Linux 2.6.36-rc5
[linux-2.6/next.git] / fs / proc / task_mmu.c
blob271afc48b9a5d58dd2874d41f8a08dfcae644481
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/mount.h>
4 #include <linux/seq_file.h>
5 #include <linux/highmem.h>
6 #include <linux/ptrace.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/mempolicy.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
13 #include <asm/elf.h>
14 #include <asm/uaccess.h>
15 #include <asm/tlbflush.h>
16 #include "internal.h"
18 void task_mem(struct seq_file *m, struct mm_struct *mm)
20 unsigned long data, text, lib, swap;
21 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
24 * Note: to minimize their overhead, mm maintains hiwater_vm and
25 * hiwater_rss only when about to *lower* total_vm or rss. Any
26 * collector of these hiwater stats must therefore get total_vm
27 * and rss too, which will usually be the higher. Barriers? not
28 * worth the effort, such snapshots can always be inconsistent.
30 hiwater_vm = total_vm = mm->total_vm;
31 if (hiwater_vm < mm->hiwater_vm)
32 hiwater_vm = mm->hiwater_vm;
33 hiwater_rss = total_rss = get_mm_rss(mm);
34 if (hiwater_rss < mm->hiwater_rss)
35 hiwater_rss = mm->hiwater_rss;
37 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
38 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
39 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
40 swap = get_mm_counter(mm, MM_SWAPENTS);
41 seq_printf(m,
42 "VmPeak:\t%8lu kB\n"
43 "VmSize:\t%8lu kB\n"
44 "VmLck:\t%8lu kB\n"
45 "VmHWM:\t%8lu kB\n"
46 "VmRSS:\t%8lu kB\n"
47 "VmData:\t%8lu kB\n"
48 "VmStk:\t%8lu kB\n"
49 "VmExe:\t%8lu kB\n"
50 "VmLib:\t%8lu kB\n"
51 "VmPTE:\t%8lu kB\n"
52 "VmSwap:\t%8lu kB\n",
53 hiwater_vm << (PAGE_SHIFT-10),
54 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
55 mm->locked_vm << (PAGE_SHIFT-10),
56 hiwater_rss << (PAGE_SHIFT-10),
57 total_rss << (PAGE_SHIFT-10),
58 data << (PAGE_SHIFT-10),
59 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
60 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
61 swap << (PAGE_SHIFT-10));
64 unsigned long task_vsize(struct mm_struct *mm)
66 return PAGE_SIZE * mm->total_vm;
69 int task_statm(struct mm_struct *mm, int *shared, int *text,
70 int *data, int *resident)
72 *shared = get_mm_counter(mm, MM_FILEPAGES);
73 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
74 >> PAGE_SHIFT;
75 *data = mm->total_vm - mm->shared_vm;
76 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
77 return mm->total_vm;
80 static void pad_len_spaces(struct seq_file *m, int len)
82 len = 25 + sizeof(void*) * 6 - len;
83 if (len < 1)
84 len = 1;
85 seq_printf(m, "%*c", len, ' ');
88 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
90 if (vma && vma != priv->tail_vma) {
91 struct mm_struct *mm = vma->vm_mm;
92 up_read(&mm->mmap_sem);
93 mmput(mm);
97 static void *m_start(struct seq_file *m, loff_t *pos)
99 struct proc_maps_private *priv = m->private;
100 unsigned long last_addr = m->version;
101 struct mm_struct *mm;
102 struct vm_area_struct *vma, *tail_vma = NULL;
103 loff_t l = *pos;
105 /* Clear the per syscall fields in priv */
106 priv->task = NULL;
107 priv->tail_vma = NULL;
110 * We remember last_addr rather than next_addr to hit with
111 * mmap_cache most of the time. We have zero last_addr at
112 * the beginning and also after lseek. We will have -1 last_addr
113 * after the end of the vmas.
116 if (last_addr == -1UL)
117 return NULL;
119 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
120 if (!priv->task)
121 return NULL;
123 mm = mm_for_maps(priv->task);
124 if (!mm)
125 return NULL;
126 down_read(&mm->mmap_sem);
128 tail_vma = get_gate_vma(priv->task);
129 priv->tail_vma = tail_vma;
131 /* Start with last addr hint */
132 vma = find_vma(mm, last_addr);
133 if (last_addr && vma) {
134 vma = vma->vm_next;
135 goto out;
139 * Check the vma index is within the range and do
140 * sequential scan until m_index.
142 vma = NULL;
143 if ((unsigned long)l < mm->map_count) {
144 vma = mm->mmap;
145 while (l-- && vma)
146 vma = vma->vm_next;
147 goto out;
150 if (l != mm->map_count)
151 tail_vma = NULL; /* After gate vma */
153 out:
154 if (vma)
155 return vma;
157 /* End of vmas has been reached */
158 m->version = (tail_vma != NULL)? 0: -1UL;
159 up_read(&mm->mmap_sem);
160 mmput(mm);
161 return tail_vma;
164 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
166 struct proc_maps_private *priv = m->private;
167 struct vm_area_struct *vma = v;
168 struct vm_area_struct *tail_vma = priv->tail_vma;
170 (*pos)++;
171 if (vma && (vma != tail_vma) && vma->vm_next)
172 return vma->vm_next;
173 vma_stop(priv, vma);
174 return (vma != tail_vma)? tail_vma: NULL;
177 static void m_stop(struct seq_file *m, void *v)
179 struct proc_maps_private *priv = m->private;
180 struct vm_area_struct *vma = v;
182 vma_stop(priv, vma);
183 if (priv->task)
184 put_task_struct(priv->task);
187 static int do_maps_open(struct inode *inode, struct file *file,
188 const struct seq_operations *ops)
190 struct proc_maps_private *priv;
191 int ret = -ENOMEM;
192 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
193 if (priv) {
194 priv->pid = proc_pid(inode);
195 ret = seq_open(file, ops);
196 if (!ret) {
197 struct seq_file *m = file->private_data;
198 m->private = priv;
199 } else {
200 kfree(priv);
203 return ret;
206 static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
208 struct mm_struct *mm = vma->vm_mm;
209 struct file *file = vma->vm_file;
210 int flags = vma->vm_flags;
211 unsigned long ino = 0;
212 unsigned long long pgoff = 0;
213 unsigned long start;
214 dev_t dev = 0;
215 int len;
217 if (file) {
218 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
219 dev = inode->i_sb->s_dev;
220 ino = inode->i_ino;
221 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
224 /* We don't show the stack guard page in /proc/maps */
225 start = vma->vm_start;
226 if (vma->vm_flags & VM_GROWSDOWN)
227 if (!vma_stack_continue(vma->vm_prev, vma->vm_start))
228 start += PAGE_SIZE;
230 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
231 start,
232 vma->vm_end,
233 flags & VM_READ ? 'r' : '-',
234 flags & VM_WRITE ? 'w' : '-',
235 flags & VM_EXEC ? 'x' : '-',
236 flags & VM_MAYSHARE ? 's' : 'p',
237 pgoff,
238 MAJOR(dev), MINOR(dev), ino, &len);
241 * Print the dentry name for named mappings, and a
242 * special [heap] marker for the heap:
244 if (file) {
245 pad_len_spaces(m, len);
246 seq_path(m, &file->f_path, "\n");
247 } else {
248 const char *name = arch_vma_name(vma);
249 if (!name) {
250 if (mm) {
251 if (vma->vm_start <= mm->start_brk &&
252 vma->vm_end >= mm->brk) {
253 name = "[heap]";
254 } else if (vma->vm_start <= mm->start_stack &&
255 vma->vm_end >= mm->start_stack) {
256 name = "[stack]";
258 } else {
259 name = "[vdso]";
262 if (name) {
263 pad_len_spaces(m, len);
264 seq_puts(m, name);
267 seq_putc(m, '\n');
270 static int show_map(struct seq_file *m, void *v)
272 struct vm_area_struct *vma = v;
273 struct proc_maps_private *priv = m->private;
274 struct task_struct *task = priv->task;
276 show_map_vma(m, vma);
278 if (m->count < m->size) /* vma is copied successfully */
279 m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
280 return 0;
283 static const struct seq_operations proc_pid_maps_op = {
284 .start = m_start,
285 .next = m_next,
286 .stop = m_stop,
287 .show = show_map
290 static int maps_open(struct inode *inode, struct file *file)
292 return do_maps_open(inode, file, &proc_pid_maps_op);
295 const struct file_operations proc_maps_operations = {
296 .open = maps_open,
297 .read = seq_read,
298 .llseek = seq_lseek,
299 .release = seq_release_private,
303 * Proportional Set Size(PSS): my share of RSS.
305 * PSS of a process is the count of pages it has in memory, where each
306 * page is divided by the number of processes sharing it. So if a
307 * process has 1000 pages all to itself, and 1000 shared with one other
308 * process, its PSS will be 1500.
310 * To keep (accumulated) division errors low, we adopt a 64bit
311 * fixed-point pss counter to minimize division errors. So (pss >>
312 * PSS_SHIFT) would be the real byte count.
314 * A shift of 12 before division means (assuming 4K page size):
315 * - 1M 3-user-pages add up to 8KB errors;
316 * - supports mapcount up to 2^24, or 16M;
317 * - supports PSS up to 2^52 bytes, or 4PB.
319 #define PSS_SHIFT 12
321 #ifdef CONFIG_PROC_PAGE_MONITOR
322 struct mem_size_stats {
323 struct vm_area_struct *vma;
324 unsigned long resident;
325 unsigned long shared_clean;
326 unsigned long shared_dirty;
327 unsigned long private_clean;
328 unsigned long private_dirty;
329 unsigned long referenced;
330 unsigned long swap;
331 u64 pss;
334 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
335 struct mm_walk *walk)
337 struct mem_size_stats *mss = walk->private;
338 struct vm_area_struct *vma = mss->vma;
339 pte_t *pte, ptent;
340 spinlock_t *ptl;
341 struct page *page;
342 int mapcount;
344 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
345 for (; addr != end; pte++, addr += PAGE_SIZE) {
346 ptent = *pte;
348 if (is_swap_pte(ptent)) {
349 mss->swap += PAGE_SIZE;
350 continue;
353 if (!pte_present(ptent))
354 continue;
356 page = vm_normal_page(vma, addr, ptent);
357 if (!page)
358 continue;
360 mss->resident += PAGE_SIZE;
361 /* Accumulate the size in pages that have been accessed. */
362 if (pte_young(ptent) || PageReferenced(page))
363 mss->referenced += PAGE_SIZE;
364 mapcount = page_mapcount(page);
365 if (mapcount >= 2) {
366 if (pte_dirty(ptent))
367 mss->shared_dirty += PAGE_SIZE;
368 else
369 mss->shared_clean += PAGE_SIZE;
370 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
371 } else {
372 if (pte_dirty(ptent))
373 mss->private_dirty += PAGE_SIZE;
374 else
375 mss->private_clean += PAGE_SIZE;
376 mss->pss += (PAGE_SIZE << PSS_SHIFT);
379 pte_unmap_unlock(pte - 1, ptl);
380 cond_resched();
381 return 0;
384 static int show_smap(struct seq_file *m, void *v)
386 struct proc_maps_private *priv = m->private;
387 struct task_struct *task = priv->task;
388 struct vm_area_struct *vma = v;
389 struct mem_size_stats mss;
390 struct mm_walk smaps_walk = {
391 .pmd_entry = smaps_pte_range,
392 .mm = vma->vm_mm,
393 .private = &mss,
396 memset(&mss, 0, sizeof mss);
397 mss.vma = vma;
398 /* mmap_sem is held in m_start */
399 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
400 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
402 show_map_vma(m, vma);
404 seq_printf(m,
405 "Size: %8lu kB\n"
406 "Rss: %8lu kB\n"
407 "Pss: %8lu kB\n"
408 "Shared_Clean: %8lu kB\n"
409 "Shared_Dirty: %8lu kB\n"
410 "Private_Clean: %8lu kB\n"
411 "Private_Dirty: %8lu kB\n"
412 "Referenced: %8lu kB\n"
413 "Swap: %8lu kB\n"
414 "KernelPageSize: %8lu kB\n"
415 "MMUPageSize: %8lu kB\n",
416 (vma->vm_end - vma->vm_start) >> 10,
417 mss.resident >> 10,
418 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
419 mss.shared_clean >> 10,
420 mss.shared_dirty >> 10,
421 mss.private_clean >> 10,
422 mss.private_dirty >> 10,
423 mss.referenced >> 10,
424 mss.swap >> 10,
425 vma_kernel_pagesize(vma) >> 10,
426 vma_mmu_pagesize(vma) >> 10);
428 if (m->count < m->size) /* vma is copied successfully */
429 m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
430 return 0;
433 static const struct seq_operations proc_pid_smaps_op = {
434 .start = m_start,
435 .next = m_next,
436 .stop = m_stop,
437 .show = show_smap
440 static int smaps_open(struct inode *inode, struct file *file)
442 return do_maps_open(inode, file, &proc_pid_smaps_op);
445 const struct file_operations proc_smaps_operations = {
446 .open = smaps_open,
447 .read = seq_read,
448 .llseek = seq_lseek,
449 .release = seq_release_private,
452 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
453 unsigned long end, struct mm_walk *walk)
455 struct vm_area_struct *vma = walk->private;
456 pte_t *pte, ptent;
457 spinlock_t *ptl;
458 struct page *page;
460 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
461 for (; addr != end; pte++, addr += PAGE_SIZE) {
462 ptent = *pte;
463 if (!pte_present(ptent))
464 continue;
466 page = vm_normal_page(vma, addr, ptent);
467 if (!page)
468 continue;
470 /* Clear accessed and referenced bits. */
471 ptep_test_and_clear_young(vma, addr, pte);
472 ClearPageReferenced(page);
474 pte_unmap_unlock(pte - 1, ptl);
475 cond_resched();
476 return 0;
479 #define CLEAR_REFS_ALL 1
480 #define CLEAR_REFS_ANON 2
481 #define CLEAR_REFS_MAPPED 3
483 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
484 size_t count, loff_t *ppos)
486 struct task_struct *task;
487 char buffer[PROC_NUMBUF];
488 struct mm_struct *mm;
489 struct vm_area_struct *vma;
490 long type;
492 memset(buffer, 0, sizeof(buffer));
493 if (count > sizeof(buffer) - 1)
494 count = sizeof(buffer) - 1;
495 if (copy_from_user(buffer, buf, count))
496 return -EFAULT;
497 if (strict_strtol(strstrip(buffer), 10, &type))
498 return -EINVAL;
499 if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
500 return -EINVAL;
501 task = get_proc_task(file->f_path.dentry->d_inode);
502 if (!task)
503 return -ESRCH;
504 mm = get_task_mm(task);
505 if (mm) {
506 struct mm_walk clear_refs_walk = {
507 .pmd_entry = clear_refs_pte_range,
508 .mm = mm,
510 down_read(&mm->mmap_sem);
511 for (vma = mm->mmap; vma; vma = vma->vm_next) {
512 clear_refs_walk.private = vma;
513 if (is_vm_hugetlb_page(vma))
514 continue;
516 * Writing 1 to /proc/pid/clear_refs affects all pages.
518 * Writing 2 to /proc/pid/clear_refs only affects
519 * Anonymous pages.
521 * Writing 3 to /proc/pid/clear_refs only affects file
522 * mapped pages.
524 if (type == CLEAR_REFS_ANON && vma->vm_file)
525 continue;
526 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
527 continue;
528 walk_page_range(vma->vm_start, vma->vm_end,
529 &clear_refs_walk);
531 flush_tlb_mm(mm);
532 up_read(&mm->mmap_sem);
533 mmput(mm);
535 put_task_struct(task);
537 return count;
540 const struct file_operations proc_clear_refs_operations = {
541 .write = clear_refs_write,
544 struct pagemapread {
545 int pos, len;
546 u64 *buffer;
549 #define PM_ENTRY_BYTES sizeof(u64)
550 #define PM_STATUS_BITS 3
551 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
552 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
553 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
554 #define PM_PSHIFT_BITS 6
555 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
556 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
557 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
558 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
559 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
561 #define PM_PRESENT PM_STATUS(4LL)
562 #define PM_SWAP PM_STATUS(2LL)
563 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
564 #define PM_END_OF_BUFFER 1
566 static int add_to_pagemap(unsigned long addr, u64 pfn,
567 struct pagemapread *pm)
569 pm->buffer[pm->pos++] = pfn;
570 if (pm->pos >= pm->len)
571 return PM_END_OF_BUFFER;
572 return 0;
575 static int pagemap_pte_hole(unsigned long start, unsigned long end,
576 struct mm_walk *walk)
578 struct pagemapread *pm = walk->private;
579 unsigned long addr;
580 int err = 0;
581 for (addr = start; addr < end; addr += PAGE_SIZE) {
582 err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
583 if (err)
584 break;
586 return err;
589 static u64 swap_pte_to_pagemap_entry(pte_t pte)
591 swp_entry_t e = pte_to_swp_entry(pte);
592 return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
595 static u64 pte_to_pagemap_entry(pte_t pte)
597 u64 pme = 0;
598 if (is_swap_pte(pte))
599 pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
600 | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
601 else if (pte_present(pte))
602 pme = PM_PFRAME(pte_pfn(pte))
603 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
604 return pme;
607 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
608 struct mm_walk *walk)
610 struct vm_area_struct *vma;
611 struct pagemapread *pm = walk->private;
612 pte_t *pte;
613 int err = 0;
615 /* find the first VMA at or above 'addr' */
616 vma = find_vma(walk->mm, addr);
617 for (; addr != end; addr += PAGE_SIZE) {
618 u64 pfn = PM_NOT_PRESENT;
620 /* check to see if we've left 'vma' behind
621 * and need a new, higher one */
622 if (vma && (addr >= vma->vm_end))
623 vma = find_vma(walk->mm, addr);
625 /* check that 'vma' actually covers this address,
626 * and that it isn't a huge page vma */
627 if (vma && (vma->vm_start <= addr) &&
628 !is_vm_hugetlb_page(vma)) {
629 pte = pte_offset_map(pmd, addr);
630 pfn = pte_to_pagemap_entry(*pte);
631 /* unmap before userspace copy */
632 pte_unmap(pte);
634 err = add_to_pagemap(addr, pfn, pm);
635 if (err)
636 return err;
639 cond_resched();
641 return err;
644 #ifdef CONFIG_HUGETLB_PAGE
645 static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
647 u64 pme = 0;
648 if (pte_present(pte))
649 pme = PM_PFRAME(pte_pfn(pte) + offset)
650 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
651 return pme;
654 /* This function walks within one hugetlb entry in the single call */
655 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
656 unsigned long addr, unsigned long end,
657 struct mm_walk *walk)
659 struct pagemapread *pm = walk->private;
660 int err = 0;
661 u64 pfn;
663 for (; addr != end; addr += PAGE_SIZE) {
664 int offset = (addr & ~hmask) >> PAGE_SHIFT;
665 pfn = huge_pte_to_pagemap_entry(*pte, offset);
666 err = add_to_pagemap(addr, pfn, pm);
667 if (err)
668 return err;
671 cond_resched();
673 return err;
675 #endif /* HUGETLB_PAGE */
678 * /proc/pid/pagemap - an array mapping virtual pages to pfns
680 * For each page in the address space, this file contains one 64-bit entry
681 * consisting of the following:
683 * Bits 0-55 page frame number (PFN) if present
684 * Bits 0-4 swap type if swapped
685 * Bits 5-55 swap offset if swapped
686 * Bits 55-60 page shift (page size = 1<<page shift)
687 * Bit 61 reserved for future use
688 * Bit 62 page swapped
689 * Bit 63 page present
691 * If the page is not present but in swap, then the PFN contains an
692 * encoding of the swap file number and the page's offset into the
693 * swap. Unmapped pages return a null PFN. This allows determining
694 * precisely which pages are mapped (or in swap) and comparing mapped
695 * pages between processes.
697 * Efficient users of this interface will use /proc/pid/maps to
698 * determine which areas of memory are actually mapped and llseek to
699 * skip over unmapped regions.
701 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
702 static ssize_t pagemap_read(struct file *file, char __user *buf,
703 size_t count, loff_t *ppos)
705 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
706 struct mm_struct *mm;
707 struct pagemapread pm;
708 int ret = -ESRCH;
709 struct mm_walk pagemap_walk = {};
710 unsigned long src;
711 unsigned long svpfn;
712 unsigned long start_vaddr;
713 unsigned long end_vaddr;
714 int copied = 0;
716 if (!task)
717 goto out;
719 ret = -EACCES;
720 if (!ptrace_may_access(task, PTRACE_MODE_READ))
721 goto out_task;
723 ret = -EINVAL;
724 /* file position must be aligned */
725 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
726 goto out_task;
728 ret = 0;
730 if (!count)
731 goto out_task;
733 mm = get_task_mm(task);
734 if (!mm)
735 goto out_task;
737 pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
738 pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
739 ret = -ENOMEM;
740 if (!pm.buffer)
741 goto out_mm;
743 pagemap_walk.pmd_entry = pagemap_pte_range;
744 pagemap_walk.pte_hole = pagemap_pte_hole;
745 #ifdef CONFIG_HUGETLB_PAGE
746 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
747 #endif
748 pagemap_walk.mm = mm;
749 pagemap_walk.private = &pm;
751 src = *ppos;
752 svpfn = src / PM_ENTRY_BYTES;
753 start_vaddr = svpfn << PAGE_SHIFT;
754 end_vaddr = TASK_SIZE_OF(task);
756 /* watch out for wraparound */
757 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
758 start_vaddr = end_vaddr;
761 * The odds are that this will stop walking way
762 * before end_vaddr, because the length of the
763 * user buffer is tracked in "pm", and the walk
764 * will stop when we hit the end of the buffer.
766 ret = 0;
767 while (count && (start_vaddr < end_vaddr)) {
768 int len;
769 unsigned long end;
771 pm.pos = 0;
772 end = start_vaddr + PAGEMAP_WALK_SIZE;
773 /* overflow ? */
774 if (end < start_vaddr || end > end_vaddr)
775 end = end_vaddr;
776 down_read(&mm->mmap_sem);
777 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
778 up_read(&mm->mmap_sem);
779 start_vaddr = end;
781 len = min(count, PM_ENTRY_BYTES * pm.pos);
782 if (copy_to_user(buf, pm.buffer, len)) {
783 ret = -EFAULT;
784 goto out_free;
786 copied += len;
787 buf += len;
788 count -= len;
790 *ppos += copied;
791 if (!ret || ret == PM_END_OF_BUFFER)
792 ret = copied;
794 out_free:
795 kfree(pm.buffer);
796 out_mm:
797 mmput(mm);
798 out_task:
799 put_task_struct(task);
800 out:
801 return ret;
804 const struct file_operations proc_pagemap_operations = {
805 .llseek = mem_lseek, /* borrow this */
806 .read = pagemap_read,
808 #endif /* CONFIG_PROC_PAGE_MONITOR */
810 #ifdef CONFIG_NUMA
811 extern int show_numa_map(struct seq_file *m, void *v);
813 static const struct seq_operations proc_pid_numa_maps_op = {
814 .start = m_start,
815 .next = m_next,
816 .stop = m_stop,
817 .show = show_numa_map,
820 static int numa_maps_open(struct inode *inode, struct file *file)
822 return do_maps_open(inode, file, &proc_pid_numa_maps_op);
825 const struct file_operations proc_numa_maps_operations = {
826 .open = numa_maps_open,
827 .read = seq_read,
828 .llseek = seq_lseek,
829 .release = seq_release_private,
831 #endif