1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2011 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include "net_driver.h"
22 #include "workarounds.h"
24 /**************************************************************************
28 **************************************************************************
31 /* This is set to 16 for a good reason. In summary, if larger than
32 * 16, the descriptor cache holds more than a default socket
33 * buffer's worth of packets (for UDP we can only have at most one
34 * socket buffer's worth outstanding). This combined with the fact
35 * that we only get 1 TX event per descriptor cache means the NIC
38 #define TX_DC_ENTRIES 16
39 #define TX_DC_ENTRIES_ORDER 1
41 #define RX_DC_ENTRIES 64
42 #define RX_DC_ENTRIES_ORDER 3
44 /* If EFX_MAX_INT_ERRORS internal errors occur within
45 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
48 #define EFX_INT_ERROR_EXPIRE 3600
49 #define EFX_MAX_INT_ERRORS 5
51 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
53 #define EFX_FLUSH_INTERVAL 10
54 #define EFX_FLUSH_POLL_COUNT 100
56 /* Size and alignment of special buffers (4KB) */
57 #define EFX_BUF_SIZE 4096
59 /* Depth of RX flush request fifo */
60 #define EFX_RX_FLUSH_COUNT 4
62 /* Generated event code for efx_generate_test_event() */
63 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
64 (0x00010100 + (_channel)->channel)
66 /* Generated event code for efx_generate_fill_event() */
67 #define EFX_CHANNEL_MAGIC_FILL(_channel) \
68 (0x00010200 + (_channel)->channel)
70 /**************************************************************************
72 * Solarstorm hardware access
74 **************************************************************************/
76 static inline void efx_write_buf_tbl(struct efx_nic
*efx
, efx_qword_t
*value
,
79 efx_sram_writeq(efx
, efx
->membase
+ efx
->type
->buf_tbl_base
,
83 /* Read the current event from the event queue */
84 static inline efx_qword_t
*efx_event(struct efx_channel
*channel
,
87 return ((efx_qword_t
*) (channel
->eventq
.addr
)) +
88 (index
& channel
->eventq_mask
);
91 /* See if an event is present
93 * We check both the high and low dword of the event for all ones. We
94 * wrote all ones when we cleared the event, and no valid event can
95 * have all ones in either its high or low dwords. This approach is
96 * robust against reordering.
98 * Note that using a single 64-bit comparison is incorrect; even
99 * though the CPU read will be atomic, the DMA write may not be.
101 static inline int efx_event_present(efx_qword_t
*event
)
103 return !(EFX_DWORD_IS_ALL_ONES(event
->dword
[0]) |
104 EFX_DWORD_IS_ALL_ONES(event
->dword
[1]));
107 static bool efx_masked_compare_oword(const efx_oword_t
*a
, const efx_oword_t
*b
,
108 const efx_oword_t
*mask
)
110 return ((a
->u64
[0] ^ b
->u64
[0]) & mask
->u64
[0]) ||
111 ((a
->u64
[1] ^ b
->u64
[1]) & mask
->u64
[1]);
114 int efx_nic_test_registers(struct efx_nic
*efx
,
115 const struct efx_nic_register_test
*regs
,
118 unsigned address
= 0, i
, j
;
119 efx_oword_t mask
, imask
, original
, reg
, buf
;
121 /* Falcon should be in loopback to isolate the XMAC from the PHY */
122 WARN_ON(!LOOPBACK_INTERNAL(efx
));
124 for (i
= 0; i
< n_regs
; ++i
) {
125 address
= regs
[i
].address
;
126 mask
= imask
= regs
[i
].mask
;
127 EFX_INVERT_OWORD(imask
);
129 efx_reado(efx
, &original
, address
);
131 /* bit sweep on and off */
132 for (j
= 0; j
< 128; j
++) {
133 if (!EFX_EXTRACT_OWORD32(mask
, j
, j
))
136 /* Test this testable bit can be set in isolation */
137 EFX_AND_OWORD(reg
, original
, mask
);
138 EFX_SET_OWORD32(reg
, j
, j
, 1);
140 efx_writeo(efx
, ®
, address
);
141 efx_reado(efx
, &buf
, address
);
143 if (efx_masked_compare_oword(®
, &buf
, &mask
))
146 /* Test this testable bit can be cleared in isolation */
147 EFX_OR_OWORD(reg
, original
, mask
);
148 EFX_SET_OWORD32(reg
, j
, j
, 0);
150 efx_writeo(efx
, ®
, address
);
151 efx_reado(efx
, &buf
, address
);
153 if (efx_masked_compare_oword(®
, &buf
, &mask
))
157 efx_writeo(efx
, &original
, address
);
163 netif_err(efx
, hw
, efx
->net_dev
,
164 "wrote "EFX_OWORD_FMT
" read "EFX_OWORD_FMT
165 " at address 0x%x mask "EFX_OWORD_FMT
"\n", EFX_OWORD_VAL(reg
),
166 EFX_OWORD_VAL(buf
), address
, EFX_OWORD_VAL(mask
));
170 /**************************************************************************
172 * Special buffer handling
173 * Special buffers are used for event queues and the TX and RX
176 *************************************************************************/
179 * Initialise a special buffer
181 * This will define a buffer (previously allocated via
182 * efx_alloc_special_buffer()) in the buffer table, allowing
183 * it to be used for event queues, descriptor rings etc.
186 efx_init_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
188 efx_qword_t buf_desc
;
193 EFX_BUG_ON_PARANOID(!buffer
->addr
);
195 /* Write buffer descriptors to NIC */
196 for (i
= 0; i
< buffer
->entries
; i
++) {
197 index
= buffer
->index
+ i
;
198 dma_addr
= buffer
->dma_addr
+ (i
* 4096);
199 netif_dbg(efx
, probe
, efx
->net_dev
,
200 "mapping special buffer %d at %llx\n",
201 index
, (unsigned long long)dma_addr
);
202 EFX_POPULATE_QWORD_3(buf_desc
,
203 FRF_AZ_BUF_ADR_REGION
, 0,
204 FRF_AZ_BUF_ADR_FBUF
, dma_addr
>> 12,
205 FRF_AZ_BUF_OWNER_ID_FBUF
, 0);
206 efx_write_buf_tbl(efx
, &buf_desc
, index
);
210 /* Unmaps a buffer and clears the buffer table entries */
212 efx_fini_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
214 efx_oword_t buf_tbl_upd
;
215 unsigned int start
= buffer
->index
;
216 unsigned int end
= (buffer
->index
+ buffer
->entries
- 1);
218 if (!buffer
->entries
)
221 netif_dbg(efx
, hw
, efx
->net_dev
, "unmapping special buffers %d-%d\n",
222 buffer
->index
, buffer
->index
+ buffer
->entries
- 1);
224 EFX_POPULATE_OWORD_4(buf_tbl_upd
,
225 FRF_AZ_BUF_UPD_CMD
, 0,
226 FRF_AZ_BUF_CLR_CMD
, 1,
227 FRF_AZ_BUF_CLR_END_ID
, end
,
228 FRF_AZ_BUF_CLR_START_ID
, start
);
229 efx_writeo(efx
, &buf_tbl_upd
, FR_AZ_BUF_TBL_UPD
);
233 * Allocate a new special buffer
235 * This allocates memory for a new buffer, clears it and allocates a
236 * new buffer ID range. It does not write into the buffer table.
238 * This call will allocate 4KB buffers, since 8KB buffers can't be
239 * used for event queues and descriptor rings.
241 static int efx_alloc_special_buffer(struct efx_nic
*efx
,
242 struct efx_special_buffer
*buffer
,
245 len
= ALIGN(len
, EFX_BUF_SIZE
);
247 buffer
->addr
= dma_alloc_coherent(&efx
->pci_dev
->dev
, len
,
248 &buffer
->dma_addr
, GFP_KERNEL
);
252 buffer
->entries
= len
/ EFX_BUF_SIZE
;
253 BUG_ON(buffer
->dma_addr
& (EFX_BUF_SIZE
- 1));
255 /* All zeros is a potentially valid event so memset to 0xff */
256 memset(buffer
->addr
, 0xff, len
);
258 /* Select new buffer ID */
259 buffer
->index
= efx
->next_buffer_table
;
260 efx
->next_buffer_table
+= buffer
->entries
;
262 netif_dbg(efx
, probe
, efx
->net_dev
,
263 "allocating special buffers %d-%d at %llx+%x "
264 "(virt %p phys %llx)\n", buffer
->index
,
265 buffer
->index
+ buffer
->entries
- 1,
266 (u64
)buffer
->dma_addr
, len
,
267 buffer
->addr
, (u64
)virt_to_phys(buffer
->addr
));
273 efx_free_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
278 netif_dbg(efx
, hw
, efx
->net_dev
,
279 "deallocating special buffers %d-%d at %llx+%x "
280 "(virt %p phys %llx)\n", buffer
->index
,
281 buffer
->index
+ buffer
->entries
- 1,
282 (u64
)buffer
->dma_addr
, buffer
->len
,
283 buffer
->addr
, (u64
)virt_to_phys(buffer
->addr
));
285 dma_free_coherent(&efx
->pci_dev
->dev
, buffer
->len
, buffer
->addr
,
291 /**************************************************************************
293 * Generic buffer handling
294 * These buffers are used for interrupt status and MAC stats
296 **************************************************************************/
298 int efx_nic_alloc_buffer(struct efx_nic
*efx
, struct efx_buffer
*buffer
,
301 buffer
->addr
= pci_alloc_consistent(efx
->pci_dev
, len
,
306 memset(buffer
->addr
, 0, len
);
310 void efx_nic_free_buffer(struct efx_nic
*efx
, struct efx_buffer
*buffer
)
313 pci_free_consistent(efx
->pci_dev
, buffer
->len
,
314 buffer
->addr
, buffer
->dma_addr
);
319 /**************************************************************************
323 **************************************************************************/
325 /* Returns a pointer to the specified transmit descriptor in the TX
326 * descriptor queue belonging to the specified channel.
328 static inline efx_qword_t
*
329 efx_tx_desc(struct efx_tx_queue
*tx_queue
, unsigned int index
)
331 return ((efx_qword_t
*) (tx_queue
->txd
.addr
)) + index
;
334 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
335 static inline void efx_notify_tx_desc(struct efx_tx_queue
*tx_queue
)
340 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
341 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_TX_DESC_WPTR_DWORD
, write_ptr
);
342 efx_writed_page(tx_queue
->efx
, ®
,
343 FR_AZ_TX_DESC_UPD_DWORD_P0
, tx_queue
->queue
);
346 /* Write pointer and first descriptor for TX descriptor ring */
347 static inline void efx_push_tx_desc(struct efx_tx_queue
*tx_queue
,
348 const efx_qword_t
*txd
)
353 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN
!= 0);
354 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER
!= FR_BZ_TX_DESC_UPD_P0
);
356 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
357 EFX_POPULATE_OWORD_2(reg
, FRF_AZ_TX_DESC_PUSH_CMD
, true,
358 FRF_AZ_TX_DESC_WPTR
, write_ptr
);
360 efx_writeo_page(tx_queue
->efx
, ®
,
361 FR_BZ_TX_DESC_UPD_P0
, tx_queue
->queue
);
365 efx_may_push_tx_desc(struct efx_tx_queue
*tx_queue
, unsigned int write_count
)
367 unsigned empty_read_count
= ACCESS_ONCE(tx_queue
->empty_read_count
);
369 if (empty_read_count
== 0)
372 tx_queue
->empty_read_count
= 0;
373 return ((empty_read_count
^ write_count
) & ~EFX_EMPTY_COUNT_VALID
) == 0;
376 /* For each entry inserted into the software descriptor ring, create a
377 * descriptor in the hardware TX descriptor ring (in host memory), and
380 void efx_nic_push_buffers(struct efx_tx_queue
*tx_queue
)
383 struct efx_tx_buffer
*buffer
;
386 unsigned old_write_count
= tx_queue
->write_count
;
388 BUG_ON(tx_queue
->write_count
== tx_queue
->insert_count
);
391 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
392 buffer
= &tx_queue
->buffer
[write_ptr
];
393 txd
= efx_tx_desc(tx_queue
, write_ptr
);
394 ++tx_queue
->write_count
;
396 /* Create TX descriptor ring entry */
397 EFX_POPULATE_QWORD_4(*txd
,
398 FSF_AZ_TX_KER_CONT
, buffer
->continuation
,
399 FSF_AZ_TX_KER_BYTE_COUNT
, buffer
->len
,
400 FSF_AZ_TX_KER_BUF_REGION
, 0,
401 FSF_AZ_TX_KER_BUF_ADDR
, buffer
->dma_addr
);
402 } while (tx_queue
->write_count
!= tx_queue
->insert_count
);
404 wmb(); /* Ensure descriptors are written before they are fetched */
406 if (efx_may_push_tx_desc(tx_queue
, old_write_count
)) {
407 txd
= efx_tx_desc(tx_queue
,
408 old_write_count
& tx_queue
->ptr_mask
);
409 efx_push_tx_desc(tx_queue
, txd
);
412 efx_notify_tx_desc(tx_queue
);
416 /* Allocate hardware resources for a TX queue */
417 int efx_nic_probe_tx(struct efx_tx_queue
*tx_queue
)
419 struct efx_nic
*efx
= tx_queue
->efx
;
422 entries
= tx_queue
->ptr_mask
+ 1;
423 return efx_alloc_special_buffer(efx
, &tx_queue
->txd
,
424 entries
* sizeof(efx_qword_t
));
427 void efx_nic_init_tx(struct efx_tx_queue
*tx_queue
)
429 struct efx_nic
*efx
= tx_queue
->efx
;
432 tx_queue
->flushed
= FLUSH_NONE
;
434 /* Pin TX descriptor ring */
435 efx_init_special_buffer(efx
, &tx_queue
->txd
);
437 /* Push TX descriptor ring to card */
438 EFX_POPULATE_OWORD_10(reg
,
439 FRF_AZ_TX_DESCQ_EN
, 1,
440 FRF_AZ_TX_ISCSI_DDIG_EN
, 0,
441 FRF_AZ_TX_ISCSI_HDIG_EN
, 0,
442 FRF_AZ_TX_DESCQ_BUF_BASE_ID
, tx_queue
->txd
.index
,
443 FRF_AZ_TX_DESCQ_EVQ_ID
,
444 tx_queue
->channel
->channel
,
445 FRF_AZ_TX_DESCQ_OWNER_ID
, 0,
446 FRF_AZ_TX_DESCQ_LABEL
, tx_queue
->queue
,
447 FRF_AZ_TX_DESCQ_SIZE
,
448 __ffs(tx_queue
->txd
.entries
),
449 FRF_AZ_TX_DESCQ_TYPE
, 0,
450 FRF_BZ_TX_NON_IP_DROP_DIS
, 1);
452 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
453 int csum
= tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
;
454 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_TX_IP_CHKSM_DIS
, !csum
);
455 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_TX_TCP_CHKSM_DIS
,
459 efx_writeo_table(efx
, ®
, efx
->type
->txd_ptr_tbl_base
,
462 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
) {
463 /* Only 128 bits in this register */
464 BUILD_BUG_ON(EFX_MAX_TX_QUEUES
> 128);
466 efx_reado(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
467 if (tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
)
468 clear_bit_le(tx_queue
->queue
, (void *)®
);
470 set_bit_le(tx_queue
->queue
, (void *)®
);
471 efx_writeo(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
474 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
475 EFX_POPULATE_OWORD_1(reg
,
477 (tx_queue
->queue
& EFX_TXQ_TYPE_HIGHPRI
) ?
479 FFE_BZ_TX_PACE_RESERVED
);
480 efx_writeo_table(efx
, ®
, FR_BZ_TX_PACE_TBL
,
485 static void efx_flush_tx_queue(struct efx_tx_queue
*tx_queue
)
487 struct efx_nic
*efx
= tx_queue
->efx
;
488 efx_oword_t tx_flush_descq
;
490 tx_queue
->flushed
= FLUSH_PENDING
;
492 /* Post a flush command */
493 EFX_POPULATE_OWORD_2(tx_flush_descq
,
494 FRF_AZ_TX_FLUSH_DESCQ_CMD
, 1,
495 FRF_AZ_TX_FLUSH_DESCQ
, tx_queue
->queue
);
496 efx_writeo(efx
, &tx_flush_descq
, FR_AZ_TX_FLUSH_DESCQ
);
499 void efx_nic_fini_tx(struct efx_tx_queue
*tx_queue
)
501 struct efx_nic
*efx
= tx_queue
->efx
;
502 efx_oword_t tx_desc_ptr
;
504 /* The queue should have been flushed */
505 WARN_ON(tx_queue
->flushed
!= FLUSH_DONE
);
507 /* Remove TX descriptor ring from card */
508 EFX_ZERO_OWORD(tx_desc_ptr
);
509 efx_writeo_table(efx
, &tx_desc_ptr
, efx
->type
->txd_ptr_tbl_base
,
512 /* Unpin TX descriptor ring */
513 efx_fini_special_buffer(efx
, &tx_queue
->txd
);
516 /* Free buffers backing TX queue */
517 void efx_nic_remove_tx(struct efx_tx_queue
*tx_queue
)
519 efx_free_special_buffer(tx_queue
->efx
, &tx_queue
->txd
);
522 /**************************************************************************
526 **************************************************************************/
528 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
529 static inline efx_qword_t
*
530 efx_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned int index
)
532 return ((efx_qword_t
*) (rx_queue
->rxd
.addr
)) + index
;
535 /* This creates an entry in the RX descriptor queue */
537 efx_build_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned index
)
539 struct efx_rx_buffer
*rx_buf
;
542 rxd
= efx_rx_desc(rx_queue
, index
);
543 rx_buf
= efx_rx_buffer(rx_queue
, index
);
544 EFX_POPULATE_QWORD_3(*rxd
,
545 FSF_AZ_RX_KER_BUF_SIZE
,
547 rx_queue
->efx
->type
->rx_buffer_padding
,
548 FSF_AZ_RX_KER_BUF_REGION
, 0,
549 FSF_AZ_RX_KER_BUF_ADDR
, rx_buf
->dma_addr
);
552 /* This writes to the RX_DESC_WPTR register for the specified receive
555 void efx_nic_notify_rx_desc(struct efx_rx_queue
*rx_queue
)
557 struct efx_nic
*efx
= rx_queue
->efx
;
561 while (rx_queue
->notified_count
!= rx_queue
->added_count
) {
564 rx_queue
->notified_count
& rx_queue
->ptr_mask
);
565 ++rx_queue
->notified_count
;
569 write_ptr
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
570 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_RX_DESC_WPTR_DWORD
, write_ptr
);
571 efx_writed_page(efx
, ®
, FR_AZ_RX_DESC_UPD_DWORD_P0
,
572 efx_rx_queue_index(rx_queue
));
575 int efx_nic_probe_rx(struct efx_rx_queue
*rx_queue
)
577 struct efx_nic
*efx
= rx_queue
->efx
;
580 entries
= rx_queue
->ptr_mask
+ 1;
581 return efx_alloc_special_buffer(efx
, &rx_queue
->rxd
,
582 entries
* sizeof(efx_qword_t
));
585 void efx_nic_init_rx(struct efx_rx_queue
*rx_queue
)
587 efx_oword_t rx_desc_ptr
;
588 struct efx_nic
*efx
= rx_queue
->efx
;
589 bool is_b0
= efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
;
590 bool iscsi_digest_en
= is_b0
;
592 netif_dbg(efx
, hw
, efx
->net_dev
,
593 "RX queue %d ring in special buffers %d-%d\n",
594 efx_rx_queue_index(rx_queue
), rx_queue
->rxd
.index
,
595 rx_queue
->rxd
.index
+ rx_queue
->rxd
.entries
- 1);
597 rx_queue
->flushed
= FLUSH_NONE
;
599 /* Pin RX descriptor ring */
600 efx_init_special_buffer(efx
, &rx_queue
->rxd
);
602 /* Push RX descriptor ring to card */
603 EFX_POPULATE_OWORD_10(rx_desc_ptr
,
604 FRF_AZ_RX_ISCSI_DDIG_EN
, iscsi_digest_en
,
605 FRF_AZ_RX_ISCSI_HDIG_EN
, iscsi_digest_en
,
606 FRF_AZ_RX_DESCQ_BUF_BASE_ID
, rx_queue
->rxd
.index
,
607 FRF_AZ_RX_DESCQ_EVQ_ID
,
608 efx_rx_queue_channel(rx_queue
)->channel
,
609 FRF_AZ_RX_DESCQ_OWNER_ID
, 0,
610 FRF_AZ_RX_DESCQ_LABEL
,
611 efx_rx_queue_index(rx_queue
),
612 FRF_AZ_RX_DESCQ_SIZE
,
613 __ffs(rx_queue
->rxd
.entries
),
614 FRF_AZ_RX_DESCQ_TYPE
, 0 /* kernel queue */ ,
615 /* For >=B0 this is scatter so disable */
616 FRF_AZ_RX_DESCQ_JUMBO
, !is_b0
,
617 FRF_AZ_RX_DESCQ_EN
, 1);
618 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
619 efx_rx_queue_index(rx_queue
));
622 static void efx_flush_rx_queue(struct efx_rx_queue
*rx_queue
)
624 struct efx_nic
*efx
= rx_queue
->efx
;
625 efx_oword_t rx_flush_descq
;
627 rx_queue
->flushed
= FLUSH_PENDING
;
629 /* Post a flush command */
630 EFX_POPULATE_OWORD_2(rx_flush_descq
,
631 FRF_AZ_RX_FLUSH_DESCQ_CMD
, 1,
632 FRF_AZ_RX_FLUSH_DESCQ
,
633 efx_rx_queue_index(rx_queue
));
634 efx_writeo(efx
, &rx_flush_descq
, FR_AZ_RX_FLUSH_DESCQ
);
637 void efx_nic_fini_rx(struct efx_rx_queue
*rx_queue
)
639 efx_oword_t rx_desc_ptr
;
640 struct efx_nic
*efx
= rx_queue
->efx
;
642 /* The queue should already have been flushed */
643 WARN_ON(rx_queue
->flushed
!= FLUSH_DONE
);
645 /* Remove RX descriptor ring from card */
646 EFX_ZERO_OWORD(rx_desc_ptr
);
647 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
648 efx_rx_queue_index(rx_queue
));
650 /* Unpin RX descriptor ring */
651 efx_fini_special_buffer(efx
, &rx_queue
->rxd
);
654 /* Free buffers backing RX queue */
655 void efx_nic_remove_rx(struct efx_rx_queue
*rx_queue
)
657 efx_free_special_buffer(rx_queue
->efx
, &rx_queue
->rxd
);
660 /**************************************************************************
662 * Event queue processing
663 * Event queues are processed by per-channel tasklets.
665 **************************************************************************/
667 /* Update a channel's event queue's read pointer (RPTR) register
669 * This writes the EVQ_RPTR_REG register for the specified channel's
672 void efx_nic_eventq_read_ack(struct efx_channel
*channel
)
675 struct efx_nic
*efx
= channel
->efx
;
677 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_EVQ_RPTR
,
678 channel
->eventq_read_ptr
& channel
->eventq_mask
);
679 efx_writed_table(efx
, ®
, efx
->type
->evq_rptr_tbl_base
,
683 /* Use HW to insert a SW defined event */
684 static void efx_generate_event(struct efx_channel
*channel
, efx_qword_t
*event
)
686 efx_oword_t drv_ev_reg
;
688 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN
!= 0 ||
689 FRF_AZ_DRV_EV_DATA_WIDTH
!= 64);
690 drv_ev_reg
.u32
[0] = event
->u32
[0];
691 drv_ev_reg
.u32
[1] = event
->u32
[1];
692 drv_ev_reg
.u32
[2] = 0;
693 drv_ev_reg
.u32
[3] = 0;
694 EFX_SET_OWORD_FIELD(drv_ev_reg
, FRF_AZ_DRV_EV_QID
, channel
->channel
);
695 efx_writeo(channel
->efx
, &drv_ev_reg
, FR_AZ_DRV_EV
);
698 /* Handle a transmit completion event
700 * The NIC batches TX completion events; the message we receive is of
701 * the form "complete all TX events up to this index".
704 efx_handle_tx_event(struct efx_channel
*channel
, efx_qword_t
*event
)
706 unsigned int tx_ev_desc_ptr
;
707 unsigned int tx_ev_q_label
;
708 struct efx_tx_queue
*tx_queue
;
709 struct efx_nic
*efx
= channel
->efx
;
712 if (likely(EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_COMP
))) {
713 /* Transmit completion */
714 tx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_DESC_PTR
);
715 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
716 tx_queue
= efx_channel_get_tx_queue(
717 channel
, tx_ev_q_label
% EFX_TXQ_TYPES
);
718 tx_packets
= ((tx_ev_desc_ptr
- tx_queue
->read_count
) &
720 channel
->irq_mod_score
+= tx_packets
;
721 efx_xmit_done(tx_queue
, tx_ev_desc_ptr
);
722 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_WQ_FF_FULL
)) {
723 /* Rewrite the FIFO write pointer */
724 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
725 tx_queue
= efx_channel_get_tx_queue(
726 channel
, tx_ev_q_label
% EFX_TXQ_TYPES
);
728 if (efx_dev_registered(efx
))
729 netif_tx_lock(efx
->net_dev
);
730 efx_notify_tx_desc(tx_queue
);
731 if (efx_dev_registered(efx
))
732 netif_tx_unlock(efx
->net_dev
);
733 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_PKT_ERR
) &&
734 EFX_WORKAROUND_10727(efx
)) {
735 efx_schedule_reset(efx
, RESET_TYPE_TX_DESC_FETCH
);
737 netif_err(efx
, tx_err
, efx
->net_dev
,
738 "channel %d unexpected TX event "
739 EFX_QWORD_FMT
"\n", channel
->channel
,
740 EFX_QWORD_VAL(*event
));
746 /* Detect errors included in the rx_evt_pkt_ok bit. */
747 static void efx_handle_rx_not_ok(struct efx_rx_queue
*rx_queue
,
748 const efx_qword_t
*event
,
752 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
753 struct efx_nic
*efx
= rx_queue
->efx
;
754 bool rx_ev_buf_owner_id_err
, rx_ev_ip_hdr_chksum_err
;
755 bool rx_ev_tcp_udp_chksum_err
, rx_ev_eth_crc_err
;
756 bool rx_ev_frm_trunc
, rx_ev_drib_nib
, rx_ev_tobe_disc
;
757 bool rx_ev_other_err
, rx_ev_pause_frm
;
758 bool rx_ev_hdr_type
, rx_ev_mcast_pkt
;
759 unsigned rx_ev_pkt_type
;
761 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
762 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
763 rx_ev_tobe_disc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_TOBE_DISC
);
764 rx_ev_pkt_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_TYPE
);
765 rx_ev_buf_owner_id_err
= EFX_QWORD_FIELD(*event
,
766 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR
);
767 rx_ev_ip_hdr_chksum_err
= EFX_QWORD_FIELD(*event
,
768 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR
);
769 rx_ev_tcp_udp_chksum_err
= EFX_QWORD_FIELD(*event
,
770 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR
);
771 rx_ev_eth_crc_err
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_ETH_CRC_ERR
);
772 rx_ev_frm_trunc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_FRM_TRUNC
);
773 rx_ev_drib_nib
= ((efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) ?
774 0 : EFX_QWORD_FIELD(*event
, FSF_AA_RX_EV_DRIB_NIB
));
775 rx_ev_pause_frm
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PAUSE_FRM_ERR
);
777 /* Every error apart from tobe_disc and pause_frm */
778 rx_ev_other_err
= (rx_ev_drib_nib
| rx_ev_tcp_udp_chksum_err
|
779 rx_ev_buf_owner_id_err
| rx_ev_eth_crc_err
|
780 rx_ev_frm_trunc
| rx_ev_ip_hdr_chksum_err
);
782 /* Count errors that are not in MAC stats. Ignore expected
783 * checksum errors during self-test. */
785 ++channel
->n_rx_frm_trunc
;
786 else if (rx_ev_tobe_disc
)
787 ++channel
->n_rx_tobe_disc
;
788 else if (!efx
->loopback_selftest
) {
789 if (rx_ev_ip_hdr_chksum_err
)
790 ++channel
->n_rx_ip_hdr_chksum_err
;
791 else if (rx_ev_tcp_udp_chksum_err
)
792 ++channel
->n_rx_tcp_udp_chksum_err
;
795 /* The frame must be discarded if any of these are true. */
796 *discard
= (rx_ev_eth_crc_err
| rx_ev_frm_trunc
| rx_ev_drib_nib
|
797 rx_ev_tobe_disc
| rx_ev_pause_frm
);
799 /* TOBE_DISC is expected on unicast mismatches; don't print out an
800 * error message. FRM_TRUNC indicates RXDP dropped the packet due
801 * to a FIFO overflow.
803 #ifdef EFX_ENABLE_DEBUG
804 if (rx_ev_other_err
&& net_ratelimit()) {
805 netif_dbg(efx
, rx_err
, efx
->net_dev
,
806 " RX queue %d unexpected RX event "
807 EFX_QWORD_FMT
"%s%s%s%s%s%s%s%s\n",
808 efx_rx_queue_index(rx_queue
), EFX_QWORD_VAL(*event
),
809 rx_ev_buf_owner_id_err
? " [OWNER_ID_ERR]" : "",
810 rx_ev_ip_hdr_chksum_err
?
811 " [IP_HDR_CHKSUM_ERR]" : "",
812 rx_ev_tcp_udp_chksum_err
?
813 " [TCP_UDP_CHKSUM_ERR]" : "",
814 rx_ev_eth_crc_err
? " [ETH_CRC_ERR]" : "",
815 rx_ev_frm_trunc
? " [FRM_TRUNC]" : "",
816 rx_ev_drib_nib
? " [DRIB_NIB]" : "",
817 rx_ev_tobe_disc
? " [TOBE_DISC]" : "",
818 rx_ev_pause_frm
? " [PAUSE]" : "");
823 /* Handle receive events that are not in-order. */
825 efx_handle_rx_bad_index(struct efx_rx_queue
*rx_queue
, unsigned index
)
827 struct efx_nic
*efx
= rx_queue
->efx
;
828 unsigned expected
, dropped
;
830 expected
= rx_queue
->removed_count
& rx_queue
->ptr_mask
;
831 dropped
= (index
- expected
) & rx_queue
->ptr_mask
;
832 netif_info(efx
, rx_err
, efx
->net_dev
,
833 "dropped %d events (index=%d expected=%d)\n",
834 dropped
, index
, expected
);
836 efx_schedule_reset(efx
, EFX_WORKAROUND_5676(efx
) ?
837 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
840 /* Handle a packet received event
842 * The NIC gives a "discard" flag if it's a unicast packet with the
843 * wrong destination address
844 * Also "is multicast" and "matches multicast filter" flags can be used to
845 * discard non-matching multicast packets.
848 efx_handle_rx_event(struct efx_channel
*channel
, const efx_qword_t
*event
)
850 unsigned int rx_ev_desc_ptr
, rx_ev_byte_cnt
;
851 unsigned int rx_ev_hdr_type
, rx_ev_mcast_pkt
;
852 unsigned expected_ptr
;
853 bool rx_ev_pkt_ok
, discard
= false, checksummed
;
854 struct efx_rx_queue
*rx_queue
;
856 /* Basic packet information */
857 rx_ev_byte_cnt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_BYTE_CNT
);
858 rx_ev_pkt_ok
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_OK
);
859 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
860 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_JUMBO_CONT
));
861 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_SOP
) != 1);
862 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_Q_LABEL
) !=
865 rx_queue
= efx_channel_get_rx_queue(channel
);
867 rx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_DESC_PTR
);
868 expected_ptr
= rx_queue
->removed_count
& rx_queue
->ptr_mask
;
869 if (unlikely(rx_ev_desc_ptr
!= expected_ptr
))
870 efx_handle_rx_bad_index(rx_queue
, rx_ev_desc_ptr
);
872 if (likely(rx_ev_pkt_ok
)) {
873 /* If packet is marked as OK and packet type is TCP/IP or
874 * UDP/IP, then we can rely on the hardware checksum.
877 rx_ev_hdr_type
== FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP
||
878 rx_ev_hdr_type
== FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP
;
880 efx_handle_rx_not_ok(rx_queue
, event
, &rx_ev_pkt_ok
, &discard
);
884 /* Detect multicast packets that didn't match the filter */
885 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
886 if (rx_ev_mcast_pkt
) {
887 unsigned int rx_ev_mcast_hash_match
=
888 EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_HASH_MATCH
);
890 if (unlikely(!rx_ev_mcast_hash_match
)) {
891 ++channel
->n_rx_mcast_mismatch
;
896 channel
->irq_mod_score
+= 2;
898 /* Handle received packet */
899 efx_rx_packet(rx_queue
, rx_ev_desc_ptr
, rx_ev_byte_cnt
,
900 checksummed
, discard
);
904 efx_handle_generated_event(struct efx_channel
*channel
, efx_qword_t
*event
)
906 struct efx_nic
*efx
= channel
->efx
;
909 code
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRV_GEN_EV_MAGIC
);
910 if (code
== EFX_CHANNEL_MAGIC_TEST(channel
))
912 else if (code
== EFX_CHANNEL_MAGIC_FILL(channel
))
913 /* The queue must be empty, so we won't receive any rx
914 * events, so efx_process_channel() won't refill the
915 * queue. Refill it here */
916 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel
));
918 netif_dbg(efx
, hw
, efx
->net_dev
, "channel %d received "
919 "generated event "EFX_QWORD_FMT
"\n",
920 channel
->channel
, EFX_QWORD_VAL(*event
));
924 efx_handle_driver_event(struct efx_channel
*channel
, efx_qword_t
*event
)
926 struct efx_nic
*efx
= channel
->efx
;
927 unsigned int ev_sub_code
;
928 unsigned int ev_sub_data
;
930 ev_sub_code
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBCODE
);
931 ev_sub_data
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBDATA
);
933 switch (ev_sub_code
) {
934 case FSE_AZ_TX_DESCQ_FLS_DONE_EV
:
935 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d TXQ %d flushed\n",
936 channel
->channel
, ev_sub_data
);
938 case FSE_AZ_RX_DESCQ_FLS_DONE_EV
:
939 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d RXQ %d flushed\n",
940 channel
->channel
, ev_sub_data
);
942 case FSE_AZ_EVQ_INIT_DONE_EV
:
943 netif_dbg(efx
, hw
, efx
->net_dev
,
944 "channel %d EVQ %d initialised\n",
945 channel
->channel
, ev_sub_data
);
947 case FSE_AZ_SRM_UPD_DONE_EV
:
948 netif_vdbg(efx
, hw
, efx
->net_dev
,
949 "channel %d SRAM update done\n", channel
->channel
);
951 case FSE_AZ_WAKE_UP_EV
:
952 netif_vdbg(efx
, hw
, efx
->net_dev
,
953 "channel %d RXQ %d wakeup event\n",
954 channel
->channel
, ev_sub_data
);
956 case FSE_AZ_TIMER_EV
:
957 netif_vdbg(efx
, hw
, efx
->net_dev
,
958 "channel %d RX queue %d timer expired\n",
959 channel
->channel
, ev_sub_data
);
961 case FSE_AA_RX_RECOVER_EV
:
962 netif_err(efx
, rx_err
, efx
->net_dev
,
963 "channel %d seen DRIVER RX_RESET event. "
964 "Resetting.\n", channel
->channel
);
965 atomic_inc(&efx
->rx_reset
);
966 efx_schedule_reset(efx
,
967 EFX_WORKAROUND_6555(efx
) ?
968 RESET_TYPE_RX_RECOVERY
:
971 case FSE_BZ_RX_DSC_ERROR_EV
:
972 netif_err(efx
, rx_err
, efx
->net_dev
,
973 "RX DMA Q %d reports descriptor fetch error."
974 " RX Q %d is disabled.\n", ev_sub_data
, ev_sub_data
);
975 efx_schedule_reset(efx
, RESET_TYPE_RX_DESC_FETCH
);
977 case FSE_BZ_TX_DSC_ERROR_EV
:
978 netif_err(efx
, tx_err
, efx
->net_dev
,
979 "TX DMA Q %d reports descriptor fetch error."
980 " TX Q %d is disabled.\n", ev_sub_data
, ev_sub_data
);
981 efx_schedule_reset(efx
, RESET_TYPE_TX_DESC_FETCH
);
984 netif_vdbg(efx
, hw
, efx
->net_dev
,
985 "channel %d unknown driver event code %d "
986 "data %04x\n", channel
->channel
, ev_sub_code
,
992 int efx_nic_process_eventq(struct efx_channel
*channel
, int budget
)
994 struct efx_nic
*efx
= channel
->efx
;
995 unsigned int read_ptr
;
996 efx_qword_t event
, *p_event
;
1001 read_ptr
= channel
->eventq_read_ptr
;
1004 p_event
= efx_event(channel
, read_ptr
);
1007 if (!efx_event_present(&event
))
1011 netif_vdbg(channel
->efx
, intr
, channel
->efx
->net_dev
,
1012 "channel %d event is "EFX_QWORD_FMT
"\n",
1013 channel
->channel
, EFX_QWORD_VAL(event
));
1015 /* Clear this event by marking it all ones */
1016 EFX_SET_QWORD(*p_event
);
1020 ev_code
= EFX_QWORD_FIELD(event
, FSF_AZ_EV_CODE
);
1023 case FSE_AZ_EV_CODE_RX_EV
:
1024 efx_handle_rx_event(channel
, &event
);
1025 if (++spent
== budget
)
1028 case FSE_AZ_EV_CODE_TX_EV
:
1029 tx_packets
+= efx_handle_tx_event(channel
, &event
);
1030 if (tx_packets
> efx
->txq_entries
) {
1035 case FSE_AZ_EV_CODE_DRV_GEN_EV
:
1036 efx_handle_generated_event(channel
, &event
);
1038 case FSE_AZ_EV_CODE_DRIVER_EV
:
1039 efx_handle_driver_event(channel
, &event
);
1041 case FSE_CZ_EV_CODE_MCDI_EV
:
1042 efx_mcdi_process_event(channel
, &event
);
1044 case FSE_AZ_EV_CODE_GLOBAL_EV
:
1045 if (efx
->type
->handle_global_event
&&
1046 efx
->type
->handle_global_event(channel
, &event
))
1048 /* else fall through */
1050 netif_err(channel
->efx
, hw
, channel
->efx
->net_dev
,
1051 "channel %d unknown event type %d (data "
1052 EFX_QWORD_FMT
")\n", channel
->channel
,
1053 ev_code
, EFX_QWORD_VAL(event
));
1058 channel
->eventq_read_ptr
= read_ptr
;
1062 /* Check whether an event is present in the eventq at the current
1063 * read pointer. Only useful for self-test.
1065 bool efx_nic_event_present(struct efx_channel
*channel
)
1067 return efx_event_present(efx_event(channel
, channel
->eventq_read_ptr
));
1070 /* Allocate buffer table entries for event queue */
1071 int efx_nic_probe_eventq(struct efx_channel
*channel
)
1073 struct efx_nic
*efx
= channel
->efx
;
1076 entries
= channel
->eventq_mask
+ 1;
1077 return efx_alloc_special_buffer(efx
, &channel
->eventq
,
1078 entries
* sizeof(efx_qword_t
));
1081 void efx_nic_init_eventq(struct efx_channel
*channel
)
1084 struct efx_nic
*efx
= channel
->efx
;
1086 netif_dbg(efx
, hw
, efx
->net_dev
,
1087 "channel %d event queue in special buffers %d-%d\n",
1088 channel
->channel
, channel
->eventq
.index
,
1089 channel
->eventq
.index
+ channel
->eventq
.entries
- 1);
1091 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
) {
1092 EFX_POPULATE_OWORD_3(reg
,
1093 FRF_CZ_TIMER_Q_EN
, 1,
1094 FRF_CZ_HOST_NOTIFY_MODE
, 0,
1095 FRF_CZ_TIMER_MODE
, FFE_CZ_TIMER_MODE_DIS
);
1096 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1099 /* Pin event queue buffer */
1100 efx_init_special_buffer(efx
, &channel
->eventq
);
1102 /* Fill event queue with all ones (i.e. empty events) */
1103 memset(channel
->eventq
.addr
, 0xff, channel
->eventq
.len
);
1105 /* Push event queue to card */
1106 EFX_POPULATE_OWORD_3(reg
,
1108 FRF_AZ_EVQ_SIZE
, __ffs(channel
->eventq
.entries
),
1109 FRF_AZ_EVQ_BUF_BASE_ID
, channel
->eventq
.index
);
1110 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1113 efx
->type
->push_irq_moderation(channel
);
1116 void efx_nic_fini_eventq(struct efx_channel
*channel
)
1119 struct efx_nic
*efx
= channel
->efx
;
1121 /* Remove event queue from card */
1122 EFX_ZERO_OWORD(reg
);
1123 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1125 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
)
1126 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1128 /* Unpin event queue */
1129 efx_fini_special_buffer(efx
, &channel
->eventq
);
1132 /* Free buffers backing event queue */
1133 void efx_nic_remove_eventq(struct efx_channel
*channel
)
1135 efx_free_special_buffer(channel
->efx
, &channel
->eventq
);
1139 void efx_nic_generate_test_event(struct efx_channel
*channel
)
1141 unsigned int magic
= EFX_CHANNEL_MAGIC_TEST(channel
);
1142 efx_qword_t test_event
;
1144 EFX_POPULATE_QWORD_2(test_event
, FSF_AZ_EV_CODE
,
1145 FSE_AZ_EV_CODE_DRV_GEN_EV
,
1146 FSF_AZ_DRV_GEN_EV_MAGIC
, magic
);
1147 efx_generate_event(channel
, &test_event
);
1150 void efx_nic_generate_fill_event(struct efx_channel
*channel
)
1152 unsigned int magic
= EFX_CHANNEL_MAGIC_FILL(channel
);
1153 efx_qword_t test_event
;
1155 EFX_POPULATE_QWORD_2(test_event
, FSF_AZ_EV_CODE
,
1156 FSE_AZ_EV_CODE_DRV_GEN_EV
,
1157 FSF_AZ_DRV_GEN_EV_MAGIC
, magic
);
1158 efx_generate_event(channel
, &test_event
);
1161 /**************************************************************************
1165 **************************************************************************/
1168 static void efx_poll_flush_events(struct efx_nic
*efx
)
1170 struct efx_channel
*channel
= efx_get_channel(efx
, 0);
1171 struct efx_tx_queue
*tx_queue
;
1172 struct efx_rx_queue
*rx_queue
;
1173 unsigned int read_ptr
= channel
->eventq_read_ptr
;
1174 unsigned int end_ptr
= read_ptr
+ channel
->eventq_mask
- 1;
1177 efx_qword_t
*event
= efx_event(channel
, read_ptr
);
1178 int ev_code
, ev_sub_code
, ev_queue
;
1181 if (!efx_event_present(event
))
1184 ev_code
= EFX_QWORD_FIELD(*event
, FSF_AZ_EV_CODE
);
1185 ev_sub_code
= EFX_QWORD_FIELD(*event
,
1186 FSF_AZ_DRIVER_EV_SUBCODE
);
1187 if (ev_code
== FSE_AZ_EV_CODE_DRIVER_EV
&&
1188 ev_sub_code
== FSE_AZ_TX_DESCQ_FLS_DONE_EV
) {
1189 ev_queue
= EFX_QWORD_FIELD(*event
,
1190 FSF_AZ_DRIVER_EV_SUBDATA
);
1191 if (ev_queue
< EFX_TXQ_TYPES
* efx
->n_tx_channels
) {
1192 tx_queue
= efx_get_tx_queue(
1193 efx
, ev_queue
/ EFX_TXQ_TYPES
,
1194 ev_queue
% EFX_TXQ_TYPES
);
1195 tx_queue
->flushed
= FLUSH_DONE
;
1197 } else if (ev_code
== FSE_AZ_EV_CODE_DRIVER_EV
&&
1198 ev_sub_code
== FSE_AZ_RX_DESCQ_FLS_DONE_EV
) {
1199 ev_queue
= EFX_QWORD_FIELD(
1200 *event
, FSF_AZ_DRIVER_EV_RX_DESCQ_ID
);
1201 ev_failed
= EFX_QWORD_FIELD(
1202 *event
, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL
);
1203 if (ev_queue
< efx
->n_rx_channels
) {
1204 rx_queue
= efx_get_rx_queue(efx
, ev_queue
);
1206 ev_failed
? FLUSH_FAILED
: FLUSH_DONE
;
1210 /* We're about to destroy the queue anyway, so
1211 * it's ok to throw away every non-flush event */
1212 EFX_SET_QWORD(*event
);
1215 } while (read_ptr
!= end_ptr
);
1217 channel
->eventq_read_ptr
= read_ptr
;
1220 /* Handle tx and rx flushes at the same time, since they run in
1221 * parallel in the hardware and there's no reason for us to
1223 int efx_nic_flush_queues(struct efx_nic
*efx
)
1225 struct efx_channel
*channel
;
1226 struct efx_rx_queue
*rx_queue
;
1227 struct efx_tx_queue
*tx_queue
;
1228 int i
, tx_pending
, rx_pending
;
1230 /* If necessary prepare the hardware for flushing */
1231 efx
->type
->prepare_flush(efx
);
1233 /* Flush all tx queues in parallel */
1234 efx_for_each_channel(channel
, efx
) {
1235 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
) {
1236 if (tx_queue
->initialised
)
1237 efx_flush_tx_queue(tx_queue
);
1241 /* The hardware supports four concurrent rx flushes, each of which may
1242 * need to be retried if there is an outstanding descriptor fetch */
1243 for (i
= 0; i
< EFX_FLUSH_POLL_COUNT
; ++i
) {
1244 rx_pending
= tx_pending
= 0;
1245 efx_for_each_channel(channel
, efx
) {
1246 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
1247 if (rx_queue
->flushed
== FLUSH_PENDING
)
1251 efx_for_each_channel(channel
, efx
) {
1252 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
1253 if (rx_pending
== EFX_RX_FLUSH_COUNT
)
1255 if (rx_queue
->flushed
== FLUSH_FAILED
||
1256 rx_queue
->flushed
== FLUSH_NONE
) {
1257 efx_flush_rx_queue(rx_queue
);
1261 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
) {
1262 if (tx_queue
->initialised
&&
1263 tx_queue
->flushed
!= FLUSH_DONE
)
1268 if (rx_pending
== 0 && tx_pending
== 0)
1271 msleep(EFX_FLUSH_INTERVAL
);
1272 efx_poll_flush_events(efx
);
1275 /* Mark the queues as all flushed. We're going to return failure
1276 * leading to a reset, or fake up success anyway */
1277 efx_for_each_channel(channel
, efx
) {
1278 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
) {
1279 if (tx_queue
->initialised
&&
1280 tx_queue
->flushed
!= FLUSH_DONE
)
1281 netif_err(efx
, hw
, efx
->net_dev
,
1282 "tx queue %d flush command timed out\n",
1284 tx_queue
->flushed
= FLUSH_DONE
;
1286 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
1287 if (rx_queue
->flushed
!= FLUSH_DONE
)
1288 netif_err(efx
, hw
, efx
->net_dev
,
1289 "rx queue %d flush command timed out\n",
1290 efx_rx_queue_index(rx_queue
));
1291 rx_queue
->flushed
= FLUSH_DONE
;
1298 /**************************************************************************
1300 * Hardware interrupts
1301 * The hardware interrupt handler does very little work; all the event
1302 * queue processing is carried out by per-channel tasklets.
1304 **************************************************************************/
1306 /* Enable/disable/generate interrupts */
1307 static inline void efx_nic_interrupts(struct efx_nic
*efx
,
1308 bool enabled
, bool force
)
1310 efx_oword_t int_en_reg_ker
;
1312 EFX_POPULATE_OWORD_3(int_en_reg_ker
,
1313 FRF_AZ_KER_INT_LEVE_SEL
, efx
->fatal_irq_level
,
1314 FRF_AZ_KER_INT_KER
, force
,
1315 FRF_AZ_DRV_INT_EN_KER
, enabled
);
1316 efx_writeo(efx
, &int_en_reg_ker
, FR_AZ_INT_EN_KER
);
1319 void efx_nic_enable_interrupts(struct efx_nic
*efx
)
1321 struct efx_channel
*channel
;
1323 EFX_ZERO_OWORD(*((efx_oword_t
*) efx
->irq_status
.addr
));
1324 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1326 /* Enable interrupts */
1327 efx_nic_interrupts(efx
, true, false);
1329 /* Force processing of all the channels to get the EVQ RPTRs up to
1331 efx_for_each_channel(channel
, efx
)
1332 efx_schedule_channel(channel
);
1335 void efx_nic_disable_interrupts(struct efx_nic
*efx
)
1337 /* Disable interrupts */
1338 efx_nic_interrupts(efx
, false, false);
1341 /* Generate a test interrupt
1342 * Interrupt must already have been enabled, otherwise nasty things
1345 void efx_nic_generate_interrupt(struct efx_nic
*efx
)
1347 efx_nic_interrupts(efx
, true, true);
1350 /* Process a fatal interrupt
1351 * Disable bus mastering ASAP and schedule a reset
1353 irqreturn_t
efx_nic_fatal_interrupt(struct efx_nic
*efx
)
1355 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1356 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1357 efx_oword_t fatal_intr
;
1358 int error
, mem_perr
;
1360 efx_reado(efx
, &fatal_intr
, FR_AZ_FATAL_INTR_KER
);
1361 error
= EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_FATAL_INTR
);
1363 netif_err(efx
, hw
, efx
->net_dev
, "SYSTEM ERROR "EFX_OWORD_FMT
" status "
1364 EFX_OWORD_FMT
": %s\n", EFX_OWORD_VAL(*int_ker
),
1365 EFX_OWORD_VAL(fatal_intr
),
1366 error
? "disabling bus mastering" : "no recognised error");
1368 /* If this is a memory parity error dump which blocks are offending */
1369 mem_perr
= (EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_MEM_PERR_INT_KER
) ||
1370 EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_SRM_PERR_INT_KER
));
1373 efx_reado(efx
, ®
, FR_AZ_MEM_STAT
);
1374 netif_err(efx
, hw
, efx
->net_dev
,
1375 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT
"\n",
1376 EFX_OWORD_VAL(reg
));
1379 /* Disable both devices */
1380 pci_clear_master(efx
->pci_dev
);
1381 if (efx_nic_is_dual_func(efx
))
1382 pci_clear_master(nic_data
->pci_dev2
);
1383 efx_nic_disable_interrupts(efx
);
1385 /* Count errors and reset or disable the NIC accordingly */
1386 if (efx
->int_error_count
== 0 ||
1387 time_after(jiffies
, efx
->int_error_expire
)) {
1388 efx
->int_error_count
= 0;
1389 efx
->int_error_expire
=
1390 jiffies
+ EFX_INT_ERROR_EXPIRE
* HZ
;
1392 if (++efx
->int_error_count
< EFX_MAX_INT_ERRORS
) {
1393 netif_err(efx
, hw
, efx
->net_dev
,
1394 "SYSTEM ERROR - reset scheduled\n");
1395 efx_schedule_reset(efx
, RESET_TYPE_INT_ERROR
);
1397 netif_err(efx
, hw
, efx
->net_dev
,
1398 "SYSTEM ERROR - max number of errors seen."
1399 "NIC will be disabled\n");
1400 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1406 /* Handle a legacy interrupt
1407 * Acknowledges the interrupt and schedule event queue processing.
1409 static irqreturn_t
efx_legacy_interrupt(int irq
, void *dev_id
)
1411 struct efx_nic
*efx
= dev_id
;
1412 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1413 irqreturn_t result
= IRQ_NONE
;
1414 struct efx_channel
*channel
;
1419 /* Could this be ours? If interrupts are disabled then the
1420 * channel state may not be valid.
1422 if (!efx
->legacy_irq_enabled
)
1425 /* Read the ISR which also ACKs the interrupts */
1426 efx_readd(efx
, ®
, FR_BZ_INT_ISR0
);
1427 queues
= EFX_EXTRACT_DWORD(reg
, 0, 31);
1429 /* Check to see if we have a serious error condition */
1430 if (queues
& (1U << efx
->fatal_irq_level
)) {
1431 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1432 if (unlikely(syserr
))
1433 return efx_nic_fatal_interrupt(efx
);
1437 if (EFX_WORKAROUND_15783(efx
))
1438 efx
->irq_zero_count
= 0;
1440 /* Schedule processing of any interrupting queues */
1441 efx_for_each_channel(channel
, efx
) {
1443 efx_schedule_channel(channel
);
1446 result
= IRQ_HANDLED
;
1448 } else if (EFX_WORKAROUND_15783(efx
)) {
1451 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1452 * because this might be a shared interrupt. */
1453 if (efx
->irq_zero_count
++ == 0)
1454 result
= IRQ_HANDLED
;
1456 /* Ensure we schedule or rearm all event queues */
1457 efx_for_each_channel(channel
, efx
) {
1458 event
= efx_event(channel
, channel
->eventq_read_ptr
);
1459 if (efx_event_present(event
))
1460 efx_schedule_channel(channel
);
1462 efx_nic_eventq_read_ack(channel
);
1466 if (result
== IRQ_HANDLED
) {
1467 efx
->last_irq_cpu
= raw_smp_processor_id();
1468 netif_vdbg(efx
, intr
, efx
->net_dev
,
1469 "IRQ %d on CPU %d status " EFX_DWORD_FMT
"\n",
1470 irq
, raw_smp_processor_id(), EFX_DWORD_VAL(reg
));
1476 /* Handle an MSI interrupt
1478 * Handle an MSI hardware interrupt. This routine schedules event
1479 * queue processing. No interrupt acknowledgement cycle is necessary.
1480 * Also, we never need to check that the interrupt is for us, since
1481 * MSI interrupts cannot be shared.
1483 static irqreturn_t
efx_msi_interrupt(int irq
, void *dev_id
)
1485 struct efx_channel
*channel
= *(struct efx_channel
**)dev_id
;
1486 struct efx_nic
*efx
= channel
->efx
;
1487 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1490 efx
->last_irq_cpu
= raw_smp_processor_id();
1491 netif_vdbg(efx
, intr
, efx
->net_dev
,
1492 "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
1493 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
1495 /* Check to see if we have a serious error condition */
1496 if (channel
->channel
== efx
->fatal_irq_level
) {
1497 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1498 if (unlikely(syserr
))
1499 return efx_nic_fatal_interrupt(efx
);
1502 /* Schedule processing of the channel */
1503 efx_schedule_channel(channel
);
1509 /* Setup RSS indirection table.
1510 * This maps from the hash value of the packet to RXQ
1512 void efx_nic_push_rx_indir_table(struct efx_nic
*efx
)
1517 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
)
1520 BUILD_BUG_ON(ARRAY_SIZE(efx
->rx_indir_table
) !=
1521 FR_BZ_RX_INDIRECTION_TBL_ROWS
);
1523 for (i
= 0; i
< FR_BZ_RX_INDIRECTION_TBL_ROWS
; i
++) {
1524 EFX_POPULATE_DWORD_1(dword
, FRF_BZ_IT_QUEUE
,
1525 efx
->rx_indir_table
[i
]);
1526 efx_writed_table(efx
, &dword
, FR_BZ_RX_INDIRECTION_TBL
, i
);
1530 /* Hook interrupt handler(s)
1531 * Try MSI and then legacy interrupts.
1533 int efx_nic_init_interrupt(struct efx_nic
*efx
)
1535 struct efx_channel
*channel
;
1538 if (!EFX_INT_MODE_USE_MSI(efx
)) {
1539 irq_handler_t handler
;
1540 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1541 handler
= efx_legacy_interrupt
;
1543 handler
= falcon_legacy_interrupt_a1
;
1545 rc
= request_irq(efx
->legacy_irq
, handler
, IRQF_SHARED
,
1548 netif_err(efx
, drv
, efx
->net_dev
,
1549 "failed to hook legacy IRQ %d\n",
1556 /* Hook MSI or MSI-X interrupt */
1557 efx_for_each_channel(channel
, efx
) {
1558 rc
= request_irq(channel
->irq
, efx_msi_interrupt
,
1559 IRQF_PROBE_SHARED
, /* Not shared */
1560 efx
->channel_name
[channel
->channel
],
1561 &efx
->channel
[channel
->channel
]);
1563 netif_err(efx
, drv
, efx
->net_dev
,
1564 "failed to hook IRQ %d\n", channel
->irq
);
1572 efx_for_each_channel(channel
, efx
)
1573 free_irq(channel
->irq
, &efx
->channel
[channel
->channel
]);
1578 void efx_nic_fini_interrupt(struct efx_nic
*efx
)
1580 struct efx_channel
*channel
;
1583 /* Disable MSI/MSI-X interrupts */
1584 efx_for_each_channel(channel
, efx
) {
1586 free_irq(channel
->irq
, &efx
->channel
[channel
->channel
]);
1589 /* ACK legacy interrupt */
1590 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1591 efx_reado(efx
, ®
, FR_BZ_INT_ISR0
);
1593 falcon_irq_ack_a1(efx
);
1595 /* Disable legacy interrupt */
1596 if (efx
->legacy_irq
)
1597 free_irq(efx
->legacy_irq
, efx
);
1600 u32
efx_nic_fpga_ver(struct efx_nic
*efx
)
1602 efx_oword_t altera_build
;
1603 efx_reado(efx
, &altera_build
, FR_AZ_ALTERA_BUILD
);
1604 return EFX_OWORD_FIELD(altera_build
, FRF_AZ_ALTERA_BUILD_VER
);
1607 void efx_nic_init_common(struct efx_nic
*efx
)
1611 /* Set positions of descriptor caches in SRAM. */
1612 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_TX_DC_BASE_ADR
,
1613 efx
->type
->tx_dc_base
/ 8);
1614 efx_writeo(efx
, &temp
, FR_AZ_SRM_TX_DC_CFG
);
1615 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_RX_DC_BASE_ADR
,
1616 efx
->type
->rx_dc_base
/ 8);
1617 efx_writeo(efx
, &temp
, FR_AZ_SRM_RX_DC_CFG
);
1619 /* Set TX descriptor cache size. */
1620 BUILD_BUG_ON(TX_DC_ENTRIES
!= (8 << TX_DC_ENTRIES_ORDER
));
1621 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_TX_DC_SIZE
, TX_DC_ENTRIES_ORDER
);
1622 efx_writeo(efx
, &temp
, FR_AZ_TX_DC_CFG
);
1624 /* Set RX descriptor cache size. Set low watermark to size-8, as
1625 * this allows most efficient prefetching.
1627 BUILD_BUG_ON(RX_DC_ENTRIES
!= (8 << RX_DC_ENTRIES_ORDER
));
1628 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_SIZE
, RX_DC_ENTRIES_ORDER
);
1629 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_CFG
);
1630 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_PF_LWM
, RX_DC_ENTRIES
- 8);
1631 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_PF_WM
);
1633 /* Program INT_KER address */
1634 EFX_POPULATE_OWORD_2(temp
,
1635 FRF_AZ_NORM_INT_VEC_DIS_KER
,
1636 EFX_INT_MODE_USE_MSI(efx
),
1637 FRF_AZ_INT_ADR_KER
, efx
->irq_status
.dma_addr
);
1638 efx_writeo(efx
, &temp
, FR_AZ_INT_ADR_KER
);
1640 if (EFX_WORKAROUND_17213(efx
) && !EFX_INT_MODE_USE_MSI(efx
))
1641 /* Use an interrupt level unused by event queues */
1642 efx
->fatal_irq_level
= 0x1f;
1644 /* Use a valid MSI-X vector */
1645 efx
->fatal_irq_level
= 0;
1647 /* Enable all the genuinely fatal interrupts. (They are still
1648 * masked by the overall interrupt mask, controlled by
1649 * falcon_interrupts()).
1651 * Note: All other fatal interrupts are enabled
1653 EFX_POPULATE_OWORD_3(temp
,
1654 FRF_AZ_ILL_ADR_INT_KER_EN
, 1,
1655 FRF_AZ_RBUF_OWN_INT_KER_EN
, 1,
1656 FRF_AZ_TBUF_OWN_INT_KER_EN
, 1);
1657 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
)
1658 EFX_SET_OWORD_FIELD(temp
, FRF_CZ_SRAM_PERR_INT_P_KER_EN
, 1);
1659 EFX_INVERT_OWORD(temp
);
1660 efx_writeo(efx
, &temp
, FR_AZ_FATAL_INTR_KER
);
1662 efx_nic_push_rx_indir_table(efx
);
1664 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1665 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1667 efx_reado(efx
, &temp
, FR_AZ_TX_RESERVED
);
1668 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER
, 0xfe);
1669 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER_EN
, 1);
1670 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_ONE_PKT_PER_Q
, 1);
1671 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PUSH_EN
, 1);
1672 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_DIS_NON_IP_EV
, 1);
1673 /* Enable SW_EV to inherit in char driver - assume harmless here */
1674 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_SOFT_EVT_EN
, 1);
1675 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1676 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_THRESHOLD
, 2);
1677 /* Disable hardware watchdog which can misfire */
1678 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_WD_TMR
, 0x3fffff);
1679 /* Squash TX of packets of 16 bytes or less */
1680 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1681 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TX_FLUSH_MIN_LEN_EN
, 1);
1682 efx_writeo(efx
, &temp
, FR_AZ_TX_RESERVED
);
1684 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
1685 EFX_POPULATE_OWORD_4(temp
,
1686 /* Default values */
1687 FRF_BZ_TX_PACE_SB_NOT_AF
, 0x15,
1688 FRF_BZ_TX_PACE_SB_AF
, 0xb,
1689 FRF_BZ_TX_PACE_FB_BASE
, 0,
1690 /* Allow large pace values in the
1692 FRF_BZ_TX_PACE_BIN_TH
,
1693 FFE_BZ_TX_PACE_RESERVED
);
1694 efx_writeo(efx
, &temp
, FR_BZ_TX_PACE
);
1700 #define REGISTER_REVISION_A 1
1701 #define REGISTER_REVISION_B 2
1702 #define REGISTER_REVISION_C 3
1703 #define REGISTER_REVISION_Z 3 /* latest revision */
1705 struct efx_nic_reg
{
1707 u32 min_revision
:2, max_revision
:2;
1710 #define REGISTER(name, min_rev, max_rev) { \
1711 FR_ ## min_rev ## max_rev ## _ ## name, \
1712 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1714 #define REGISTER_AA(name) REGISTER(name, A, A)
1715 #define REGISTER_AB(name) REGISTER(name, A, B)
1716 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1717 #define REGISTER_BB(name) REGISTER(name, B, B)
1718 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1719 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1721 static const struct efx_nic_reg efx_nic_regs
[] = {
1722 REGISTER_AZ(ADR_REGION
),
1723 REGISTER_AZ(INT_EN_KER
),
1724 REGISTER_BZ(INT_EN_CHAR
),
1725 REGISTER_AZ(INT_ADR_KER
),
1726 REGISTER_BZ(INT_ADR_CHAR
),
1727 /* INT_ACK_KER is WO */
1728 /* INT_ISR0 is RC */
1729 REGISTER_AZ(HW_INIT
),
1730 REGISTER_CZ(USR_EV_CFG
),
1731 REGISTER_AB(EE_SPI_HCMD
),
1732 REGISTER_AB(EE_SPI_HADR
),
1733 REGISTER_AB(EE_SPI_HDATA
),
1734 REGISTER_AB(EE_BASE_PAGE
),
1735 REGISTER_AB(EE_VPD_CFG0
),
1736 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1737 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1738 /* PCIE_CORE_INDIRECT is indirect */
1739 REGISTER_AB(NIC_STAT
),
1740 REGISTER_AB(GPIO_CTL
),
1741 REGISTER_AB(GLB_CTL
),
1742 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1743 REGISTER_BZ(DP_CTRL
),
1744 REGISTER_AZ(MEM_STAT
),
1745 REGISTER_AZ(CS_DEBUG
),
1746 REGISTER_AZ(ALTERA_BUILD
),
1747 REGISTER_AZ(CSR_SPARE
),
1748 REGISTER_AB(PCIE_SD_CTL0123
),
1749 REGISTER_AB(PCIE_SD_CTL45
),
1750 REGISTER_AB(PCIE_PCS_CTL_STAT
),
1751 /* DEBUG_DATA_OUT is not used */
1753 REGISTER_AZ(EVQ_CTL
),
1754 REGISTER_AZ(EVQ_CNT1
),
1755 REGISTER_AZ(EVQ_CNT2
),
1756 REGISTER_AZ(BUF_TBL_CFG
),
1757 REGISTER_AZ(SRM_RX_DC_CFG
),
1758 REGISTER_AZ(SRM_TX_DC_CFG
),
1759 REGISTER_AZ(SRM_CFG
),
1760 /* BUF_TBL_UPD is WO */
1761 REGISTER_AZ(SRM_UPD_EVQ
),
1762 REGISTER_AZ(SRAM_PARITY
),
1763 REGISTER_AZ(RX_CFG
),
1764 REGISTER_BZ(RX_FILTER_CTL
),
1765 /* RX_FLUSH_DESCQ is WO */
1766 REGISTER_AZ(RX_DC_CFG
),
1767 REGISTER_AZ(RX_DC_PF_WM
),
1768 REGISTER_BZ(RX_RSS_TKEY
),
1769 /* RX_NODESC_DROP is RC */
1770 REGISTER_AA(RX_SELF_RST
),
1771 /* RX_DEBUG, RX_PUSH_DROP are not used */
1772 REGISTER_CZ(RX_RSS_IPV6_REG1
),
1773 REGISTER_CZ(RX_RSS_IPV6_REG2
),
1774 REGISTER_CZ(RX_RSS_IPV6_REG3
),
1775 /* TX_FLUSH_DESCQ is WO */
1776 REGISTER_AZ(TX_DC_CFG
),
1777 REGISTER_AA(TX_CHKSM_CFG
),
1778 REGISTER_AZ(TX_CFG
),
1779 /* TX_PUSH_DROP is not used */
1780 REGISTER_AZ(TX_RESERVED
),
1781 REGISTER_BZ(TX_PACE
),
1782 /* TX_PACE_DROP_QID is RC */
1783 REGISTER_BB(TX_VLAN
),
1784 REGISTER_BZ(TX_IPFIL_PORTEN
),
1785 REGISTER_AB(MD_TXD
),
1786 REGISTER_AB(MD_RXD
),
1788 REGISTER_AB(MD_PHY_ADR
),
1791 REGISTER_AB(MAC_STAT_DMA
),
1792 REGISTER_AB(MAC_CTRL
),
1793 REGISTER_BB(GEN_MODE
),
1794 REGISTER_AB(MAC_MC_HASH_REG0
),
1795 REGISTER_AB(MAC_MC_HASH_REG1
),
1796 REGISTER_AB(GM_CFG1
),
1797 REGISTER_AB(GM_CFG2
),
1798 /* GM_IPG and GM_HD are not used */
1799 REGISTER_AB(GM_MAX_FLEN
),
1800 /* GM_TEST is not used */
1801 REGISTER_AB(GM_ADR1
),
1802 REGISTER_AB(GM_ADR2
),
1803 REGISTER_AB(GMF_CFG0
),
1804 REGISTER_AB(GMF_CFG1
),
1805 REGISTER_AB(GMF_CFG2
),
1806 REGISTER_AB(GMF_CFG3
),
1807 REGISTER_AB(GMF_CFG4
),
1808 REGISTER_AB(GMF_CFG5
),
1809 REGISTER_BB(TX_SRC_MAC_CTL
),
1810 REGISTER_AB(XM_ADR_LO
),
1811 REGISTER_AB(XM_ADR_HI
),
1812 REGISTER_AB(XM_GLB_CFG
),
1813 REGISTER_AB(XM_TX_CFG
),
1814 REGISTER_AB(XM_RX_CFG
),
1815 REGISTER_AB(XM_MGT_INT_MASK
),
1817 REGISTER_AB(XM_PAUSE_TIME
),
1818 REGISTER_AB(XM_TX_PARAM
),
1819 REGISTER_AB(XM_RX_PARAM
),
1820 /* XM_MGT_INT_MSK (note no 'A') is RC */
1821 REGISTER_AB(XX_PWR_RST
),
1822 REGISTER_AB(XX_SD_CTL
),
1823 REGISTER_AB(XX_TXDRV_CTL
),
1824 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1825 /* XX_CORE_STAT is partly RC */
1828 struct efx_nic_reg_table
{
1830 u32 min_revision
:2, max_revision
:2;
1831 u32 step
:6, rows
:21;
1834 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1836 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
1839 #define REGISTER_TABLE(name, min_rev, max_rev) \
1840 REGISTER_TABLE_DIMENSIONS( \
1841 name, FR_ ## min_rev ## max_rev ## _ ## name, \
1843 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
1844 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1845 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1846 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1847 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1848 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1849 #define REGISTER_TABLE_BB_CZ(name) \
1850 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
1851 FR_BZ_ ## name ## _STEP, \
1852 FR_BB_ ## name ## _ROWS), \
1853 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
1854 FR_BZ_ ## name ## _STEP, \
1855 FR_CZ_ ## name ## _ROWS)
1856 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1858 static const struct efx_nic_reg_table efx_nic_reg_tables
[] = {
1859 /* DRIVER is not used */
1860 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1861 REGISTER_TABLE_BB(TX_IPFIL_TBL
),
1862 REGISTER_TABLE_BB(TX_SRC_MAC_TBL
),
1863 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER
),
1864 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL
),
1865 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER
),
1866 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL
),
1867 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER
),
1868 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL
),
1869 /* We can't reasonably read all of the buffer table (up to 8MB!).
1870 * However this driver will only use a few entries. Reading
1871 * 1K entries allows for some expansion of queue count and
1872 * size before we need to change the version. */
1873 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER
, FR_AA_BUF_FULL_TBL_KER
,
1875 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL
, FR_BZ_BUF_FULL_TBL
,
1877 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0
),
1878 REGISTER_TABLE_BB_CZ(TIMER_TBL
),
1879 REGISTER_TABLE_BB_CZ(TX_PACE_TBL
),
1880 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL
),
1881 /* TX_FILTER_TBL0 is huge and not used by this driver */
1882 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0
),
1883 REGISTER_TABLE_CZ(MC_TREG_SMEM
),
1884 /* MSIX_PBA_TABLE is not mapped */
1885 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1886 REGISTER_TABLE_BZ(RX_FILTER_TBL0
),
1889 size_t efx_nic_get_regs_len(struct efx_nic
*efx
)
1891 const struct efx_nic_reg
*reg
;
1892 const struct efx_nic_reg_table
*table
;
1895 for (reg
= efx_nic_regs
;
1896 reg
< efx_nic_regs
+ ARRAY_SIZE(efx_nic_regs
);
1898 if (efx
->type
->revision
>= reg
->min_revision
&&
1899 efx
->type
->revision
<= reg
->max_revision
)
1900 len
+= sizeof(efx_oword_t
);
1902 for (table
= efx_nic_reg_tables
;
1903 table
< efx_nic_reg_tables
+ ARRAY_SIZE(efx_nic_reg_tables
);
1905 if (efx
->type
->revision
>= table
->min_revision
&&
1906 efx
->type
->revision
<= table
->max_revision
)
1907 len
+= table
->rows
* min_t(size_t, table
->step
, 16);
1912 void efx_nic_get_regs(struct efx_nic
*efx
, void *buf
)
1914 const struct efx_nic_reg
*reg
;
1915 const struct efx_nic_reg_table
*table
;
1917 for (reg
= efx_nic_regs
;
1918 reg
< efx_nic_regs
+ ARRAY_SIZE(efx_nic_regs
);
1920 if (efx
->type
->revision
>= reg
->min_revision
&&
1921 efx
->type
->revision
<= reg
->max_revision
) {
1922 efx_reado(efx
, (efx_oword_t
*)buf
, reg
->offset
);
1923 buf
+= sizeof(efx_oword_t
);
1927 for (table
= efx_nic_reg_tables
;
1928 table
< efx_nic_reg_tables
+ ARRAY_SIZE(efx_nic_reg_tables
);
1932 if (!(efx
->type
->revision
>= table
->min_revision
&&
1933 efx
->type
->revision
<= table
->max_revision
))
1936 size
= min_t(size_t, table
->step
, 16);
1938 for (i
= 0; i
< table
->rows
; i
++) {
1939 switch (table
->step
) {
1940 case 4: /* 32-bit register or SRAM */
1941 efx_readd_table(efx
, buf
, table
->offset
, i
);
1943 case 8: /* 64-bit SRAM */
1945 efx
->membase
+ table
->offset
,
1948 case 16: /* 128-bit register */
1949 efx_reado_table(efx
, buf
, table
->offset
, i
);
1951 case 32: /* 128-bit register, interleaved */
1952 efx_reado_table(efx
, buf
, table
->offset
, 2 * i
);