Merge remote-tracking branch 'cleancache/linux-next'
[linux-2.6/next.git] / drivers / net / cassini.c
blob22ce03e55b835f15b1cb1c48f0d256f5a0572125
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19 * 02111-1307, USA.
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
24 * The cassini chip has a number of features that distinguish it from
25 * the gem chip:
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
37 * on them.
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
40 * to make them happy.
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
46 * the page.
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targeted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
56 * ioctl.
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
64 * instead.
66 * by default, the selective clear mask is set up to process rx packets.
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/vmalloc.h>
79 #include <linux/ioport.h>
80 #include <linux/pci.h>
81 #include <linux/mm.h>
82 #include <linux/highmem.h>
83 #include <linux/list.h>
84 #include <linux/dma-mapping.h>
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
89 #include <linux/ethtool.h>
90 #include <linux/crc32.h>
91 #include <linux/random.h>
92 #include <linux/mii.h>
93 #include <linux/ip.h>
94 #include <linux/tcp.h>
95 #include <linux/mutex.h>
96 #include <linux/firmware.h>
98 #include <net/checksum.h>
100 #include <asm/atomic.h>
101 #include <asm/system.h>
102 #include <asm/io.h>
103 #include <asm/byteorder.h>
104 #include <asm/uaccess.h>
106 #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
107 #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
108 #define CAS_NCPUS num_online_cpus()
110 #define cas_skb_release(x) netif_rx(x)
112 /* select which firmware to use */
113 #define USE_HP_WORKAROUND
114 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
115 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
117 #include "cassini.h"
119 #define USE_TX_COMPWB /* use completion writeback registers */
120 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
121 #define USE_RX_BLANK /* hw interrupt mitigation */
122 #undef USE_ENTROPY_DEV /* don't test for entropy device */
124 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
125 * also, we need to make cp->lock finer-grained.
127 #undef USE_PCI_INTB
128 #undef USE_PCI_INTC
129 #undef USE_PCI_INTD
130 #undef USE_QOS
132 #undef USE_VPD_DEBUG /* debug vpd information if defined */
134 /* rx processing options */
135 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
136 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
137 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
138 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
139 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
141 #define DRV_MODULE_NAME "cassini"
142 #define DRV_MODULE_VERSION "1.6"
143 #define DRV_MODULE_RELDATE "21 May 2008"
145 #define CAS_DEF_MSG_ENABLE \
146 (NETIF_MSG_DRV | \
147 NETIF_MSG_PROBE | \
148 NETIF_MSG_LINK | \
149 NETIF_MSG_TIMER | \
150 NETIF_MSG_IFDOWN | \
151 NETIF_MSG_IFUP | \
152 NETIF_MSG_RX_ERR | \
153 NETIF_MSG_TX_ERR)
155 /* length of time before we decide the hardware is borked,
156 * and dev->tx_timeout() should be called to fix the problem
158 #define CAS_TX_TIMEOUT (HZ)
159 #define CAS_LINK_TIMEOUT (22*HZ/10)
160 #define CAS_LINK_FAST_TIMEOUT (1)
162 /* timeout values for state changing. these specify the number
163 * of 10us delays to be used before giving up.
165 #define STOP_TRIES_PHY 1000
166 #define STOP_TRIES 5000
168 /* specify a minimum frame size to deal with some fifo issues
169 * max mtu == 2 * page size - ethernet header - 64 - swivel =
170 * 2 * page_size - 0x50
172 #define CAS_MIN_FRAME 97
173 #define CAS_1000MB_MIN_FRAME 255
174 #define CAS_MIN_MTU 60
175 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
177 #if 1
179 * Eliminate these and use separate atomic counters for each, to
180 * avoid a race condition.
182 #else
183 #define CAS_RESET_MTU 1
184 #define CAS_RESET_ALL 2
185 #define CAS_RESET_SPARE 3
186 #endif
188 static char version[] __devinitdata =
189 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
191 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
192 static int link_mode;
194 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
195 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
196 MODULE_LICENSE("GPL");
197 MODULE_FIRMWARE("sun/cassini.bin");
198 module_param(cassini_debug, int, 0);
199 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
200 module_param(link_mode, int, 0);
201 MODULE_PARM_DESC(link_mode, "default link mode");
204 * Work around for a PCS bug in which the link goes down due to the chip
205 * being confused and never showing a link status of "up."
207 #define DEFAULT_LINKDOWN_TIMEOUT 5
209 * Value in seconds, for user input.
211 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
212 module_param(linkdown_timeout, int, 0);
213 MODULE_PARM_DESC(linkdown_timeout,
214 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
217 * value in 'ticks' (units used by jiffies). Set when we init the
218 * module because 'HZ' in actually a function call on some flavors of
219 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
221 static int link_transition_timeout;
225 static u16 link_modes[] __devinitdata = {
226 BMCR_ANENABLE, /* 0 : autoneg */
227 0, /* 1 : 10bt half duplex */
228 BMCR_SPEED100, /* 2 : 100bt half duplex */
229 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
230 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
231 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
234 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl) = {
235 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
236 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
237 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
239 { 0, }
242 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
244 static void cas_set_link_modes(struct cas *cp);
246 static inline void cas_lock_tx(struct cas *cp)
248 int i;
250 for (i = 0; i < N_TX_RINGS; i++)
251 spin_lock(&cp->tx_lock[i]);
254 static inline void cas_lock_all(struct cas *cp)
256 spin_lock_irq(&cp->lock);
257 cas_lock_tx(cp);
260 /* WTZ: QA was finding deadlock problems with the previous
261 * versions after long test runs with multiple cards per machine.
262 * See if replacing cas_lock_all with safer versions helps. The
263 * symptoms QA is reporting match those we'd expect if interrupts
264 * aren't being properly restored, and we fixed a previous deadlock
265 * with similar symptoms by using save/restore versions in other
266 * places.
268 #define cas_lock_all_save(cp, flags) \
269 do { \
270 struct cas *xxxcp = (cp); \
271 spin_lock_irqsave(&xxxcp->lock, flags); \
272 cas_lock_tx(xxxcp); \
273 } while (0)
275 static inline void cas_unlock_tx(struct cas *cp)
277 int i;
279 for (i = N_TX_RINGS; i > 0; i--)
280 spin_unlock(&cp->tx_lock[i - 1]);
283 static inline void cas_unlock_all(struct cas *cp)
285 cas_unlock_tx(cp);
286 spin_unlock_irq(&cp->lock);
289 #define cas_unlock_all_restore(cp, flags) \
290 do { \
291 struct cas *xxxcp = (cp); \
292 cas_unlock_tx(xxxcp); \
293 spin_unlock_irqrestore(&xxxcp->lock, flags); \
294 } while (0)
296 static void cas_disable_irq(struct cas *cp, const int ring)
298 /* Make sure we won't get any more interrupts */
299 if (ring == 0) {
300 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
301 return;
304 /* disable completion interrupts and selectively mask */
305 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
306 switch (ring) {
307 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
308 #ifdef USE_PCI_INTB
309 case 1:
310 #endif
311 #ifdef USE_PCI_INTC
312 case 2:
313 #endif
314 #ifdef USE_PCI_INTD
315 case 3:
316 #endif
317 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
318 cp->regs + REG_PLUS_INTRN_MASK(ring));
319 break;
320 #endif
321 default:
322 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
323 REG_PLUS_INTRN_MASK(ring));
324 break;
329 static inline void cas_mask_intr(struct cas *cp)
331 int i;
333 for (i = 0; i < N_RX_COMP_RINGS; i++)
334 cas_disable_irq(cp, i);
337 static void cas_enable_irq(struct cas *cp, const int ring)
339 if (ring == 0) { /* all but TX_DONE */
340 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
341 return;
344 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
345 switch (ring) {
346 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
347 #ifdef USE_PCI_INTB
348 case 1:
349 #endif
350 #ifdef USE_PCI_INTC
351 case 2:
352 #endif
353 #ifdef USE_PCI_INTD
354 case 3:
355 #endif
356 writel(INTRN_MASK_RX_EN, cp->regs +
357 REG_PLUS_INTRN_MASK(ring));
358 break;
359 #endif
360 default:
361 break;
366 static inline void cas_unmask_intr(struct cas *cp)
368 int i;
370 for (i = 0; i < N_RX_COMP_RINGS; i++)
371 cas_enable_irq(cp, i);
374 static inline void cas_entropy_gather(struct cas *cp)
376 #ifdef USE_ENTROPY_DEV
377 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
378 return;
380 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
381 readl(cp->regs + REG_ENTROPY_IV),
382 sizeof(uint64_t)*8);
383 #endif
386 static inline void cas_entropy_reset(struct cas *cp)
388 #ifdef USE_ENTROPY_DEV
389 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
390 return;
392 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
393 cp->regs + REG_BIM_LOCAL_DEV_EN);
394 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
395 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
397 /* if we read back 0x0, we don't have an entropy device */
398 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
399 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
400 #endif
403 /* access to the phy. the following assumes that we've initialized the MIF to
404 * be in frame rather than bit-bang mode
406 static u16 cas_phy_read(struct cas *cp, int reg)
408 u32 cmd;
409 int limit = STOP_TRIES_PHY;
411 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
412 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
413 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
414 cmd |= MIF_FRAME_TURN_AROUND_MSB;
415 writel(cmd, cp->regs + REG_MIF_FRAME);
417 /* poll for completion */
418 while (limit-- > 0) {
419 udelay(10);
420 cmd = readl(cp->regs + REG_MIF_FRAME);
421 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
422 return cmd & MIF_FRAME_DATA_MASK;
424 return 0xFFFF; /* -1 */
427 static int cas_phy_write(struct cas *cp, int reg, u16 val)
429 int limit = STOP_TRIES_PHY;
430 u32 cmd;
432 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
433 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
434 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
435 cmd |= MIF_FRAME_TURN_AROUND_MSB;
436 cmd |= val & MIF_FRAME_DATA_MASK;
437 writel(cmd, cp->regs + REG_MIF_FRAME);
439 /* poll for completion */
440 while (limit-- > 0) {
441 udelay(10);
442 cmd = readl(cp->regs + REG_MIF_FRAME);
443 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
444 return 0;
446 return -1;
449 static void cas_phy_powerup(struct cas *cp)
451 u16 ctl = cas_phy_read(cp, MII_BMCR);
453 if ((ctl & BMCR_PDOWN) == 0)
454 return;
455 ctl &= ~BMCR_PDOWN;
456 cas_phy_write(cp, MII_BMCR, ctl);
459 static void cas_phy_powerdown(struct cas *cp)
461 u16 ctl = cas_phy_read(cp, MII_BMCR);
463 if (ctl & BMCR_PDOWN)
464 return;
465 ctl |= BMCR_PDOWN;
466 cas_phy_write(cp, MII_BMCR, ctl);
469 /* cp->lock held. note: the last put_page will free the buffer */
470 static int cas_page_free(struct cas *cp, cas_page_t *page)
472 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
473 PCI_DMA_FROMDEVICE);
474 __free_pages(page->buffer, cp->page_order);
475 kfree(page);
476 return 0;
479 #ifdef RX_COUNT_BUFFERS
480 #define RX_USED_ADD(x, y) ((x)->used += (y))
481 #define RX_USED_SET(x, y) ((x)->used = (y))
482 #else
483 #define RX_USED_ADD(x, y)
484 #define RX_USED_SET(x, y)
485 #endif
487 /* local page allocation routines for the receive buffers. jumbo pages
488 * require at least 8K contiguous and 8K aligned buffers.
490 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
492 cas_page_t *page;
494 page = kmalloc(sizeof(cas_page_t), flags);
495 if (!page)
496 return NULL;
498 INIT_LIST_HEAD(&page->list);
499 RX_USED_SET(page, 0);
500 page->buffer = alloc_pages(flags, cp->page_order);
501 if (!page->buffer)
502 goto page_err;
503 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
504 cp->page_size, PCI_DMA_FROMDEVICE);
505 return page;
507 page_err:
508 kfree(page);
509 return NULL;
512 /* initialize spare pool of rx buffers, but allocate during the open */
513 static void cas_spare_init(struct cas *cp)
515 spin_lock(&cp->rx_inuse_lock);
516 INIT_LIST_HEAD(&cp->rx_inuse_list);
517 spin_unlock(&cp->rx_inuse_lock);
519 spin_lock(&cp->rx_spare_lock);
520 INIT_LIST_HEAD(&cp->rx_spare_list);
521 cp->rx_spares_needed = RX_SPARE_COUNT;
522 spin_unlock(&cp->rx_spare_lock);
525 /* used on close. free all the spare buffers. */
526 static void cas_spare_free(struct cas *cp)
528 struct list_head list, *elem, *tmp;
530 /* free spare buffers */
531 INIT_LIST_HEAD(&list);
532 spin_lock(&cp->rx_spare_lock);
533 list_splice_init(&cp->rx_spare_list, &list);
534 spin_unlock(&cp->rx_spare_lock);
535 list_for_each_safe(elem, tmp, &list) {
536 cas_page_free(cp, list_entry(elem, cas_page_t, list));
539 INIT_LIST_HEAD(&list);
540 #if 1
542 * Looks like Adrian had protected this with a different
543 * lock than used everywhere else to manipulate this list.
545 spin_lock(&cp->rx_inuse_lock);
546 list_splice_init(&cp->rx_inuse_list, &list);
547 spin_unlock(&cp->rx_inuse_lock);
548 #else
549 spin_lock(&cp->rx_spare_lock);
550 list_splice_init(&cp->rx_inuse_list, &list);
551 spin_unlock(&cp->rx_spare_lock);
552 #endif
553 list_for_each_safe(elem, tmp, &list) {
554 cas_page_free(cp, list_entry(elem, cas_page_t, list));
558 /* replenish spares if needed */
559 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
561 struct list_head list, *elem, *tmp;
562 int needed, i;
564 /* check inuse list. if we don't need any more free buffers,
565 * just free it
568 /* make a local copy of the list */
569 INIT_LIST_HEAD(&list);
570 spin_lock(&cp->rx_inuse_lock);
571 list_splice_init(&cp->rx_inuse_list, &list);
572 spin_unlock(&cp->rx_inuse_lock);
574 list_for_each_safe(elem, tmp, &list) {
575 cas_page_t *page = list_entry(elem, cas_page_t, list);
578 * With the lockless pagecache, cassini buffering scheme gets
579 * slightly less accurate: we might find that a page has an
580 * elevated reference count here, due to a speculative ref,
581 * and skip it as in-use. Ideally we would be able to reclaim
582 * it. However this would be such a rare case, it doesn't
583 * matter too much as we should pick it up the next time round.
585 * Importantly, if we find that the page has a refcount of 1
586 * here (our refcount), then we know it is definitely not inuse
587 * so we can reuse it.
589 if (page_count(page->buffer) > 1)
590 continue;
592 list_del(elem);
593 spin_lock(&cp->rx_spare_lock);
594 if (cp->rx_spares_needed > 0) {
595 list_add(elem, &cp->rx_spare_list);
596 cp->rx_spares_needed--;
597 spin_unlock(&cp->rx_spare_lock);
598 } else {
599 spin_unlock(&cp->rx_spare_lock);
600 cas_page_free(cp, page);
604 /* put any inuse buffers back on the list */
605 if (!list_empty(&list)) {
606 spin_lock(&cp->rx_inuse_lock);
607 list_splice(&list, &cp->rx_inuse_list);
608 spin_unlock(&cp->rx_inuse_lock);
611 spin_lock(&cp->rx_spare_lock);
612 needed = cp->rx_spares_needed;
613 spin_unlock(&cp->rx_spare_lock);
614 if (!needed)
615 return;
617 /* we still need spares, so try to allocate some */
618 INIT_LIST_HEAD(&list);
619 i = 0;
620 while (i < needed) {
621 cas_page_t *spare = cas_page_alloc(cp, flags);
622 if (!spare)
623 break;
624 list_add(&spare->list, &list);
625 i++;
628 spin_lock(&cp->rx_spare_lock);
629 list_splice(&list, &cp->rx_spare_list);
630 cp->rx_spares_needed -= i;
631 spin_unlock(&cp->rx_spare_lock);
634 /* pull a page from the list. */
635 static cas_page_t *cas_page_dequeue(struct cas *cp)
637 struct list_head *entry;
638 int recover;
640 spin_lock(&cp->rx_spare_lock);
641 if (list_empty(&cp->rx_spare_list)) {
642 /* try to do a quick recovery */
643 spin_unlock(&cp->rx_spare_lock);
644 cas_spare_recover(cp, GFP_ATOMIC);
645 spin_lock(&cp->rx_spare_lock);
646 if (list_empty(&cp->rx_spare_list)) {
647 netif_err(cp, rx_err, cp->dev,
648 "no spare buffers available\n");
649 spin_unlock(&cp->rx_spare_lock);
650 return NULL;
654 entry = cp->rx_spare_list.next;
655 list_del(entry);
656 recover = ++cp->rx_spares_needed;
657 spin_unlock(&cp->rx_spare_lock);
659 /* trigger the timer to do the recovery */
660 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
661 #if 1
662 atomic_inc(&cp->reset_task_pending);
663 atomic_inc(&cp->reset_task_pending_spare);
664 schedule_work(&cp->reset_task);
665 #else
666 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
667 schedule_work(&cp->reset_task);
668 #endif
670 return list_entry(entry, cas_page_t, list);
674 static void cas_mif_poll(struct cas *cp, const int enable)
676 u32 cfg;
678 cfg = readl(cp->regs + REG_MIF_CFG);
679 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
681 if (cp->phy_type & CAS_PHY_MII_MDIO1)
682 cfg |= MIF_CFG_PHY_SELECT;
684 /* poll and interrupt on link status change. */
685 if (enable) {
686 cfg |= MIF_CFG_POLL_EN;
687 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
688 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
690 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
691 cp->regs + REG_MIF_MASK);
692 writel(cfg, cp->regs + REG_MIF_CFG);
695 /* Must be invoked under cp->lock */
696 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
698 u16 ctl;
699 #if 1
700 int lcntl;
701 int changed = 0;
702 int oldstate = cp->lstate;
703 int link_was_not_down = !(oldstate == link_down);
704 #endif
705 /* Setup link parameters */
706 if (!ep)
707 goto start_aneg;
708 lcntl = cp->link_cntl;
709 if (ep->autoneg == AUTONEG_ENABLE)
710 cp->link_cntl = BMCR_ANENABLE;
711 else {
712 u32 speed = ethtool_cmd_speed(ep);
713 cp->link_cntl = 0;
714 if (speed == SPEED_100)
715 cp->link_cntl |= BMCR_SPEED100;
716 else if (speed == SPEED_1000)
717 cp->link_cntl |= CAS_BMCR_SPEED1000;
718 if (ep->duplex == DUPLEX_FULL)
719 cp->link_cntl |= BMCR_FULLDPLX;
721 #if 1
722 changed = (lcntl != cp->link_cntl);
723 #endif
724 start_aneg:
725 if (cp->lstate == link_up) {
726 netdev_info(cp->dev, "PCS link down\n");
727 } else {
728 if (changed) {
729 netdev_info(cp->dev, "link configuration changed\n");
732 cp->lstate = link_down;
733 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
734 if (!cp->hw_running)
735 return;
736 #if 1
738 * WTZ: If the old state was link_up, we turn off the carrier
739 * to replicate everything we do elsewhere on a link-down
740 * event when we were already in a link-up state..
742 if (oldstate == link_up)
743 netif_carrier_off(cp->dev);
744 if (changed && link_was_not_down) {
746 * WTZ: This branch will simply schedule a full reset after
747 * we explicitly changed link modes in an ioctl. See if this
748 * fixes the link-problems we were having for forced mode.
750 atomic_inc(&cp->reset_task_pending);
751 atomic_inc(&cp->reset_task_pending_all);
752 schedule_work(&cp->reset_task);
753 cp->timer_ticks = 0;
754 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
755 return;
757 #endif
758 if (cp->phy_type & CAS_PHY_SERDES) {
759 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
761 if (cp->link_cntl & BMCR_ANENABLE) {
762 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
763 cp->lstate = link_aneg;
764 } else {
765 if (cp->link_cntl & BMCR_FULLDPLX)
766 val |= PCS_MII_CTRL_DUPLEX;
767 val &= ~PCS_MII_AUTONEG_EN;
768 cp->lstate = link_force_ok;
770 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
771 writel(val, cp->regs + REG_PCS_MII_CTRL);
773 } else {
774 cas_mif_poll(cp, 0);
775 ctl = cas_phy_read(cp, MII_BMCR);
776 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
777 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
778 ctl |= cp->link_cntl;
779 if (ctl & BMCR_ANENABLE) {
780 ctl |= BMCR_ANRESTART;
781 cp->lstate = link_aneg;
782 } else {
783 cp->lstate = link_force_ok;
785 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
786 cas_phy_write(cp, MII_BMCR, ctl);
787 cas_mif_poll(cp, 1);
790 cp->timer_ticks = 0;
791 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
794 /* Must be invoked under cp->lock. */
795 static int cas_reset_mii_phy(struct cas *cp)
797 int limit = STOP_TRIES_PHY;
798 u16 val;
800 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
801 udelay(100);
802 while (--limit) {
803 val = cas_phy_read(cp, MII_BMCR);
804 if ((val & BMCR_RESET) == 0)
805 break;
806 udelay(10);
808 return limit <= 0;
811 static int cas_saturn_firmware_init(struct cas *cp)
813 const struct firmware *fw;
814 const char fw_name[] = "sun/cassini.bin";
815 int err;
817 if (PHY_NS_DP83065 != cp->phy_id)
818 return 0;
820 err = request_firmware(&fw, fw_name, &cp->pdev->dev);
821 if (err) {
822 pr_err("Failed to load firmware \"%s\"\n",
823 fw_name);
824 return err;
826 if (fw->size < 2) {
827 pr_err("bogus length %zu in \"%s\"\n",
828 fw->size, fw_name);
829 err = -EINVAL;
830 goto out;
832 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
833 cp->fw_size = fw->size - 2;
834 cp->fw_data = vmalloc(cp->fw_size);
835 if (!cp->fw_data) {
836 err = -ENOMEM;
837 pr_err("\"%s\" Failed %d\n", fw_name, err);
838 goto out;
840 memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
841 out:
842 release_firmware(fw);
843 return err;
846 static void cas_saturn_firmware_load(struct cas *cp)
848 int i;
850 cas_phy_powerdown(cp);
852 /* expanded memory access mode */
853 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
855 /* pointer configuration for new firmware */
856 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
857 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
858 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
859 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
860 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
861 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
862 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
863 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
865 /* download new firmware */
866 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
867 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
868 for (i = 0; i < cp->fw_size; i++)
869 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
871 /* enable firmware */
872 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
873 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
877 /* phy initialization */
878 static void cas_phy_init(struct cas *cp)
880 u16 val;
882 /* if we're in MII/GMII mode, set up phy */
883 if (CAS_PHY_MII(cp->phy_type)) {
884 writel(PCS_DATAPATH_MODE_MII,
885 cp->regs + REG_PCS_DATAPATH_MODE);
887 cas_mif_poll(cp, 0);
888 cas_reset_mii_phy(cp); /* take out of isolate mode */
890 if (PHY_LUCENT_B0 == cp->phy_id) {
891 /* workaround link up/down issue with lucent */
892 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
893 cas_phy_write(cp, MII_BMCR, 0x00f1);
894 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
896 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
897 /* workarounds for broadcom phy */
898 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
899 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
900 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
901 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
902 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
903 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
904 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
905 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
906 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
907 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
908 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
910 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
911 val = cas_phy_read(cp, BROADCOM_MII_REG4);
912 val = cas_phy_read(cp, BROADCOM_MII_REG4);
913 if (val & 0x0080) {
914 /* link workaround */
915 cas_phy_write(cp, BROADCOM_MII_REG4,
916 val & ~0x0080);
919 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
920 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
921 SATURN_PCFG_FSI : 0x0,
922 cp->regs + REG_SATURN_PCFG);
924 /* load firmware to address 10Mbps auto-negotiation
925 * issue. NOTE: this will need to be changed if the
926 * default firmware gets fixed.
928 if (PHY_NS_DP83065 == cp->phy_id) {
929 cas_saturn_firmware_load(cp);
931 cas_phy_powerup(cp);
934 /* advertise capabilities */
935 val = cas_phy_read(cp, MII_BMCR);
936 val &= ~BMCR_ANENABLE;
937 cas_phy_write(cp, MII_BMCR, val);
938 udelay(10);
940 cas_phy_write(cp, MII_ADVERTISE,
941 cas_phy_read(cp, MII_ADVERTISE) |
942 (ADVERTISE_10HALF | ADVERTISE_10FULL |
943 ADVERTISE_100HALF | ADVERTISE_100FULL |
944 CAS_ADVERTISE_PAUSE |
945 CAS_ADVERTISE_ASYM_PAUSE));
947 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
948 /* make sure that we don't advertise half
949 * duplex to avoid a chip issue
951 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
952 val &= ~CAS_ADVERTISE_1000HALF;
953 val |= CAS_ADVERTISE_1000FULL;
954 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
957 } else {
958 /* reset pcs for serdes */
959 u32 val;
960 int limit;
962 writel(PCS_DATAPATH_MODE_SERDES,
963 cp->regs + REG_PCS_DATAPATH_MODE);
965 /* enable serdes pins on saturn */
966 if (cp->cas_flags & CAS_FLAG_SATURN)
967 writel(0, cp->regs + REG_SATURN_PCFG);
969 /* Reset PCS unit. */
970 val = readl(cp->regs + REG_PCS_MII_CTRL);
971 val |= PCS_MII_RESET;
972 writel(val, cp->regs + REG_PCS_MII_CTRL);
974 limit = STOP_TRIES;
975 while (--limit > 0) {
976 udelay(10);
977 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
978 PCS_MII_RESET) == 0)
979 break;
981 if (limit <= 0)
982 netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
983 readl(cp->regs + REG_PCS_STATE_MACHINE));
985 /* Make sure PCS is disabled while changing advertisement
986 * configuration.
988 writel(0x0, cp->regs + REG_PCS_CFG);
990 /* Advertise all capabilities except half-duplex. */
991 val = readl(cp->regs + REG_PCS_MII_ADVERT);
992 val &= ~PCS_MII_ADVERT_HD;
993 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
994 PCS_MII_ADVERT_ASYM_PAUSE);
995 writel(val, cp->regs + REG_PCS_MII_ADVERT);
997 /* enable PCS */
998 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
1000 /* pcs workaround: enable sync detect */
1001 writel(PCS_SERDES_CTRL_SYNCD_EN,
1002 cp->regs + REG_PCS_SERDES_CTRL);
1007 static int cas_pcs_link_check(struct cas *cp)
1009 u32 stat, state_machine;
1010 int retval = 0;
1012 /* The link status bit latches on zero, so you must
1013 * read it twice in such a case to see a transition
1014 * to the link being up.
1016 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1017 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1018 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1020 /* The remote-fault indication is only valid
1021 * when autoneg has completed.
1023 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1024 PCS_MII_STATUS_REMOTE_FAULT)) ==
1025 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1026 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1028 /* work around link detection issue by querying the PCS state
1029 * machine directly.
1031 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1032 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1033 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1034 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1035 stat |= PCS_MII_STATUS_LINK_STATUS;
1038 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1039 if (cp->lstate != link_up) {
1040 if (cp->opened) {
1041 cp->lstate = link_up;
1042 cp->link_transition = LINK_TRANSITION_LINK_UP;
1044 cas_set_link_modes(cp);
1045 netif_carrier_on(cp->dev);
1048 } else if (cp->lstate == link_up) {
1049 cp->lstate = link_down;
1050 if (link_transition_timeout != 0 &&
1051 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1052 !cp->link_transition_jiffies_valid) {
1054 * force a reset, as a workaround for the
1055 * link-failure problem. May want to move this to a
1056 * point a bit earlier in the sequence. If we had
1057 * generated a reset a short time ago, we'll wait for
1058 * the link timer to check the status until a
1059 * timer expires (link_transistion_jiffies_valid is
1060 * true when the timer is running.) Instead of using
1061 * a system timer, we just do a check whenever the
1062 * link timer is running - this clears the flag after
1063 * a suitable delay.
1065 retval = 1;
1066 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1067 cp->link_transition_jiffies = jiffies;
1068 cp->link_transition_jiffies_valid = 1;
1069 } else {
1070 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1072 netif_carrier_off(cp->dev);
1073 if (cp->opened)
1074 netif_info(cp, link, cp->dev, "PCS link down\n");
1076 /* Cassini only: if you force a mode, there can be
1077 * sync problems on link down. to fix that, the following
1078 * things need to be checked:
1079 * 1) read serialink state register
1080 * 2) read pcs status register to verify link down.
1081 * 3) if link down and serial link == 0x03, then you need
1082 * to global reset the chip.
1084 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1085 /* should check to see if we're in a forced mode */
1086 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1087 if (stat == 0x03)
1088 return 1;
1090 } else if (cp->lstate == link_down) {
1091 if (link_transition_timeout != 0 &&
1092 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1093 !cp->link_transition_jiffies_valid) {
1094 /* force a reset, as a workaround for the
1095 * link-failure problem. May want to move
1096 * this to a point a bit earlier in the
1097 * sequence.
1099 retval = 1;
1100 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1101 cp->link_transition_jiffies = jiffies;
1102 cp->link_transition_jiffies_valid = 1;
1103 } else {
1104 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1108 return retval;
1111 static int cas_pcs_interrupt(struct net_device *dev,
1112 struct cas *cp, u32 status)
1114 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1116 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1117 return 0;
1118 return cas_pcs_link_check(cp);
1121 static int cas_txmac_interrupt(struct net_device *dev,
1122 struct cas *cp, u32 status)
1124 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1126 if (!txmac_stat)
1127 return 0;
1129 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1130 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1132 /* Defer timer expiration is quite normal,
1133 * don't even log the event.
1135 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1136 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1137 return 0;
1139 spin_lock(&cp->stat_lock[0]);
1140 if (txmac_stat & MAC_TX_UNDERRUN) {
1141 netdev_err(dev, "TX MAC xmit underrun\n");
1142 cp->net_stats[0].tx_fifo_errors++;
1145 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1146 netdev_err(dev, "TX MAC max packet size error\n");
1147 cp->net_stats[0].tx_errors++;
1150 /* The rest are all cases of one of the 16-bit TX
1151 * counters expiring.
1153 if (txmac_stat & MAC_TX_COLL_NORMAL)
1154 cp->net_stats[0].collisions += 0x10000;
1156 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1157 cp->net_stats[0].tx_aborted_errors += 0x10000;
1158 cp->net_stats[0].collisions += 0x10000;
1161 if (txmac_stat & MAC_TX_COLL_LATE) {
1162 cp->net_stats[0].tx_aborted_errors += 0x10000;
1163 cp->net_stats[0].collisions += 0x10000;
1165 spin_unlock(&cp->stat_lock[0]);
1167 /* We do not keep track of MAC_TX_COLL_FIRST and
1168 * MAC_TX_PEAK_ATTEMPTS events.
1170 return 0;
1173 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1175 cas_hp_inst_t *inst;
1176 u32 val;
1177 int i;
1179 i = 0;
1180 while ((inst = firmware) && inst->note) {
1181 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1183 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1184 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1185 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1187 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1188 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1189 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1190 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1191 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1192 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1193 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1194 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1196 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1197 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1198 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1199 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1200 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1201 ++firmware;
1202 ++i;
1206 static void cas_init_rx_dma(struct cas *cp)
1208 u64 desc_dma = cp->block_dvma;
1209 u32 val;
1210 int i, size;
1212 /* rx free descriptors */
1213 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1214 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1215 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1216 if ((N_RX_DESC_RINGS > 1) &&
1217 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1218 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1219 writel(val, cp->regs + REG_RX_CFG);
1221 val = (unsigned long) cp->init_rxds[0] -
1222 (unsigned long) cp->init_block;
1223 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1224 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1225 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1227 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1228 /* rx desc 2 is for IPSEC packets. however,
1229 * we don't it that for that purpose.
1231 val = (unsigned long) cp->init_rxds[1] -
1232 (unsigned long) cp->init_block;
1233 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1234 writel((desc_dma + val) & 0xffffffff, cp->regs +
1235 REG_PLUS_RX_DB1_LOW);
1236 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1237 REG_PLUS_RX_KICK1);
1240 /* rx completion registers */
1241 val = (unsigned long) cp->init_rxcs[0] -
1242 (unsigned long) cp->init_block;
1243 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1244 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1246 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1247 /* rx comp 2-4 */
1248 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1249 val = (unsigned long) cp->init_rxcs[i] -
1250 (unsigned long) cp->init_block;
1251 writel((desc_dma + val) >> 32, cp->regs +
1252 REG_PLUS_RX_CBN_HI(i));
1253 writel((desc_dma + val) & 0xffffffff, cp->regs +
1254 REG_PLUS_RX_CBN_LOW(i));
1258 /* read selective clear regs to prevent spurious interrupts
1259 * on reset because complete == kick.
1260 * selective clear set up to prevent interrupts on resets
1262 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1263 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1264 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1265 for (i = 1; i < N_RX_COMP_RINGS; i++)
1266 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1268 /* 2 is different from 3 and 4 */
1269 if (N_RX_COMP_RINGS > 1)
1270 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1271 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1273 for (i = 2; i < N_RX_COMP_RINGS; i++)
1274 writel(INTR_RX_DONE_ALT,
1275 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1278 /* set up pause thresholds */
1279 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1280 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1281 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1282 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1283 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1285 /* zero out dma reassembly buffers */
1286 for (i = 0; i < 64; i++) {
1287 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1288 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1289 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1290 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1293 /* make sure address register is 0 for normal operation */
1294 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1295 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1297 /* interrupt mitigation */
1298 #ifdef USE_RX_BLANK
1299 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1300 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1301 writel(val, cp->regs + REG_RX_BLANK);
1302 #else
1303 writel(0x0, cp->regs + REG_RX_BLANK);
1304 #endif
1306 /* interrupt generation as a function of low water marks for
1307 * free desc and completion entries. these are used to trigger
1308 * housekeeping for rx descs. we don't use the free interrupt
1309 * as it's not very useful
1311 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1312 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1313 writel(val, cp->regs + REG_RX_AE_THRESH);
1314 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1315 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1316 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1319 /* Random early detect registers. useful for congestion avoidance.
1320 * this should be tunable.
1322 writel(0x0, cp->regs + REG_RX_RED);
1324 /* receive page sizes. default == 2K (0x800) */
1325 val = 0;
1326 if (cp->page_size == 0x1000)
1327 val = 0x1;
1328 else if (cp->page_size == 0x2000)
1329 val = 0x2;
1330 else if (cp->page_size == 0x4000)
1331 val = 0x3;
1333 /* round mtu + offset. constrain to page size. */
1334 size = cp->dev->mtu + 64;
1335 if (size > cp->page_size)
1336 size = cp->page_size;
1338 if (size <= 0x400)
1339 i = 0x0;
1340 else if (size <= 0x800)
1341 i = 0x1;
1342 else if (size <= 0x1000)
1343 i = 0x2;
1344 else
1345 i = 0x3;
1347 cp->mtu_stride = 1 << (i + 10);
1348 val = CAS_BASE(RX_PAGE_SIZE, val);
1349 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1350 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1351 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1352 writel(val, cp->regs + REG_RX_PAGE_SIZE);
1354 /* enable the header parser if desired */
1355 if (CAS_HP_FIRMWARE == cas_prog_null)
1356 return;
1358 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1359 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1360 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1361 writel(val, cp->regs + REG_HP_CFG);
1364 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1366 memset(rxc, 0, sizeof(*rxc));
1367 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1370 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1371 * flipping is protected by the fact that the chip will not
1372 * hand back the same page index while it's being processed.
1374 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1376 cas_page_t *page = cp->rx_pages[1][index];
1377 cas_page_t *new;
1379 if (page_count(page->buffer) == 1)
1380 return page;
1382 new = cas_page_dequeue(cp);
1383 if (new) {
1384 spin_lock(&cp->rx_inuse_lock);
1385 list_add(&page->list, &cp->rx_inuse_list);
1386 spin_unlock(&cp->rx_inuse_lock);
1388 return new;
1391 /* this needs to be changed if we actually use the ENC RX DESC ring */
1392 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1393 const int index)
1395 cas_page_t **page0 = cp->rx_pages[0];
1396 cas_page_t **page1 = cp->rx_pages[1];
1398 /* swap if buffer is in use */
1399 if (page_count(page0[index]->buffer) > 1) {
1400 cas_page_t *new = cas_page_spare(cp, index);
1401 if (new) {
1402 page1[index] = page0[index];
1403 page0[index] = new;
1406 RX_USED_SET(page0[index], 0);
1407 return page0[index];
1410 static void cas_clean_rxds(struct cas *cp)
1412 /* only clean ring 0 as ring 1 is used for spare buffers */
1413 struct cas_rx_desc *rxd = cp->init_rxds[0];
1414 int i, size;
1416 /* release all rx flows */
1417 for (i = 0; i < N_RX_FLOWS; i++) {
1418 struct sk_buff *skb;
1419 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1420 cas_skb_release(skb);
1424 /* initialize descriptors */
1425 size = RX_DESC_RINGN_SIZE(0);
1426 for (i = 0; i < size; i++) {
1427 cas_page_t *page = cas_page_swap(cp, 0, i);
1428 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1429 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1430 CAS_BASE(RX_INDEX_RING, 0));
1433 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1434 cp->rx_last[0] = 0;
1435 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1438 static void cas_clean_rxcs(struct cas *cp)
1440 int i, j;
1442 /* take ownership of rx comp descriptors */
1443 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1444 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1445 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1446 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1447 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1448 cas_rxc_init(rxc + j);
1453 #if 0
1454 /* When we get a RX fifo overflow, the RX unit is probably hung
1455 * so we do the following.
1457 * If any part of the reset goes wrong, we return 1 and that causes the
1458 * whole chip to be reset.
1460 static int cas_rxmac_reset(struct cas *cp)
1462 struct net_device *dev = cp->dev;
1463 int limit;
1464 u32 val;
1466 /* First, reset MAC RX. */
1467 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1468 for (limit = 0; limit < STOP_TRIES; limit++) {
1469 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1470 break;
1471 udelay(10);
1473 if (limit == STOP_TRIES) {
1474 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1475 return 1;
1478 /* Second, disable RX DMA. */
1479 writel(0, cp->regs + REG_RX_CFG);
1480 for (limit = 0; limit < STOP_TRIES; limit++) {
1481 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1482 break;
1483 udelay(10);
1485 if (limit == STOP_TRIES) {
1486 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1487 return 1;
1490 mdelay(5);
1492 /* Execute RX reset command. */
1493 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1494 for (limit = 0; limit < STOP_TRIES; limit++) {
1495 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1496 break;
1497 udelay(10);
1499 if (limit == STOP_TRIES) {
1500 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1501 return 1;
1504 /* reset driver rx state */
1505 cas_clean_rxds(cp);
1506 cas_clean_rxcs(cp);
1508 /* Now, reprogram the rest of RX unit. */
1509 cas_init_rx_dma(cp);
1511 /* re-enable */
1512 val = readl(cp->regs + REG_RX_CFG);
1513 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1514 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1515 val = readl(cp->regs + REG_MAC_RX_CFG);
1516 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1517 return 0;
1519 #endif
1521 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1522 u32 status)
1524 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1526 if (!stat)
1527 return 0;
1529 netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1531 /* these are all rollovers */
1532 spin_lock(&cp->stat_lock[0]);
1533 if (stat & MAC_RX_ALIGN_ERR)
1534 cp->net_stats[0].rx_frame_errors += 0x10000;
1536 if (stat & MAC_RX_CRC_ERR)
1537 cp->net_stats[0].rx_crc_errors += 0x10000;
1539 if (stat & MAC_RX_LEN_ERR)
1540 cp->net_stats[0].rx_length_errors += 0x10000;
1542 if (stat & MAC_RX_OVERFLOW) {
1543 cp->net_stats[0].rx_over_errors++;
1544 cp->net_stats[0].rx_fifo_errors++;
1547 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1548 * events.
1550 spin_unlock(&cp->stat_lock[0]);
1551 return 0;
1554 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1555 u32 status)
1557 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1559 if (!stat)
1560 return 0;
1562 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1563 "mac interrupt, stat: 0x%x\n", stat);
1565 /* This interrupt is just for pause frame and pause
1566 * tracking. It is useful for diagnostics and debug
1567 * but probably by default we will mask these events.
1569 if (stat & MAC_CTRL_PAUSE_STATE)
1570 cp->pause_entered++;
1572 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1573 cp->pause_last_time_recvd = (stat >> 16);
1575 return 0;
1579 /* Must be invoked under cp->lock. */
1580 static inline int cas_mdio_link_not_up(struct cas *cp)
1582 u16 val;
1584 switch (cp->lstate) {
1585 case link_force_ret:
1586 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1587 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1588 cp->timer_ticks = 5;
1589 cp->lstate = link_force_ok;
1590 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1591 break;
1593 case link_aneg:
1594 val = cas_phy_read(cp, MII_BMCR);
1596 /* Try forced modes. we try things in the following order:
1597 * 1000 full -> 100 full/half -> 10 half
1599 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1600 val |= BMCR_FULLDPLX;
1601 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1602 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1603 cas_phy_write(cp, MII_BMCR, val);
1604 cp->timer_ticks = 5;
1605 cp->lstate = link_force_try;
1606 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1607 break;
1609 case link_force_try:
1610 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1611 val = cas_phy_read(cp, MII_BMCR);
1612 cp->timer_ticks = 5;
1613 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1614 val &= ~CAS_BMCR_SPEED1000;
1615 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1616 cas_phy_write(cp, MII_BMCR, val);
1617 break;
1620 if (val & BMCR_SPEED100) {
1621 if (val & BMCR_FULLDPLX) /* fd failed */
1622 val &= ~BMCR_FULLDPLX;
1623 else { /* 100Mbps failed */
1624 val &= ~BMCR_SPEED100;
1626 cas_phy_write(cp, MII_BMCR, val);
1627 break;
1629 default:
1630 break;
1632 return 0;
1636 /* must be invoked with cp->lock held */
1637 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1639 int restart;
1641 if (bmsr & BMSR_LSTATUS) {
1642 /* Ok, here we got a link. If we had it due to a forced
1643 * fallback, and we were configured for autoneg, we
1644 * retry a short autoneg pass. If you know your hub is
1645 * broken, use ethtool ;)
1647 if ((cp->lstate == link_force_try) &&
1648 (cp->link_cntl & BMCR_ANENABLE)) {
1649 cp->lstate = link_force_ret;
1650 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1651 cas_mif_poll(cp, 0);
1652 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1653 cp->timer_ticks = 5;
1654 if (cp->opened)
1655 netif_info(cp, link, cp->dev,
1656 "Got link after fallback, retrying autoneg once...\n");
1657 cas_phy_write(cp, MII_BMCR,
1658 cp->link_fcntl | BMCR_ANENABLE |
1659 BMCR_ANRESTART);
1660 cas_mif_poll(cp, 1);
1662 } else if (cp->lstate != link_up) {
1663 cp->lstate = link_up;
1664 cp->link_transition = LINK_TRANSITION_LINK_UP;
1666 if (cp->opened) {
1667 cas_set_link_modes(cp);
1668 netif_carrier_on(cp->dev);
1671 return 0;
1674 /* link not up. if the link was previously up, we restart the
1675 * whole process
1677 restart = 0;
1678 if (cp->lstate == link_up) {
1679 cp->lstate = link_down;
1680 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1682 netif_carrier_off(cp->dev);
1683 if (cp->opened)
1684 netif_info(cp, link, cp->dev, "Link down\n");
1685 restart = 1;
1687 } else if (++cp->timer_ticks > 10)
1688 cas_mdio_link_not_up(cp);
1690 return restart;
1693 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1694 u32 status)
1696 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1697 u16 bmsr;
1699 /* check for a link change */
1700 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1701 return 0;
1703 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1704 return cas_mii_link_check(cp, bmsr);
1707 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1708 u32 status)
1710 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1712 if (!stat)
1713 return 0;
1715 netdev_err(dev, "PCI error [%04x:%04x]",
1716 stat, readl(cp->regs + REG_BIM_DIAG));
1718 /* cassini+ has this reserved */
1719 if ((stat & PCI_ERR_BADACK) &&
1720 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1721 pr_cont(" <No ACK64# during ABS64 cycle>");
1723 if (stat & PCI_ERR_DTRTO)
1724 pr_cont(" <Delayed transaction timeout>");
1725 if (stat & PCI_ERR_OTHER)
1726 pr_cont(" <other>");
1727 if (stat & PCI_ERR_BIM_DMA_WRITE)
1728 pr_cont(" <BIM DMA 0 write req>");
1729 if (stat & PCI_ERR_BIM_DMA_READ)
1730 pr_cont(" <BIM DMA 0 read req>");
1731 pr_cont("\n");
1733 if (stat & PCI_ERR_OTHER) {
1734 u16 cfg;
1736 /* Interrogate PCI config space for the
1737 * true cause.
1739 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1740 netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1741 if (cfg & PCI_STATUS_PARITY)
1742 netdev_err(dev, "PCI parity error detected\n");
1743 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1744 netdev_err(dev, "PCI target abort\n");
1745 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1746 netdev_err(dev, "PCI master acks target abort\n");
1747 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1748 netdev_err(dev, "PCI master abort\n");
1749 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1750 netdev_err(dev, "PCI system error SERR#\n");
1751 if (cfg & PCI_STATUS_DETECTED_PARITY)
1752 netdev_err(dev, "PCI parity error\n");
1754 /* Write the error bits back to clear them. */
1755 cfg &= (PCI_STATUS_PARITY |
1756 PCI_STATUS_SIG_TARGET_ABORT |
1757 PCI_STATUS_REC_TARGET_ABORT |
1758 PCI_STATUS_REC_MASTER_ABORT |
1759 PCI_STATUS_SIG_SYSTEM_ERROR |
1760 PCI_STATUS_DETECTED_PARITY);
1761 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1764 /* For all PCI errors, we should reset the chip. */
1765 return 1;
1768 /* All non-normal interrupt conditions get serviced here.
1769 * Returns non-zero if we should just exit the interrupt
1770 * handler right now (ie. if we reset the card which invalidates
1771 * all of the other original irq status bits).
1773 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1774 u32 status)
1776 if (status & INTR_RX_TAG_ERROR) {
1777 /* corrupt RX tag framing */
1778 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1779 "corrupt rx tag framing\n");
1780 spin_lock(&cp->stat_lock[0]);
1781 cp->net_stats[0].rx_errors++;
1782 spin_unlock(&cp->stat_lock[0]);
1783 goto do_reset;
1786 if (status & INTR_RX_LEN_MISMATCH) {
1787 /* length mismatch. */
1788 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1789 "length mismatch for rx frame\n");
1790 spin_lock(&cp->stat_lock[0]);
1791 cp->net_stats[0].rx_errors++;
1792 spin_unlock(&cp->stat_lock[0]);
1793 goto do_reset;
1796 if (status & INTR_PCS_STATUS) {
1797 if (cas_pcs_interrupt(dev, cp, status))
1798 goto do_reset;
1801 if (status & INTR_TX_MAC_STATUS) {
1802 if (cas_txmac_interrupt(dev, cp, status))
1803 goto do_reset;
1806 if (status & INTR_RX_MAC_STATUS) {
1807 if (cas_rxmac_interrupt(dev, cp, status))
1808 goto do_reset;
1811 if (status & INTR_MAC_CTRL_STATUS) {
1812 if (cas_mac_interrupt(dev, cp, status))
1813 goto do_reset;
1816 if (status & INTR_MIF_STATUS) {
1817 if (cas_mif_interrupt(dev, cp, status))
1818 goto do_reset;
1821 if (status & INTR_PCI_ERROR_STATUS) {
1822 if (cas_pci_interrupt(dev, cp, status))
1823 goto do_reset;
1825 return 0;
1827 do_reset:
1828 #if 1
1829 atomic_inc(&cp->reset_task_pending);
1830 atomic_inc(&cp->reset_task_pending_all);
1831 netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1832 schedule_work(&cp->reset_task);
1833 #else
1834 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1835 netdev_err(dev, "reset called in cas_abnormal_irq\n");
1836 schedule_work(&cp->reset_task);
1837 #endif
1838 return 1;
1841 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1842 * determining whether to do a netif_stop/wakeup
1844 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1845 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1846 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1847 const int len)
1849 unsigned long off = addr + len;
1851 if (CAS_TABORT(cp) == 1)
1852 return 0;
1853 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1854 return 0;
1855 return TX_TARGET_ABORT_LEN;
1858 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1860 struct cas_tx_desc *txds;
1861 struct sk_buff **skbs;
1862 struct net_device *dev = cp->dev;
1863 int entry, count;
1865 spin_lock(&cp->tx_lock[ring]);
1866 txds = cp->init_txds[ring];
1867 skbs = cp->tx_skbs[ring];
1868 entry = cp->tx_old[ring];
1870 count = TX_BUFF_COUNT(ring, entry, limit);
1871 while (entry != limit) {
1872 struct sk_buff *skb = skbs[entry];
1873 dma_addr_t daddr;
1874 u32 dlen;
1875 int frag;
1877 if (!skb) {
1878 /* this should never occur */
1879 entry = TX_DESC_NEXT(ring, entry);
1880 continue;
1883 /* however, we might get only a partial skb release. */
1884 count -= skb_shinfo(skb)->nr_frags +
1885 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1886 if (count < 0)
1887 break;
1889 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1890 "tx[%d] done, slot %d\n", ring, entry);
1892 skbs[entry] = NULL;
1893 cp->tx_tiny_use[ring][entry].nbufs = 0;
1895 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1896 struct cas_tx_desc *txd = txds + entry;
1898 daddr = le64_to_cpu(txd->buffer);
1899 dlen = CAS_VAL(TX_DESC_BUFLEN,
1900 le64_to_cpu(txd->control));
1901 pci_unmap_page(cp->pdev, daddr, dlen,
1902 PCI_DMA_TODEVICE);
1903 entry = TX_DESC_NEXT(ring, entry);
1905 /* tiny buffer may follow */
1906 if (cp->tx_tiny_use[ring][entry].used) {
1907 cp->tx_tiny_use[ring][entry].used = 0;
1908 entry = TX_DESC_NEXT(ring, entry);
1912 spin_lock(&cp->stat_lock[ring]);
1913 cp->net_stats[ring].tx_packets++;
1914 cp->net_stats[ring].tx_bytes += skb->len;
1915 spin_unlock(&cp->stat_lock[ring]);
1916 dev_kfree_skb_irq(skb);
1918 cp->tx_old[ring] = entry;
1920 /* this is wrong for multiple tx rings. the net device needs
1921 * multiple queues for this to do the right thing. we wait
1922 * for 2*packets to be available when using tiny buffers
1924 if (netif_queue_stopped(dev) &&
1925 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1926 netif_wake_queue(dev);
1927 spin_unlock(&cp->tx_lock[ring]);
1930 static void cas_tx(struct net_device *dev, struct cas *cp,
1931 u32 status)
1933 int limit, ring;
1934 #ifdef USE_TX_COMPWB
1935 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1936 #endif
1937 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1938 "tx interrupt, status: 0x%x, %llx\n",
1939 status, (unsigned long long)compwb);
1940 /* process all the rings */
1941 for (ring = 0; ring < N_TX_RINGS; ring++) {
1942 #ifdef USE_TX_COMPWB
1943 /* use the completion writeback registers */
1944 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1945 CAS_VAL(TX_COMPWB_LSB, compwb);
1946 compwb = TX_COMPWB_NEXT(compwb);
1947 #else
1948 limit = readl(cp->regs + REG_TX_COMPN(ring));
1949 #endif
1950 if (cp->tx_old[ring] != limit)
1951 cas_tx_ringN(cp, ring, limit);
1956 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1957 int entry, const u64 *words,
1958 struct sk_buff **skbref)
1960 int dlen, hlen, len, i, alloclen;
1961 int off, swivel = RX_SWIVEL_OFF_VAL;
1962 struct cas_page *page;
1963 struct sk_buff *skb;
1964 void *addr, *crcaddr;
1965 __sum16 csum;
1966 char *p;
1968 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1969 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1970 len = hlen + dlen;
1972 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1973 alloclen = len;
1974 else
1975 alloclen = max(hlen, RX_COPY_MIN);
1977 skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1978 if (skb == NULL)
1979 return -1;
1981 *skbref = skb;
1982 skb_reserve(skb, swivel);
1984 p = skb->data;
1985 addr = crcaddr = NULL;
1986 if (hlen) { /* always copy header pages */
1987 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1988 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1989 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1990 swivel;
1992 i = hlen;
1993 if (!dlen) /* attach FCS */
1994 i += cp->crc_size;
1995 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1996 PCI_DMA_FROMDEVICE);
1997 addr = cas_page_map(page->buffer);
1998 memcpy(p, addr + off, i);
1999 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2000 PCI_DMA_FROMDEVICE);
2001 cas_page_unmap(addr);
2002 RX_USED_ADD(page, 0x100);
2003 p += hlen;
2004 swivel = 0;
2008 if (alloclen < (hlen + dlen)) {
2009 skb_frag_t *frag = skb_shinfo(skb)->frags;
2011 /* normal or jumbo packets. we use frags */
2012 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2013 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2014 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2016 hlen = min(cp->page_size - off, dlen);
2017 if (hlen < 0) {
2018 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2019 "rx page overflow: %d\n", hlen);
2020 dev_kfree_skb_irq(skb);
2021 return -1;
2023 i = hlen;
2024 if (i == dlen) /* attach FCS */
2025 i += cp->crc_size;
2026 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2027 PCI_DMA_FROMDEVICE);
2029 /* make sure we always copy a header */
2030 swivel = 0;
2031 if (p == (char *) skb->data) { /* not split */
2032 addr = cas_page_map(page->buffer);
2033 memcpy(p, addr + off, RX_COPY_MIN);
2034 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2035 PCI_DMA_FROMDEVICE);
2036 cas_page_unmap(addr);
2037 off += RX_COPY_MIN;
2038 swivel = RX_COPY_MIN;
2039 RX_USED_ADD(page, cp->mtu_stride);
2040 } else {
2041 RX_USED_ADD(page, hlen);
2043 skb_put(skb, alloclen);
2045 skb_shinfo(skb)->nr_frags++;
2046 skb->data_len += hlen - swivel;
2047 skb->truesize += hlen - swivel;
2048 skb->len += hlen - swivel;
2050 get_page(page->buffer);
2051 frag->page = page->buffer;
2052 frag->page_offset = off;
2053 frag->size = hlen - swivel;
2055 /* any more data? */
2056 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2057 hlen = dlen;
2058 off = 0;
2060 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2061 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2062 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2063 hlen + cp->crc_size,
2064 PCI_DMA_FROMDEVICE);
2065 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2066 hlen + cp->crc_size,
2067 PCI_DMA_FROMDEVICE);
2069 skb_shinfo(skb)->nr_frags++;
2070 skb->data_len += hlen;
2071 skb->len += hlen;
2072 frag++;
2074 get_page(page->buffer);
2075 frag->page = page->buffer;
2076 frag->page_offset = 0;
2077 frag->size = hlen;
2078 RX_USED_ADD(page, hlen + cp->crc_size);
2081 if (cp->crc_size) {
2082 addr = cas_page_map(page->buffer);
2083 crcaddr = addr + off + hlen;
2086 } else {
2087 /* copying packet */
2088 if (!dlen)
2089 goto end_copy_pkt;
2091 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2092 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2093 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2094 hlen = min(cp->page_size - off, dlen);
2095 if (hlen < 0) {
2096 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2097 "rx page overflow: %d\n", hlen);
2098 dev_kfree_skb_irq(skb);
2099 return -1;
2101 i = hlen;
2102 if (i == dlen) /* attach FCS */
2103 i += cp->crc_size;
2104 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2105 PCI_DMA_FROMDEVICE);
2106 addr = cas_page_map(page->buffer);
2107 memcpy(p, addr + off, i);
2108 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2109 PCI_DMA_FROMDEVICE);
2110 cas_page_unmap(addr);
2111 if (p == (char *) skb->data) /* not split */
2112 RX_USED_ADD(page, cp->mtu_stride);
2113 else
2114 RX_USED_ADD(page, i);
2116 /* any more data? */
2117 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2118 p += hlen;
2119 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2120 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2121 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2122 dlen + cp->crc_size,
2123 PCI_DMA_FROMDEVICE);
2124 addr = cas_page_map(page->buffer);
2125 memcpy(p, addr, dlen + cp->crc_size);
2126 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2127 dlen + cp->crc_size,
2128 PCI_DMA_FROMDEVICE);
2129 cas_page_unmap(addr);
2130 RX_USED_ADD(page, dlen + cp->crc_size);
2132 end_copy_pkt:
2133 if (cp->crc_size) {
2134 addr = NULL;
2135 crcaddr = skb->data + alloclen;
2137 skb_put(skb, alloclen);
2140 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2141 if (cp->crc_size) {
2142 /* checksum includes FCS. strip it out. */
2143 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2144 csum_unfold(csum)));
2145 if (addr)
2146 cas_page_unmap(addr);
2148 skb->protocol = eth_type_trans(skb, cp->dev);
2149 if (skb->protocol == htons(ETH_P_IP)) {
2150 skb->csum = csum_unfold(~csum);
2151 skb->ip_summed = CHECKSUM_COMPLETE;
2152 } else
2153 skb_checksum_none_assert(skb);
2154 return len;
2158 /* we can handle up to 64 rx flows at a time. we do the same thing
2159 * as nonreassm except that we batch up the buffers.
2160 * NOTE: we currently just treat each flow as a bunch of packets that
2161 * we pass up. a better way would be to coalesce the packets
2162 * into a jumbo packet. to do that, we need to do the following:
2163 * 1) the first packet will have a clean split between header and
2164 * data. save both.
2165 * 2) each time the next flow packet comes in, extend the
2166 * data length and merge the checksums.
2167 * 3) on flow release, fix up the header.
2168 * 4) make sure the higher layer doesn't care.
2169 * because packets get coalesced, we shouldn't run into fragment count
2170 * issues.
2172 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2173 struct sk_buff *skb)
2175 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2176 struct sk_buff_head *flow = &cp->rx_flows[flowid];
2178 /* this is protected at a higher layer, so no need to
2179 * do any additional locking here. stick the buffer
2180 * at the end.
2182 __skb_queue_tail(flow, skb);
2183 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2184 while ((skb = __skb_dequeue(flow))) {
2185 cas_skb_release(skb);
2190 /* put rx descriptor back on ring. if a buffer is in use by a higher
2191 * layer, this will need to put in a replacement.
2193 static void cas_post_page(struct cas *cp, const int ring, const int index)
2195 cas_page_t *new;
2196 int entry;
2198 entry = cp->rx_old[ring];
2200 new = cas_page_swap(cp, ring, index);
2201 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2202 cp->init_rxds[ring][entry].index =
2203 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2204 CAS_BASE(RX_INDEX_RING, ring));
2206 entry = RX_DESC_ENTRY(ring, entry + 1);
2207 cp->rx_old[ring] = entry;
2209 if (entry % 4)
2210 return;
2212 if (ring == 0)
2213 writel(entry, cp->regs + REG_RX_KICK);
2214 else if ((N_RX_DESC_RINGS > 1) &&
2215 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2216 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2220 /* only when things are bad */
2221 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2223 unsigned int entry, last, count, released;
2224 int cluster;
2225 cas_page_t **page = cp->rx_pages[ring];
2227 entry = cp->rx_old[ring];
2229 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2230 "rxd[%d] interrupt, done: %d\n", ring, entry);
2232 cluster = -1;
2233 count = entry & 0x3;
2234 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2235 released = 0;
2236 while (entry != last) {
2237 /* make a new buffer if it's still in use */
2238 if (page_count(page[entry]->buffer) > 1) {
2239 cas_page_t *new = cas_page_dequeue(cp);
2240 if (!new) {
2241 /* let the timer know that we need to
2242 * do this again
2244 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2245 if (!timer_pending(&cp->link_timer))
2246 mod_timer(&cp->link_timer, jiffies +
2247 CAS_LINK_FAST_TIMEOUT);
2248 cp->rx_old[ring] = entry;
2249 cp->rx_last[ring] = num ? num - released : 0;
2250 return -ENOMEM;
2252 spin_lock(&cp->rx_inuse_lock);
2253 list_add(&page[entry]->list, &cp->rx_inuse_list);
2254 spin_unlock(&cp->rx_inuse_lock);
2255 cp->init_rxds[ring][entry].buffer =
2256 cpu_to_le64(new->dma_addr);
2257 page[entry] = new;
2261 if (++count == 4) {
2262 cluster = entry;
2263 count = 0;
2265 released++;
2266 entry = RX_DESC_ENTRY(ring, entry + 1);
2268 cp->rx_old[ring] = entry;
2270 if (cluster < 0)
2271 return 0;
2273 if (ring == 0)
2274 writel(cluster, cp->regs + REG_RX_KICK);
2275 else if ((N_RX_DESC_RINGS > 1) &&
2276 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2277 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2278 return 0;
2282 /* process a completion ring. packets are set up in three basic ways:
2283 * small packets: should be copied header + data in single buffer.
2284 * large packets: header and data in a single buffer.
2285 * split packets: header in a separate buffer from data.
2286 * data may be in multiple pages. data may be > 256
2287 * bytes but in a single page.
2289 * NOTE: RX page posting is done in this routine as well. while there's
2290 * the capability of using multiple RX completion rings, it isn't
2291 * really worthwhile due to the fact that the page posting will
2292 * force serialization on the single descriptor ring.
2294 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2296 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2297 int entry, drops;
2298 int npackets = 0;
2300 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2301 "rx[%d] interrupt, done: %d/%d\n",
2302 ring,
2303 readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2305 entry = cp->rx_new[ring];
2306 drops = 0;
2307 while (1) {
2308 struct cas_rx_comp *rxc = rxcs + entry;
2309 struct sk_buff *uninitialized_var(skb);
2310 int type, len;
2311 u64 words[4];
2312 int i, dring;
2314 words[0] = le64_to_cpu(rxc->word1);
2315 words[1] = le64_to_cpu(rxc->word2);
2316 words[2] = le64_to_cpu(rxc->word3);
2317 words[3] = le64_to_cpu(rxc->word4);
2319 /* don't touch if still owned by hw */
2320 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2321 if (type == 0)
2322 break;
2324 /* hw hasn't cleared the zero bit yet */
2325 if (words[3] & RX_COMP4_ZERO) {
2326 break;
2329 /* get info on the packet */
2330 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2331 spin_lock(&cp->stat_lock[ring]);
2332 cp->net_stats[ring].rx_errors++;
2333 if (words[3] & RX_COMP4_LEN_MISMATCH)
2334 cp->net_stats[ring].rx_length_errors++;
2335 if (words[3] & RX_COMP4_BAD)
2336 cp->net_stats[ring].rx_crc_errors++;
2337 spin_unlock(&cp->stat_lock[ring]);
2339 /* We'll just return it to Cassini. */
2340 drop_it:
2341 spin_lock(&cp->stat_lock[ring]);
2342 ++cp->net_stats[ring].rx_dropped;
2343 spin_unlock(&cp->stat_lock[ring]);
2344 goto next;
2347 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2348 if (len < 0) {
2349 ++drops;
2350 goto drop_it;
2353 /* see if it's a flow re-assembly or not. the driver
2354 * itself handles release back up.
2356 if (RX_DONT_BATCH || (type == 0x2)) {
2357 /* non-reassm: these always get released */
2358 cas_skb_release(skb);
2359 } else {
2360 cas_rx_flow_pkt(cp, words, skb);
2363 spin_lock(&cp->stat_lock[ring]);
2364 cp->net_stats[ring].rx_packets++;
2365 cp->net_stats[ring].rx_bytes += len;
2366 spin_unlock(&cp->stat_lock[ring]);
2368 next:
2369 npackets++;
2371 /* should it be released? */
2372 if (words[0] & RX_COMP1_RELEASE_HDR) {
2373 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2374 dring = CAS_VAL(RX_INDEX_RING, i);
2375 i = CAS_VAL(RX_INDEX_NUM, i);
2376 cas_post_page(cp, dring, i);
2379 if (words[0] & RX_COMP1_RELEASE_DATA) {
2380 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2381 dring = CAS_VAL(RX_INDEX_RING, i);
2382 i = CAS_VAL(RX_INDEX_NUM, i);
2383 cas_post_page(cp, dring, i);
2386 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2387 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2388 dring = CAS_VAL(RX_INDEX_RING, i);
2389 i = CAS_VAL(RX_INDEX_NUM, i);
2390 cas_post_page(cp, dring, i);
2393 /* skip to the next entry */
2394 entry = RX_COMP_ENTRY(ring, entry + 1 +
2395 CAS_VAL(RX_COMP1_SKIP, words[0]));
2396 #ifdef USE_NAPI
2397 if (budget && (npackets >= budget))
2398 break;
2399 #endif
2401 cp->rx_new[ring] = entry;
2403 if (drops)
2404 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2405 return npackets;
2409 /* put completion entries back on the ring */
2410 static void cas_post_rxcs_ringN(struct net_device *dev,
2411 struct cas *cp, int ring)
2413 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2414 int last, entry;
2416 last = cp->rx_cur[ring];
2417 entry = cp->rx_new[ring];
2418 netif_printk(cp, intr, KERN_DEBUG, dev,
2419 "rxc[%d] interrupt, done: %d/%d\n",
2420 ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2422 /* zero and re-mark descriptors */
2423 while (last != entry) {
2424 cas_rxc_init(rxc + last);
2425 last = RX_COMP_ENTRY(ring, last + 1);
2427 cp->rx_cur[ring] = last;
2429 if (ring == 0)
2430 writel(last, cp->regs + REG_RX_COMP_TAIL);
2431 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2432 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2437 /* cassini can use all four PCI interrupts for the completion ring.
2438 * rings 3 and 4 are identical
2440 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2441 static inline void cas_handle_irqN(struct net_device *dev,
2442 struct cas *cp, const u32 status,
2443 const int ring)
2445 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2446 cas_post_rxcs_ringN(dev, cp, ring);
2449 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2451 struct net_device *dev = dev_id;
2452 struct cas *cp = netdev_priv(dev);
2453 unsigned long flags;
2454 int ring;
2455 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2457 /* check for shared irq */
2458 if (status == 0)
2459 return IRQ_NONE;
2461 ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2462 spin_lock_irqsave(&cp->lock, flags);
2463 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2464 #ifdef USE_NAPI
2465 cas_mask_intr(cp);
2466 napi_schedule(&cp->napi);
2467 #else
2468 cas_rx_ringN(cp, ring, 0);
2469 #endif
2470 status &= ~INTR_RX_DONE_ALT;
2473 if (status)
2474 cas_handle_irqN(dev, cp, status, ring);
2475 spin_unlock_irqrestore(&cp->lock, flags);
2476 return IRQ_HANDLED;
2478 #endif
2480 #ifdef USE_PCI_INTB
2481 /* everything but rx packets */
2482 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2484 if (status & INTR_RX_BUF_UNAVAIL_1) {
2485 /* Frame arrived, no free RX buffers available.
2486 * NOTE: we can get this on a link transition. */
2487 cas_post_rxds_ringN(cp, 1, 0);
2488 spin_lock(&cp->stat_lock[1]);
2489 cp->net_stats[1].rx_dropped++;
2490 spin_unlock(&cp->stat_lock[1]);
2493 if (status & INTR_RX_BUF_AE_1)
2494 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2495 RX_AE_FREEN_VAL(1));
2497 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2498 cas_post_rxcs_ringN(cp, 1);
2501 /* ring 2 handles a few more events than 3 and 4 */
2502 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2504 struct net_device *dev = dev_id;
2505 struct cas *cp = netdev_priv(dev);
2506 unsigned long flags;
2507 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2509 /* check for shared interrupt */
2510 if (status == 0)
2511 return IRQ_NONE;
2513 spin_lock_irqsave(&cp->lock, flags);
2514 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2515 #ifdef USE_NAPI
2516 cas_mask_intr(cp);
2517 napi_schedule(&cp->napi);
2518 #else
2519 cas_rx_ringN(cp, 1, 0);
2520 #endif
2521 status &= ~INTR_RX_DONE_ALT;
2523 if (status)
2524 cas_handle_irq1(cp, status);
2525 spin_unlock_irqrestore(&cp->lock, flags);
2526 return IRQ_HANDLED;
2528 #endif
2530 static inline void cas_handle_irq(struct net_device *dev,
2531 struct cas *cp, const u32 status)
2533 /* housekeeping interrupts */
2534 if (status & INTR_ERROR_MASK)
2535 cas_abnormal_irq(dev, cp, status);
2537 if (status & INTR_RX_BUF_UNAVAIL) {
2538 /* Frame arrived, no free RX buffers available.
2539 * NOTE: we can get this on a link transition.
2541 cas_post_rxds_ringN(cp, 0, 0);
2542 spin_lock(&cp->stat_lock[0]);
2543 cp->net_stats[0].rx_dropped++;
2544 spin_unlock(&cp->stat_lock[0]);
2545 } else if (status & INTR_RX_BUF_AE) {
2546 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2547 RX_AE_FREEN_VAL(0));
2550 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2551 cas_post_rxcs_ringN(dev, cp, 0);
2554 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2556 struct net_device *dev = dev_id;
2557 struct cas *cp = netdev_priv(dev);
2558 unsigned long flags;
2559 u32 status = readl(cp->regs + REG_INTR_STATUS);
2561 if (status == 0)
2562 return IRQ_NONE;
2564 spin_lock_irqsave(&cp->lock, flags);
2565 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2566 cas_tx(dev, cp, status);
2567 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2570 if (status & INTR_RX_DONE) {
2571 #ifdef USE_NAPI
2572 cas_mask_intr(cp);
2573 napi_schedule(&cp->napi);
2574 #else
2575 cas_rx_ringN(cp, 0, 0);
2576 #endif
2577 status &= ~INTR_RX_DONE;
2580 if (status)
2581 cas_handle_irq(dev, cp, status);
2582 spin_unlock_irqrestore(&cp->lock, flags);
2583 return IRQ_HANDLED;
2587 #ifdef USE_NAPI
2588 static int cas_poll(struct napi_struct *napi, int budget)
2590 struct cas *cp = container_of(napi, struct cas, napi);
2591 struct net_device *dev = cp->dev;
2592 int i, enable_intr, credits;
2593 u32 status = readl(cp->regs + REG_INTR_STATUS);
2594 unsigned long flags;
2596 spin_lock_irqsave(&cp->lock, flags);
2597 cas_tx(dev, cp, status);
2598 spin_unlock_irqrestore(&cp->lock, flags);
2600 /* NAPI rx packets. we spread the credits across all of the
2601 * rxc rings
2603 * to make sure we're fair with the work we loop through each
2604 * ring N_RX_COMP_RING times with a request of
2605 * budget / N_RX_COMP_RINGS
2607 enable_intr = 1;
2608 credits = 0;
2609 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2610 int j;
2611 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2612 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2613 if (credits >= budget) {
2614 enable_intr = 0;
2615 goto rx_comp;
2620 rx_comp:
2621 /* final rx completion */
2622 spin_lock_irqsave(&cp->lock, flags);
2623 if (status)
2624 cas_handle_irq(dev, cp, status);
2626 #ifdef USE_PCI_INTB
2627 if (N_RX_COMP_RINGS > 1) {
2628 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2629 if (status)
2630 cas_handle_irq1(dev, cp, status);
2632 #endif
2634 #ifdef USE_PCI_INTC
2635 if (N_RX_COMP_RINGS > 2) {
2636 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2637 if (status)
2638 cas_handle_irqN(dev, cp, status, 2);
2640 #endif
2642 #ifdef USE_PCI_INTD
2643 if (N_RX_COMP_RINGS > 3) {
2644 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2645 if (status)
2646 cas_handle_irqN(dev, cp, status, 3);
2648 #endif
2649 spin_unlock_irqrestore(&cp->lock, flags);
2650 if (enable_intr) {
2651 napi_complete(napi);
2652 cas_unmask_intr(cp);
2654 return credits;
2656 #endif
2658 #ifdef CONFIG_NET_POLL_CONTROLLER
2659 static void cas_netpoll(struct net_device *dev)
2661 struct cas *cp = netdev_priv(dev);
2663 cas_disable_irq(cp, 0);
2664 cas_interrupt(cp->pdev->irq, dev);
2665 cas_enable_irq(cp, 0);
2667 #ifdef USE_PCI_INTB
2668 if (N_RX_COMP_RINGS > 1) {
2669 /* cas_interrupt1(); */
2671 #endif
2672 #ifdef USE_PCI_INTC
2673 if (N_RX_COMP_RINGS > 2) {
2674 /* cas_interruptN(); */
2676 #endif
2677 #ifdef USE_PCI_INTD
2678 if (N_RX_COMP_RINGS > 3) {
2679 /* cas_interruptN(); */
2681 #endif
2683 #endif
2685 static void cas_tx_timeout(struct net_device *dev)
2687 struct cas *cp = netdev_priv(dev);
2689 netdev_err(dev, "transmit timed out, resetting\n");
2690 if (!cp->hw_running) {
2691 netdev_err(dev, "hrm.. hw not running!\n");
2692 return;
2695 netdev_err(dev, "MIF_STATE[%08x]\n",
2696 readl(cp->regs + REG_MIF_STATE_MACHINE));
2698 netdev_err(dev, "MAC_STATE[%08x]\n",
2699 readl(cp->regs + REG_MAC_STATE_MACHINE));
2701 netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2702 readl(cp->regs + REG_TX_CFG),
2703 readl(cp->regs + REG_MAC_TX_STATUS),
2704 readl(cp->regs + REG_MAC_TX_CFG),
2705 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2706 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2707 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2708 readl(cp->regs + REG_TX_SM_1),
2709 readl(cp->regs + REG_TX_SM_2));
2711 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2712 readl(cp->regs + REG_RX_CFG),
2713 readl(cp->regs + REG_MAC_RX_STATUS),
2714 readl(cp->regs + REG_MAC_RX_CFG));
2716 netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2717 readl(cp->regs + REG_HP_STATE_MACHINE),
2718 readl(cp->regs + REG_HP_STATUS0),
2719 readl(cp->regs + REG_HP_STATUS1),
2720 readl(cp->regs + REG_HP_STATUS2));
2722 #if 1
2723 atomic_inc(&cp->reset_task_pending);
2724 atomic_inc(&cp->reset_task_pending_all);
2725 schedule_work(&cp->reset_task);
2726 #else
2727 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2728 schedule_work(&cp->reset_task);
2729 #endif
2732 static inline int cas_intme(int ring, int entry)
2734 /* Algorithm: IRQ every 1/2 of descriptors. */
2735 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2736 return 1;
2737 return 0;
2741 static void cas_write_txd(struct cas *cp, int ring, int entry,
2742 dma_addr_t mapping, int len, u64 ctrl, int last)
2744 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2746 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2747 if (cas_intme(ring, entry))
2748 ctrl |= TX_DESC_INTME;
2749 if (last)
2750 ctrl |= TX_DESC_EOF;
2751 txd->control = cpu_to_le64(ctrl);
2752 txd->buffer = cpu_to_le64(mapping);
2755 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2756 const int entry)
2758 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2761 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2762 const int entry, const int tentry)
2764 cp->tx_tiny_use[ring][tentry].nbufs++;
2765 cp->tx_tiny_use[ring][entry].used = 1;
2766 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2769 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2770 struct sk_buff *skb)
2772 struct net_device *dev = cp->dev;
2773 int entry, nr_frags, frag, tabort, tentry;
2774 dma_addr_t mapping;
2775 unsigned long flags;
2776 u64 ctrl;
2777 u32 len;
2779 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2781 /* This is a hard error, log it. */
2782 if (TX_BUFFS_AVAIL(cp, ring) <=
2783 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2784 netif_stop_queue(dev);
2785 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2786 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2787 return 1;
2790 ctrl = 0;
2791 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2792 const u64 csum_start_off = skb_checksum_start_offset(skb);
2793 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2795 ctrl = TX_DESC_CSUM_EN |
2796 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2797 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2800 entry = cp->tx_new[ring];
2801 cp->tx_skbs[ring][entry] = skb;
2803 nr_frags = skb_shinfo(skb)->nr_frags;
2804 len = skb_headlen(skb);
2805 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2806 offset_in_page(skb->data), len,
2807 PCI_DMA_TODEVICE);
2809 tentry = entry;
2810 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2811 if (unlikely(tabort)) {
2812 /* NOTE: len is always > tabort */
2813 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2814 ctrl | TX_DESC_SOF, 0);
2815 entry = TX_DESC_NEXT(ring, entry);
2817 skb_copy_from_linear_data_offset(skb, len - tabort,
2818 tx_tiny_buf(cp, ring, entry), tabort);
2819 mapping = tx_tiny_map(cp, ring, entry, tentry);
2820 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2821 (nr_frags == 0));
2822 } else {
2823 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2824 TX_DESC_SOF, (nr_frags == 0));
2826 entry = TX_DESC_NEXT(ring, entry);
2828 for (frag = 0; frag < nr_frags; frag++) {
2829 skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2831 len = fragp->size;
2832 mapping = pci_map_page(cp->pdev, fragp->page,
2833 fragp->page_offset, len,
2834 PCI_DMA_TODEVICE);
2836 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2837 if (unlikely(tabort)) {
2838 void *addr;
2840 /* NOTE: len is always > tabort */
2841 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2842 ctrl, 0);
2843 entry = TX_DESC_NEXT(ring, entry);
2845 addr = cas_page_map(fragp->page);
2846 memcpy(tx_tiny_buf(cp, ring, entry),
2847 addr + fragp->page_offset + len - tabort,
2848 tabort);
2849 cas_page_unmap(addr);
2850 mapping = tx_tiny_map(cp, ring, entry, tentry);
2851 len = tabort;
2854 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2855 (frag + 1 == nr_frags));
2856 entry = TX_DESC_NEXT(ring, entry);
2859 cp->tx_new[ring] = entry;
2860 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2861 netif_stop_queue(dev);
2863 netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2864 "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2865 ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2866 writel(entry, cp->regs + REG_TX_KICKN(ring));
2867 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2868 return 0;
2871 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2873 struct cas *cp = netdev_priv(dev);
2875 /* this is only used as a load-balancing hint, so it doesn't
2876 * need to be SMP safe
2878 static int ring;
2880 if (skb_padto(skb, cp->min_frame_size))
2881 return NETDEV_TX_OK;
2883 /* XXX: we need some higher-level QoS hooks to steer packets to
2884 * individual queues.
2886 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2887 return NETDEV_TX_BUSY;
2888 return NETDEV_TX_OK;
2891 static void cas_init_tx_dma(struct cas *cp)
2893 u64 desc_dma = cp->block_dvma;
2894 unsigned long off;
2895 u32 val;
2896 int i;
2898 /* set up tx completion writeback registers. must be 8-byte aligned */
2899 #ifdef USE_TX_COMPWB
2900 off = offsetof(struct cas_init_block, tx_compwb);
2901 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2902 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2903 #endif
2905 /* enable completion writebacks, enable paced mode,
2906 * disable read pipe, and disable pre-interrupt compwbs
2908 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2909 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2910 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2911 TX_CFG_INTR_COMPWB_DIS;
2913 /* write out tx ring info and tx desc bases */
2914 for (i = 0; i < MAX_TX_RINGS; i++) {
2915 off = (unsigned long) cp->init_txds[i] -
2916 (unsigned long) cp->init_block;
2918 val |= CAS_TX_RINGN_BASE(i);
2919 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2920 writel((desc_dma + off) & 0xffffffff, cp->regs +
2921 REG_TX_DBN_LOW(i));
2922 /* don't zero out the kick register here as the system
2923 * will wedge
2926 writel(val, cp->regs + REG_TX_CFG);
2928 /* program max burst sizes. these numbers should be different
2929 * if doing QoS.
2931 #ifdef USE_QOS
2932 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2933 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2934 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2935 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2936 #else
2937 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2938 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2939 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2940 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2941 #endif
2944 /* Must be invoked under cp->lock. */
2945 static inline void cas_init_dma(struct cas *cp)
2947 cas_init_tx_dma(cp);
2948 cas_init_rx_dma(cp);
2951 static void cas_process_mc_list(struct cas *cp)
2953 u16 hash_table[16];
2954 u32 crc;
2955 struct netdev_hw_addr *ha;
2956 int i = 1;
2958 memset(hash_table, 0, sizeof(hash_table));
2959 netdev_for_each_mc_addr(ha, cp->dev) {
2960 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2961 /* use the alternate mac address registers for the
2962 * first 15 multicast addresses
2964 writel((ha->addr[4] << 8) | ha->addr[5],
2965 cp->regs + REG_MAC_ADDRN(i*3 + 0));
2966 writel((ha->addr[2] << 8) | ha->addr[3],
2967 cp->regs + REG_MAC_ADDRN(i*3 + 1));
2968 writel((ha->addr[0] << 8) | ha->addr[1],
2969 cp->regs + REG_MAC_ADDRN(i*3 + 2));
2970 i++;
2972 else {
2973 /* use hw hash table for the next series of
2974 * multicast addresses
2976 crc = ether_crc_le(ETH_ALEN, ha->addr);
2977 crc >>= 24;
2978 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2981 for (i = 0; i < 16; i++)
2982 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2985 /* Must be invoked under cp->lock. */
2986 static u32 cas_setup_multicast(struct cas *cp)
2988 u32 rxcfg = 0;
2989 int i;
2991 if (cp->dev->flags & IFF_PROMISC) {
2992 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2994 } else if (cp->dev->flags & IFF_ALLMULTI) {
2995 for (i=0; i < 16; i++)
2996 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2997 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2999 } else {
3000 cas_process_mc_list(cp);
3001 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3004 return rxcfg;
3007 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3008 static void cas_clear_mac_err(struct cas *cp)
3010 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3011 writel(0, cp->regs + REG_MAC_COLL_FIRST);
3012 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3013 writel(0, cp->regs + REG_MAC_COLL_LATE);
3014 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3015 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3016 writel(0, cp->regs + REG_MAC_RECV_FRAME);
3017 writel(0, cp->regs + REG_MAC_LEN_ERR);
3018 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3019 writel(0, cp->regs + REG_MAC_FCS_ERR);
3020 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3024 static void cas_mac_reset(struct cas *cp)
3026 int i;
3028 /* do both TX and RX reset */
3029 writel(0x1, cp->regs + REG_MAC_TX_RESET);
3030 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3032 /* wait for TX */
3033 i = STOP_TRIES;
3034 while (i-- > 0) {
3035 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3036 break;
3037 udelay(10);
3040 /* wait for RX */
3041 i = STOP_TRIES;
3042 while (i-- > 0) {
3043 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3044 break;
3045 udelay(10);
3048 if (readl(cp->regs + REG_MAC_TX_RESET) |
3049 readl(cp->regs + REG_MAC_RX_RESET))
3050 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3051 readl(cp->regs + REG_MAC_TX_RESET),
3052 readl(cp->regs + REG_MAC_RX_RESET),
3053 readl(cp->regs + REG_MAC_STATE_MACHINE));
3057 /* Must be invoked under cp->lock. */
3058 static void cas_init_mac(struct cas *cp)
3060 unsigned char *e = &cp->dev->dev_addr[0];
3061 int i;
3062 cas_mac_reset(cp);
3064 /* setup core arbitration weight register */
3065 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3067 /* XXX Use pci_dma_burst_advice() */
3068 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3069 /* set the infinite burst register for chips that don't have
3070 * pci issues.
3072 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3073 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3074 #endif
3076 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3078 writel(0x00, cp->regs + REG_MAC_IPG0);
3079 writel(0x08, cp->regs + REG_MAC_IPG1);
3080 writel(0x04, cp->regs + REG_MAC_IPG2);
3082 /* change later for 802.3z */
3083 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3085 /* min frame + FCS */
3086 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3088 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3089 * specify the maximum frame size to prevent RX tag errors on
3090 * oversized frames.
3092 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3093 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3094 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3095 cp->regs + REG_MAC_FRAMESIZE_MAX);
3097 /* NOTE: crc_size is used as a surrogate for half-duplex.
3098 * workaround saturn half-duplex issue by increasing preamble
3099 * size to 65 bytes.
3101 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3102 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3103 else
3104 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3105 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3106 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3107 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3109 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3111 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3112 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3113 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3114 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3115 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3117 /* setup mac address in perfect filter array */
3118 for (i = 0; i < 45; i++)
3119 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3121 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3122 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3123 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3125 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3126 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3127 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3129 cp->mac_rx_cfg = cas_setup_multicast(cp);
3131 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3132 cas_clear_mac_err(cp);
3133 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3135 /* Setup MAC interrupts. We want to get all of the interesting
3136 * counter expiration events, but we do not want to hear about
3137 * normal rx/tx as the DMA engine tells us that.
3139 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3140 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3142 /* Don't enable even the PAUSE interrupts for now, we
3143 * make no use of those events other than to record them.
3145 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3148 /* Must be invoked under cp->lock. */
3149 static void cas_init_pause_thresholds(struct cas *cp)
3151 /* Calculate pause thresholds. Setting the OFF threshold to the
3152 * full RX fifo size effectively disables PAUSE generation
3154 if (cp->rx_fifo_size <= (2 * 1024)) {
3155 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3156 } else {
3157 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3158 if (max_frame * 3 > cp->rx_fifo_size) {
3159 cp->rx_pause_off = 7104;
3160 cp->rx_pause_on = 960;
3161 } else {
3162 int off = (cp->rx_fifo_size - (max_frame * 2));
3163 int on = off - max_frame;
3164 cp->rx_pause_off = off;
3165 cp->rx_pause_on = on;
3170 static int cas_vpd_match(const void __iomem *p, const char *str)
3172 int len = strlen(str) + 1;
3173 int i;
3175 for (i = 0; i < len; i++) {
3176 if (readb(p + i) != str[i])
3177 return 0;
3179 return 1;
3183 /* get the mac address by reading the vpd information in the rom.
3184 * also get the phy type and determine if there's an entropy generator.
3185 * NOTE: this is a bit convoluted for the following reasons:
3186 * 1) vpd info has order-dependent mac addresses for multinic cards
3187 * 2) the only way to determine the nic order is to use the slot
3188 * number.
3189 * 3) fiber cards don't have bridges, so their slot numbers don't
3190 * mean anything.
3191 * 4) we don't actually know we have a fiber card until after
3192 * the mac addresses are parsed.
3194 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3195 const int offset)
3197 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3198 void __iomem *base, *kstart;
3199 int i, len;
3200 int found = 0;
3201 #define VPD_FOUND_MAC 0x01
3202 #define VPD_FOUND_PHY 0x02
3204 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3205 int mac_off = 0;
3207 #if defined(CONFIG_SPARC)
3208 const unsigned char *addr;
3209 #endif
3211 /* give us access to the PROM */
3212 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3213 cp->regs + REG_BIM_LOCAL_DEV_EN);
3215 /* check for an expansion rom */
3216 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3217 goto use_random_mac_addr;
3219 /* search for beginning of vpd */
3220 base = NULL;
3221 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3222 /* check for PCIR */
3223 if ((readb(p + i + 0) == 0x50) &&
3224 (readb(p + i + 1) == 0x43) &&
3225 (readb(p + i + 2) == 0x49) &&
3226 (readb(p + i + 3) == 0x52)) {
3227 base = p + (readb(p + i + 8) |
3228 (readb(p + i + 9) << 8));
3229 break;
3233 if (!base || (readb(base) != 0x82))
3234 goto use_random_mac_addr;
3236 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3237 while (i < EXPANSION_ROM_SIZE) {
3238 if (readb(base + i) != 0x90) /* no vpd found */
3239 goto use_random_mac_addr;
3241 /* found a vpd field */
3242 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3244 /* extract keywords */
3245 kstart = base + i + 3;
3246 p = kstart;
3247 while ((p - kstart) < len) {
3248 int klen = readb(p + 2);
3249 int j;
3250 char type;
3252 p += 3;
3254 /* look for the following things:
3255 * -- correct length == 29
3256 * 3 (type) + 2 (size) +
3257 * 18 (strlen("local-mac-address") + 1) +
3258 * 6 (mac addr)
3259 * -- VPD Instance 'I'
3260 * -- VPD Type Bytes 'B'
3261 * -- VPD data length == 6
3262 * -- property string == local-mac-address
3264 * -- correct length == 24
3265 * 3 (type) + 2 (size) +
3266 * 12 (strlen("entropy-dev") + 1) +
3267 * 7 (strlen("vms110") + 1)
3268 * -- VPD Instance 'I'
3269 * -- VPD Type String 'B'
3270 * -- VPD data length == 7
3271 * -- property string == entropy-dev
3273 * -- correct length == 18
3274 * 3 (type) + 2 (size) +
3275 * 9 (strlen("phy-type") + 1) +
3276 * 4 (strlen("pcs") + 1)
3277 * -- VPD Instance 'I'
3278 * -- VPD Type String 'S'
3279 * -- VPD data length == 4
3280 * -- property string == phy-type
3282 * -- correct length == 23
3283 * 3 (type) + 2 (size) +
3284 * 14 (strlen("phy-interface") + 1) +
3285 * 4 (strlen("pcs") + 1)
3286 * -- VPD Instance 'I'
3287 * -- VPD Type String 'S'
3288 * -- VPD data length == 4
3289 * -- property string == phy-interface
3291 if (readb(p) != 'I')
3292 goto next;
3294 /* finally, check string and length */
3295 type = readb(p + 3);
3296 if (type == 'B') {
3297 if ((klen == 29) && readb(p + 4) == 6 &&
3298 cas_vpd_match(p + 5,
3299 "local-mac-address")) {
3300 if (mac_off++ > offset)
3301 goto next;
3303 /* set mac address */
3304 for (j = 0; j < 6; j++)
3305 dev_addr[j] =
3306 readb(p + 23 + j);
3307 goto found_mac;
3311 if (type != 'S')
3312 goto next;
3314 #ifdef USE_ENTROPY_DEV
3315 if ((klen == 24) &&
3316 cas_vpd_match(p + 5, "entropy-dev") &&
3317 cas_vpd_match(p + 17, "vms110")) {
3318 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3319 goto next;
3321 #endif
3323 if (found & VPD_FOUND_PHY)
3324 goto next;
3326 if ((klen == 18) && readb(p + 4) == 4 &&
3327 cas_vpd_match(p + 5, "phy-type")) {
3328 if (cas_vpd_match(p + 14, "pcs")) {
3329 phy_type = CAS_PHY_SERDES;
3330 goto found_phy;
3334 if ((klen == 23) && readb(p + 4) == 4 &&
3335 cas_vpd_match(p + 5, "phy-interface")) {
3336 if (cas_vpd_match(p + 19, "pcs")) {
3337 phy_type = CAS_PHY_SERDES;
3338 goto found_phy;
3341 found_mac:
3342 found |= VPD_FOUND_MAC;
3343 goto next;
3345 found_phy:
3346 found |= VPD_FOUND_PHY;
3348 next:
3349 p += klen;
3351 i += len + 3;
3354 use_random_mac_addr:
3355 if (found & VPD_FOUND_MAC)
3356 goto done;
3358 #if defined(CONFIG_SPARC)
3359 addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3360 if (addr != NULL) {
3361 memcpy(dev_addr, addr, 6);
3362 goto done;
3364 #endif
3366 /* Sun MAC prefix then 3 random bytes. */
3367 pr_info("MAC address not found in ROM VPD\n");
3368 dev_addr[0] = 0x08;
3369 dev_addr[1] = 0x00;
3370 dev_addr[2] = 0x20;
3371 get_random_bytes(dev_addr + 3, 3);
3373 done:
3374 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3375 return phy_type;
3378 /* check pci invariants */
3379 static void cas_check_pci_invariants(struct cas *cp)
3381 struct pci_dev *pdev = cp->pdev;
3383 cp->cas_flags = 0;
3384 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3385 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3386 if (pdev->revision >= CAS_ID_REVPLUS)
3387 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3388 if (pdev->revision < CAS_ID_REVPLUS02u)
3389 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3391 /* Original Cassini supports HW CSUM, but it's not
3392 * enabled by default as it can trigger TX hangs.
3394 if (pdev->revision < CAS_ID_REV2)
3395 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3396 } else {
3397 /* Only sun has original cassini chips. */
3398 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3400 /* We use a flag because the same phy might be externally
3401 * connected.
3403 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3404 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3405 cp->cas_flags |= CAS_FLAG_SATURN;
3410 static int cas_check_invariants(struct cas *cp)
3412 struct pci_dev *pdev = cp->pdev;
3413 u32 cfg;
3414 int i;
3416 /* get page size for rx buffers. */
3417 cp->page_order = 0;
3418 #ifdef USE_PAGE_ORDER
3419 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3420 /* see if we can allocate larger pages */
3421 struct page *page = alloc_pages(GFP_ATOMIC,
3422 CAS_JUMBO_PAGE_SHIFT -
3423 PAGE_SHIFT);
3424 if (page) {
3425 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3426 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3427 } else {
3428 printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3431 #endif
3432 cp->page_size = (PAGE_SIZE << cp->page_order);
3434 /* Fetch the FIFO configurations. */
3435 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3436 cp->rx_fifo_size = RX_FIFO_SIZE;
3438 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3439 * they're both connected.
3441 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3442 PCI_SLOT(pdev->devfn));
3443 if (cp->phy_type & CAS_PHY_SERDES) {
3444 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3445 return 0; /* no more checking needed */
3448 /* MII */
3449 cfg = readl(cp->regs + REG_MIF_CFG);
3450 if (cfg & MIF_CFG_MDIO_1) {
3451 cp->phy_type = CAS_PHY_MII_MDIO1;
3452 } else if (cfg & MIF_CFG_MDIO_0) {
3453 cp->phy_type = CAS_PHY_MII_MDIO0;
3456 cas_mif_poll(cp, 0);
3457 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3459 for (i = 0; i < 32; i++) {
3460 u32 phy_id;
3461 int j;
3463 for (j = 0; j < 3; j++) {
3464 cp->phy_addr = i;
3465 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3466 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3467 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3468 cp->phy_id = phy_id;
3469 goto done;
3473 pr_err("MII phy did not respond [%08x]\n",
3474 readl(cp->regs + REG_MIF_STATE_MACHINE));
3475 return -1;
3477 done:
3478 /* see if we can do gigabit */
3479 cfg = cas_phy_read(cp, MII_BMSR);
3480 if ((cfg & CAS_BMSR_1000_EXTEND) &&
3481 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3482 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3483 return 0;
3486 /* Must be invoked under cp->lock. */
3487 static inline void cas_start_dma(struct cas *cp)
3489 int i;
3490 u32 val;
3491 int txfailed = 0;
3493 /* enable dma */
3494 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3495 writel(val, cp->regs + REG_TX_CFG);
3496 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3497 writel(val, cp->regs + REG_RX_CFG);
3499 /* enable the mac */
3500 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3501 writel(val, cp->regs + REG_MAC_TX_CFG);
3502 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3503 writel(val, cp->regs + REG_MAC_RX_CFG);
3505 i = STOP_TRIES;
3506 while (i-- > 0) {
3507 val = readl(cp->regs + REG_MAC_TX_CFG);
3508 if ((val & MAC_TX_CFG_EN))
3509 break;
3510 udelay(10);
3512 if (i < 0) txfailed = 1;
3513 i = STOP_TRIES;
3514 while (i-- > 0) {
3515 val = readl(cp->regs + REG_MAC_RX_CFG);
3516 if ((val & MAC_RX_CFG_EN)) {
3517 if (txfailed) {
3518 netdev_err(cp->dev,
3519 "enabling mac failed [tx:%08x:%08x]\n",
3520 readl(cp->regs + REG_MIF_STATE_MACHINE),
3521 readl(cp->regs + REG_MAC_STATE_MACHINE));
3523 goto enable_rx_done;
3525 udelay(10);
3527 netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3528 (txfailed ? "tx,rx" : "rx"),
3529 readl(cp->regs + REG_MIF_STATE_MACHINE),
3530 readl(cp->regs + REG_MAC_STATE_MACHINE));
3532 enable_rx_done:
3533 cas_unmask_intr(cp); /* enable interrupts */
3534 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3535 writel(0, cp->regs + REG_RX_COMP_TAIL);
3537 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3538 if (N_RX_DESC_RINGS > 1)
3539 writel(RX_DESC_RINGN_SIZE(1) - 4,
3540 cp->regs + REG_PLUS_RX_KICK1);
3542 for (i = 1; i < N_RX_COMP_RINGS; i++)
3543 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3547 /* Must be invoked under cp->lock. */
3548 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3549 int *pause)
3551 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3552 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3553 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3554 if (val & PCS_MII_LPA_ASYM_PAUSE)
3555 *pause |= 0x10;
3556 *spd = 1000;
3559 /* Must be invoked under cp->lock. */
3560 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3561 int *pause)
3563 u32 val;
3565 *fd = 0;
3566 *spd = 10;
3567 *pause = 0;
3569 /* use GMII registers */
3570 val = cas_phy_read(cp, MII_LPA);
3571 if (val & CAS_LPA_PAUSE)
3572 *pause = 0x01;
3574 if (val & CAS_LPA_ASYM_PAUSE)
3575 *pause |= 0x10;
3577 if (val & LPA_DUPLEX)
3578 *fd = 1;
3579 if (val & LPA_100)
3580 *spd = 100;
3582 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3583 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3584 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3585 *spd = 1000;
3586 if (val & CAS_LPA_1000FULL)
3587 *fd = 1;
3591 /* A link-up condition has occurred, initialize and enable the
3592 * rest of the chip.
3594 * Must be invoked under cp->lock.
3596 static void cas_set_link_modes(struct cas *cp)
3598 u32 val;
3599 int full_duplex, speed, pause;
3601 full_duplex = 0;
3602 speed = 10;
3603 pause = 0;
3605 if (CAS_PHY_MII(cp->phy_type)) {
3606 cas_mif_poll(cp, 0);
3607 val = cas_phy_read(cp, MII_BMCR);
3608 if (val & BMCR_ANENABLE) {
3609 cas_read_mii_link_mode(cp, &full_duplex, &speed,
3610 &pause);
3611 } else {
3612 if (val & BMCR_FULLDPLX)
3613 full_duplex = 1;
3615 if (val & BMCR_SPEED100)
3616 speed = 100;
3617 else if (val & CAS_BMCR_SPEED1000)
3618 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3619 1000 : 100;
3621 cas_mif_poll(cp, 1);
3623 } else {
3624 val = readl(cp->regs + REG_PCS_MII_CTRL);
3625 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3626 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3627 if (val & PCS_MII_CTRL_DUPLEX)
3628 full_duplex = 1;
3632 netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3633 speed, full_duplex ? "full" : "half");
3635 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3636 if (CAS_PHY_MII(cp->phy_type)) {
3637 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3638 if (!full_duplex)
3639 val |= MAC_XIF_DISABLE_ECHO;
3641 if (full_duplex)
3642 val |= MAC_XIF_FDPLX_LED;
3643 if (speed == 1000)
3644 val |= MAC_XIF_GMII_MODE;
3645 writel(val, cp->regs + REG_MAC_XIF_CFG);
3647 /* deal with carrier and collision detect. */
3648 val = MAC_TX_CFG_IPG_EN;
3649 if (full_duplex) {
3650 val |= MAC_TX_CFG_IGNORE_CARRIER;
3651 val |= MAC_TX_CFG_IGNORE_COLL;
3652 } else {
3653 #ifndef USE_CSMA_CD_PROTO
3654 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3655 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3656 #endif
3658 /* val now set up for REG_MAC_TX_CFG */
3660 /* If gigabit and half-duplex, enable carrier extension
3661 * mode. increase slot time to 512 bytes as well.
3662 * else, disable it and make sure slot time is 64 bytes.
3663 * also activate checksum bug workaround
3665 if ((speed == 1000) && !full_duplex) {
3666 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3667 cp->regs + REG_MAC_TX_CFG);
3669 val = readl(cp->regs + REG_MAC_RX_CFG);
3670 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3671 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3672 cp->regs + REG_MAC_RX_CFG);
3674 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3676 cp->crc_size = 4;
3677 /* minimum size gigabit frame at half duplex */
3678 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3680 } else {
3681 writel(val, cp->regs + REG_MAC_TX_CFG);
3683 /* checksum bug workaround. don't strip FCS when in
3684 * half-duplex mode
3686 val = readl(cp->regs + REG_MAC_RX_CFG);
3687 if (full_duplex) {
3688 val |= MAC_RX_CFG_STRIP_FCS;
3689 cp->crc_size = 0;
3690 cp->min_frame_size = CAS_MIN_MTU;
3691 } else {
3692 val &= ~MAC_RX_CFG_STRIP_FCS;
3693 cp->crc_size = 4;
3694 cp->min_frame_size = CAS_MIN_FRAME;
3696 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3697 cp->regs + REG_MAC_RX_CFG);
3698 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3701 if (netif_msg_link(cp)) {
3702 if (pause & 0x01) {
3703 netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3704 cp->rx_fifo_size,
3705 cp->rx_pause_off,
3706 cp->rx_pause_on);
3707 } else if (pause & 0x10) {
3708 netdev_info(cp->dev, "TX pause enabled\n");
3709 } else {
3710 netdev_info(cp->dev, "Pause is disabled\n");
3714 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3715 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3716 if (pause) { /* symmetric or asymmetric pause */
3717 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3718 if (pause & 0x01) { /* symmetric pause */
3719 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3722 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3723 cas_start_dma(cp);
3726 /* Must be invoked under cp->lock. */
3727 static void cas_init_hw(struct cas *cp, int restart_link)
3729 if (restart_link)
3730 cas_phy_init(cp);
3732 cas_init_pause_thresholds(cp);
3733 cas_init_mac(cp);
3734 cas_init_dma(cp);
3736 if (restart_link) {
3737 /* Default aneg parameters */
3738 cp->timer_ticks = 0;
3739 cas_begin_auto_negotiation(cp, NULL);
3740 } else if (cp->lstate == link_up) {
3741 cas_set_link_modes(cp);
3742 netif_carrier_on(cp->dev);
3746 /* Must be invoked under cp->lock. on earlier cassini boards,
3747 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3748 * let it settle out, and then restore pci state.
3750 static void cas_hard_reset(struct cas *cp)
3752 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3753 udelay(20);
3754 pci_restore_state(cp->pdev);
3758 static void cas_global_reset(struct cas *cp, int blkflag)
3760 int limit;
3762 /* issue a global reset. don't use RSTOUT. */
3763 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3764 /* For PCS, when the blkflag is set, we should set the
3765 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3766 * the last autonegotiation from being cleared. We'll
3767 * need some special handling if the chip is set into a
3768 * loopback mode.
3770 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3771 cp->regs + REG_SW_RESET);
3772 } else {
3773 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3776 /* need to wait at least 3ms before polling register */
3777 mdelay(3);
3779 limit = STOP_TRIES;
3780 while (limit-- > 0) {
3781 u32 val = readl(cp->regs + REG_SW_RESET);
3782 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3783 goto done;
3784 udelay(10);
3786 netdev_err(cp->dev, "sw reset failed\n");
3788 done:
3789 /* enable various BIM interrupts */
3790 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3791 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3793 /* clear out pci error status mask for handled errors.
3794 * we don't deal with DMA counter overflows as they happen
3795 * all the time.
3797 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3798 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3799 PCI_ERR_BIM_DMA_READ), cp->regs +
3800 REG_PCI_ERR_STATUS_MASK);
3802 /* set up for MII by default to address mac rx reset timeout
3803 * issue
3805 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3808 static void cas_reset(struct cas *cp, int blkflag)
3810 u32 val;
3812 cas_mask_intr(cp);
3813 cas_global_reset(cp, blkflag);
3814 cas_mac_reset(cp);
3815 cas_entropy_reset(cp);
3817 /* disable dma engines. */
3818 val = readl(cp->regs + REG_TX_CFG);
3819 val &= ~TX_CFG_DMA_EN;
3820 writel(val, cp->regs + REG_TX_CFG);
3822 val = readl(cp->regs + REG_RX_CFG);
3823 val &= ~RX_CFG_DMA_EN;
3824 writel(val, cp->regs + REG_RX_CFG);
3826 /* program header parser */
3827 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3828 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3829 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3830 } else {
3831 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3834 /* clear out error registers */
3835 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3836 cas_clear_mac_err(cp);
3837 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3840 /* Shut down the chip, must be called with pm_mutex held. */
3841 static void cas_shutdown(struct cas *cp)
3843 unsigned long flags;
3845 /* Make us not-running to avoid timers respawning */
3846 cp->hw_running = 0;
3848 del_timer_sync(&cp->link_timer);
3850 /* Stop the reset task */
3851 #if 0
3852 while (atomic_read(&cp->reset_task_pending_mtu) ||
3853 atomic_read(&cp->reset_task_pending_spare) ||
3854 atomic_read(&cp->reset_task_pending_all))
3855 schedule();
3857 #else
3858 while (atomic_read(&cp->reset_task_pending))
3859 schedule();
3860 #endif
3861 /* Actually stop the chip */
3862 cas_lock_all_save(cp, flags);
3863 cas_reset(cp, 0);
3864 if (cp->cas_flags & CAS_FLAG_SATURN)
3865 cas_phy_powerdown(cp);
3866 cas_unlock_all_restore(cp, flags);
3869 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3871 struct cas *cp = netdev_priv(dev);
3873 if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3874 return -EINVAL;
3876 dev->mtu = new_mtu;
3877 if (!netif_running(dev) || !netif_device_present(dev))
3878 return 0;
3880 /* let the reset task handle it */
3881 #if 1
3882 atomic_inc(&cp->reset_task_pending);
3883 if ((cp->phy_type & CAS_PHY_SERDES)) {
3884 atomic_inc(&cp->reset_task_pending_all);
3885 } else {
3886 atomic_inc(&cp->reset_task_pending_mtu);
3888 schedule_work(&cp->reset_task);
3889 #else
3890 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3891 CAS_RESET_ALL : CAS_RESET_MTU);
3892 pr_err("reset called in cas_change_mtu\n");
3893 schedule_work(&cp->reset_task);
3894 #endif
3896 flush_work_sync(&cp->reset_task);
3897 return 0;
3900 static void cas_clean_txd(struct cas *cp, int ring)
3902 struct cas_tx_desc *txd = cp->init_txds[ring];
3903 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3904 u64 daddr, dlen;
3905 int i, size;
3907 size = TX_DESC_RINGN_SIZE(ring);
3908 for (i = 0; i < size; i++) {
3909 int frag;
3911 if (skbs[i] == NULL)
3912 continue;
3914 skb = skbs[i];
3915 skbs[i] = NULL;
3917 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3918 int ent = i & (size - 1);
3920 /* first buffer is never a tiny buffer and so
3921 * needs to be unmapped.
3923 daddr = le64_to_cpu(txd[ent].buffer);
3924 dlen = CAS_VAL(TX_DESC_BUFLEN,
3925 le64_to_cpu(txd[ent].control));
3926 pci_unmap_page(cp->pdev, daddr, dlen,
3927 PCI_DMA_TODEVICE);
3929 if (frag != skb_shinfo(skb)->nr_frags) {
3930 i++;
3932 /* next buffer might by a tiny buffer.
3933 * skip past it.
3935 ent = i & (size - 1);
3936 if (cp->tx_tiny_use[ring][ent].used)
3937 i++;
3940 dev_kfree_skb_any(skb);
3943 /* zero out tiny buf usage */
3944 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3947 /* freed on close */
3948 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3950 cas_page_t **page = cp->rx_pages[ring];
3951 int i, size;
3953 size = RX_DESC_RINGN_SIZE(ring);
3954 for (i = 0; i < size; i++) {
3955 if (page[i]) {
3956 cas_page_free(cp, page[i]);
3957 page[i] = NULL;
3962 static void cas_free_rxds(struct cas *cp)
3964 int i;
3966 for (i = 0; i < N_RX_DESC_RINGS; i++)
3967 cas_free_rx_desc(cp, i);
3970 /* Must be invoked under cp->lock. */
3971 static void cas_clean_rings(struct cas *cp)
3973 int i;
3975 /* need to clean all tx rings */
3976 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3977 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3978 for (i = 0; i < N_TX_RINGS; i++)
3979 cas_clean_txd(cp, i);
3981 /* zero out init block */
3982 memset(cp->init_block, 0, sizeof(struct cas_init_block));
3983 cas_clean_rxds(cp);
3984 cas_clean_rxcs(cp);
3987 /* allocated on open */
3988 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3990 cas_page_t **page = cp->rx_pages[ring];
3991 int size, i = 0;
3993 size = RX_DESC_RINGN_SIZE(ring);
3994 for (i = 0; i < size; i++) {
3995 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3996 return -1;
3998 return 0;
4001 static int cas_alloc_rxds(struct cas *cp)
4003 int i;
4005 for (i = 0; i < N_RX_DESC_RINGS; i++) {
4006 if (cas_alloc_rx_desc(cp, i) < 0) {
4007 cas_free_rxds(cp);
4008 return -1;
4011 return 0;
4014 static void cas_reset_task(struct work_struct *work)
4016 struct cas *cp = container_of(work, struct cas, reset_task);
4017 #if 0
4018 int pending = atomic_read(&cp->reset_task_pending);
4019 #else
4020 int pending_all = atomic_read(&cp->reset_task_pending_all);
4021 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4022 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4024 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4025 /* We can have more tasks scheduled than actually
4026 * needed.
4028 atomic_dec(&cp->reset_task_pending);
4029 return;
4031 #endif
4032 /* The link went down, we reset the ring, but keep
4033 * DMA stopped. Use this function for reset
4034 * on error as well.
4036 if (cp->hw_running) {
4037 unsigned long flags;
4039 /* Make sure we don't get interrupts or tx packets */
4040 netif_device_detach(cp->dev);
4041 cas_lock_all_save(cp, flags);
4043 if (cp->opened) {
4044 /* We call cas_spare_recover when we call cas_open.
4045 * but we do not initialize the lists cas_spare_recover
4046 * uses until cas_open is called.
4048 cas_spare_recover(cp, GFP_ATOMIC);
4050 #if 1
4051 /* test => only pending_spare set */
4052 if (!pending_all && !pending_mtu)
4053 goto done;
4054 #else
4055 if (pending == CAS_RESET_SPARE)
4056 goto done;
4057 #endif
4058 /* when pending == CAS_RESET_ALL, the following
4059 * call to cas_init_hw will restart auto negotiation.
4060 * Setting the second argument of cas_reset to
4061 * !(pending == CAS_RESET_ALL) will set this argument
4062 * to 1 (avoiding reinitializing the PHY for the normal
4063 * PCS case) when auto negotiation is not restarted.
4065 #if 1
4066 cas_reset(cp, !(pending_all > 0));
4067 if (cp->opened)
4068 cas_clean_rings(cp);
4069 cas_init_hw(cp, (pending_all > 0));
4070 #else
4071 cas_reset(cp, !(pending == CAS_RESET_ALL));
4072 if (cp->opened)
4073 cas_clean_rings(cp);
4074 cas_init_hw(cp, pending == CAS_RESET_ALL);
4075 #endif
4077 done:
4078 cas_unlock_all_restore(cp, flags);
4079 netif_device_attach(cp->dev);
4081 #if 1
4082 atomic_sub(pending_all, &cp->reset_task_pending_all);
4083 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4084 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4085 atomic_dec(&cp->reset_task_pending);
4086 #else
4087 atomic_set(&cp->reset_task_pending, 0);
4088 #endif
4091 static void cas_link_timer(unsigned long data)
4093 struct cas *cp = (struct cas *) data;
4094 int mask, pending = 0, reset = 0;
4095 unsigned long flags;
4097 if (link_transition_timeout != 0 &&
4098 cp->link_transition_jiffies_valid &&
4099 ((jiffies - cp->link_transition_jiffies) >
4100 (link_transition_timeout))) {
4101 /* One-second counter so link-down workaround doesn't
4102 * cause resets to occur so fast as to fool the switch
4103 * into thinking the link is down.
4105 cp->link_transition_jiffies_valid = 0;
4108 if (!cp->hw_running)
4109 return;
4111 spin_lock_irqsave(&cp->lock, flags);
4112 cas_lock_tx(cp);
4113 cas_entropy_gather(cp);
4115 /* If the link task is still pending, we just
4116 * reschedule the link timer
4118 #if 1
4119 if (atomic_read(&cp->reset_task_pending_all) ||
4120 atomic_read(&cp->reset_task_pending_spare) ||
4121 atomic_read(&cp->reset_task_pending_mtu))
4122 goto done;
4123 #else
4124 if (atomic_read(&cp->reset_task_pending))
4125 goto done;
4126 #endif
4128 /* check for rx cleaning */
4129 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4130 int i, rmask;
4132 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4133 rmask = CAS_FLAG_RXD_POST(i);
4134 if ((mask & rmask) == 0)
4135 continue;
4137 /* post_rxds will do a mod_timer */
4138 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4139 pending = 1;
4140 continue;
4142 cp->cas_flags &= ~rmask;
4146 if (CAS_PHY_MII(cp->phy_type)) {
4147 u16 bmsr;
4148 cas_mif_poll(cp, 0);
4149 bmsr = cas_phy_read(cp, MII_BMSR);
4150 /* WTZ: Solaris driver reads this twice, but that
4151 * may be due to the PCS case and the use of a
4152 * common implementation. Read it twice here to be
4153 * safe.
4155 bmsr = cas_phy_read(cp, MII_BMSR);
4156 cas_mif_poll(cp, 1);
4157 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4158 reset = cas_mii_link_check(cp, bmsr);
4159 } else {
4160 reset = cas_pcs_link_check(cp);
4163 if (reset)
4164 goto done;
4166 /* check for tx state machine confusion */
4167 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4168 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4169 u32 wptr, rptr;
4170 int tlm = CAS_VAL(MAC_SM_TLM, val);
4172 if (((tlm == 0x5) || (tlm == 0x3)) &&
4173 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4174 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4175 "tx err: MAC_STATE[%08x]\n", val);
4176 reset = 1;
4177 goto done;
4180 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4181 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4182 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4183 if ((val == 0) && (wptr != rptr)) {
4184 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4185 "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4186 val, wptr, rptr);
4187 reset = 1;
4190 if (reset)
4191 cas_hard_reset(cp);
4194 done:
4195 if (reset) {
4196 #if 1
4197 atomic_inc(&cp->reset_task_pending);
4198 atomic_inc(&cp->reset_task_pending_all);
4199 schedule_work(&cp->reset_task);
4200 #else
4201 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4202 pr_err("reset called in cas_link_timer\n");
4203 schedule_work(&cp->reset_task);
4204 #endif
4207 if (!pending)
4208 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4209 cas_unlock_tx(cp);
4210 spin_unlock_irqrestore(&cp->lock, flags);
4213 /* tiny buffers are used to avoid target abort issues with
4214 * older cassini's
4216 static void cas_tx_tiny_free(struct cas *cp)
4218 struct pci_dev *pdev = cp->pdev;
4219 int i;
4221 for (i = 0; i < N_TX_RINGS; i++) {
4222 if (!cp->tx_tiny_bufs[i])
4223 continue;
4225 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4226 cp->tx_tiny_bufs[i],
4227 cp->tx_tiny_dvma[i]);
4228 cp->tx_tiny_bufs[i] = NULL;
4232 static int cas_tx_tiny_alloc(struct cas *cp)
4234 struct pci_dev *pdev = cp->pdev;
4235 int i;
4237 for (i = 0; i < N_TX_RINGS; i++) {
4238 cp->tx_tiny_bufs[i] =
4239 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4240 &cp->tx_tiny_dvma[i]);
4241 if (!cp->tx_tiny_bufs[i]) {
4242 cas_tx_tiny_free(cp);
4243 return -1;
4246 return 0;
4250 static int cas_open(struct net_device *dev)
4252 struct cas *cp = netdev_priv(dev);
4253 int hw_was_up, err;
4254 unsigned long flags;
4256 mutex_lock(&cp->pm_mutex);
4258 hw_was_up = cp->hw_running;
4260 /* The power-management mutex protects the hw_running
4261 * etc. state so it is safe to do this bit without cp->lock
4263 if (!cp->hw_running) {
4264 /* Reset the chip */
4265 cas_lock_all_save(cp, flags);
4266 /* We set the second arg to cas_reset to zero
4267 * because cas_init_hw below will have its second
4268 * argument set to non-zero, which will force
4269 * autonegotiation to start.
4271 cas_reset(cp, 0);
4272 cp->hw_running = 1;
4273 cas_unlock_all_restore(cp, flags);
4276 err = -ENOMEM;
4277 if (cas_tx_tiny_alloc(cp) < 0)
4278 goto err_unlock;
4280 /* alloc rx descriptors */
4281 if (cas_alloc_rxds(cp) < 0)
4282 goto err_tx_tiny;
4284 /* allocate spares */
4285 cas_spare_init(cp);
4286 cas_spare_recover(cp, GFP_KERNEL);
4288 /* We can now request the interrupt as we know it's masked
4289 * on the controller. cassini+ has up to 4 interrupts
4290 * that can be used, but you need to do explicit pci interrupt
4291 * mapping to expose them
4293 if (request_irq(cp->pdev->irq, cas_interrupt,
4294 IRQF_SHARED, dev->name, (void *) dev)) {
4295 netdev_err(cp->dev, "failed to request irq !\n");
4296 err = -EAGAIN;
4297 goto err_spare;
4300 #ifdef USE_NAPI
4301 napi_enable(&cp->napi);
4302 #endif
4303 /* init hw */
4304 cas_lock_all_save(cp, flags);
4305 cas_clean_rings(cp);
4306 cas_init_hw(cp, !hw_was_up);
4307 cp->opened = 1;
4308 cas_unlock_all_restore(cp, flags);
4310 netif_start_queue(dev);
4311 mutex_unlock(&cp->pm_mutex);
4312 return 0;
4314 err_spare:
4315 cas_spare_free(cp);
4316 cas_free_rxds(cp);
4317 err_tx_tiny:
4318 cas_tx_tiny_free(cp);
4319 err_unlock:
4320 mutex_unlock(&cp->pm_mutex);
4321 return err;
4324 static int cas_close(struct net_device *dev)
4326 unsigned long flags;
4327 struct cas *cp = netdev_priv(dev);
4329 #ifdef USE_NAPI
4330 napi_disable(&cp->napi);
4331 #endif
4332 /* Make sure we don't get distracted by suspend/resume */
4333 mutex_lock(&cp->pm_mutex);
4335 netif_stop_queue(dev);
4337 /* Stop traffic, mark us closed */
4338 cas_lock_all_save(cp, flags);
4339 cp->opened = 0;
4340 cas_reset(cp, 0);
4341 cas_phy_init(cp);
4342 cas_begin_auto_negotiation(cp, NULL);
4343 cas_clean_rings(cp);
4344 cas_unlock_all_restore(cp, flags);
4346 free_irq(cp->pdev->irq, (void *) dev);
4347 cas_spare_free(cp);
4348 cas_free_rxds(cp);
4349 cas_tx_tiny_free(cp);
4350 mutex_unlock(&cp->pm_mutex);
4351 return 0;
4354 static struct {
4355 const char name[ETH_GSTRING_LEN];
4356 } ethtool_cassini_statnames[] = {
4357 {"collisions"},
4358 {"rx_bytes"},
4359 {"rx_crc_errors"},
4360 {"rx_dropped"},
4361 {"rx_errors"},
4362 {"rx_fifo_errors"},
4363 {"rx_frame_errors"},
4364 {"rx_length_errors"},
4365 {"rx_over_errors"},
4366 {"rx_packets"},
4367 {"tx_aborted_errors"},
4368 {"tx_bytes"},
4369 {"tx_dropped"},
4370 {"tx_errors"},
4371 {"tx_fifo_errors"},
4372 {"tx_packets"}
4374 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4376 static struct {
4377 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4378 } ethtool_register_table[] = {
4379 {-MII_BMSR},
4380 {-MII_BMCR},
4381 {REG_CAWR},
4382 {REG_INF_BURST},
4383 {REG_BIM_CFG},
4384 {REG_RX_CFG},
4385 {REG_HP_CFG},
4386 {REG_MAC_TX_CFG},
4387 {REG_MAC_RX_CFG},
4388 {REG_MAC_CTRL_CFG},
4389 {REG_MAC_XIF_CFG},
4390 {REG_MIF_CFG},
4391 {REG_PCS_CFG},
4392 {REG_SATURN_PCFG},
4393 {REG_PCS_MII_STATUS},
4394 {REG_PCS_STATE_MACHINE},
4395 {REG_MAC_COLL_EXCESS},
4396 {REG_MAC_COLL_LATE}
4398 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4399 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4401 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4403 u8 *p;
4404 int i;
4405 unsigned long flags;
4407 spin_lock_irqsave(&cp->lock, flags);
4408 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4409 u16 hval;
4410 u32 val;
4411 if (ethtool_register_table[i].offsets < 0) {
4412 hval = cas_phy_read(cp,
4413 -ethtool_register_table[i].offsets);
4414 val = hval;
4415 } else {
4416 val= readl(cp->regs+ethtool_register_table[i].offsets);
4418 memcpy(p, (u8 *)&val, sizeof(u32));
4420 spin_unlock_irqrestore(&cp->lock, flags);
4423 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4425 struct cas *cp = netdev_priv(dev);
4426 struct net_device_stats *stats = cp->net_stats;
4427 unsigned long flags;
4428 int i;
4429 unsigned long tmp;
4431 /* we collate all of the stats into net_stats[N_TX_RING] */
4432 if (!cp->hw_running)
4433 return stats + N_TX_RINGS;
4435 /* collect outstanding stats */
4436 /* WTZ: the Cassini spec gives these as 16 bit counters but
4437 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4438 * in case the chip somehow puts any garbage in the other bits.
4439 * Also, counter usage didn't seem to mach what Adrian did
4440 * in the parts of the code that set these quantities. Made
4441 * that consistent.
4443 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4444 stats[N_TX_RINGS].rx_crc_errors +=
4445 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4446 stats[N_TX_RINGS].rx_frame_errors +=
4447 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4448 stats[N_TX_RINGS].rx_length_errors +=
4449 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4450 #if 1
4451 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4452 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4453 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4454 stats[N_TX_RINGS].collisions +=
4455 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4456 #else
4457 stats[N_TX_RINGS].tx_aborted_errors +=
4458 readl(cp->regs + REG_MAC_COLL_EXCESS);
4459 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4460 readl(cp->regs + REG_MAC_COLL_LATE);
4461 #endif
4462 cas_clear_mac_err(cp);
4464 /* saved bits that are unique to ring 0 */
4465 spin_lock(&cp->stat_lock[0]);
4466 stats[N_TX_RINGS].collisions += stats[0].collisions;
4467 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4468 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4469 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4470 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4471 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4472 spin_unlock(&cp->stat_lock[0]);
4474 for (i = 0; i < N_TX_RINGS; i++) {
4475 spin_lock(&cp->stat_lock[i]);
4476 stats[N_TX_RINGS].rx_length_errors +=
4477 stats[i].rx_length_errors;
4478 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4479 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4480 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4481 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4482 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4483 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4484 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4485 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4486 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4487 memset(stats + i, 0, sizeof(struct net_device_stats));
4488 spin_unlock(&cp->stat_lock[i]);
4490 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4491 return stats + N_TX_RINGS;
4495 static void cas_set_multicast(struct net_device *dev)
4497 struct cas *cp = netdev_priv(dev);
4498 u32 rxcfg, rxcfg_new;
4499 unsigned long flags;
4500 int limit = STOP_TRIES;
4502 if (!cp->hw_running)
4503 return;
4505 spin_lock_irqsave(&cp->lock, flags);
4506 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4508 /* disable RX MAC and wait for completion */
4509 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4510 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4511 if (!limit--)
4512 break;
4513 udelay(10);
4516 /* disable hash filter and wait for completion */
4517 limit = STOP_TRIES;
4518 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4519 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4520 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4521 if (!limit--)
4522 break;
4523 udelay(10);
4526 /* program hash filters */
4527 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4528 rxcfg |= rxcfg_new;
4529 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4530 spin_unlock_irqrestore(&cp->lock, flags);
4533 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4535 struct cas *cp = netdev_priv(dev);
4536 strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4537 strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4538 info->fw_version[0] = '\0';
4539 strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4540 info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4541 cp->casreg_len : CAS_MAX_REGS;
4542 info->n_stats = CAS_NUM_STAT_KEYS;
4545 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4547 struct cas *cp = netdev_priv(dev);
4548 u16 bmcr;
4549 int full_duplex, speed, pause;
4550 unsigned long flags;
4551 enum link_state linkstate = link_up;
4553 cmd->advertising = 0;
4554 cmd->supported = SUPPORTED_Autoneg;
4555 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4556 cmd->supported |= SUPPORTED_1000baseT_Full;
4557 cmd->advertising |= ADVERTISED_1000baseT_Full;
4560 /* Record PHY settings if HW is on. */
4561 spin_lock_irqsave(&cp->lock, flags);
4562 bmcr = 0;
4563 linkstate = cp->lstate;
4564 if (CAS_PHY_MII(cp->phy_type)) {
4565 cmd->port = PORT_MII;
4566 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4567 XCVR_INTERNAL : XCVR_EXTERNAL;
4568 cmd->phy_address = cp->phy_addr;
4569 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4570 ADVERTISED_10baseT_Half |
4571 ADVERTISED_10baseT_Full |
4572 ADVERTISED_100baseT_Half |
4573 ADVERTISED_100baseT_Full;
4575 cmd->supported |=
4576 (SUPPORTED_10baseT_Half |
4577 SUPPORTED_10baseT_Full |
4578 SUPPORTED_100baseT_Half |
4579 SUPPORTED_100baseT_Full |
4580 SUPPORTED_TP | SUPPORTED_MII);
4582 if (cp->hw_running) {
4583 cas_mif_poll(cp, 0);
4584 bmcr = cas_phy_read(cp, MII_BMCR);
4585 cas_read_mii_link_mode(cp, &full_duplex,
4586 &speed, &pause);
4587 cas_mif_poll(cp, 1);
4590 } else {
4591 cmd->port = PORT_FIBRE;
4592 cmd->transceiver = XCVR_INTERNAL;
4593 cmd->phy_address = 0;
4594 cmd->supported |= SUPPORTED_FIBRE;
4595 cmd->advertising |= ADVERTISED_FIBRE;
4597 if (cp->hw_running) {
4598 /* pcs uses the same bits as mii */
4599 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4600 cas_read_pcs_link_mode(cp, &full_duplex,
4601 &speed, &pause);
4604 spin_unlock_irqrestore(&cp->lock, flags);
4606 if (bmcr & BMCR_ANENABLE) {
4607 cmd->advertising |= ADVERTISED_Autoneg;
4608 cmd->autoneg = AUTONEG_ENABLE;
4609 ethtool_cmd_speed_set(cmd, ((speed == 10) ?
4610 SPEED_10 :
4611 ((speed == 1000) ?
4612 SPEED_1000 : SPEED_100)));
4613 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4614 } else {
4615 cmd->autoneg = AUTONEG_DISABLE;
4616 ethtool_cmd_speed_set(cmd, ((bmcr & CAS_BMCR_SPEED1000) ?
4617 SPEED_1000 :
4618 ((bmcr & BMCR_SPEED100) ?
4619 SPEED_100 : SPEED_10)));
4620 cmd->duplex =
4621 (bmcr & BMCR_FULLDPLX) ?
4622 DUPLEX_FULL : DUPLEX_HALF;
4624 if (linkstate != link_up) {
4625 /* Force these to "unknown" if the link is not up and
4626 * autonogotiation in enabled. We can set the link
4627 * speed to 0, but not cmd->duplex,
4628 * because its legal values are 0 and 1. Ethtool will
4629 * print the value reported in parentheses after the
4630 * word "Unknown" for unrecognized values.
4632 * If in forced mode, we report the speed and duplex
4633 * settings that we configured.
4635 if (cp->link_cntl & BMCR_ANENABLE) {
4636 ethtool_cmd_speed_set(cmd, 0);
4637 cmd->duplex = 0xff;
4638 } else {
4639 ethtool_cmd_speed_set(cmd, SPEED_10);
4640 if (cp->link_cntl & BMCR_SPEED100) {
4641 ethtool_cmd_speed_set(cmd, SPEED_100);
4642 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4643 ethtool_cmd_speed_set(cmd, SPEED_1000);
4645 cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4646 DUPLEX_FULL : DUPLEX_HALF;
4649 return 0;
4652 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4654 struct cas *cp = netdev_priv(dev);
4655 unsigned long flags;
4656 u32 speed = ethtool_cmd_speed(cmd);
4658 /* Verify the settings we care about. */
4659 if (cmd->autoneg != AUTONEG_ENABLE &&
4660 cmd->autoneg != AUTONEG_DISABLE)
4661 return -EINVAL;
4663 if (cmd->autoneg == AUTONEG_DISABLE &&
4664 ((speed != SPEED_1000 &&
4665 speed != SPEED_100 &&
4666 speed != SPEED_10) ||
4667 (cmd->duplex != DUPLEX_HALF &&
4668 cmd->duplex != DUPLEX_FULL)))
4669 return -EINVAL;
4671 /* Apply settings and restart link process. */
4672 spin_lock_irqsave(&cp->lock, flags);
4673 cas_begin_auto_negotiation(cp, cmd);
4674 spin_unlock_irqrestore(&cp->lock, flags);
4675 return 0;
4678 static int cas_nway_reset(struct net_device *dev)
4680 struct cas *cp = netdev_priv(dev);
4681 unsigned long flags;
4683 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4684 return -EINVAL;
4686 /* Restart link process. */
4687 spin_lock_irqsave(&cp->lock, flags);
4688 cas_begin_auto_negotiation(cp, NULL);
4689 spin_unlock_irqrestore(&cp->lock, flags);
4691 return 0;
4694 static u32 cas_get_link(struct net_device *dev)
4696 struct cas *cp = netdev_priv(dev);
4697 return cp->lstate == link_up;
4700 static u32 cas_get_msglevel(struct net_device *dev)
4702 struct cas *cp = netdev_priv(dev);
4703 return cp->msg_enable;
4706 static void cas_set_msglevel(struct net_device *dev, u32 value)
4708 struct cas *cp = netdev_priv(dev);
4709 cp->msg_enable = value;
4712 static int cas_get_regs_len(struct net_device *dev)
4714 struct cas *cp = netdev_priv(dev);
4715 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4718 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4719 void *p)
4721 struct cas *cp = netdev_priv(dev);
4722 regs->version = 0;
4723 /* cas_read_regs handles locks (cp->lock). */
4724 cas_read_regs(cp, p, regs->len / sizeof(u32));
4727 static int cas_get_sset_count(struct net_device *dev, int sset)
4729 switch (sset) {
4730 case ETH_SS_STATS:
4731 return CAS_NUM_STAT_KEYS;
4732 default:
4733 return -EOPNOTSUPP;
4737 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4739 memcpy(data, &ethtool_cassini_statnames,
4740 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4743 static void cas_get_ethtool_stats(struct net_device *dev,
4744 struct ethtool_stats *estats, u64 *data)
4746 struct cas *cp = netdev_priv(dev);
4747 struct net_device_stats *stats = cas_get_stats(cp->dev);
4748 int i = 0;
4749 data[i++] = stats->collisions;
4750 data[i++] = stats->rx_bytes;
4751 data[i++] = stats->rx_crc_errors;
4752 data[i++] = stats->rx_dropped;
4753 data[i++] = stats->rx_errors;
4754 data[i++] = stats->rx_fifo_errors;
4755 data[i++] = stats->rx_frame_errors;
4756 data[i++] = stats->rx_length_errors;
4757 data[i++] = stats->rx_over_errors;
4758 data[i++] = stats->rx_packets;
4759 data[i++] = stats->tx_aborted_errors;
4760 data[i++] = stats->tx_bytes;
4761 data[i++] = stats->tx_dropped;
4762 data[i++] = stats->tx_errors;
4763 data[i++] = stats->tx_fifo_errors;
4764 data[i++] = stats->tx_packets;
4765 BUG_ON(i != CAS_NUM_STAT_KEYS);
4768 static const struct ethtool_ops cas_ethtool_ops = {
4769 .get_drvinfo = cas_get_drvinfo,
4770 .get_settings = cas_get_settings,
4771 .set_settings = cas_set_settings,
4772 .nway_reset = cas_nway_reset,
4773 .get_link = cas_get_link,
4774 .get_msglevel = cas_get_msglevel,
4775 .set_msglevel = cas_set_msglevel,
4776 .get_regs_len = cas_get_regs_len,
4777 .get_regs = cas_get_regs,
4778 .get_sset_count = cas_get_sset_count,
4779 .get_strings = cas_get_strings,
4780 .get_ethtool_stats = cas_get_ethtool_stats,
4783 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4785 struct cas *cp = netdev_priv(dev);
4786 struct mii_ioctl_data *data = if_mii(ifr);
4787 unsigned long flags;
4788 int rc = -EOPNOTSUPP;
4790 /* Hold the PM mutex while doing ioctl's or we may collide
4791 * with open/close and power management and oops.
4793 mutex_lock(&cp->pm_mutex);
4794 switch (cmd) {
4795 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4796 data->phy_id = cp->phy_addr;
4797 /* Fallthrough... */
4799 case SIOCGMIIREG: /* Read MII PHY register. */
4800 spin_lock_irqsave(&cp->lock, flags);
4801 cas_mif_poll(cp, 0);
4802 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4803 cas_mif_poll(cp, 1);
4804 spin_unlock_irqrestore(&cp->lock, flags);
4805 rc = 0;
4806 break;
4808 case SIOCSMIIREG: /* Write MII PHY register. */
4809 spin_lock_irqsave(&cp->lock, flags);
4810 cas_mif_poll(cp, 0);
4811 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4812 cas_mif_poll(cp, 1);
4813 spin_unlock_irqrestore(&cp->lock, flags);
4814 break;
4815 default:
4816 break;
4819 mutex_unlock(&cp->pm_mutex);
4820 return rc;
4823 /* When this chip sits underneath an Intel 31154 bridge, it is the
4824 * only subordinate device and we can tweak the bridge settings to
4825 * reflect that fact.
4827 static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
4829 struct pci_dev *pdev = cas_pdev->bus->self;
4830 u32 val;
4832 if (!pdev)
4833 return;
4835 if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4836 return;
4838 /* Clear bit 10 (Bus Parking Control) in the Secondary
4839 * Arbiter Control/Status Register which lives at offset
4840 * 0x41. Using a 32-bit word read/modify/write at 0x40
4841 * is much simpler so that's how we do this.
4843 pci_read_config_dword(pdev, 0x40, &val);
4844 val &= ~0x00040000;
4845 pci_write_config_dword(pdev, 0x40, val);
4847 /* Max out the Multi-Transaction Timer settings since
4848 * Cassini is the only device present.
4850 * The register is 16-bit and lives at 0x50. When the
4851 * settings are enabled, it extends the GRANT# signal
4852 * for a requestor after a transaction is complete. This
4853 * allows the next request to run without first needing
4854 * to negotiate the GRANT# signal back.
4856 * Bits 12:10 define the grant duration:
4858 * 1 -- 16 clocks
4859 * 2 -- 32 clocks
4860 * 3 -- 64 clocks
4861 * 4 -- 128 clocks
4862 * 5 -- 256 clocks
4864 * All other values are illegal.
4866 * Bits 09:00 define which REQ/GNT signal pairs get the
4867 * GRANT# signal treatment. We set them all.
4869 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4871 /* The Read Prefecth Policy register is 16-bit and sits at
4872 * offset 0x52. It enables a "smart" pre-fetch policy. We
4873 * enable it and max out all of the settings since only one
4874 * device is sitting underneath and thus bandwidth sharing is
4875 * not an issue.
4877 * The register has several 3 bit fields, which indicates a
4878 * multiplier applied to the base amount of prefetching the
4879 * chip would do. These fields are at:
4881 * 15:13 --- ReRead Primary Bus
4882 * 12:10 --- FirstRead Primary Bus
4883 * 09:07 --- ReRead Secondary Bus
4884 * 06:04 --- FirstRead Secondary Bus
4886 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4887 * get enabled on. Bit 3 is a grouped enabler which controls
4888 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4889 * the individual REQ/GNT pairs [2:0].
4891 pci_write_config_word(pdev, 0x52,
4892 (0x7 << 13) |
4893 (0x7 << 10) |
4894 (0x7 << 7) |
4895 (0x7 << 4) |
4896 (0xf << 0));
4898 /* Force cacheline size to 0x8 */
4899 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4901 /* Force latency timer to maximum setting so Cassini can
4902 * sit on the bus as long as it likes.
4904 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4907 static const struct net_device_ops cas_netdev_ops = {
4908 .ndo_open = cas_open,
4909 .ndo_stop = cas_close,
4910 .ndo_start_xmit = cas_start_xmit,
4911 .ndo_get_stats = cas_get_stats,
4912 .ndo_set_multicast_list = cas_set_multicast,
4913 .ndo_do_ioctl = cas_ioctl,
4914 .ndo_tx_timeout = cas_tx_timeout,
4915 .ndo_change_mtu = cas_change_mtu,
4916 .ndo_set_mac_address = eth_mac_addr,
4917 .ndo_validate_addr = eth_validate_addr,
4918 #ifdef CONFIG_NET_POLL_CONTROLLER
4919 .ndo_poll_controller = cas_netpoll,
4920 #endif
4923 static int __devinit cas_init_one(struct pci_dev *pdev,
4924 const struct pci_device_id *ent)
4926 static int cas_version_printed = 0;
4927 unsigned long casreg_len;
4928 struct net_device *dev;
4929 struct cas *cp;
4930 int i, err, pci_using_dac;
4931 u16 pci_cmd;
4932 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4934 if (cas_version_printed++ == 0)
4935 pr_info("%s", version);
4937 err = pci_enable_device(pdev);
4938 if (err) {
4939 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4940 return err;
4943 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4944 dev_err(&pdev->dev, "Cannot find proper PCI device "
4945 "base address, aborting\n");
4946 err = -ENODEV;
4947 goto err_out_disable_pdev;
4950 dev = alloc_etherdev(sizeof(*cp));
4951 if (!dev) {
4952 dev_err(&pdev->dev, "Etherdev alloc failed, aborting\n");
4953 err = -ENOMEM;
4954 goto err_out_disable_pdev;
4956 SET_NETDEV_DEV(dev, &pdev->dev);
4958 err = pci_request_regions(pdev, dev->name);
4959 if (err) {
4960 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4961 goto err_out_free_netdev;
4963 pci_set_master(pdev);
4965 /* we must always turn on parity response or else parity
4966 * doesn't get generated properly. disable SERR/PERR as well.
4967 * in addition, we want to turn MWI on.
4969 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4970 pci_cmd &= ~PCI_COMMAND_SERR;
4971 pci_cmd |= PCI_COMMAND_PARITY;
4972 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4973 if (pci_try_set_mwi(pdev))
4974 pr_warning("Could not enable MWI for %s\n", pci_name(pdev));
4976 cas_program_bridge(pdev);
4979 * On some architectures, the default cache line size set
4980 * by pci_try_set_mwi reduces perforamnce. We have to increase
4981 * it for this case. To start, we'll print some configuration
4982 * data.
4984 #if 1
4985 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4986 &orig_cacheline_size);
4987 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4988 cas_cacheline_size =
4989 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4990 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4991 if (pci_write_config_byte(pdev,
4992 PCI_CACHE_LINE_SIZE,
4993 cas_cacheline_size)) {
4994 dev_err(&pdev->dev, "Could not set PCI cache "
4995 "line size\n");
4996 goto err_write_cacheline;
4999 #endif
5002 /* Configure DMA attributes. */
5003 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5004 pci_using_dac = 1;
5005 err = pci_set_consistent_dma_mask(pdev,
5006 DMA_BIT_MASK(64));
5007 if (err < 0) {
5008 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5009 "for consistent allocations\n");
5010 goto err_out_free_res;
5013 } else {
5014 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5015 if (err) {
5016 dev_err(&pdev->dev, "No usable DMA configuration, "
5017 "aborting\n");
5018 goto err_out_free_res;
5020 pci_using_dac = 0;
5023 casreg_len = pci_resource_len(pdev, 0);
5025 cp = netdev_priv(dev);
5026 cp->pdev = pdev;
5027 #if 1
5028 /* A value of 0 indicates we never explicitly set it */
5029 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5030 #endif
5031 cp->dev = dev;
5032 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5033 cassini_debug;
5035 #if defined(CONFIG_SPARC)
5036 cp->of_node = pci_device_to_OF_node(pdev);
5037 #endif
5039 cp->link_transition = LINK_TRANSITION_UNKNOWN;
5040 cp->link_transition_jiffies_valid = 0;
5042 spin_lock_init(&cp->lock);
5043 spin_lock_init(&cp->rx_inuse_lock);
5044 spin_lock_init(&cp->rx_spare_lock);
5045 for (i = 0; i < N_TX_RINGS; i++) {
5046 spin_lock_init(&cp->stat_lock[i]);
5047 spin_lock_init(&cp->tx_lock[i]);
5049 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5050 mutex_init(&cp->pm_mutex);
5052 init_timer(&cp->link_timer);
5053 cp->link_timer.function = cas_link_timer;
5054 cp->link_timer.data = (unsigned long) cp;
5056 #if 1
5057 /* Just in case the implementation of atomic operations
5058 * change so that an explicit initialization is necessary.
5060 atomic_set(&cp->reset_task_pending, 0);
5061 atomic_set(&cp->reset_task_pending_all, 0);
5062 atomic_set(&cp->reset_task_pending_spare, 0);
5063 atomic_set(&cp->reset_task_pending_mtu, 0);
5064 #endif
5065 INIT_WORK(&cp->reset_task, cas_reset_task);
5067 /* Default link parameters */
5068 if (link_mode >= 0 && link_mode < 6)
5069 cp->link_cntl = link_modes[link_mode];
5070 else
5071 cp->link_cntl = BMCR_ANENABLE;
5072 cp->lstate = link_down;
5073 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5074 netif_carrier_off(cp->dev);
5075 cp->timer_ticks = 0;
5077 /* give us access to cassini registers */
5078 cp->regs = pci_iomap(pdev, 0, casreg_len);
5079 if (!cp->regs) {
5080 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5081 goto err_out_free_res;
5083 cp->casreg_len = casreg_len;
5085 pci_save_state(pdev);
5086 cas_check_pci_invariants(cp);
5087 cas_hard_reset(cp);
5088 cas_reset(cp, 0);
5089 if (cas_check_invariants(cp))
5090 goto err_out_iounmap;
5091 if (cp->cas_flags & CAS_FLAG_SATURN)
5092 if (cas_saturn_firmware_init(cp))
5093 goto err_out_iounmap;
5095 cp->init_block = (struct cas_init_block *)
5096 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5097 &cp->block_dvma);
5098 if (!cp->init_block) {
5099 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5100 goto err_out_iounmap;
5103 for (i = 0; i < N_TX_RINGS; i++)
5104 cp->init_txds[i] = cp->init_block->txds[i];
5106 for (i = 0; i < N_RX_DESC_RINGS; i++)
5107 cp->init_rxds[i] = cp->init_block->rxds[i];
5109 for (i = 0; i < N_RX_COMP_RINGS; i++)
5110 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5112 for (i = 0; i < N_RX_FLOWS; i++)
5113 skb_queue_head_init(&cp->rx_flows[i]);
5115 dev->netdev_ops = &cas_netdev_ops;
5116 dev->ethtool_ops = &cas_ethtool_ops;
5117 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5119 #ifdef USE_NAPI
5120 netif_napi_add(dev, &cp->napi, cas_poll, 64);
5121 #endif
5122 dev->irq = pdev->irq;
5123 dev->dma = 0;
5125 /* Cassini features. */
5126 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5127 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5129 if (pci_using_dac)
5130 dev->features |= NETIF_F_HIGHDMA;
5132 if (register_netdev(dev)) {
5133 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5134 goto err_out_free_consistent;
5137 i = readl(cp->regs + REG_BIM_CFG);
5138 netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5139 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5140 (i & BIM_CFG_32BIT) ? "32" : "64",
5141 (i & BIM_CFG_66MHZ) ? "66" : "33",
5142 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5143 dev->dev_addr);
5145 pci_set_drvdata(pdev, dev);
5146 cp->hw_running = 1;
5147 cas_entropy_reset(cp);
5148 cas_phy_init(cp);
5149 cas_begin_auto_negotiation(cp, NULL);
5150 return 0;
5152 err_out_free_consistent:
5153 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5154 cp->init_block, cp->block_dvma);
5156 err_out_iounmap:
5157 mutex_lock(&cp->pm_mutex);
5158 if (cp->hw_running)
5159 cas_shutdown(cp);
5160 mutex_unlock(&cp->pm_mutex);
5162 pci_iounmap(pdev, cp->regs);
5165 err_out_free_res:
5166 pci_release_regions(pdev);
5168 err_write_cacheline:
5169 /* Try to restore it in case the error occurred after we
5170 * set it.
5172 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5174 err_out_free_netdev:
5175 free_netdev(dev);
5177 err_out_disable_pdev:
5178 pci_disable_device(pdev);
5179 pci_set_drvdata(pdev, NULL);
5180 return -ENODEV;
5183 static void __devexit cas_remove_one(struct pci_dev *pdev)
5185 struct net_device *dev = pci_get_drvdata(pdev);
5186 struct cas *cp;
5187 if (!dev)
5188 return;
5190 cp = netdev_priv(dev);
5191 unregister_netdev(dev);
5193 if (cp->fw_data)
5194 vfree(cp->fw_data);
5196 mutex_lock(&cp->pm_mutex);
5197 cancel_work_sync(&cp->reset_task);
5198 if (cp->hw_running)
5199 cas_shutdown(cp);
5200 mutex_unlock(&cp->pm_mutex);
5202 #if 1
5203 if (cp->orig_cacheline_size) {
5204 /* Restore the cache line size if we had modified
5205 * it.
5207 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5208 cp->orig_cacheline_size);
5210 #endif
5211 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5212 cp->init_block, cp->block_dvma);
5213 pci_iounmap(pdev, cp->regs);
5214 free_netdev(dev);
5215 pci_release_regions(pdev);
5216 pci_disable_device(pdev);
5217 pci_set_drvdata(pdev, NULL);
5220 #ifdef CONFIG_PM
5221 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5223 struct net_device *dev = pci_get_drvdata(pdev);
5224 struct cas *cp = netdev_priv(dev);
5225 unsigned long flags;
5227 mutex_lock(&cp->pm_mutex);
5229 /* If the driver is opened, we stop the DMA */
5230 if (cp->opened) {
5231 netif_device_detach(dev);
5233 cas_lock_all_save(cp, flags);
5235 /* We can set the second arg of cas_reset to 0
5236 * because on resume, we'll call cas_init_hw with
5237 * its second arg set so that autonegotiation is
5238 * restarted.
5240 cas_reset(cp, 0);
5241 cas_clean_rings(cp);
5242 cas_unlock_all_restore(cp, flags);
5245 if (cp->hw_running)
5246 cas_shutdown(cp);
5247 mutex_unlock(&cp->pm_mutex);
5249 return 0;
5252 static int cas_resume(struct pci_dev *pdev)
5254 struct net_device *dev = pci_get_drvdata(pdev);
5255 struct cas *cp = netdev_priv(dev);
5257 netdev_info(dev, "resuming\n");
5259 mutex_lock(&cp->pm_mutex);
5260 cas_hard_reset(cp);
5261 if (cp->opened) {
5262 unsigned long flags;
5263 cas_lock_all_save(cp, flags);
5264 cas_reset(cp, 0);
5265 cp->hw_running = 1;
5266 cas_clean_rings(cp);
5267 cas_init_hw(cp, 1);
5268 cas_unlock_all_restore(cp, flags);
5270 netif_device_attach(dev);
5272 mutex_unlock(&cp->pm_mutex);
5273 return 0;
5275 #endif /* CONFIG_PM */
5277 static struct pci_driver cas_driver = {
5278 .name = DRV_MODULE_NAME,
5279 .id_table = cas_pci_tbl,
5280 .probe = cas_init_one,
5281 .remove = __devexit_p(cas_remove_one),
5282 #ifdef CONFIG_PM
5283 .suspend = cas_suspend,
5284 .resume = cas_resume
5285 #endif
5288 static int __init cas_init(void)
5290 if (linkdown_timeout > 0)
5291 link_transition_timeout = linkdown_timeout * HZ;
5292 else
5293 link_transition_timeout = 0;
5295 return pci_register_driver(&cas_driver);
5298 static void __exit cas_cleanup(void)
5300 pci_unregister_driver(&cas_driver);
5303 module_init(cas_init);
5304 module_exit(cas_cleanup);