Linux 2.6.36-rc5
[linux-2.6/next.git] / kernel / relay.c
blobc7cf397fb92958bbcbd2772e13a8d4a4d9c00b6d
1 /*
2 * Public API and common code for kernel->userspace relay file support.
4 * See Documentation/filesystems/relay.txt for an overview.
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
13 * This file is released under the GPL.
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
31 * close() vm_op implementation for relay file mapping.
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
35 struct rchan_buf *buf = vma->vm_private_data;
36 buf->chan->cb->buf_unmapped(buf, vma->vm_file);
40 * fault() vm_op implementation for relay file mapping.
42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
44 struct page *page;
45 struct rchan_buf *buf = vma->vm_private_data;
46 pgoff_t pgoff = vmf->pgoff;
48 if (!buf)
49 return VM_FAULT_OOM;
51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 if (!page)
53 return VM_FAULT_SIGBUS;
54 get_page(page);
55 vmf->page = page;
57 return 0;
61 * vm_ops for relay file mappings.
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64 .fault = relay_buf_fault,
65 .close = relay_file_mmap_close,
69 * allocate an array of pointers of struct page
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
73 struct page **array;
74 size_t pa_size = n_pages * sizeof(struct page *);
76 if (pa_size > PAGE_SIZE) {
77 array = vmalloc(pa_size);
78 if (array)
79 memset(array, 0, pa_size);
80 } else {
81 array = kzalloc(pa_size, GFP_KERNEL);
83 return array;
87 * free an array of pointers of struct page
89 static void relay_free_page_array(struct page **array)
91 if (is_vmalloc_addr(array))
92 vfree(array);
93 else
94 kfree(array);
97 /**
98 * relay_mmap_buf: - mmap channel buffer to process address space
99 * @buf: relay channel buffer
100 * @vma: vm_area_struct describing memory to be mapped
102 * Returns 0 if ok, negative on error
104 * Caller should already have grabbed mmap_sem.
106 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
108 unsigned long length = vma->vm_end - vma->vm_start;
109 struct file *filp = vma->vm_file;
111 if (!buf)
112 return -EBADF;
114 if (length != (unsigned long)buf->chan->alloc_size)
115 return -EINVAL;
117 vma->vm_ops = &relay_file_mmap_ops;
118 vma->vm_flags |= VM_DONTEXPAND;
119 vma->vm_private_data = buf;
120 buf->chan->cb->buf_mapped(buf, filp);
122 return 0;
126 * relay_alloc_buf - allocate a channel buffer
127 * @buf: the buffer struct
128 * @size: total size of the buffer
130 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
131 * passed in size will get page aligned, if it isn't already.
133 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
135 void *mem;
136 unsigned int i, j, n_pages;
138 *size = PAGE_ALIGN(*size);
139 n_pages = *size >> PAGE_SHIFT;
141 buf->page_array = relay_alloc_page_array(n_pages);
142 if (!buf->page_array)
143 return NULL;
145 for (i = 0; i < n_pages; i++) {
146 buf->page_array[i] = alloc_page(GFP_KERNEL);
147 if (unlikely(!buf->page_array[i]))
148 goto depopulate;
149 set_page_private(buf->page_array[i], (unsigned long)buf);
151 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
152 if (!mem)
153 goto depopulate;
155 memset(mem, 0, *size);
156 buf->page_count = n_pages;
157 return mem;
159 depopulate:
160 for (j = 0; j < i; j++)
161 __free_page(buf->page_array[j]);
162 relay_free_page_array(buf->page_array);
163 return NULL;
167 * relay_create_buf - allocate and initialize a channel buffer
168 * @chan: the relay channel
170 * Returns channel buffer if successful, %NULL otherwise.
172 static struct rchan_buf *relay_create_buf(struct rchan *chan)
174 struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
175 if (!buf)
176 return NULL;
178 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
179 if (!buf->padding)
180 goto free_buf;
182 buf->start = relay_alloc_buf(buf, &chan->alloc_size);
183 if (!buf->start)
184 goto free_buf;
186 buf->chan = chan;
187 kref_get(&buf->chan->kref);
188 return buf;
190 free_buf:
191 kfree(buf->padding);
192 kfree(buf);
193 return NULL;
197 * relay_destroy_channel - free the channel struct
198 * @kref: target kernel reference that contains the relay channel
200 * Should only be called from kref_put().
202 static void relay_destroy_channel(struct kref *kref)
204 struct rchan *chan = container_of(kref, struct rchan, kref);
205 kfree(chan);
209 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
210 * @buf: the buffer struct
212 static void relay_destroy_buf(struct rchan_buf *buf)
214 struct rchan *chan = buf->chan;
215 unsigned int i;
217 if (likely(buf->start)) {
218 vunmap(buf->start);
219 for (i = 0; i < buf->page_count; i++)
220 __free_page(buf->page_array[i]);
221 relay_free_page_array(buf->page_array);
223 chan->buf[buf->cpu] = NULL;
224 kfree(buf->padding);
225 kfree(buf);
226 kref_put(&chan->kref, relay_destroy_channel);
230 * relay_remove_buf - remove a channel buffer
231 * @kref: target kernel reference that contains the relay buffer
233 * Removes the file from the fileystem, which also frees the
234 * rchan_buf_struct and the channel buffer. Should only be called from
235 * kref_put().
237 static void relay_remove_buf(struct kref *kref)
239 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
240 buf->chan->cb->remove_buf_file(buf->dentry);
241 relay_destroy_buf(buf);
245 * relay_buf_empty - boolean, is the channel buffer empty?
246 * @buf: channel buffer
248 * Returns 1 if the buffer is empty, 0 otherwise.
250 static int relay_buf_empty(struct rchan_buf *buf)
252 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
256 * relay_buf_full - boolean, is the channel buffer full?
257 * @buf: channel buffer
259 * Returns 1 if the buffer is full, 0 otherwise.
261 int relay_buf_full(struct rchan_buf *buf)
263 size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
264 return (ready >= buf->chan->n_subbufs) ? 1 : 0;
266 EXPORT_SYMBOL_GPL(relay_buf_full);
269 * High-level relay kernel API and associated functions.
273 * rchan_callback implementations defining default channel behavior. Used
274 * in place of corresponding NULL values in client callback struct.
278 * subbuf_start() default callback. Does nothing.
280 static int subbuf_start_default_callback (struct rchan_buf *buf,
281 void *subbuf,
282 void *prev_subbuf,
283 size_t prev_padding)
285 if (relay_buf_full(buf))
286 return 0;
288 return 1;
292 * buf_mapped() default callback. Does nothing.
294 static void buf_mapped_default_callback(struct rchan_buf *buf,
295 struct file *filp)
300 * buf_unmapped() default callback. Does nothing.
302 static void buf_unmapped_default_callback(struct rchan_buf *buf,
303 struct file *filp)
308 * create_buf_file_create() default callback. Does nothing.
310 static struct dentry *create_buf_file_default_callback(const char *filename,
311 struct dentry *parent,
312 int mode,
313 struct rchan_buf *buf,
314 int *is_global)
316 return NULL;
320 * remove_buf_file() default callback. Does nothing.
322 static int remove_buf_file_default_callback(struct dentry *dentry)
324 return -EINVAL;
327 /* relay channel default callbacks */
328 static struct rchan_callbacks default_channel_callbacks = {
329 .subbuf_start = subbuf_start_default_callback,
330 .buf_mapped = buf_mapped_default_callback,
331 .buf_unmapped = buf_unmapped_default_callback,
332 .create_buf_file = create_buf_file_default_callback,
333 .remove_buf_file = remove_buf_file_default_callback,
337 * wakeup_readers - wake up readers waiting on a channel
338 * @data: contains the channel buffer
340 * This is the timer function used to defer reader waking.
342 static void wakeup_readers(unsigned long data)
344 struct rchan_buf *buf = (struct rchan_buf *)data;
345 wake_up_interruptible(&buf->read_wait);
349 * __relay_reset - reset a channel buffer
350 * @buf: the channel buffer
351 * @init: 1 if this is a first-time initialization
353 * See relay_reset() for description of effect.
355 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
357 size_t i;
359 if (init) {
360 init_waitqueue_head(&buf->read_wait);
361 kref_init(&buf->kref);
362 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
363 } else
364 del_timer_sync(&buf->timer);
366 buf->subbufs_produced = 0;
367 buf->subbufs_consumed = 0;
368 buf->bytes_consumed = 0;
369 buf->finalized = 0;
370 buf->data = buf->start;
371 buf->offset = 0;
373 for (i = 0; i < buf->chan->n_subbufs; i++)
374 buf->padding[i] = 0;
376 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
380 * relay_reset - reset the channel
381 * @chan: the channel
383 * This has the effect of erasing all data from all channel buffers
384 * and restarting the channel in its initial state. The buffers
385 * are not freed, so any mappings are still in effect.
387 * NOTE. Care should be taken that the channel isn't actually
388 * being used by anything when this call is made.
390 void relay_reset(struct rchan *chan)
392 unsigned int i;
394 if (!chan)
395 return;
397 if (chan->is_global && chan->buf[0]) {
398 __relay_reset(chan->buf[0], 0);
399 return;
402 mutex_lock(&relay_channels_mutex);
403 for_each_possible_cpu(i)
404 if (chan->buf[i])
405 __relay_reset(chan->buf[i], 0);
406 mutex_unlock(&relay_channels_mutex);
408 EXPORT_SYMBOL_GPL(relay_reset);
410 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
411 struct dentry *dentry)
413 buf->dentry = dentry;
414 buf->dentry->d_inode->i_size = buf->early_bytes;
417 static struct dentry *relay_create_buf_file(struct rchan *chan,
418 struct rchan_buf *buf,
419 unsigned int cpu)
421 struct dentry *dentry;
422 char *tmpname;
424 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
425 if (!tmpname)
426 return NULL;
427 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
429 /* Create file in fs */
430 dentry = chan->cb->create_buf_file(tmpname, chan->parent,
431 S_IRUSR, buf,
432 &chan->is_global);
434 kfree(tmpname);
436 return dentry;
440 * relay_open_buf - create a new relay channel buffer
442 * used by relay_open() and CPU hotplug.
444 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
446 struct rchan_buf *buf = NULL;
447 struct dentry *dentry;
449 if (chan->is_global)
450 return chan->buf[0];
452 buf = relay_create_buf(chan);
453 if (!buf)
454 return NULL;
456 if (chan->has_base_filename) {
457 dentry = relay_create_buf_file(chan, buf, cpu);
458 if (!dentry)
459 goto free_buf;
460 relay_set_buf_dentry(buf, dentry);
463 buf->cpu = cpu;
464 __relay_reset(buf, 1);
466 if(chan->is_global) {
467 chan->buf[0] = buf;
468 buf->cpu = 0;
471 return buf;
473 free_buf:
474 relay_destroy_buf(buf);
475 return NULL;
479 * relay_close_buf - close a channel buffer
480 * @buf: channel buffer
482 * Marks the buffer finalized and restores the default callbacks.
483 * The channel buffer and channel buffer data structure are then freed
484 * automatically when the last reference is given up.
486 static void relay_close_buf(struct rchan_buf *buf)
488 buf->finalized = 1;
489 del_timer_sync(&buf->timer);
490 kref_put(&buf->kref, relay_remove_buf);
493 static void setup_callbacks(struct rchan *chan,
494 struct rchan_callbacks *cb)
496 if (!cb) {
497 chan->cb = &default_channel_callbacks;
498 return;
501 if (!cb->subbuf_start)
502 cb->subbuf_start = subbuf_start_default_callback;
503 if (!cb->buf_mapped)
504 cb->buf_mapped = buf_mapped_default_callback;
505 if (!cb->buf_unmapped)
506 cb->buf_unmapped = buf_unmapped_default_callback;
507 if (!cb->create_buf_file)
508 cb->create_buf_file = create_buf_file_default_callback;
509 if (!cb->remove_buf_file)
510 cb->remove_buf_file = remove_buf_file_default_callback;
511 chan->cb = cb;
515 * relay_hotcpu_callback - CPU hotplug callback
516 * @nb: notifier block
517 * @action: hotplug action to take
518 * @hcpu: CPU number
520 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
522 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
523 unsigned long action,
524 void *hcpu)
526 unsigned int hotcpu = (unsigned long)hcpu;
527 struct rchan *chan;
529 switch(action) {
530 case CPU_UP_PREPARE:
531 case CPU_UP_PREPARE_FROZEN:
532 mutex_lock(&relay_channels_mutex);
533 list_for_each_entry(chan, &relay_channels, list) {
534 if (chan->buf[hotcpu])
535 continue;
536 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
537 if(!chan->buf[hotcpu]) {
538 printk(KERN_ERR
539 "relay_hotcpu_callback: cpu %d buffer "
540 "creation failed\n", hotcpu);
541 mutex_unlock(&relay_channels_mutex);
542 return notifier_from_errno(-ENOMEM);
545 mutex_unlock(&relay_channels_mutex);
546 break;
547 case CPU_DEAD:
548 case CPU_DEAD_FROZEN:
549 /* No need to flush the cpu : will be flushed upon
550 * final relay_flush() call. */
551 break;
553 return NOTIFY_OK;
557 * relay_open - create a new relay channel
558 * @base_filename: base name of files to create, %NULL for buffering only
559 * @parent: dentry of parent directory, %NULL for root directory or buffer
560 * @subbuf_size: size of sub-buffers
561 * @n_subbufs: number of sub-buffers
562 * @cb: client callback functions
563 * @private_data: user-defined data
565 * Returns channel pointer if successful, %NULL otherwise.
567 * Creates a channel buffer for each cpu using the sizes and
568 * attributes specified. The created channel buffer files
569 * will be named base_filename0...base_filenameN-1. File
570 * permissions will be %S_IRUSR.
572 struct rchan *relay_open(const char *base_filename,
573 struct dentry *parent,
574 size_t subbuf_size,
575 size_t n_subbufs,
576 struct rchan_callbacks *cb,
577 void *private_data)
579 unsigned int i;
580 struct rchan *chan;
582 if (!(subbuf_size && n_subbufs))
583 return NULL;
585 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
586 if (!chan)
587 return NULL;
589 chan->version = RELAYFS_CHANNEL_VERSION;
590 chan->n_subbufs = n_subbufs;
591 chan->subbuf_size = subbuf_size;
592 chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
593 chan->parent = parent;
594 chan->private_data = private_data;
595 if (base_filename) {
596 chan->has_base_filename = 1;
597 strlcpy(chan->base_filename, base_filename, NAME_MAX);
599 setup_callbacks(chan, cb);
600 kref_init(&chan->kref);
602 mutex_lock(&relay_channels_mutex);
603 for_each_online_cpu(i) {
604 chan->buf[i] = relay_open_buf(chan, i);
605 if (!chan->buf[i])
606 goto free_bufs;
608 list_add(&chan->list, &relay_channels);
609 mutex_unlock(&relay_channels_mutex);
611 return chan;
613 free_bufs:
614 for_each_possible_cpu(i) {
615 if (chan->buf[i])
616 relay_close_buf(chan->buf[i]);
619 kref_put(&chan->kref, relay_destroy_channel);
620 mutex_unlock(&relay_channels_mutex);
621 return NULL;
623 EXPORT_SYMBOL_GPL(relay_open);
625 struct rchan_percpu_buf_dispatcher {
626 struct rchan_buf *buf;
627 struct dentry *dentry;
630 /* Called in atomic context. */
631 static void __relay_set_buf_dentry(void *info)
633 struct rchan_percpu_buf_dispatcher *p = info;
635 relay_set_buf_dentry(p->buf, p->dentry);
639 * relay_late_setup_files - triggers file creation
640 * @chan: channel to operate on
641 * @base_filename: base name of files to create
642 * @parent: dentry of parent directory, %NULL for root directory
644 * Returns 0 if successful, non-zero otherwise.
646 * Use to setup files for a previously buffer-only channel.
647 * Useful to do early tracing in kernel, before VFS is up, for example.
649 int relay_late_setup_files(struct rchan *chan,
650 const char *base_filename,
651 struct dentry *parent)
653 int err = 0;
654 unsigned int i, curr_cpu;
655 unsigned long flags;
656 struct dentry *dentry;
657 struct rchan_percpu_buf_dispatcher disp;
659 if (!chan || !base_filename)
660 return -EINVAL;
662 strlcpy(chan->base_filename, base_filename, NAME_MAX);
664 mutex_lock(&relay_channels_mutex);
665 /* Is chan already set up? */
666 if (unlikely(chan->has_base_filename)) {
667 mutex_unlock(&relay_channels_mutex);
668 return -EEXIST;
670 chan->has_base_filename = 1;
671 chan->parent = parent;
672 curr_cpu = get_cpu();
674 * The CPU hotplug notifier ran before us and created buffers with
675 * no files associated. So it's safe to call relay_setup_buf_file()
676 * on all currently online CPUs.
678 for_each_online_cpu(i) {
679 if (unlikely(!chan->buf[i])) {
680 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
681 err = -EINVAL;
682 break;
685 dentry = relay_create_buf_file(chan, chan->buf[i], i);
686 if (unlikely(!dentry)) {
687 err = -EINVAL;
688 break;
691 if (curr_cpu == i) {
692 local_irq_save(flags);
693 relay_set_buf_dentry(chan->buf[i], dentry);
694 local_irq_restore(flags);
695 } else {
696 disp.buf = chan->buf[i];
697 disp.dentry = dentry;
698 smp_mb();
699 /* relay_channels_mutex must be held, so wait. */
700 err = smp_call_function_single(i,
701 __relay_set_buf_dentry,
702 &disp, 1);
704 if (unlikely(err))
705 break;
707 put_cpu();
708 mutex_unlock(&relay_channels_mutex);
710 return err;
714 * relay_switch_subbuf - switch to a new sub-buffer
715 * @buf: channel buffer
716 * @length: size of current event
718 * Returns either the length passed in or 0 if full.
720 * Performs sub-buffer-switch tasks such as invoking callbacks,
721 * updating padding counts, waking up readers, etc.
723 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
725 void *old, *new;
726 size_t old_subbuf, new_subbuf;
728 if (unlikely(length > buf->chan->subbuf_size))
729 goto toobig;
731 if (buf->offset != buf->chan->subbuf_size + 1) {
732 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
733 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
734 buf->padding[old_subbuf] = buf->prev_padding;
735 buf->subbufs_produced++;
736 if (buf->dentry)
737 buf->dentry->d_inode->i_size +=
738 buf->chan->subbuf_size -
739 buf->padding[old_subbuf];
740 else
741 buf->early_bytes += buf->chan->subbuf_size -
742 buf->padding[old_subbuf];
743 smp_mb();
744 if (waitqueue_active(&buf->read_wait))
746 * Calling wake_up_interruptible() from here
747 * will deadlock if we happen to be logging
748 * from the scheduler (trying to re-grab
749 * rq->lock), so defer it.
751 mod_timer(&buf->timer, jiffies + 1);
754 old = buf->data;
755 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
756 new = buf->start + new_subbuf * buf->chan->subbuf_size;
757 buf->offset = 0;
758 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
759 buf->offset = buf->chan->subbuf_size + 1;
760 return 0;
762 buf->data = new;
763 buf->padding[new_subbuf] = 0;
765 if (unlikely(length + buf->offset > buf->chan->subbuf_size))
766 goto toobig;
768 return length;
770 toobig:
771 buf->chan->last_toobig = length;
772 return 0;
774 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
777 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
778 * @chan: the channel
779 * @cpu: the cpu associated with the channel buffer to update
780 * @subbufs_consumed: number of sub-buffers to add to current buf's count
782 * Adds to the channel buffer's consumed sub-buffer count.
783 * subbufs_consumed should be the number of sub-buffers newly consumed,
784 * not the total consumed.
786 * NOTE. Kernel clients don't need to call this function if the channel
787 * mode is 'overwrite'.
789 void relay_subbufs_consumed(struct rchan *chan,
790 unsigned int cpu,
791 size_t subbufs_consumed)
793 struct rchan_buf *buf;
795 if (!chan)
796 return;
798 if (cpu >= NR_CPUS || !chan->buf[cpu] ||
799 subbufs_consumed > chan->n_subbufs)
800 return;
802 buf = chan->buf[cpu];
803 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
804 buf->subbufs_consumed = buf->subbufs_produced;
805 else
806 buf->subbufs_consumed += subbufs_consumed;
808 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
811 * relay_close - close the channel
812 * @chan: the channel
814 * Closes all channel buffers and frees the channel.
816 void relay_close(struct rchan *chan)
818 unsigned int i;
820 if (!chan)
821 return;
823 mutex_lock(&relay_channels_mutex);
824 if (chan->is_global && chan->buf[0])
825 relay_close_buf(chan->buf[0]);
826 else
827 for_each_possible_cpu(i)
828 if (chan->buf[i])
829 relay_close_buf(chan->buf[i]);
831 if (chan->last_toobig)
832 printk(KERN_WARNING "relay: one or more items not logged "
833 "[item size (%Zd) > sub-buffer size (%Zd)]\n",
834 chan->last_toobig, chan->subbuf_size);
836 list_del(&chan->list);
837 kref_put(&chan->kref, relay_destroy_channel);
838 mutex_unlock(&relay_channels_mutex);
840 EXPORT_SYMBOL_GPL(relay_close);
843 * relay_flush - close the channel
844 * @chan: the channel
846 * Flushes all channel buffers, i.e. forces buffer switch.
848 void relay_flush(struct rchan *chan)
850 unsigned int i;
852 if (!chan)
853 return;
855 if (chan->is_global && chan->buf[0]) {
856 relay_switch_subbuf(chan->buf[0], 0);
857 return;
860 mutex_lock(&relay_channels_mutex);
861 for_each_possible_cpu(i)
862 if (chan->buf[i])
863 relay_switch_subbuf(chan->buf[i], 0);
864 mutex_unlock(&relay_channels_mutex);
866 EXPORT_SYMBOL_GPL(relay_flush);
869 * relay_file_open - open file op for relay files
870 * @inode: the inode
871 * @filp: the file
873 * Increments the channel buffer refcount.
875 static int relay_file_open(struct inode *inode, struct file *filp)
877 struct rchan_buf *buf = inode->i_private;
878 kref_get(&buf->kref);
879 filp->private_data = buf;
881 return nonseekable_open(inode, filp);
885 * relay_file_mmap - mmap file op for relay files
886 * @filp: the file
887 * @vma: the vma describing what to map
889 * Calls upon relay_mmap_buf() to map the file into user space.
891 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
893 struct rchan_buf *buf = filp->private_data;
894 return relay_mmap_buf(buf, vma);
898 * relay_file_poll - poll file op for relay files
899 * @filp: the file
900 * @wait: poll table
902 * Poll implemention.
904 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
906 unsigned int mask = 0;
907 struct rchan_buf *buf = filp->private_data;
909 if (buf->finalized)
910 return POLLERR;
912 if (filp->f_mode & FMODE_READ) {
913 poll_wait(filp, &buf->read_wait, wait);
914 if (!relay_buf_empty(buf))
915 mask |= POLLIN | POLLRDNORM;
918 return mask;
922 * relay_file_release - release file op for relay files
923 * @inode: the inode
924 * @filp: the file
926 * Decrements the channel refcount, as the filesystem is
927 * no longer using it.
929 static int relay_file_release(struct inode *inode, struct file *filp)
931 struct rchan_buf *buf = filp->private_data;
932 kref_put(&buf->kref, relay_remove_buf);
934 return 0;
938 * relay_file_read_consume - update the consumed count for the buffer
940 static void relay_file_read_consume(struct rchan_buf *buf,
941 size_t read_pos,
942 size_t bytes_consumed)
944 size_t subbuf_size = buf->chan->subbuf_size;
945 size_t n_subbufs = buf->chan->n_subbufs;
946 size_t read_subbuf;
948 if (buf->subbufs_produced == buf->subbufs_consumed &&
949 buf->offset == buf->bytes_consumed)
950 return;
952 if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
953 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
954 buf->bytes_consumed = 0;
957 buf->bytes_consumed += bytes_consumed;
958 if (!read_pos)
959 read_subbuf = buf->subbufs_consumed % n_subbufs;
960 else
961 read_subbuf = read_pos / buf->chan->subbuf_size;
962 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
963 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
964 (buf->offset == subbuf_size))
965 return;
966 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
967 buf->bytes_consumed = 0;
972 * relay_file_read_avail - boolean, are there unconsumed bytes available?
974 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
976 size_t subbuf_size = buf->chan->subbuf_size;
977 size_t n_subbufs = buf->chan->n_subbufs;
978 size_t produced = buf->subbufs_produced;
979 size_t consumed = buf->subbufs_consumed;
981 relay_file_read_consume(buf, read_pos, 0);
983 consumed = buf->subbufs_consumed;
985 if (unlikely(buf->offset > subbuf_size)) {
986 if (produced == consumed)
987 return 0;
988 return 1;
991 if (unlikely(produced - consumed >= n_subbufs)) {
992 consumed = produced - n_subbufs + 1;
993 buf->subbufs_consumed = consumed;
994 buf->bytes_consumed = 0;
997 produced = (produced % n_subbufs) * subbuf_size + buf->offset;
998 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1000 if (consumed > produced)
1001 produced += n_subbufs * subbuf_size;
1003 if (consumed == produced) {
1004 if (buf->offset == subbuf_size &&
1005 buf->subbufs_produced > buf->subbufs_consumed)
1006 return 1;
1007 return 0;
1010 return 1;
1014 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
1015 * @read_pos: file read position
1016 * @buf: relay channel buffer
1018 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1019 struct rchan_buf *buf)
1021 size_t padding, avail = 0;
1022 size_t read_subbuf, read_offset, write_subbuf, write_offset;
1023 size_t subbuf_size = buf->chan->subbuf_size;
1025 write_subbuf = (buf->data - buf->start) / subbuf_size;
1026 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1027 read_subbuf = read_pos / subbuf_size;
1028 read_offset = read_pos % subbuf_size;
1029 padding = buf->padding[read_subbuf];
1031 if (read_subbuf == write_subbuf) {
1032 if (read_offset + padding < write_offset)
1033 avail = write_offset - (read_offset + padding);
1034 } else
1035 avail = (subbuf_size - padding) - read_offset;
1037 return avail;
1041 * relay_file_read_start_pos - find the first available byte to read
1042 * @read_pos: file read position
1043 * @buf: relay channel buffer
1045 * If the @read_pos is in the middle of padding, return the
1046 * position of the first actually available byte, otherwise
1047 * return the original value.
1049 static size_t relay_file_read_start_pos(size_t read_pos,
1050 struct rchan_buf *buf)
1052 size_t read_subbuf, padding, padding_start, padding_end;
1053 size_t subbuf_size = buf->chan->subbuf_size;
1054 size_t n_subbufs = buf->chan->n_subbufs;
1055 size_t consumed = buf->subbufs_consumed % n_subbufs;
1057 if (!read_pos)
1058 read_pos = consumed * subbuf_size + buf->bytes_consumed;
1059 read_subbuf = read_pos / subbuf_size;
1060 padding = buf->padding[read_subbuf];
1061 padding_start = (read_subbuf + 1) * subbuf_size - padding;
1062 padding_end = (read_subbuf + 1) * subbuf_size;
1063 if (read_pos >= padding_start && read_pos < padding_end) {
1064 read_subbuf = (read_subbuf + 1) % n_subbufs;
1065 read_pos = read_subbuf * subbuf_size;
1068 return read_pos;
1072 * relay_file_read_end_pos - return the new read position
1073 * @read_pos: file read position
1074 * @buf: relay channel buffer
1075 * @count: number of bytes to be read
1077 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1078 size_t read_pos,
1079 size_t count)
1081 size_t read_subbuf, padding, end_pos;
1082 size_t subbuf_size = buf->chan->subbuf_size;
1083 size_t n_subbufs = buf->chan->n_subbufs;
1085 read_subbuf = read_pos / subbuf_size;
1086 padding = buf->padding[read_subbuf];
1087 if (read_pos % subbuf_size + count + padding == subbuf_size)
1088 end_pos = (read_subbuf + 1) * subbuf_size;
1089 else
1090 end_pos = read_pos + count;
1091 if (end_pos >= subbuf_size * n_subbufs)
1092 end_pos = 0;
1094 return end_pos;
1098 * subbuf_read_actor - read up to one subbuf's worth of data
1100 static int subbuf_read_actor(size_t read_start,
1101 struct rchan_buf *buf,
1102 size_t avail,
1103 read_descriptor_t *desc,
1104 read_actor_t actor)
1106 void *from;
1107 int ret = 0;
1109 from = buf->start + read_start;
1110 ret = avail;
1111 if (copy_to_user(desc->arg.buf, from, avail)) {
1112 desc->error = -EFAULT;
1113 ret = 0;
1115 desc->arg.data += ret;
1116 desc->written += ret;
1117 desc->count -= ret;
1119 return ret;
1122 typedef int (*subbuf_actor_t) (size_t read_start,
1123 struct rchan_buf *buf,
1124 size_t avail,
1125 read_descriptor_t *desc,
1126 read_actor_t actor);
1129 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1131 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1132 subbuf_actor_t subbuf_actor,
1133 read_actor_t actor,
1134 read_descriptor_t *desc)
1136 struct rchan_buf *buf = filp->private_data;
1137 size_t read_start, avail;
1138 int ret;
1140 if (!desc->count)
1141 return 0;
1143 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
1144 do {
1145 if (!relay_file_read_avail(buf, *ppos))
1146 break;
1148 read_start = relay_file_read_start_pos(*ppos, buf);
1149 avail = relay_file_read_subbuf_avail(read_start, buf);
1150 if (!avail)
1151 break;
1153 avail = min(desc->count, avail);
1154 ret = subbuf_actor(read_start, buf, avail, desc, actor);
1155 if (desc->error < 0)
1156 break;
1158 if (ret) {
1159 relay_file_read_consume(buf, read_start, ret);
1160 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1162 } while (desc->count && ret);
1163 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1165 return desc->written;
1168 static ssize_t relay_file_read(struct file *filp,
1169 char __user *buffer,
1170 size_t count,
1171 loff_t *ppos)
1173 read_descriptor_t desc;
1174 desc.written = 0;
1175 desc.count = count;
1176 desc.arg.buf = buffer;
1177 desc.error = 0;
1178 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1179 NULL, &desc);
1182 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1184 rbuf->bytes_consumed += bytes_consumed;
1186 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1187 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1188 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1192 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1193 struct pipe_buffer *buf)
1195 struct rchan_buf *rbuf;
1197 rbuf = (struct rchan_buf *)page_private(buf->page);
1198 relay_consume_bytes(rbuf, buf->private);
1201 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1202 .can_merge = 0,
1203 .map = generic_pipe_buf_map,
1204 .unmap = generic_pipe_buf_unmap,
1205 .confirm = generic_pipe_buf_confirm,
1206 .release = relay_pipe_buf_release,
1207 .steal = generic_pipe_buf_steal,
1208 .get = generic_pipe_buf_get,
1211 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1216 * subbuf_splice_actor - splice up to one subbuf's worth of data
1218 static ssize_t subbuf_splice_actor(struct file *in,
1219 loff_t *ppos,
1220 struct pipe_inode_info *pipe,
1221 size_t len,
1222 unsigned int flags,
1223 int *nonpad_ret)
1225 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1226 struct rchan_buf *rbuf = in->private_data;
1227 unsigned int subbuf_size = rbuf->chan->subbuf_size;
1228 uint64_t pos = (uint64_t) *ppos;
1229 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1230 size_t read_start = (size_t) do_div(pos, alloc_size);
1231 size_t read_subbuf = read_start / subbuf_size;
1232 size_t padding = rbuf->padding[read_subbuf];
1233 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1234 struct page *pages[PIPE_DEF_BUFFERS];
1235 struct partial_page partial[PIPE_DEF_BUFFERS];
1236 struct splice_pipe_desc spd = {
1237 .pages = pages,
1238 .nr_pages = 0,
1239 .partial = partial,
1240 .flags = flags,
1241 .ops = &relay_pipe_buf_ops,
1242 .spd_release = relay_page_release,
1244 ssize_t ret;
1246 if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1247 return 0;
1248 if (splice_grow_spd(pipe, &spd))
1249 return -ENOMEM;
1252 * Adjust read len, if longer than what is available
1254 if (len > (subbuf_size - read_start % subbuf_size))
1255 len = subbuf_size - read_start % subbuf_size;
1257 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1258 pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1259 poff = read_start & ~PAGE_MASK;
1260 nr_pages = min_t(unsigned int, subbuf_pages, pipe->buffers);
1262 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1263 unsigned int this_len, this_end, private;
1264 unsigned int cur_pos = read_start + total_len;
1266 if (!len)
1267 break;
1269 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1270 private = this_len;
1272 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1273 spd.partial[spd.nr_pages].offset = poff;
1275 this_end = cur_pos + this_len;
1276 if (this_end >= nonpad_end) {
1277 this_len = nonpad_end - cur_pos;
1278 private = this_len + padding;
1280 spd.partial[spd.nr_pages].len = this_len;
1281 spd.partial[spd.nr_pages].private = private;
1283 len -= this_len;
1284 total_len += this_len;
1285 poff = 0;
1286 pidx = (pidx + 1) % subbuf_pages;
1288 if (this_end >= nonpad_end) {
1289 spd.nr_pages++;
1290 break;
1294 ret = 0;
1295 if (!spd.nr_pages)
1296 goto out;
1298 ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1299 if (ret < 0 || ret < total_len)
1300 goto out;
1302 if (read_start + ret == nonpad_end)
1303 ret += padding;
1305 out:
1306 splice_shrink_spd(pipe, &spd);
1307 return ret;
1310 static ssize_t relay_file_splice_read(struct file *in,
1311 loff_t *ppos,
1312 struct pipe_inode_info *pipe,
1313 size_t len,
1314 unsigned int flags)
1316 ssize_t spliced;
1317 int ret;
1318 int nonpad_ret = 0;
1320 ret = 0;
1321 spliced = 0;
1323 while (len && !spliced) {
1324 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1325 if (ret < 0)
1326 break;
1327 else if (!ret) {
1328 if (flags & SPLICE_F_NONBLOCK)
1329 ret = -EAGAIN;
1330 break;
1333 *ppos += ret;
1334 if (ret > len)
1335 len = 0;
1336 else
1337 len -= ret;
1338 spliced += nonpad_ret;
1339 nonpad_ret = 0;
1342 if (spliced)
1343 return spliced;
1345 return ret;
1348 const struct file_operations relay_file_operations = {
1349 .open = relay_file_open,
1350 .poll = relay_file_poll,
1351 .mmap = relay_file_mmap,
1352 .read = relay_file_read,
1353 .llseek = no_llseek,
1354 .release = relay_file_release,
1355 .splice_read = relay_file_splice_read,
1357 EXPORT_SYMBOL_GPL(relay_file_operations);
1359 static __init int relay_init(void)
1362 hotcpu_notifier(relay_hotcpu_callback, 0);
1363 return 0;
1366 early_initcall(relay_init);