1 /*******************************************************************************
3 Intel PRO/10GbE Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * Shared functions for accessing and configuring the adapter
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 #include <linux/etherdevice.h>
40 /* Local function prototypes */
42 static u32
ixgb_hash_mc_addr(struct ixgb_hw
*hw
, u8
* mc_addr
);
44 static void ixgb_mta_set(struct ixgb_hw
*hw
, u32 hash_value
);
46 static void ixgb_get_bus_info(struct ixgb_hw
*hw
);
48 static bool ixgb_link_reset(struct ixgb_hw
*hw
);
50 static void ixgb_optics_reset(struct ixgb_hw
*hw
);
52 static void ixgb_optics_reset_bcm(struct ixgb_hw
*hw
);
54 static ixgb_phy_type
ixgb_identify_phy(struct ixgb_hw
*hw
);
56 static void ixgb_clear_hw_cntrs(struct ixgb_hw
*hw
);
58 static void ixgb_clear_vfta(struct ixgb_hw
*hw
);
60 static void ixgb_init_rx_addrs(struct ixgb_hw
*hw
);
62 static u16
ixgb_read_phy_reg(struct ixgb_hw
*hw
,
67 static bool ixgb_setup_fc(struct ixgb_hw
*hw
);
69 static bool mac_addr_valid(u8
*mac_addr
);
71 static u32
ixgb_mac_reset(struct ixgb_hw
*hw
)
75 ctrl_reg
= IXGB_CTRL0_RST
|
76 IXGB_CTRL0_SDP3_DIR
| /* All pins are Output=1 */
80 IXGB_CTRL0_SDP3
| /* Initial value 1101 */
85 /* Workaround for 82597EX reset errata */
86 IXGB_WRITE_REG_IO(hw
, CTRL0
, ctrl_reg
);
88 IXGB_WRITE_REG(hw
, CTRL0
, ctrl_reg
);
91 /* Delay a few ms just to allow the reset to complete */
92 msleep(IXGB_DELAY_AFTER_RESET
);
93 ctrl_reg
= IXGB_READ_REG(hw
, CTRL0
);
95 /* Make sure the self-clearing global reset bit did self clear */
96 ASSERT(!(ctrl_reg
& IXGB_CTRL0_RST
));
99 if (hw
->subsystem_vendor_id
== SUN_SUBVENDOR_ID
) {
100 ctrl_reg
= /* Enable interrupt from XFP and SerDes */
102 IXGB_CTRL1_SDP6_DIR
|
103 IXGB_CTRL1_SDP7_DIR
|
106 IXGB_WRITE_REG(hw
, CTRL1
, ctrl_reg
);
107 ixgb_optics_reset_bcm(hw
);
110 if (hw
->phy_type
== ixgb_phy_type_txn17401
)
111 ixgb_optics_reset(hw
);
116 /******************************************************************************
117 * Reset the transmit and receive units; mask and clear all interrupts.
119 * hw - Struct containing variables accessed by shared code
120 *****************************************************************************/
122 ixgb_adapter_stop(struct ixgb_hw
*hw
)
129 /* If we are stopped or resetting exit gracefully and wait to be
130 * started again before accessing the hardware.
132 if (hw
->adapter_stopped
) {
133 pr_debug("Exiting because the adapter is already stopped!!!\n");
137 /* Set the Adapter Stopped flag so other driver functions stop
138 * touching the Hardware.
140 hw
->adapter_stopped
= true;
142 /* Clear interrupt mask to stop board from generating interrupts */
143 pr_debug("Masking off all interrupts\n");
144 IXGB_WRITE_REG(hw
, IMC
, 0xFFFFFFFF);
146 /* Disable the Transmit and Receive units. Then delay to allow
147 * any pending transactions to complete before we hit the MAC with
150 IXGB_WRITE_REG(hw
, RCTL
, IXGB_READ_REG(hw
, RCTL
) & ~IXGB_RCTL_RXEN
);
151 IXGB_WRITE_REG(hw
, TCTL
, IXGB_READ_REG(hw
, TCTL
) & ~IXGB_TCTL_TXEN
);
152 msleep(IXGB_DELAY_BEFORE_RESET
);
154 /* Issue a global reset to the MAC. This will reset the chip's
155 * transmit, receive, DMA, and link units. It will not effect
156 * the current PCI configuration. The global reset bit is self-
157 * clearing, and should clear within a microsecond.
159 pr_debug("Issuing a global reset to MAC\n");
161 ctrl_reg
= ixgb_mac_reset(hw
);
163 /* Clear interrupt mask to stop board from generating interrupts */
164 pr_debug("Masking off all interrupts\n");
165 IXGB_WRITE_REG(hw
, IMC
, 0xffffffff);
167 /* Clear any pending interrupt events. */
168 icr_reg
= IXGB_READ_REG(hw
, ICR
);
170 return ctrl_reg
& IXGB_CTRL0_RST
;
174 /******************************************************************************
175 * Identifies the vendor of the optics module on the adapter. The SR adapters
176 * support two different types of XPAK optics, so it is necessary to determine
177 * which optics are present before applying any optics-specific workarounds.
179 * hw - Struct containing variables accessed by shared code.
181 * Returns: the vendor of the XPAK optics module.
182 *****************************************************************************/
183 static ixgb_xpak_vendor
184 ixgb_identify_xpak_vendor(struct ixgb_hw
*hw
)
188 ixgb_xpak_vendor xpak_vendor
;
192 /* Read the first few bytes of the vendor string from the XPAK NVR
193 * registers. These are standard XENPAK/XPAK registers, so all XPAK
194 * devices should implement them. */
195 for (i
= 0; i
< 5; i
++) {
196 vendor_name
[i
] = ixgb_read_phy_reg(hw
,
197 MDIO_PMA_PMD_XPAK_VENDOR_NAME
198 + i
, IXGB_PHY_ADDRESS
,
202 /* Determine the actual vendor */
203 if (vendor_name
[0] == 'I' &&
204 vendor_name
[1] == 'N' &&
205 vendor_name
[2] == 'T' &&
206 vendor_name
[3] == 'E' && vendor_name
[4] == 'L') {
207 xpak_vendor
= ixgb_xpak_vendor_intel
;
209 xpak_vendor
= ixgb_xpak_vendor_infineon
;
215 /******************************************************************************
216 * Determine the physical layer module on the adapter.
218 * hw - Struct containing variables accessed by shared code. The device_id
219 * field must be (correctly) populated before calling this routine.
221 * Returns: the phy type of the adapter.
222 *****************************************************************************/
224 ixgb_identify_phy(struct ixgb_hw
*hw
)
226 ixgb_phy_type phy_type
;
227 ixgb_xpak_vendor xpak_vendor
;
231 /* Infer the transceiver/phy type from the device id */
232 switch (hw
->device_id
) {
233 case IXGB_DEVICE_ID_82597EX
:
234 pr_debug("Identified TXN17401 optics\n");
235 phy_type
= ixgb_phy_type_txn17401
;
238 case IXGB_DEVICE_ID_82597EX_SR
:
239 /* The SR adapters carry two different types of XPAK optics
240 * modules; read the vendor identifier to determine the exact
242 xpak_vendor
= ixgb_identify_xpak_vendor(hw
);
243 if (xpak_vendor
== ixgb_xpak_vendor_intel
) {
244 pr_debug("Identified TXN17201 optics\n");
245 phy_type
= ixgb_phy_type_txn17201
;
247 pr_debug("Identified G6005 optics\n");
248 phy_type
= ixgb_phy_type_g6005
;
251 case IXGB_DEVICE_ID_82597EX_LR
:
252 pr_debug("Identified G6104 optics\n");
253 phy_type
= ixgb_phy_type_g6104
;
255 case IXGB_DEVICE_ID_82597EX_CX4
:
256 pr_debug("Identified CX4\n");
257 xpak_vendor
= ixgb_identify_xpak_vendor(hw
);
258 if (xpak_vendor
== ixgb_xpak_vendor_intel
) {
259 pr_debug("Identified TXN17201 optics\n");
260 phy_type
= ixgb_phy_type_txn17201
;
262 pr_debug("Identified G6005 optics\n");
263 phy_type
= ixgb_phy_type_g6005
;
267 pr_debug("Unknown physical layer module\n");
268 phy_type
= ixgb_phy_type_unknown
;
272 /* update phy type for sun specific board */
273 if (hw
->subsystem_vendor_id
== SUN_SUBVENDOR_ID
)
274 phy_type
= ixgb_phy_type_bcm
;
279 /******************************************************************************
280 * Performs basic configuration of the adapter.
282 * hw - Struct containing variables accessed by shared code
284 * Resets the controller.
285 * Reads and validates the EEPROM.
286 * Initializes the receive address registers.
287 * Initializes the multicast table.
288 * Clears all on-chip counters.
289 * Calls routine to setup flow control settings.
290 * Leaves the transmit and receive units disabled and uninitialized.
293 * true if successful,
294 * false if unrecoverable problems were encountered.
295 *****************************************************************************/
297 ixgb_init_hw(struct ixgb_hw
*hw
)
305 /* Issue a global reset to the MAC. This will reset the chip's
306 * transmit, receive, DMA, and link units. It will not effect
307 * the current PCI configuration. The global reset bit is self-
308 * clearing, and should clear within a microsecond.
310 pr_debug("Issuing a global reset to MAC\n");
312 ctrl_reg
= ixgb_mac_reset(hw
);
314 pr_debug("Issuing an EE reset to MAC\n");
316 /* Workaround for 82597EX reset errata */
317 IXGB_WRITE_REG_IO(hw
, CTRL1
, IXGB_CTRL1_EE_RST
);
319 IXGB_WRITE_REG(hw
, CTRL1
, IXGB_CTRL1_EE_RST
);
322 /* Delay a few ms just to allow the reset to complete */
323 msleep(IXGB_DELAY_AFTER_EE_RESET
);
325 if (!ixgb_get_eeprom_data(hw
))
328 /* Use the device id to determine the type of phy/transceiver. */
329 hw
->device_id
= ixgb_get_ee_device_id(hw
);
330 hw
->phy_type
= ixgb_identify_phy(hw
);
332 /* Setup the receive addresses.
333 * Receive Address Registers (RARs 0 - 15).
335 ixgb_init_rx_addrs(hw
);
338 * Check that a valid MAC address has been set.
339 * If it is not valid, we fail hardware init.
341 if (!mac_addr_valid(hw
->curr_mac_addr
)) {
342 pr_debug("MAC address invalid after ixgb_init_rx_addrs\n");
346 /* tell the routines in this file they can access hardware again */
347 hw
->adapter_stopped
= false;
349 /* Fill in the bus_info structure */
350 ixgb_get_bus_info(hw
);
352 /* Zero out the Multicast HASH table */
353 pr_debug("Zeroing the MTA\n");
354 for (i
= 0; i
< IXGB_MC_TBL_SIZE
; i
++)
355 IXGB_WRITE_REG_ARRAY(hw
, MTA
, i
, 0);
357 /* Zero out the VLAN Filter Table Array */
360 /* Zero all of the hardware counters */
361 ixgb_clear_hw_cntrs(hw
);
363 /* Call a subroutine to setup flow control. */
364 status
= ixgb_setup_fc(hw
);
366 /* 82597EX errata: Call check-for-link in case lane deskew is locked */
367 ixgb_check_for_link(hw
);
372 /******************************************************************************
373 * Initializes receive address filters.
375 * hw - Struct containing variables accessed by shared code
377 * Places the MAC address in receive address register 0 and clears the rest
378 * of the receive address registers. Clears the multicast table. Assumes
379 * the receiver is in reset when the routine is called.
380 *****************************************************************************/
382 ixgb_init_rx_addrs(struct ixgb_hw
*hw
)
389 * If the current mac address is valid, assume it is a software override
390 * to the permanent address.
391 * Otherwise, use the permanent address from the eeprom.
393 if (!mac_addr_valid(hw
->curr_mac_addr
)) {
395 /* Get the MAC address from the eeprom for later reference */
396 ixgb_get_ee_mac_addr(hw
, hw
->curr_mac_addr
);
398 pr_debug("Keeping Permanent MAC Addr = %pM\n",
402 /* Setup the receive address. */
403 pr_debug("Overriding MAC Address in RAR[0]\n");
404 pr_debug("New MAC Addr = %pM\n", hw
->curr_mac_addr
);
406 ixgb_rar_set(hw
, hw
->curr_mac_addr
, 0);
409 /* Zero out the other 15 receive addresses. */
410 pr_debug("Clearing RAR[1-15]\n");
411 for (i
= 1; i
< IXGB_RAR_ENTRIES
; i
++) {
412 /* Write high reg first to disable the AV bit first */
413 IXGB_WRITE_REG_ARRAY(hw
, RA
, ((i
<< 1) + 1), 0);
414 IXGB_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1), 0);
418 /******************************************************************************
419 * Updates the MAC's list of multicast addresses.
421 * hw - Struct containing variables accessed by shared code
422 * mc_addr_list - the list of new multicast addresses
423 * mc_addr_count - number of addresses
424 * pad - number of bytes between addresses in the list
426 * The given list replaces any existing list. Clears the last 15 receive
427 * address registers and the multicast table. Uses receive address registers
428 * for the first 15 multicast addresses, and hashes the rest into the
430 *****************************************************************************/
432 ixgb_mc_addr_list_update(struct ixgb_hw
*hw
,
439 u32 rar_used_count
= 1; /* RAR[0] is used for our MAC address */
444 /* Set the new number of MC addresses that we are being requested to use. */
445 hw
->num_mc_addrs
= mc_addr_count
;
447 /* Clear RAR[1-15] */
448 pr_debug("Clearing RAR[1-15]\n");
449 for (i
= rar_used_count
; i
< IXGB_RAR_ENTRIES
; i
++) {
450 IXGB_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1), 0);
451 IXGB_WRITE_REG_ARRAY(hw
, RA
, ((i
<< 1) + 1), 0);
455 pr_debug("Clearing MTA\n");
456 for (i
= 0; i
< IXGB_MC_TBL_SIZE
; i
++)
457 IXGB_WRITE_REG_ARRAY(hw
, MTA
, i
, 0);
459 /* Add the new addresses */
461 for (i
= 0; i
< mc_addr_count
; i
++) {
462 pr_debug("Adding the multicast addresses:\n");
463 pr_debug("MC Addr #%d = %pM\n", i
, mca
);
465 /* Place this multicast address in the RAR if there is room, *
466 * else put it in the MTA
468 if (rar_used_count
< IXGB_RAR_ENTRIES
) {
469 ixgb_rar_set(hw
, mca
, rar_used_count
);
470 pr_debug("Added a multicast address to RAR[%d]\n", i
);
473 hash_value
= ixgb_hash_mc_addr(hw
, mca
);
475 pr_debug("Hash value = 0x%03X\n", hash_value
);
477 ixgb_mta_set(hw
, hash_value
);
480 mca
+= IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
;
483 pr_debug("MC Update Complete\n");
486 /******************************************************************************
487 * Hashes an address to determine its location in the multicast table
489 * hw - Struct containing variables accessed by shared code
490 * mc_addr - the multicast address to hash
494 *****************************************************************************/
496 ixgb_hash_mc_addr(struct ixgb_hw
*hw
,
503 /* The portion of the address that is used for the hash table is
504 * determined by the mc_filter_type setting.
506 switch (hw
->mc_filter_type
) {
507 /* [0] [1] [2] [3] [4] [5]
509 * LSB MSB - According to H/W docs */
511 /* [47:36] i.e. 0x563 for above example address */
513 ((mc_addr
[4] >> 4) | (((u16
) mc_addr
[5]) << 4));
515 case 1: /* [46:35] i.e. 0xAC6 for above example address */
517 ((mc_addr
[4] >> 3) | (((u16
) mc_addr
[5]) << 5));
519 case 2: /* [45:34] i.e. 0x5D8 for above example address */
521 ((mc_addr
[4] >> 2) | (((u16
) mc_addr
[5]) << 6));
523 case 3: /* [43:32] i.e. 0x634 for above example address */
524 hash_value
= ((mc_addr
[4]) | (((u16
) mc_addr
[5]) << 8));
527 /* Invalid mc_filter_type, what should we do? */
528 pr_debug("MC filter type param set incorrectly\n");
537 /******************************************************************************
538 * Sets the bit in the multicast table corresponding to the hash value.
540 * hw - Struct containing variables accessed by shared code
541 * hash_value - Multicast address hash value
542 *****************************************************************************/
544 ixgb_mta_set(struct ixgb_hw
*hw
,
547 u32 hash_bit
, hash_reg
;
550 /* The MTA is a register array of 128 32-bit registers.
551 * It is treated like an array of 4096 bits. We want to set
552 * bit BitArray[hash_value]. So we figure out what register
553 * the bit is in, read it, OR in the new bit, then write
554 * back the new value. The register is determined by the
555 * upper 7 bits of the hash value and the bit within that
556 * register are determined by the lower 5 bits of the value.
558 hash_reg
= (hash_value
>> 5) & 0x7F;
559 hash_bit
= hash_value
& 0x1F;
561 mta_reg
= IXGB_READ_REG_ARRAY(hw
, MTA
, hash_reg
);
563 mta_reg
|= (1 << hash_bit
);
565 IXGB_WRITE_REG_ARRAY(hw
, MTA
, hash_reg
, mta_reg
);
568 /******************************************************************************
569 * Puts an ethernet address into a receive address register.
571 * hw - Struct containing variables accessed by shared code
572 * addr - Address to put into receive address register
573 * index - Receive address register to write
574 *****************************************************************************/
576 ixgb_rar_set(struct ixgb_hw
*hw
,
580 u32 rar_low
, rar_high
;
584 /* HW expects these in little endian so we reverse the byte order
585 * from network order (big endian) to little endian
587 rar_low
= ((u32
) addr
[0] |
588 ((u32
)addr
[1] << 8) |
589 ((u32
)addr
[2] << 16) |
590 ((u32
)addr
[3] << 24));
592 rar_high
= ((u32
) addr
[4] |
593 ((u32
)addr
[5] << 8) |
596 IXGB_WRITE_REG_ARRAY(hw
, RA
, (index
<< 1), rar_low
);
597 IXGB_WRITE_REG_ARRAY(hw
, RA
, ((index
<< 1) + 1), rar_high
);
600 /******************************************************************************
601 * Writes a value to the specified offset in the VLAN filter table.
603 * hw - Struct containing variables accessed by shared code
604 * offset - Offset in VLAN filer table to write
605 * value - Value to write into VLAN filter table
606 *****************************************************************************/
608 ixgb_write_vfta(struct ixgb_hw
*hw
,
612 IXGB_WRITE_REG_ARRAY(hw
, VFTA
, offset
, value
);
615 /******************************************************************************
616 * Clears the VLAN filer table
618 * hw - Struct containing variables accessed by shared code
619 *****************************************************************************/
621 ixgb_clear_vfta(struct ixgb_hw
*hw
)
625 for (offset
= 0; offset
< IXGB_VLAN_FILTER_TBL_SIZE
; offset
++)
626 IXGB_WRITE_REG_ARRAY(hw
, VFTA
, offset
, 0);
629 /******************************************************************************
630 * Configures the flow control settings based on SW configuration.
632 * hw - Struct containing variables accessed by shared code
633 *****************************************************************************/
636 ixgb_setup_fc(struct ixgb_hw
*hw
)
639 u32 pap_reg
= 0; /* by default, assume no pause time */
644 /* Get the current control reg 0 settings */
645 ctrl_reg
= IXGB_READ_REG(hw
, CTRL0
);
647 /* Clear the Receive Pause Enable and Transmit Pause Enable bits */
648 ctrl_reg
&= ~(IXGB_CTRL0_RPE
| IXGB_CTRL0_TPE
);
650 /* The possible values of the "flow_control" parameter are:
651 * 0: Flow control is completely disabled
652 * 1: Rx flow control is enabled (we can receive pause frames
653 * but not send pause frames).
654 * 2: Tx flow control is enabled (we can send pause frames
655 * but we do not support receiving pause frames).
656 * 3: Both Rx and TX flow control (symmetric) are enabled.
659 switch (hw
->fc
.type
) {
660 case ixgb_fc_none
: /* 0 */
661 /* Set CMDC bit to disable Rx Flow control */
662 ctrl_reg
|= (IXGB_CTRL0_CMDC
);
664 case ixgb_fc_rx_pause
: /* 1 */
665 /* RX Flow control is enabled, and TX Flow control is
668 ctrl_reg
|= (IXGB_CTRL0_RPE
);
670 case ixgb_fc_tx_pause
: /* 2 */
671 /* TX Flow control is enabled, and RX Flow control is
672 * disabled, by a software over-ride.
674 ctrl_reg
|= (IXGB_CTRL0_TPE
);
675 pap_reg
= hw
->fc
.pause_time
;
677 case ixgb_fc_full
: /* 3 */
678 /* Flow control (both RX and TX) is enabled by a software
681 ctrl_reg
|= (IXGB_CTRL0_RPE
| IXGB_CTRL0_TPE
);
682 pap_reg
= hw
->fc
.pause_time
;
685 /* We should never get here. The value should be 0-3. */
686 pr_debug("Flow control param set incorrectly\n");
691 /* Write the new settings */
692 IXGB_WRITE_REG(hw
, CTRL0
, ctrl_reg
);
695 IXGB_WRITE_REG(hw
, PAP
, pap_reg
);
697 /* Set the flow control receive threshold registers. Normally,
698 * these registers will be set to a default threshold that may be
699 * adjusted later by the driver's runtime code. However, if the
700 * ability to transmit pause frames in not enabled, then these
701 * registers will be set to 0.
703 if (!(hw
->fc
.type
& ixgb_fc_tx_pause
)) {
704 IXGB_WRITE_REG(hw
, FCRTL
, 0);
705 IXGB_WRITE_REG(hw
, FCRTH
, 0);
707 /* We need to set up the Receive Threshold high and low water
708 * marks as well as (optionally) enabling the transmission of XON
710 if (hw
->fc
.send_xon
) {
711 IXGB_WRITE_REG(hw
, FCRTL
,
712 (hw
->fc
.low_water
| IXGB_FCRTL_XONE
));
714 IXGB_WRITE_REG(hw
, FCRTL
, hw
->fc
.low_water
);
716 IXGB_WRITE_REG(hw
, FCRTH
, hw
->fc
.high_water
);
721 /******************************************************************************
722 * Reads a word from a device over the Management Data Interface (MDI) bus.
723 * This interface is used to manage Physical layer devices.
725 * hw - Struct containing variables accessed by hw code
726 * reg_address - Offset of device register being read.
727 * phy_address - Address of device on MDI.
729 * Returns: Data word (16 bits) from MDI device.
731 * The 82597EX has support for several MDI access methods. This routine
732 * uses the new protocol MDI Single Command and Address Operation.
733 * This requires that first an address cycle command is sent, followed by a
735 *****************************************************************************/
737 ixgb_read_phy_reg(struct ixgb_hw
*hw
,
746 ASSERT(reg_address
<= IXGB_MAX_PHY_REG_ADDRESS
);
747 ASSERT(phy_address
<= IXGB_MAX_PHY_ADDRESS
);
748 ASSERT(device_type
<= IXGB_MAX_PHY_DEV_TYPE
);
750 /* Setup and write the address cycle command */
751 command
= ((reg_address
<< IXGB_MSCA_NP_ADDR_SHIFT
) |
752 (device_type
<< IXGB_MSCA_DEV_TYPE_SHIFT
) |
753 (phy_address
<< IXGB_MSCA_PHY_ADDR_SHIFT
) |
754 (IXGB_MSCA_ADDR_CYCLE
| IXGB_MSCA_MDI_COMMAND
));
756 IXGB_WRITE_REG(hw
, MSCA
, command
);
758 /**************************************************************
759 ** Check every 10 usec to see if the address cycle completed
760 ** The COMMAND bit will clear when the operation is complete.
761 ** This may take as long as 64 usecs (we'll wait 100 usecs max)
762 ** from the CPU Write to the Ready bit assertion.
763 **************************************************************/
765 for (i
= 0; i
< 10; i
++)
769 command
= IXGB_READ_REG(hw
, MSCA
);
771 if ((command
& IXGB_MSCA_MDI_COMMAND
) == 0)
775 ASSERT((command
& IXGB_MSCA_MDI_COMMAND
) == 0);
777 /* Address cycle complete, setup and write the read command */
778 command
= ((reg_address
<< IXGB_MSCA_NP_ADDR_SHIFT
) |
779 (device_type
<< IXGB_MSCA_DEV_TYPE_SHIFT
) |
780 (phy_address
<< IXGB_MSCA_PHY_ADDR_SHIFT
) |
781 (IXGB_MSCA_READ
| IXGB_MSCA_MDI_COMMAND
));
783 IXGB_WRITE_REG(hw
, MSCA
, command
);
785 /**************************************************************
786 ** Check every 10 usec to see if the read command completed
787 ** The COMMAND bit will clear when the operation is complete.
788 ** The read may take as long as 64 usecs (we'll wait 100 usecs max)
789 ** from the CPU Write to the Ready bit assertion.
790 **************************************************************/
792 for (i
= 0; i
< 10; i
++)
796 command
= IXGB_READ_REG(hw
, MSCA
);
798 if ((command
& IXGB_MSCA_MDI_COMMAND
) == 0)
802 ASSERT((command
& IXGB_MSCA_MDI_COMMAND
) == 0);
804 /* Operation is complete, get the data from the MDIO Read/Write Data
805 * register and return.
807 data
= IXGB_READ_REG(hw
, MSRWD
);
808 data
>>= IXGB_MSRWD_READ_DATA_SHIFT
;
812 /******************************************************************************
813 * Writes a word to a device over the Management Data Interface (MDI) bus.
814 * This interface is used to manage Physical layer devices.
816 * hw - Struct containing variables accessed by hw code
817 * reg_address - Offset of device register being read.
818 * phy_address - Address of device on MDI.
819 * device_type - Also known as the Device ID or DID.
820 * data - 16-bit value to be written
824 * The 82597EX has support for several MDI access methods. This routine
825 * uses the new protocol MDI Single Command and Address Operation.
826 * This requires that first an address cycle command is sent, followed by a
828 *****************************************************************************/
830 ixgb_write_phy_reg(struct ixgb_hw
*hw
,
839 ASSERT(reg_address
<= IXGB_MAX_PHY_REG_ADDRESS
);
840 ASSERT(phy_address
<= IXGB_MAX_PHY_ADDRESS
);
841 ASSERT(device_type
<= IXGB_MAX_PHY_DEV_TYPE
);
843 /* Put the data in the MDIO Read/Write Data register */
844 IXGB_WRITE_REG(hw
, MSRWD
, (u32
)data
);
846 /* Setup and write the address cycle command */
847 command
= ((reg_address
<< IXGB_MSCA_NP_ADDR_SHIFT
) |
848 (device_type
<< IXGB_MSCA_DEV_TYPE_SHIFT
) |
849 (phy_address
<< IXGB_MSCA_PHY_ADDR_SHIFT
) |
850 (IXGB_MSCA_ADDR_CYCLE
| IXGB_MSCA_MDI_COMMAND
));
852 IXGB_WRITE_REG(hw
, MSCA
, command
);
854 /**************************************************************
855 ** Check every 10 usec to see if the address cycle completed
856 ** The COMMAND bit will clear when the operation is complete.
857 ** This may take as long as 64 usecs (we'll wait 100 usecs max)
858 ** from the CPU Write to the Ready bit assertion.
859 **************************************************************/
861 for (i
= 0; i
< 10; i
++)
865 command
= IXGB_READ_REG(hw
, MSCA
);
867 if ((command
& IXGB_MSCA_MDI_COMMAND
) == 0)
871 ASSERT((command
& IXGB_MSCA_MDI_COMMAND
) == 0);
873 /* Address cycle complete, setup and write the write command */
874 command
= ((reg_address
<< IXGB_MSCA_NP_ADDR_SHIFT
) |
875 (device_type
<< IXGB_MSCA_DEV_TYPE_SHIFT
) |
876 (phy_address
<< IXGB_MSCA_PHY_ADDR_SHIFT
) |
877 (IXGB_MSCA_WRITE
| IXGB_MSCA_MDI_COMMAND
));
879 IXGB_WRITE_REG(hw
, MSCA
, command
);
881 /**************************************************************
882 ** Check every 10 usec to see if the read command completed
883 ** The COMMAND bit will clear when the operation is complete.
884 ** The write may take as long as 64 usecs (we'll wait 100 usecs max)
885 ** from the CPU Write to the Ready bit assertion.
886 **************************************************************/
888 for (i
= 0; i
< 10; i
++)
892 command
= IXGB_READ_REG(hw
, MSCA
);
894 if ((command
& IXGB_MSCA_MDI_COMMAND
) == 0)
898 ASSERT((command
& IXGB_MSCA_MDI_COMMAND
) == 0);
900 /* Operation is complete, return. */
903 /******************************************************************************
904 * Checks to see if the link status of the hardware has changed.
906 * hw - Struct containing variables accessed by hw code
908 * Called by any function that needs to check the link status of the adapter.
909 *****************************************************************************/
911 ixgb_check_for_link(struct ixgb_hw
*hw
)
918 xpcss_reg
= IXGB_READ_REG(hw
, XPCSS
);
919 status_reg
= IXGB_READ_REG(hw
, STATUS
);
921 if ((xpcss_reg
& IXGB_XPCSS_ALIGN_STATUS
) &&
922 (status_reg
& IXGB_STATUS_LU
)) {
924 } else if (!(xpcss_reg
& IXGB_XPCSS_ALIGN_STATUS
) &&
925 (status_reg
& IXGB_STATUS_LU
)) {
926 pr_debug("XPCSS Not Aligned while Status:LU is set\n");
927 hw
->link_up
= ixgb_link_reset(hw
);
930 * 82597EX errata. Since the lane deskew problem may prevent
931 * link, reset the link before reporting link down.
933 hw
->link_up
= ixgb_link_reset(hw
);
935 /* Anything else for 10 Gig?? */
938 /******************************************************************************
939 * Check for a bad link condition that may have occurred.
940 * The indication is that the RFC / LFC registers may be incrementing
941 * continually. A full adapter reset is required to recover.
943 * hw - Struct containing variables accessed by hw code
945 * Called by any function that needs to check the link status of the adapter.
946 *****************************************************************************/
947 bool ixgb_check_for_bad_link(struct ixgb_hw
*hw
)
950 bool bad_link_returncode
= false;
952 if (hw
->phy_type
== ixgb_phy_type_txn17401
) {
953 newLFC
= IXGB_READ_REG(hw
, LFC
);
954 newRFC
= IXGB_READ_REG(hw
, RFC
);
955 if ((hw
->lastLFC
+ 250 < newLFC
)
956 || (hw
->lastRFC
+ 250 < newRFC
)) {
957 pr_debug("BAD LINK! too many LFC/RFC since last check\n");
958 bad_link_returncode
= true;
960 hw
->lastLFC
= newLFC
;
961 hw
->lastRFC
= newRFC
;
964 return bad_link_returncode
;
967 /******************************************************************************
968 * Clears all hardware statistics counters.
970 * hw - Struct containing variables accessed by shared code
971 *****************************************************************************/
973 ixgb_clear_hw_cntrs(struct ixgb_hw
*hw
)
975 volatile u32 temp_reg
;
979 /* if we are stopped or resetting exit gracefully */
980 if (hw
->adapter_stopped
) {
981 pr_debug("Exiting because the adapter is stopped!!!\n");
985 temp_reg
= IXGB_READ_REG(hw
, TPRL
);
986 temp_reg
= IXGB_READ_REG(hw
, TPRH
);
987 temp_reg
= IXGB_READ_REG(hw
, GPRCL
);
988 temp_reg
= IXGB_READ_REG(hw
, GPRCH
);
989 temp_reg
= IXGB_READ_REG(hw
, BPRCL
);
990 temp_reg
= IXGB_READ_REG(hw
, BPRCH
);
991 temp_reg
= IXGB_READ_REG(hw
, MPRCL
);
992 temp_reg
= IXGB_READ_REG(hw
, MPRCH
);
993 temp_reg
= IXGB_READ_REG(hw
, UPRCL
);
994 temp_reg
= IXGB_READ_REG(hw
, UPRCH
);
995 temp_reg
= IXGB_READ_REG(hw
, VPRCL
);
996 temp_reg
= IXGB_READ_REG(hw
, VPRCH
);
997 temp_reg
= IXGB_READ_REG(hw
, JPRCL
);
998 temp_reg
= IXGB_READ_REG(hw
, JPRCH
);
999 temp_reg
= IXGB_READ_REG(hw
, GORCL
);
1000 temp_reg
= IXGB_READ_REG(hw
, GORCH
);
1001 temp_reg
= IXGB_READ_REG(hw
, TORL
);
1002 temp_reg
= IXGB_READ_REG(hw
, TORH
);
1003 temp_reg
= IXGB_READ_REG(hw
, RNBC
);
1004 temp_reg
= IXGB_READ_REG(hw
, RUC
);
1005 temp_reg
= IXGB_READ_REG(hw
, ROC
);
1006 temp_reg
= IXGB_READ_REG(hw
, RLEC
);
1007 temp_reg
= IXGB_READ_REG(hw
, CRCERRS
);
1008 temp_reg
= IXGB_READ_REG(hw
, ICBC
);
1009 temp_reg
= IXGB_READ_REG(hw
, ECBC
);
1010 temp_reg
= IXGB_READ_REG(hw
, MPC
);
1011 temp_reg
= IXGB_READ_REG(hw
, TPTL
);
1012 temp_reg
= IXGB_READ_REG(hw
, TPTH
);
1013 temp_reg
= IXGB_READ_REG(hw
, GPTCL
);
1014 temp_reg
= IXGB_READ_REG(hw
, GPTCH
);
1015 temp_reg
= IXGB_READ_REG(hw
, BPTCL
);
1016 temp_reg
= IXGB_READ_REG(hw
, BPTCH
);
1017 temp_reg
= IXGB_READ_REG(hw
, MPTCL
);
1018 temp_reg
= IXGB_READ_REG(hw
, MPTCH
);
1019 temp_reg
= IXGB_READ_REG(hw
, UPTCL
);
1020 temp_reg
= IXGB_READ_REG(hw
, UPTCH
);
1021 temp_reg
= IXGB_READ_REG(hw
, VPTCL
);
1022 temp_reg
= IXGB_READ_REG(hw
, VPTCH
);
1023 temp_reg
= IXGB_READ_REG(hw
, JPTCL
);
1024 temp_reg
= IXGB_READ_REG(hw
, JPTCH
);
1025 temp_reg
= IXGB_READ_REG(hw
, GOTCL
);
1026 temp_reg
= IXGB_READ_REG(hw
, GOTCH
);
1027 temp_reg
= IXGB_READ_REG(hw
, TOTL
);
1028 temp_reg
= IXGB_READ_REG(hw
, TOTH
);
1029 temp_reg
= IXGB_READ_REG(hw
, DC
);
1030 temp_reg
= IXGB_READ_REG(hw
, PLT64C
);
1031 temp_reg
= IXGB_READ_REG(hw
, TSCTC
);
1032 temp_reg
= IXGB_READ_REG(hw
, TSCTFC
);
1033 temp_reg
= IXGB_READ_REG(hw
, IBIC
);
1034 temp_reg
= IXGB_READ_REG(hw
, RFC
);
1035 temp_reg
= IXGB_READ_REG(hw
, LFC
);
1036 temp_reg
= IXGB_READ_REG(hw
, PFRC
);
1037 temp_reg
= IXGB_READ_REG(hw
, PFTC
);
1038 temp_reg
= IXGB_READ_REG(hw
, MCFRC
);
1039 temp_reg
= IXGB_READ_REG(hw
, MCFTC
);
1040 temp_reg
= IXGB_READ_REG(hw
, XONRXC
);
1041 temp_reg
= IXGB_READ_REG(hw
, XONTXC
);
1042 temp_reg
= IXGB_READ_REG(hw
, XOFFRXC
);
1043 temp_reg
= IXGB_READ_REG(hw
, XOFFTXC
);
1044 temp_reg
= IXGB_READ_REG(hw
, RJC
);
1047 /******************************************************************************
1048 * Turns on the software controllable LED
1050 * hw - Struct containing variables accessed by shared code
1051 *****************************************************************************/
1053 ixgb_led_on(struct ixgb_hw
*hw
)
1055 u32 ctrl0_reg
= IXGB_READ_REG(hw
, CTRL0
);
1057 /* To turn on the LED, clear software-definable pin 0 (SDP0). */
1058 ctrl0_reg
&= ~IXGB_CTRL0_SDP0
;
1059 IXGB_WRITE_REG(hw
, CTRL0
, ctrl0_reg
);
1062 /******************************************************************************
1063 * Turns off the software controllable LED
1065 * hw - Struct containing variables accessed by shared code
1066 *****************************************************************************/
1068 ixgb_led_off(struct ixgb_hw
*hw
)
1070 u32 ctrl0_reg
= IXGB_READ_REG(hw
, CTRL0
);
1072 /* To turn off the LED, set software-definable pin 0 (SDP0). */
1073 ctrl0_reg
|= IXGB_CTRL0_SDP0
;
1074 IXGB_WRITE_REG(hw
, CTRL0
, ctrl0_reg
);
1077 /******************************************************************************
1078 * Gets the current PCI bus type, speed, and width of the hardware
1080 * hw - Struct containing variables accessed by shared code
1081 *****************************************************************************/
1083 ixgb_get_bus_info(struct ixgb_hw
*hw
)
1087 status_reg
= IXGB_READ_REG(hw
, STATUS
);
1089 hw
->bus
.type
= (status_reg
& IXGB_STATUS_PCIX_MODE
) ?
1090 ixgb_bus_type_pcix
: ixgb_bus_type_pci
;
1092 if (hw
->bus
.type
== ixgb_bus_type_pci
) {
1093 hw
->bus
.speed
= (status_reg
& IXGB_STATUS_PCI_SPD
) ?
1094 ixgb_bus_speed_66
: ixgb_bus_speed_33
;
1096 switch (status_reg
& IXGB_STATUS_PCIX_SPD_MASK
) {
1097 case IXGB_STATUS_PCIX_SPD_66
:
1098 hw
->bus
.speed
= ixgb_bus_speed_66
;
1100 case IXGB_STATUS_PCIX_SPD_100
:
1101 hw
->bus
.speed
= ixgb_bus_speed_100
;
1103 case IXGB_STATUS_PCIX_SPD_133
:
1104 hw
->bus
.speed
= ixgb_bus_speed_133
;
1107 hw
->bus
.speed
= ixgb_bus_speed_reserved
;
1112 hw
->bus
.width
= (status_reg
& IXGB_STATUS_BUS64
) ?
1113 ixgb_bus_width_64
: ixgb_bus_width_32
;
1116 /******************************************************************************
1117 * Tests a MAC address to ensure it is a valid Individual Address
1119 * mac_addr - pointer to MAC address.
1121 *****************************************************************************/
1123 mac_addr_valid(u8
*mac_addr
)
1125 bool is_valid
= true;
1128 /* Make sure it is not a multicast address */
1129 if (is_multicast_ether_addr(mac_addr
)) {
1130 pr_debug("MAC address is multicast\n");
1133 /* Not a broadcast address */
1134 else if (is_broadcast_ether_addr(mac_addr
)) {
1135 pr_debug("MAC address is broadcast\n");
1138 /* Reject the zero address */
1139 else if (is_zero_ether_addr(mac_addr
)) {
1140 pr_debug("MAC address is all zeros\n");
1146 /******************************************************************************
1147 * Resets the 10GbE link. Waits the settle time and returns the state of
1150 * hw - Struct containing variables accessed by shared code
1151 *****************************************************************************/
1153 ixgb_link_reset(struct ixgb_hw
*hw
)
1155 bool link_status
= false;
1156 u8 wait_retries
= MAX_RESET_ITERATIONS
;
1157 u8 lrst_retries
= MAX_RESET_ITERATIONS
;
1160 /* Reset the link */
1161 IXGB_WRITE_REG(hw
, CTRL0
,
1162 IXGB_READ_REG(hw
, CTRL0
) | IXGB_CTRL0_LRST
);
1164 /* Wait for link-up and lane re-alignment */
1166 udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET
);
1168 ((IXGB_READ_REG(hw
, STATUS
) & IXGB_STATUS_LU
)
1169 && (IXGB_READ_REG(hw
, XPCSS
) &
1170 IXGB_XPCSS_ALIGN_STATUS
)) ? true : false;
1171 } while (!link_status
&& --wait_retries
);
1173 } while (!link_status
&& --lrst_retries
);
1178 /******************************************************************************
1179 * Resets the 10GbE optics module.
1181 * hw - Struct containing variables accessed by shared code
1182 *****************************************************************************/
1184 ixgb_optics_reset(struct ixgb_hw
*hw
)
1186 if (hw
->phy_type
== ixgb_phy_type_txn17401
) {
1189 ixgb_write_phy_reg(hw
,
1195 mdio_reg
= ixgb_read_phy_reg(hw
,
1202 /******************************************************************************
1203 * Resets the 10GbE optics module for Sun variant NIC.
1205 * hw - Struct containing variables accessed by shared code
1206 *****************************************************************************/
1208 #define IXGB_BCM8704_USER_PMD_TX_CTRL_REG 0xC803
1209 #define IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL 0x0164
1210 #define IXGB_BCM8704_USER_CTRL_REG 0xC800
1211 #define IXGB_BCM8704_USER_CTRL_REG_VAL 0x7FBF
1212 #define IXGB_BCM8704_USER_DEV3_ADDR 0x0003
1213 #define IXGB_SUN_PHY_ADDRESS 0x0000
1214 #define IXGB_SUN_PHY_RESET_DELAY 305
1217 ixgb_optics_reset_bcm(struct ixgb_hw
*hw
)
1219 u32 ctrl
= IXGB_READ_REG(hw
, CTRL0
);
1220 ctrl
&= ~IXGB_CTRL0_SDP2
;
1221 ctrl
|= IXGB_CTRL0_SDP3
;
1222 IXGB_WRITE_REG(hw
, CTRL0
, ctrl
);
1224 /* SerDes needs extra delay */
1225 msleep(IXGB_SUN_PHY_RESET_DELAY
);
1227 /* Broadcom 7408L configuration */
1228 /* Reference clock config */
1229 ixgb_write_phy_reg(hw
,
1230 IXGB_BCM8704_USER_PMD_TX_CTRL_REG
,
1231 IXGB_SUN_PHY_ADDRESS
,
1232 IXGB_BCM8704_USER_DEV3_ADDR
,
1233 IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL
);
1234 /* we must read the registers twice */
1235 ixgb_read_phy_reg(hw
,
1236 IXGB_BCM8704_USER_PMD_TX_CTRL_REG
,
1237 IXGB_SUN_PHY_ADDRESS
,
1238 IXGB_BCM8704_USER_DEV3_ADDR
);
1239 ixgb_read_phy_reg(hw
,
1240 IXGB_BCM8704_USER_PMD_TX_CTRL_REG
,
1241 IXGB_SUN_PHY_ADDRESS
,
1242 IXGB_BCM8704_USER_DEV3_ADDR
);
1244 ixgb_write_phy_reg(hw
,
1245 IXGB_BCM8704_USER_CTRL_REG
,
1246 IXGB_SUN_PHY_ADDRESS
,
1247 IXGB_BCM8704_USER_DEV3_ADDR
,
1248 IXGB_BCM8704_USER_CTRL_REG_VAL
);
1249 ixgb_read_phy_reg(hw
,
1250 IXGB_BCM8704_USER_CTRL_REG
,
1251 IXGB_SUN_PHY_ADDRESS
,
1252 IXGB_BCM8704_USER_DEV3_ADDR
);
1253 ixgb_read_phy_reg(hw
,
1254 IXGB_BCM8704_USER_CTRL_REG
,
1255 IXGB_SUN_PHY_ADDRESS
,
1256 IXGB_BCM8704_USER_DEV3_ADDR
);
1258 /* SerDes needs extra delay */
1259 msleep(IXGB_SUN_PHY_RESET_DELAY
);