vol
, (char*)opt
))
2784 /* We support sector sizes up to the PAGE_CACHE_SIZE. */
2785 if (bdev_logical_block_size(sb
->s_bdev
) > PAGE_CACHE_SIZE
) {
2787 ntfs_error(sb
, "Device has unsupported sector size "
2788 "(%i). The maximum supported sector "
2789 "size on this architecture is %lu "
2791 bdev_logical_block_size(sb
->s_bdev
),
2796 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard
2797 * sector size, whichever is bigger.
2799 blocksize
= sb_min_blocksize(sb
, NTFS_BLOCK_SIZE
);
2800 if (blocksize
< NTFS_BLOCK_SIZE
) {
2802 ntfs_error(sb
, "Unable to set device block size.");
2805 BUG_ON(blocksize
!= sb
->s_blocksize
);
2806 ntfs_debug("Set device block size to %i bytes (block size bits %i).",
2807 blocksize
, sb
->s_blocksize_bits
);
2808 /* Determine the size of the device in units of block_size bytes. */
2809 if (!i_size_read(sb
->s_bdev
->bd_inode
)) {
2811 ntfs_error(sb
, "Unable to determine device size.");
2814 vol
->nr_blocks
= i_size_read(sb
->s_bdev
->bd_inode
) >>
2815 sb
->s_blocksize_bits
;
2816 /* Read the boot sector and return unlocked buffer head to it. */
2817 if (!(bh
= read_ntfs_boot_sector(sb
, silent
))) {
2819 ntfs_error(sb
, "Not an NTFS volume.");
2823 * Extract the data from the boot sector and setup the ntfs volume
2826 result
= parse_ntfs_boot_sector(vol
, (NTFS_BOOT_SECTOR
*)bh
->b_data
);
2830 ntfs_error(sb
, "Unsupported NTFS filesystem.");
2834 * If the boot sector indicates a sector size bigger than the current
2835 * device block size, switch the device block size to the sector size.
2836 * TODO: It may be possible to support this case even when the set
2837 * below fails, we would just be breaking up the i/o for each sector
2838 * into multiple blocks for i/o purposes but otherwise it should just
2839 * work. However it is safer to leave disabled until someone hits this
2840 * error message and then we can get them to try it without the setting
2841 * so we know for sure that it works.
2843 if (vol
->sector_size
> blocksize
) {
2844 blocksize
= sb_set_blocksize(sb
, vol
->sector_size
);
2845 if (blocksize
!= vol
->sector_size
) {
2847 ntfs_error(sb
, "Unable to set device block "
2848 "size to sector size (%i).",
2852 BUG_ON(blocksize
!= sb
->s_blocksize
);
2853 vol
->nr_blocks
= i_size_read(sb
->s_bdev
->bd_inode
) >>
2854 sb
->s_blocksize_bits
;
2855 ntfs_debug("Changed device block size to %i bytes (block size "
2856 "bits %i) to match volume sector size.",
2857 blocksize
, sb
->s_blocksize_bits
);
2859 /* Initialize the cluster and mft allocators. */
2860 ntfs_setup_allocators(vol
);
2861 /* Setup remaining fields in the super block. */
2862 sb
->s_magic
= NTFS_SB_MAGIC
;
2864 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2865 * sb->s_maxbytes = ~0ULL >> 1;
2866 * But the kernel uses a long as the page cache page index which on
2867 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2868 * defined to the maximum the page cache page index can cope with
2869 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2871 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
2872 /* Ntfs measures time in 100ns intervals. */
2873 sb
->s_time_gran
= 100;
2875 * Now load the metadata required for the page cache and our address
2876 * space operations to function. We do this by setting up a specialised
2877 * read_inode method and then just calling the normal iget() to obtain
2878 * the inode for $MFT which is sufficient to allow our normal inode
2879 * operations and associated address space operations to function.
2881 sb
->s_op
= &ntfs_sops
;
2882 tmp_ino
= new_inode(sb
);
2885 ntfs_error(sb
, "Failed to load essential metadata.");
2888 tmp_ino
->i_ino
= FILE_MFT
;
2889 insert_inode_hash(tmp_ino
);
2890 if (ntfs_read_inode_mount(tmp_ino
) < 0) {
2892 ntfs_error(sb
, "Failed to load essential metadata.");
2893 goto iput_tmp_ino_err_out_now
;
2895 mutex_lock(&ntfs_lock
);
2897 * The current mount is a compression user if the cluster size is
2898 * less than or equal 4kiB.
2900 if (vol
->cluster_size
<= 4096 && !ntfs_nr_compression_users
++) {
2901 result
= allocate_compression_buffers();
2903 ntfs_error(NULL
, "Failed to allocate buffers "
2904 "for compression engine.");
2905 ntfs_nr_compression_users
--;
2906 mutex_unlock(&ntfs_lock
);
2907 goto iput_tmp_ino_err_out_now
;
2911 * Generate the global default upcase table if necessary. Also
2912 * temporarily increment the number of upcase users to avoid race
2913 * conditions with concurrent (u)mounts.
2915 if (!default_upcase
)
2916 default_upcase
= generate_default_upcase();
2917 ntfs_nr_upcase_users
++;
2918 mutex_unlock(&ntfs_lock
);
2920 * From now on, ignore @silent parameter. If we fail below this line,
2921 * it will be due to a corrupt fs or a system error, so we report it.
2924 * Open the system files with normal access functions and complete
2925 * setting up the ntfs super block.
2927 if (!load_system_files(vol
)) {
2928 ntfs_error(sb
, "Failed to load system files.");
2929 goto unl_upcase_iput_tmp_ino_err_out_now
;
2931 if ((sb
->s_root
= d_alloc_root(vol
->root_ino
))) {
2932 /* We increment i_count simulating an ntfs_iget(). */
2933 atomic_inc(&vol
->root_ino
->i_count
);
2934 ntfs_debug("Exiting, status successful.");
2935 /* Release the default upcase if it has no users. */
2936 mutex_lock(&ntfs_lock
);
2937 if (!--ntfs_nr_upcase_users
&& default_upcase
) {
2938 ntfs_free(default_upcase
);
2939 default_upcase
= NULL
;
2941 mutex_unlock(&ntfs_lock
);
2942 sb
->s_export_op
= &ntfs_export_ops
;
2947 ntfs_error(sb
, "Failed to allocate root directory.");
2948 /* Clean up after the successful load_system_files() call from above. */
2949 // TODO: Use ntfs_put_super() instead of repeating all this code...
2950 // FIXME: Should mark the volume clean as the error is most likely
2953 vol
->vol_ino
= NULL
;
2954 /* NTFS 3.0+ specific clean up. */
2955 if (vol
->major_ver
>= 3) {
2957 if (vol
->usnjrnl_j_ino
) {
2958 iput(vol
->usnjrnl_j_ino
);
2959 vol
->usnjrnl_j_ino
= NULL
;
2961 if (vol
->usnjrnl_max_ino
) {
2962 iput(vol
->usnjrnl_max_ino
);
2963 vol
->usnjrnl_max_ino
= NULL
;
2965 if (vol
->usnjrnl_ino
) {
2966 iput(vol
->usnjrnl_ino
);
2967 vol
->usnjrnl_ino
= NULL
;
2969 if (vol
->quota_q_ino
) {
2970 iput(vol
->quota_q_ino
);
2971 vol
->quota_q_ino
= NULL
;
2973 if (vol
->quota_ino
) {
2974 iput(vol
->quota_ino
);
2975 vol
->quota_ino
= NULL
;
2977 #endif /* NTFS_RW */
2978 if (vol
->extend_ino
) {
2979 iput(vol
->extend_ino
);
2980 vol
->extend_ino
= NULL
;
2982 if (vol
->secure_ino
) {
2983 iput(vol
->secure_ino
);
2984 vol
->secure_ino
= NULL
;
2987 iput(vol
->root_ino
);
2988 vol
->root_ino
= NULL
;
2989 iput(vol
->lcnbmp_ino
);
2990 vol
->lcnbmp_ino
= NULL
;
2991 iput(vol
->mftbmp_ino
);
2992 vol
->mftbmp_ino
= NULL
;
2994 if (vol
->logfile_ino
) {
2995 iput(vol
->logfile_ino
);
2996 vol
->logfile_ino
= NULL
;
2998 if (vol
->mftmirr_ino
) {
2999 iput(vol
->mftmirr_ino
);
3000 vol
->mftmirr_ino
= NULL
;
3002 #endif /* NTFS_RW */
3003 /* Throw away the table of attribute definitions. */
3004 vol
->attrdef_size
= 0;
3006 ntfs_free(vol
->attrdef
);
3007 vol
->attrdef
= NULL
;
3009 vol
->upcase_len
= 0;
3010 mutex_lock(&ntfs_lock
);
3011 if (vol
->upcase
== default_upcase
) {
3012 ntfs_nr_upcase_users
--;
3015 mutex_unlock(&ntfs_lock
);
3017 ntfs_free(vol
->upcase
);
3021 unload_nls(vol
->nls_map
);
3022 vol
->nls_map
= NULL
;
3024 /* Error exit code path. */
3025 unl_upcase_iput_tmp_ino_err_out_now
:
3027 * Decrease the number of upcase users and destroy the global default
3028 * upcase table if necessary.
3030 mutex_lock(&ntfs_lock
);
3031 if (!--ntfs_nr_upcase_users
&& default_upcase
) {
3032 ntfs_free(default_upcase
);
3033 default_upcase
= NULL
;
3035 if (vol
->cluster_size
<= 4096 && !--ntfs_nr_compression_users
)
3036 free_compression_buffers();
3037 mutex_unlock(&ntfs_lock
);
3038 iput_tmp_ino_err_out_now
:
3040 if (vol
->mft_ino
&& vol
->mft_ino
!= tmp_ino
)
3042 vol
->mft_ino
= NULL
;
3044 * This is needed to get ntfs_clear_extent_inode() called for each
3045 * inode we have ever called ntfs_iget()/iput() on, otherwise we A)
3046 * leak resources and B) a subsequent mount fails automatically due to
3047 * ntfs_iget() never calling down into our ntfs_read_locked_inode()
3048 * method again... FIXME: Do we need to do this twice now because of
3049 * attribute inodes? I think not, so leave as is for now... (AIA)
3051 if (invalidate_inodes(sb
)) {
3052 ntfs_error(sb
, "Busy inodes left. This is most likely a NTFS "
3054 /* Copied from fs/super.c. I just love this message. (-; */
3055 printk("NTFS: Busy inodes after umount. Self-destruct in 5 "
3056 "seconds. Have a nice day...\n");
3058 /* Errors at this stage are irrelevant. */
3061 sb
->s_fs_info
= NULL
;
3063 ntfs_debug("Failed, returning -EINVAL.");
3069 * This is a slab cache to optimize allocations and deallocations of Unicode
3070 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
3071 * (255) Unicode characters + a terminating NULL Unicode character.
3073 struct kmem_cache
*ntfs_name_cache
;
3075 /* Slab caches for efficient allocation/deallocation of inodes. */
3076 struct kmem_cache
*ntfs_inode_cache
;
3077 struct kmem_cache
*ntfs_big_inode_cache
;
3079 /* Init once constructor for the inode slab cache. */
3080 static void ntfs_big_inode_init_once(void *foo
)
3082 ntfs_inode
*ni
= (ntfs_inode
*)foo
;
3084 inode_init_once(VFS_I(ni
));
3088 * Slab caches to optimize allocations and deallocations of attribute search
3089 * contexts and index contexts, respectively.
3091 struct kmem_cache
*ntfs_attr_ctx_cache
;
3092 struct kmem_cache
*ntfs_index_ctx_cache
;
3094 /* Driver wide mutex. */
3095 DEFINE_MUTEX(ntfs_lock
);
3097 static int ntfs_get_sb(struct file_system_type
*fs_type
,
3098 int flags
, const char *dev_name
, void *data
, struct vfsmount
*mnt
)
3100 return get_sb_bdev(fs_type
, flags
, dev_name
, data
, ntfs_fill_super
,
3104 static struct file_system_type ntfs_fs_type
= {
3105 .owner
= THIS_MODULE
,
3107 .get_sb
= ntfs_get_sb
,
3108 .kill_sb
= kill_block_super
,
3109 .fs_flags
= FS_REQUIRES_DEV
,
3112 /* Stable names for the slab caches. */
3113 static const char ntfs_index_ctx_cache_name
[] = "ntfs_index_ctx_cache";
3114 static const char ntfs_attr_ctx_cache_name
[] = "ntfs_attr_ctx_cache";
3115 static const char ntfs_name_cache_name
[] = "ntfs_name_cache";
3116 static const char ntfs_inode_cache_name
[] = "ntfs_inode_cache";
3117 static const char ntfs_big_inode_cache_name
[] = "ntfs_big_inode_cache";
3119 static int __init
init_ntfs_fs(void)
3123 /* This may be ugly but it results in pretty output so who cares. (-8 */
3124 printk(KERN_INFO
"NTFS driver " NTFS_VERSION
" [Flags: R/"
3138 ntfs_debug("Debug messages are enabled.");
3140 ntfs_index_ctx_cache
= kmem_cache_create(ntfs_index_ctx_cache_name
,
3141 sizeof(ntfs_index_context
), 0 /* offset */,
3142 SLAB_HWCACHE_ALIGN
, NULL
/* ctor */);
3143 if (!ntfs_index_ctx_cache
) {
3144 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
3145 ntfs_index_ctx_cache_name
);
3148 ntfs_attr_ctx_cache
= kmem_cache_create(ntfs_attr_ctx_cache_name
,
3149 sizeof(ntfs_attr_search_ctx
), 0 /* offset */,
3150 SLAB_HWCACHE_ALIGN
, NULL
/* ctor */);
3151 if (!ntfs_attr_ctx_cache
) {
3152 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
3153 ntfs_attr_ctx_cache_name
);
3157 ntfs_name_cache
= kmem_cache_create(ntfs_name_cache_name
,
3158 (NTFS_MAX_NAME_LEN
+1) * sizeof(ntfschar
), 0,
3159 SLAB_HWCACHE_ALIGN
, NULL
);
3160 if (!ntfs_name_cache
) {
3161 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
3162 ntfs_name_cache_name
);
3166 ntfs_inode_cache
= kmem_cache_create(ntfs_inode_cache_name
,
3167 sizeof(ntfs_inode
), 0,
3168 SLAB_RECLAIM_ACCOUNT
|SLAB_MEM_SPREAD
, NULL
);
3169 if (!ntfs_inode_cache
) {
3170 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
3171 ntfs_inode_cache_name
);
3175 ntfs_big_inode_cache
= kmem_cache_create(ntfs_big_inode_cache_name
,
3176 sizeof(big_ntfs_inode
), 0,
3177 SLAB_HWCACHE_ALIGN
|SLAB_RECLAIM_ACCOUNT
|SLAB_MEM_SPREAD
,
3178 ntfs_big_inode_init_once
);
3179 if (!ntfs_big_inode_cache
) {
3180 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
3181 ntfs_big_inode_cache_name
);
3182 goto big_inode_err_out
;
3185 /* Register the ntfs sysctls. */
3186 err
= ntfs_sysctl(1);
3188 printk(KERN_CRIT
"NTFS: Failed to register NTFS sysctls!\n");
3189 goto sysctl_err_out
;
3192 err
= register_filesystem(&ntfs_fs_type
);
3194 ntfs_debug("NTFS driver registered successfully.");
3195 return 0; /* Success! */
3197 printk(KERN_CRIT
"NTFS: Failed to register NTFS filesystem driver!\n");
3200 kmem_cache_destroy(ntfs_big_inode_cache
);
3202 kmem_cache_destroy(ntfs_inode_cache
);
3204 kmem_cache_destroy(ntfs_name_cache
);
3206 kmem_cache_destroy(ntfs_attr_ctx_cache
);
3208 kmem_cache_destroy(ntfs_index_ctx_cache
);
3211 printk(KERN_CRIT
"NTFS: Aborting NTFS filesystem driver "
3212 "registration...\n");
3218 static void __exit
exit_ntfs_fs(void)
3220 ntfs_debug("Unregistering NTFS driver.");
3222 unregister_filesystem(&ntfs_fs_type
);
3223 kmem_cache_destroy(ntfs_big_inode_cache
);
3224 kmem_cache_destroy(ntfs_inode_cache
);
3225 kmem_cache_destroy(ntfs_name_cache
);
3226 kmem_cache_destroy(ntfs_attr_ctx_cache
);
3227 kmem_cache_destroy(ntfs_index_ctx_cache
);
3228 /* Unregister the ntfs sysctls. */
3232 MODULE_AUTHOR("Anton Altaparmakov <aia21@cantab.net>");
3233 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2007 Anton Altaparmakov");
3234 MODULE_VERSION(NTFS_VERSION
);
3235 MODULE_LICENSE("GPL");
3237 module_param(debug_msgs
, bool, 0);
3238 MODULE_PARM_DESC(debug_msgs
, "Enable debug messages.");
3241 module_init(init_ntfs_fs
)
3242 module_exit(exit_ntfs_fs
)