3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
5 * Copyright (C) 1996 by Erik Stahlman
6 * Copyright (C) 2001 Standard Microsystems Corporation
7 * Developed by Simple Network Magic Corporation
8 * Copyright (C) 2003 Monta Vista Software, Inc.
9 * Unified SMC91x driver by Nicolas Pitre
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 * io = for the base address
28 * nowait = 0 for normal wait states, 1 eliminates additional wait states
31 * Erik Stahlman <erik@vt.edu>
33 * hardware multicast code:
34 * Peter Cammaert <pc@denkart.be>
37 * Daris A Nevil <dnevil@snmc.com>
38 * Nicolas Pitre <nico@fluxnic.net>
39 * Russell King <rmk@arm.linux.org.uk>
42 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet
43 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ"
44 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111
45 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111
46 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111
47 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support
48 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races,
49 * more bus abstraction, big cleanup, etc.
50 * 29/09/03 Russell King - add driver model support
52 * - convert to use generic MII interface
53 * - add link up/down notification
54 * - don't try to handle full negotiation in
56 * - clean up (and fix stack overrun) in PHY
57 * MII read/write functions
58 * 22/09/04 Nicolas Pitre big update (see commit log for details)
60 static const char version
[] =
61 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>\n";
69 #include <linux/init.h>
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/sched.h>
73 #include <linux/delay.h>
74 #include <linux/interrupt.h>
75 #include <linux/irq.h>
76 #include <linux/errno.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/platform_device.h>
80 #include <linux/spinlock.h>
81 #include <linux/ethtool.h>
82 #include <linux/mii.h>
83 #include <linux/workqueue.h>
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
97 static int nowait
= SMC_NOWAIT
;
98 module_param(nowait
, int, 0400);
99 MODULE_PARM_DESC(nowait
, "set to 1 for no wait state");
102 * Transmit timeout, default 5 seconds.
104 static int watchdog
= 1000;
105 module_param(watchdog
, int, 0400);
106 MODULE_PARM_DESC(watchdog
, "transmit timeout in milliseconds");
108 MODULE_LICENSE("GPL");
109 MODULE_ALIAS("platform:smc91x");
112 * The internal workings of the driver. If you are changing anything
113 * here with the SMC stuff, you should have the datasheet and know
114 * what you are doing.
116 #define CARDNAME "smc91x"
119 * Use power-down feature of the chip
124 * Wait time for memory to be free. This probably shouldn't be
125 * tuned that much, as waiting for this means nothing else happens
128 #define MEMORY_WAIT_TIME 16
131 * The maximum number of processing loops allowed for each call to the
134 #define MAX_IRQ_LOOPS 8
137 * This selects whether TX packets are sent one by one to the SMC91x internal
138 * memory and throttled until transmission completes. This may prevent
139 * RX overruns a litle by keeping much of the memory free for RX packets
140 * but to the expense of reduced TX throughput and increased IRQ overhead.
141 * Note this is not a cure for a too slow data bus or too high IRQ latency.
143 #define THROTTLE_TX_PKTS 0
146 * The MII clock high/low times. 2x this number gives the MII clock period
147 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
152 #define DBG(n, args...) \
154 if (SMC_DEBUG >= (n)) \
158 #define PRINTK(args...) printk(args)
160 #define DBG(n, args...) do { } while(0)
161 #define PRINTK(args...) printk(KERN_DEBUG args)
165 static void PRINT_PKT(u_char
*buf
, int length
)
172 remainder
= length
% 16;
174 for (i
= 0; i
< lines
; i
++) {
176 for (cur
= 0; cur
< 8; cur
++) {
180 printk("%02x%02x ", a
, b
);
184 for (i
= 0; i
< remainder
/2 ; i
++) {
188 printk("%02x%02x ", a
, b
);
193 #define PRINT_PKT(x...) do { } while(0)
197 /* this enables an interrupt in the interrupt mask register */
198 #define SMC_ENABLE_INT(lp, x) do { \
199 unsigned char mask; \
200 unsigned long smc_enable_flags; \
201 spin_lock_irqsave(&lp->lock, smc_enable_flags); \
202 mask = SMC_GET_INT_MASK(lp); \
204 SMC_SET_INT_MASK(lp, mask); \
205 spin_unlock_irqrestore(&lp->lock, smc_enable_flags); \
208 /* this disables an interrupt from the interrupt mask register */
209 #define SMC_DISABLE_INT(lp, x) do { \
210 unsigned char mask; \
211 unsigned long smc_disable_flags; \
212 spin_lock_irqsave(&lp->lock, smc_disable_flags); \
213 mask = SMC_GET_INT_MASK(lp); \
215 SMC_SET_INT_MASK(lp, mask); \
216 spin_unlock_irqrestore(&lp->lock, smc_disable_flags); \
220 * Wait while MMU is busy. This is usually in the order of a few nanosecs
221 * if at all, but let's avoid deadlocking the system if the hardware
222 * decides to go south.
224 #define SMC_WAIT_MMU_BUSY(lp) do { \
225 if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) { \
226 unsigned long timeout = jiffies + 2; \
227 while (SMC_GET_MMU_CMD(lp) & MC_BUSY) { \
228 if (time_after(jiffies, timeout)) { \
229 printk("%s: timeout %s line %d\n", \
230 dev->name, __FILE__, __LINE__); \
240 * this does a soft reset on the device
242 static void smc_reset(struct net_device
*dev
)
244 struct smc_local
*lp
= netdev_priv(dev
);
245 void __iomem
*ioaddr
= lp
->base
;
246 unsigned int ctl
, cfg
;
247 struct sk_buff
*pending_skb
;
249 DBG(2, "%s: %s\n", dev
->name
, __func__
);
251 /* Disable all interrupts, block TX tasklet */
252 spin_lock_irq(&lp
->lock
);
253 SMC_SELECT_BANK(lp
, 2);
254 SMC_SET_INT_MASK(lp
, 0);
255 pending_skb
= lp
->pending_tx_skb
;
256 lp
->pending_tx_skb
= NULL
;
257 spin_unlock_irq(&lp
->lock
);
259 /* free any pending tx skb */
261 dev_kfree_skb(pending_skb
);
262 dev
->stats
.tx_errors
++;
263 dev
->stats
.tx_aborted_errors
++;
267 * This resets the registers mostly to defaults, but doesn't
268 * affect EEPROM. That seems unnecessary
270 SMC_SELECT_BANK(lp
, 0);
271 SMC_SET_RCR(lp
, RCR_SOFTRST
);
274 * Setup the Configuration Register
275 * This is necessary because the CONFIG_REG is not affected
278 SMC_SELECT_BANK(lp
, 1);
280 cfg
= CONFIG_DEFAULT
;
283 * Setup for fast accesses if requested. If the card/system
284 * can't handle it then there will be no recovery except for
285 * a hard reset or power cycle
287 if (lp
->cfg
.flags
& SMC91X_NOWAIT
)
288 cfg
|= CONFIG_NO_WAIT
;
291 * Release from possible power-down state
292 * Configuration register is not affected by Soft Reset
294 cfg
|= CONFIG_EPH_POWER_EN
;
296 SMC_SET_CONFIG(lp
, cfg
);
298 /* this should pause enough for the chip to be happy */
300 * elaborate? What does the chip _need_? --jgarzik
302 * This seems to be undocumented, but something the original
303 * driver(s) have always done. Suspect undocumented timing
304 * info/determined empirically. --rmk
308 /* Disable transmit and receive functionality */
309 SMC_SELECT_BANK(lp
, 0);
310 SMC_SET_RCR(lp
, RCR_CLEAR
);
311 SMC_SET_TCR(lp
, TCR_CLEAR
);
313 SMC_SELECT_BANK(lp
, 1);
314 ctl
= SMC_GET_CTL(lp
) | CTL_LE_ENABLE
;
317 * Set the control register to automatically release successfully
318 * transmitted packets, to make the best use out of our limited
321 if(!THROTTLE_TX_PKTS
)
322 ctl
|= CTL_AUTO_RELEASE
;
324 ctl
&= ~CTL_AUTO_RELEASE
;
325 SMC_SET_CTL(lp
, ctl
);
328 SMC_SELECT_BANK(lp
, 2);
329 SMC_SET_MMU_CMD(lp
, MC_RESET
);
330 SMC_WAIT_MMU_BUSY(lp
);
334 * Enable Interrupts, Receive, and Transmit
336 static void smc_enable(struct net_device
*dev
)
338 struct smc_local
*lp
= netdev_priv(dev
);
339 void __iomem
*ioaddr
= lp
->base
;
342 DBG(2, "%s: %s\n", dev
->name
, __func__
);
344 /* see the header file for options in TCR/RCR DEFAULT */
345 SMC_SELECT_BANK(lp
, 0);
346 SMC_SET_TCR(lp
, lp
->tcr_cur_mode
);
347 SMC_SET_RCR(lp
, lp
->rcr_cur_mode
);
349 SMC_SELECT_BANK(lp
, 1);
350 SMC_SET_MAC_ADDR(lp
, dev
->dev_addr
);
352 /* now, enable interrupts */
353 mask
= IM_EPH_INT
|IM_RX_OVRN_INT
|IM_RCV_INT
;
354 if (lp
->version
>= (CHIP_91100
<< 4))
356 SMC_SELECT_BANK(lp
, 2);
357 SMC_SET_INT_MASK(lp
, mask
);
360 * From this point the register bank must _NOT_ be switched away
361 * to something else than bank 2 without proper locking against
362 * races with any tasklet or interrupt handlers until smc_shutdown()
363 * or smc_reset() is called.
368 * this puts the device in an inactive state
370 static void smc_shutdown(struct net_device
*dev
)
372 struct smc_local
*lp
= netdev_priv(dev
);
373 void __iomem
*ioaddr
= lp
->base
;
374 struct sk_buff
*pending_skb
;
376 DBG(2, "%s: %s\n", CARDNAME
, __func__
);
378 /* no more interrupts for me */
379 spin_lock_irq(&lp
->lock
);
380 SMC_SELECT_BANK(lp
, 2);
381 SMC_SET_INT_MASK(lp
, 0);
382 pending_skb
= lp
->pending_tx_skb
;
383 lp
->pending_tx_skb
= NULL
;
384 spin_unlock_irq(&lp
->lock
);
386 dev_kfree_skb(pending_skb
);
388 /* and tell the card to stay away from that nasty outside world */
389 SMC_SELECT_BANK(lp
, 0);
390 SMC_SET_RCR(lp
, RCR_CLEAR
);
391 SMC_SET_TCR(lp
, TCR_CLEAR
);
394 /* finally, shut the chip down */
395 SMC_SELECT_BANK(lp
, 1);
396 SMC_SET_CONFIG(lp
, SMC_GET_CONFIG(lp
) & ~CONFIG_EPH_POWER_EN
);
401 * This is the procedure to handle the receipt of a packet.
403 static inline void smc_rcv(struct net_device
*dev
)
405 struct smc_local
*lp
= netdev_priv(dev
);
406 void __iomem
*ioaddr
= lp
->base
;
407 unsigned int packet_number
, status
, packet_len
;
409 DBG(3, "%s: %s\n", dev
->name
, __func__
);
411 packet_number
= SMC_GET_RXFIFO(lp
);
412 if (unlikely(packet_number
& RXFIFO_REMPTY
)) {
413 PRINTK("%s: smc_rcv with nothing on FIFO.\n", dev
->name
);
417 /* read from start of packet */
418 SMC_SET_PTR(lp
, PTR_READ
| PTR_RCV
| PTR_AUTOINC
);
420 /* First two words are status and packet length */
421 SMC_GET_PKT_HDR(lp
, status
, packet_len
);
422 packet_len
&= 0x07ff; /* mask off top bits */
423 DBG(2, "%s: RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
424 dev
->name
, packet_number
, status
,
425 packet_len
, packet_len
);
428 if (unlikely(packet_len
< 6 || status
& RS_ERRORS
)) {
429 if (status
& RS_TOOLONG
&& packet_len
<= (1514 + 4 + 6)) {
430 /* accept VLAN packets */
431 status
&= ~RS_TOOLONG
;
434 if (packet_len
< 6) {
435 /* bloody hardware */
436 printk(KERN_ERR
"%s: fubar (rxlen %u status %x\n",
437 dev
->name
, packet_len
, status
);
438 status
|= RS_TOOSHORT
;
440 SMC_WAIT_MMU_BUSY(lp
);
441 SMC_SET_MMU_CMD(lp
, MC_RELEASE
);
442 dev
->stats
.rx_errors
++;
443 if (status
& RS_ALGNERR
)
444 dev
->stats
.rx_frame_errors
++;
445 if (status
& (RS_TOOSHORT
| RS_TOOLONG
))
446 dev
->stats
.rx_length_errors
++;
447 if (status
& RS_BADCRC
)
448 dev
->stats
.rx_crc_errors
++;
452 unsigned int data_len
;
454 /* set multicast stats */
455 if (status
& RS_MULTICAST
)
456 dev
->stats
.multicast
++;
459 * Actual payload is packet_len - 6 (or 5 if odd byte).
460 * We want skb_reserve(2) and the final ctrl word
461 * (2 bytes, possibly containing the payload odd byte).
462 * Furthermore, we add 2 bytes to allow rounding up to
463 * multiple of 4 bytes on 32 bit buses.
464 * Hence packet_len - 6 + 2 + 2 + 2.
466 skb
= dev_alloc_skb(packet_len
);
467 if (unlikely(skb
== NULL
)) {
468 printk(KERN_NOTICE
"%s: Low memory, packet dropped.\n",
470 SMC_WAIT_MMU_BUSY(lp
);
471 SMC_SET_MMU_CMD(lp
, MC_RELEASE
);
472 dev
->stats
.rx_dropped
++;
476 /* Align IP header to 32 bits */
479 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
480 if (lp
->version
== 0x90)
481 status
|= RS_ODDFRAME
;
484 * If odd length: packet_len - 5,
485 * otherwise packet_len - 6.
486 * With the trailing ctrl byte it's packet_len - 4.
488 data_len
= packet_len
- ((status
& RS_ODDFRAME
) ? 5 : 6);
489 data
= skb_put(skb
, data_len
);
490 SMC_PULL_DATA(lp
, data
, packet_len
- 4);
492 SMC_WAIT_MMU_BUSY(lp
);
493 SMC_SET_MMU_CMD(lp
, MC_RELEASE
);
495 PRINT_PKT(data
, packet_len
- 4);
497 skb
->protocol
= eth_type_trans(skb
, dev
);
499 dev
->stats
.rx_packets
++;
500 dev
->stats
.rx_bytes
+= data_len
;
506 * On SMP we have the following problem:
508 * A = smc_hardware_send_pkt()
509 * B = smc_hard_start_xmit()
510 * C = smc_interrupt()
512 * A and B can never be executed simultaneously. However, at least on UP,
513 * it is possible (and even desirable) for C to interrupt execution of
514 * A or B in order to have better RX reliability and avoid overruns.
515 * C, just like A and B, must have exclusive access to the chip and
516 * each of them must lock against any other concurrent access.
517 * Unfortunately this is not possible to have C suspend execution of A or
518 * B taking place on another CPU. On UP this is no an issue since A and B
519 * are run from softirq context and C from hard IRQ context, and there is
520 * no other CPU where concurrent access can happen.
521 * If ever there is a way to force at least B and C to always be executed
522 * on the same CPU then we could use read/write locks to protect against
523 * any other concurrent access and C would always interrupt B. But life
524 * isn't that easy in a SMP world...
526 #define smc_special_trylock(lock, flags) \
529 local_irq_save(flags); \
530 __ret = spin_trylock(lock); \
532 local_irq_restore(flags); \
535 #define smc_special_lock(lock, flags) spin_lock_irqsave(lock, flags)
536 #define smc_special_unlock(lock, flags) spin_unlock_irqrestore(lock, flags)
538 #define smc_special_trylock(lock, flags) (flags == flags)
539 #define smc_special_lock(lock, flags) do { flags = 0; } while (0)
540 #define smc_special_unlock(lock, flags) do { flags = 0; } while (0)
544 * This is called to actually send a packet to the chip.
546 static void smc_hardware_send_pkt(unsigned long data
)
548 struct net_device
*dev
= (struct net_device
*)data
;
549 struct smc_local
*lp
= netdev_priv(dev
);
550 void __iomem
*ioaddr
= lp
->base
;
552 unsigned int packet_no
, len
;
556 DBG(3, "%s: %s\n", dev
->name
, __func__
);
558 if (!smc_special_trylock(&lp
->lock
, flags
)) {
559 netif_stop_queue(dev
);
560 tasklet_schedule(&lp
->tx_task
);
564 skb
= lp
->pending_tx_skb
;
565 if (unlikely(!skb
)) {
566 smc_special_unlock(&lp
->lock
, flags
);
569 lp
->pending_tx_skb
= NULL
;
571 packet_no
= SMC_GET_AR(lp
);
572 if (unlikely(packet_no
& AR_FAILED
)) {
573 printk("%s: Memory allocation failed.\n", dev
->name
);
574 dev
->stats
.tx_errors
++;
575 dev
->stats
.tx_fifo_errors
++;
576 smc_special_unlock(&lp
->lock
, flags
);
580 /* point to the beginning of the packet */
581 SMC_SET_PN(lp
, packet_no
);
582 SMC_SET_PTR(lp
, PTR_AUTOINC
);
586 DBG(2, "%s: TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
587 dev
->name
, packet_no
, len
, len
, buf
);
591 * Send the packet length (+6 for status words, length, and ctl.
592 * The card will pad to 64 bytes with zeroes if packet is too small.
594 SMC_PUT_PKT_HDR(lp
, 0, len
+ 6);
596 /* send the actual data */
597 SMC_PUSH_DATA(lp
, buf
, len
& ~1);
599 /* Send final ctl word with the last byte if there is one */
600 SMC_outw(((len
& 1) ? (0x2000 | buf
[len
-1]) : 0), ioaddr
, DATA_REG(lp
));
603 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
604 * have the effect of having at most one packet queued for TX
605 * in the chip's memory at all time.
607 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
608 * when memory allocation (MC_ALLOC) does not succeed right away.
610 if (THROTTLE_TX_PKTS
)
611 netif_stop_queue(dev
);
613 /* queue the packet for TX */
614 SMC_SET_MMU_CMD(lp
, MC_ENQUEUE
);
615 smc_special_unlock(&lp
->lock
, flags
);
617 dev
->trans_start
= jiffies
;
618 dev
->stats
.tx_packets
++;
619 dev
->stats
.tx_bytes
+= len
;
621 SMC_ENABLE_INT(lp
, IM_TX_INT
| IM_TX_EMPTY_INT
);
623 done
: if (!THROTTLE_TX_PKTS
)
624 netif_wake_queue(dev
);
630 * Since I am not sure if I will have enough room in the chip's ram
631 * to store the packet, I call this routine which either sends it
632 * now, or set the card to generates an interrupt when ready
635 static int smc_hard_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
637 struct smc_local
*lp
= netdev_priv(dev
);
638 void __iomem
*ioaddr
= lp
->base
;
639 unsigned int numPages
, poll_count
, status
;
642 DBG(3, "%s: %s\n", dev
->name
, __func__
);
644 BUG_ON(lp
->pending_tx_skb
!= NULL
);
647 * The MMU wants the number of pages to be the number of 256 bytes
648 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
650 * The 91C111 ignores the size bits, but earlier models don't.
652 * Pkt size for allocating is data length +6 (for additional status
653 * words, length and ctl)
655 * If odd size then last byte is included in ctl word.
657 numPages
= ((skb
->len
& ~1) + (6 - 1)) >> 8;
658 if (unlikely(numPages
> 7)) {
659 printk("%s: Far too big packet error.\n", dev
->name
);
660 dev
->stats
.tx_errors
++;
661 dev
->stats
.tx_dropped
++;
666 smc_special_lock(&lp
->lock
, flags
);
668 /* now, try to allocate the memory */
669 SMC_SET_MMU_CMD(lp
, MC_ALLOC
| numPages
);
672 * Poll the chip for a short amount of time in case the
673 * allocation succeeds quickly.
675 poll_count
= MEMORY_WAIT_TIME
;
677 status
= SMC_GET_INT(lp
);
678 if (status
& IM_ALLOC_INT
) {
679 SMC_ACK_INT(lp
, IM_ALLOC_INT
);
682 } while (--poll_count
);
684 smc_special_unlock(&lp
->lock
, flags
);
686 lp
->pending_tx_skb
= skb
;
688 /* oh well, wait until the chip finds memory later */
689 netif_stop_queue(dev
);
690 DBG(2, "%s: TX memory allocation deferred.\n", dev
->name
);
691 SMC_ENABLE_INT(lp
, IM_ALLOC_INT
);
694 * Allocation succeeded: push packet to the chip's own memory
697 smc_hardware_send_pkt((unsigned long)dev
);
704 * This handles a TX interrupt, which is only called when:
705 * - a TX error occurred, or
706 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
708 static void smc_tx(struct net_device
*dev
)
710 struct smc_local
*lp
= netdev_priv(dev
);
711 void __iomem
*ioaddr
= lp
->base
;
712 unsigned int saved_packet
, packet_no
, tx_status
, pkt_len
;
714 DBG(3, "%s: %s\n", dev
->name
, __func__
);
716 /* If the TX FIFO is empty then nothing to do */
717 packet_no
= SMC_GET_TXFIFO(lp
);
718 if (unlikely(packet_no
& TXFIFO_TEMPTY
)) {
719 PRINTK("%s: smc_tx with nothing on FIFO.\n", dev
->name
);
723 /* select packet to read from */
724 saved_packet
= SMC_GET_PN(lp
);
725 SMC_SET_PN(lp
, packet_no
);
727 /* read the first word (status word) from this packet */
728 SMC_SET_PTR(lp
, PTR_AUTOINC
| PTR_READ
);
729 SMC_GET_PKT_HDR(lp
, tx_status
, pkt_len
);
730 DBG(2, "%s: TX STATUS 0x%04x PNR 0x%02x\n",
731 dev
->name
, tx_status
, packet_no
);
733 if (!(tx_status
& ES_TX_SUC
))
734 dev
->stats
.tx_errors
++;
736 if (tx_status
& ES_LOSTCARR
)
737 dev
->stats
.tx_carrier_errors
++;
739 if (tx_status
& (ES_LATCOL
| ES_16COL
)) {
740 PRINTK("%s: %s occurred on last xmit\n", dev
->name
,
741 (tx_status
& ES_LATCOL
) ?
742 "late collision" : "too many collisions");
743 dev
->stats
.tx_window_errors
++;
744 if (!(dev
->stats
.tx_window_errors
& 63) && net_ratelimit()) {
745 printk(KERN_INFO
"%s: unexpectedly large number of "
746 "bad collisions. Please check duplex "
747 "setting.\n", dev
->name
);
751 /* kill the packet */
752 SMC_WAIT_MMU_BUSY(lp
);
753 SMC_SET_MMU_CMD(lp
, MC_FREEPKT
);
755 /* Don't restore Packet Number Reg until busy bit is cleared */
756 SMC_WAIT_MMU_BUSY(lp
);
757 SMC_SET_PN(lp
, saved_packet
);
759 /* re-enable transmit */
760 SMC_SELECT_BANK(lp
, 0);
761 SMC_SET_TCR(lp
, lp
->tcr_cur_mode
);
762 SMC_SELECT_BANK(lp
, 2);
766 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
768 static void smc_mii_out(struct net_device
*dev
, unsigned int val
, int bits
)
770 struct smc_local
*lp
= netdev_priv(dev
);
771 void __iomem
*ioaddr
= lp
->base
;
772 unsigned int mii_reg
, mask
;
774 mii_reg
= SMC_GET_MII(lp
) & ~(MII_MCLK
| MII_MDOE
| MII_MDO
);
777 for (mask
= 1 << (bits
- 1); mask
; mask
>>= 1) {
783 SMC_SET_MII(lp
, mii_reg
);
785 SMC_SET_MII(lp
, mii_reg
| MII_MCLK
);
790 static unsigned int smc_mii_in(struct net_device
*dev
, int bits
)
792 struct smc_local
*lp
= netdev_priv(dev
);
793 void __iomem
*ioaddr
= lp
->base
;
794 unsigned int mii_reg
, mask
, val
;
796 mii_reg
= SMC_GET_MII(lp
) & ~(MII_MCLK
| MII_MDOE
| MII_MDO
);
797 SMC_SET_MII(lp
, mii_reg
);
799 for (mask
= 1 << (bits
- 1), val
= 0; mask
; mask
>>= 1) {
800 if (SMC_GET_MII(lp
) & MII_MDI
)
803 SMC_SET_MII(lp
, mii_reg
);
805 SMC_SET_MII(lp
, mii_reg
| MII_MCLK
);
813 * Reads a register from the MII Management serial interface
815 static int smc_phy_read(struct net_device
*dev
, int phyaddr
, int phyreg
)
817 struct smc_local
*lp
= netdev_priv(dev
);
818 void __iomem
*ioaddr
= lp
->base
;
819 unsigned int phydata
;
821 SMC_SELECT_BANK(lp
, 3);
824 smc_mii_out(dev
, 0xffffffff, 32);
826 /* Start code (01) + read (10) + phyaddr + phyreg */
827 smc_mii_out(dev
, 6 << 10 | phyaddr
<< 5 | phyreg
, 14);
829 /* Turnaround (2bits) + phydata */
830 phydata
= smc_mii_in(dev
, 18);
832 /* Return to idle state */
833 SMC_SET_MII(lp
, SMC_GET_MII(lp
) & ~(MII_MCLK
|MII_MDOE
|MII_MDO
));
835 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
836 __func__
, phyaddr
, phyreg
, phydata
);
838 SMC_SELECT_BANK(lp
, 2);
843 * Writes a register to the MII Management serial interface
845 static void smc_phy_write(struct net_device
*dev
, int phyaddr
, int phyreg
,
848 struct smc_local
*lp
= netdev_priv(dev
);
849 void __iomem
*ioaddr
= lp
->base
;
851 SMC_SELECT_BANK(lp
, 3);
854 smc_mii_out(dev
, 0xffffffff, 32);
856 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
857 smc_mii_out(dev
, 5 << 28 | phyaddr
<< 23 | phyreg
<< 18 | 2 << 16 | phydata
, 32);
859 /* Return to idle state */
860 SMC_SET_MII(lp
, SMC_GET_MII(lp
) & ~(MII_MCLK
|MII_MDOE
|MII_MDO
));
862 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
863 __func__
, phyaddr
, phyreg
, phydata
);
865 SMC_SELECT_BANK(lp
, 2);
869 * Finds and reports the PHY address
871 static void smc_phy_detect(struct net_device
*dev
)
873 struct smc_local
*lp
= netdev_priv(dev
);
876 DBG(2, "%s: %s\n", dev
->name
, __func__
);
881 * Scan all 32 PHY addresses if necessary, starting at
882 * PHY#1 to PHY#31, and then PHY#0 last.
884 for (phyaddr
= 1; phyaddr
< 33; ++phyaddr
) {
885 unsigned int id1
, id2
;
887 /* Read the PHY identifiers */
888 id1
= smc_phy_read(dev
, phyaddr
& 31, MII_PHYSID1
);
889 id2
= smc_phy_read(dev
, phyaddr
& 31, MII_PHYSID2
);
891 DBG(3, "%s: phy_id1=0x%x, phy_id2=0x%x\n",
892 dev
->name
, id1
, id2
);
894 /* Make sure it is a valid identifier */
895 if (id1
!= 0x0000 && id1
!= 0xffff && id1
!= 0x8000 &&
896 id2
!= 0x0000 && id2
!= 0xffff && id2
!= 0x8000) {
897 /* Save the PHY's address */
898 lp
->mii
.phy_id
= phyaddr
& 31;
899 lp
->phy_type
= id1
<< 16 | id2
;
906 * Sets the PHY to a configuration as determined by the user
908 static int smc_phy_fixed(struct net_device
*dev
)
910 struct smc_local
*lp
= netdev_priv(dev
);
911 void __iomem
*ioaddr
= lp
->base
;
912 int phyaddr
= lp
->mii
.phy_id
;
915 DBG(3, "%s: %s\n", dev
->name
, __func__
);
917 /* Enter Link Disable state */
918 cfg1
= smc_phy_read(dev
, phyaddr
, PHY_CFG1_REG
);
919 cfg1
|= PHY_CFG1_LNKDIS
;
920 smc_phy_write(dev
, phyaddr
, PHY_CFG1_REG
, cfg1
);
923 * Set our fixed capabilities
924 * Disable auto-negotiation
929 bmcr
|= BMCR_FULLDPLX
;
931 if (lp
->ctl_rspeed
== 100)
932 bmcr
|= BMCR_SPEED100
;
934 /* Write our capabilities to the phy control register */
935 smc_phy_write(dev
, phyaddr
, MII_BMCR
, bmcr
);
937 /* Re-Configure the Receive/Phy Control register */
938 SMC_SELECT_BANK(lp
, 0);
939 SMC_SET_RPC(lp
, lp
->rpc_cur_mode
);
940 SMC_SELECT_BANK(lp
, 2);
946 * smc_phy_reset - reset the phy
950 * Issue a software reset for the specified PHY and
951 * wait up to 100ms for the reset to complete. We should
952 * not access the PHY for 50ms after issuing the reset.
954 * The time to wait appears to be dependent on the PHY.
956 * Must be called with lp->lock locked.
958 static int smc_phy_reset(struct net_device
*dev
, int phy
)
960 struct smc_local
*lp
= netdev_priv(dev
);
964 smc_phy_write(dev
, phy
, MII_BMCR
, BMCR_RESET
);
966 for (timeout
= 2; timeout
; timeout
--) {
967 spin_unlock_irq(&lp
->lock
);
969 spin_lock_irq(&lp
->lock
);
971 bmcr
= smc_phy_read(dev
, phy
, MII_BMCR
);
972 if (!(bmcr
& BMCR_RESET
))
976 return bmcr
& BMCR_RESET
;
980 * smc_phy_powerdown - powerdown phy
983 * Power down the specified PHY
985 static void smc_phy_powerdown(struct net_device
*dev
)
987 struct smc_local
*lp
= netdev_priv(dev
);
989 int phy
= lp
->mii
.phy_id
;
991 if (lp
->phy_type
== 0)
994 /* We need to ensure that no calls to smc_phy_configure are
997 cancel_work_sync(&lp
->phy_configure
);
999 bmcr
= smc_phy_read(dev
, phy
, MII_BMCR
);
1000 smc_phy_write(dev
, phy
, MII_BMCR
, bmcr
| BMCR_PDOWN
);
1004 * smc_phy_check_media - check the media status and adjust TCR
1006 * @init: set true for initialisation
1008 * Select duplex mode depending on negotiation state. This
1009 * also updates our carrier state.
1011 static void smc_phy_check_media(struct net_device
*dev
, int init
)
1013 struct smc_local
*lp
= netdev_priv(dev
);
1014 void __iomem
*ioaddr
= lp
->base
;
1016 if (mii_check_media(&lp
->mii
, netif_msg_link(lp
), init
)) {
1017 /* duplex state has changed */
1018 if (lp
->mii
.full_duplex
) {
1019 lp
->tcr_cur_mode
|= TCR_SWFDUP
;
1021 lp
->tcr_cur_mode
&= ~TCR_SWFDUP
;
1024 SMC_SELECT_BANK(lp
, 0);
1025 SMC_SET_TCR(lp
, lp
->tcr_cur_mode
);
1030 * Configures the specified PHY through the MII management interface
1031 * using Autonegotiation.
1032 * Calls smc_phy_fixed() if the user has requested a certain config.
1033 * If RPC ANEG bit is set, the media selection is dependent purely on
1034 * the selection by the MII (either in the MII BMCR reg or the result
1035 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection
1036 * is controlled by the RPC SPEED and RPC DPLX bits.
1038 static void smc_phy_configure(struct work_struct
*work
)
1040 struct smc_local
*lp
=
1041 container_of(work
, struct smc_local
, phy_configure
);
1042 struct net_device
*dev
= lp
->dev
;
1043 void __iomem
*ioaddr
= lp
->base
;
1044 int phyaddr
= lp
->mii
.phy_id
;
1045 int my_phy_caps
; /* My PHY capabilities */
1046 int my_ad_caps
; /* My Advertised capabilities */
1049 DBG(3, "%s:smc_program_phy()\n", dev
->name
);
1051 spin_lock_irq(&lp
->lock
);
1054 * We should not be called if phy_type is zero.
1056 if (lp
->phy_type
== 0)
1057 goto smc_phy_configure_exit
;
1059 if (smc_phy_reset(dev
, phyaddr
)) {
1060 printk("%s: PHY reset timed out\n", dev
->name
);
1061 goto smc_phy_configure_exit
;
1065 * Enable PHY Interrupts (for register 18)
1066 * Interrupts listed here are disabled
1068 smc_phy_write(dev
, phyaddr
, PHY_MASK_REG
,
1069 PHY_INT_LOSSSYNC
| PHY_INT_CWRD
| PHY_INT_SSD
|
1070 PHY_INT_ESD
| PHY_INT_RPOL
| PHY_INT_JAB
|
1071 PHY_INT_SPDDET
| PHY_INT_DPLXDET
);
1073 /* Configure the Receive/Phy Control register */
1074 SMC_SELECT_BANK(lp
, 0);
1075 SMC_SET_RPC(lp
, lp
->rpc_cur_mode
);
1077 /* If the user requested no auto neg, then go set his request */
1078 if (lp
->mii
.force_media
) {
1080 goto smc_phy_configure_exit
;
1083 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1084 my_phy_caps
= smc_phy_read(dev
, phyaddr
, MII_BMSR
);
1086 if (!(my_phy_caps
& BMSR_ANEGCAPABLE
)) {
1087 printk(KERN_INFO
"Auto negotiation NOT supported\n");
1089 goto smc_phy_configure_exit
;
1092 my_ad_caps
= ADVERTISE_CSMA
; /* I am CSMA capable */
1094 if (my_phy_caps
& BMSR_100BASE4
)
1095 my_ad_caps
|= ADVERTISE_100BASE4
;
1096 if (my_phy_caps
& BMSR_100FULL
)
1097 my_ad_caps
|= ADVERTISE_100FULL
;
1098 if (my_phy_caps
& BMSR_100HALF
)
1099 my_ad_caps
|= ADVERTISE_100HALF
;
1100 if (my_phy_caps
& BMSR_10FULL
)
1101 my_ad_caps
|= ADVERTISE_10FULL
;
1102 if (my_phy_caps
& BMSR_10HALF
)
1103 my_ad_caps
|= ADVERTISE_10HALF
;
1105 /* Disable capabilities not selected by our user */
1106 if (lp
->ctl_rspeed
!= 100)
1107 my_ad_caps
&= ~(ADVERTISE_100BASE4
|ADVERTISE_100FULL
|ADVERTISE_100HALF
);
1109 if (!lp
->ctl_rfduplx
)
1110 my_ad_caps
&= ~(ADVERTISE_100FULL
|ADVERTISE_10FULL
);
1112 /* Update our Auto-Neg Advertisement Register */
1113 smc_phy_write(dev
, phyaddr
, MII_ADVERTISE
, my_ad_caps
);
1114 lp
->mii
.advertising
= my_ad_caps
;
1117 * Read the register back. Without this, it appears that when
1118 * auto-negotiation is restarted, sometimes it isn't ready and
1119 * the link does not come up.
1121 status
= smc_phy_read(dev
, phyaddr
, MII_ADVERTISE
);
1123 DBG(2, "%s: phy caps=%x\n", dev
->name
, my_phy_caps
);
1124 DBG(2, "%s: phy advertised caps=%x\n", dev
->name
, my_ad_caps
);
1126 /* Restart auto-negotiation process in order to advertise my caps */
1127 smc_phy_write(dev
, phyaddr
, MII_BMCR
, BMCR_ANENABLE
| BMCR_ANRESTART
);
1129 smc_phy_check_media(dev
, 1);
1131 smc_phy_configure_exit
:
1132 SMC_SELECT_BANK(lp
, 2);
1133 spin_unlock_irq(&lp
->lock
);
1139 * Purpose: Handle interrupts relating to PHY register 18. This is
1140 * called from the "hard" interrupt handler under our private spinlock.
1142 static void smc_phy_interrupt(struct net_device
*dev
)
1144 struct smc_local
*lp
= netdev_priv(dev
);
1145 int phyaddr
= lp
->mii
.phy_id
;
1148 DBG(2, "%s: %s\n", dev
->name
, __func__
);
1150 if (lp
->phy_type
== 0)
1154 smc_phy_check_media(dev
, 0);
1156 /* Read PHY Register 18, Status Output */
1157 phy18
= smc_phy_read(dev
, phyaddr
, PHY_INT_REG
);
1158 if ((phy18
& PHY_INT_INT
) == 0)
1163 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1165 static void smc_10bt_check_media(struct net_device
*dev
, int init
)
1167 struct smc_local
*lp
= netdev_priv(dev
);
1168 void __iomem
*ioaddr
= lp
->base
;
1169 unsigned int old_carrier
, new_carrier
;
1171 old_carrier
= netif_carrier_ok(dev
) ? 1 : 0;
1173 SMC_SELECT_BANK(lp
, 0);
1174 new_carrier
= (SMC_GET_EPH_STATUS(lp
) & ES_LINK_OK
) ? 1 : 0;
1175 SMC_SELECT_BANK(lp
, 2);
1177 if (init
|| (old_carrier
!= new_carrier
)) {
1179 netif_carrier_off(dev
);
1181 netif_carrier_on(dev
);
1183 if (netif_msg_link(lp
))
1184 printk(KERN_INFO
"%s: link %s\n", dev
->name
,
1185 new_carrier
? "up" : "down");
1189 static void smc_eph_interrupt(struct net_device
*dev
)
1191 struct smc_local
*lp
= netdev_priv(dev
);
1192 void __iomem
*ioaddr
= lp
->base
;
1195 smc_10bt_check_media(dev
, 0);
1197 SMC_SELECT_BANK(lp
, 1);
1198 ctl
= SMC_GET_CTL(lp
);
1199 SMC_SET_CTL(lp
, ctl
& ~CTL_LE_ENABLE
);
1200 SMC_SET_CTL(lp
, ctl
);
1201 SMC_SELECT_BANK(lp
, 2);
1205 * This is the main routine of the driver, to handle the device when
1206 * it needs some attention.
1208 static irqreturn_t
smc_interrupt(int irq
, void *dev_id
)
1210 struct net_device
*dev
= dev_id
;
1211 struct smc_local
*lp
= netdev_priv(dev
);
1212 void __iomem
*ioaddr
= lp
->base
;
1213 int status
, mask
, timeout
, card_stats
;
1216 DBG(3, "%s: %s\n", dev
->name
, __func__
);
1218 spin_lock(&lp
->lock
);
1220 /* A preamble may be used when there is a potential race
1221 * between the interruptible transmit functions and this
1223 SMC_INTERRUPT_PREAMBLE
;
1225 saved_pointer
= SMC_GET_PTR(lp
);
1226 mask
= SMC_GET_INT_MASK(lp
);
1227 SMC_SET_INT_MASK(lp
, 0);
1229 /* set a timeout value, so I don't stay here forever */
1230 timeout
= MAX_IRQ_LOOPS
;
1233 status
= SMC_GET_INT(lp
);
1235 DBG(2, "%s: INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1236 dev
->name
, status
, mask
,
1237 ({ int meminfo
; SMC_SELECT_BANK(lp
, 0);
1238 meminfo
= SMC_GET_MIR(lp
);
1239 SMC_SELECT_BANK(lp
, 2); meminfo
; }),
1246 if (status
& IM_TX_INT
) {
1247 /* do this before RX as it will free memory quickly */
1248 DBG(3, "%s: TX int\n", dev
->name
);
1250 SMC_ACK_INT(lp
, IM_TX_INT
);
1251 if (THROTTLE_TX_PKTS
)
1252 netif_wake_queue(dev
);
1253 } else if (status
& IM_RCV_INT
) {
1254 DBG(3, "%s: RX irq\n", dev
->name
);
1256 } else if (status
& IM_ALLOC_INT
) {
1257 DBG(3, "%s: Allocation irq\n", dev
->name
);
1258 tasklet_hi_schedule(&lp
->tx_task
);
1259 mask
&= ~IM_ALLOC_INT
;
1260 } else if (status
& IM_TX_EMPTY_INT
) {
1261 DBG(3, "%s: TX empty\n", dev
->name
);
1262 mask
&= ~IM_TX_EMPTY_INT
;
1265 SMC_SELECT_BANK(lp
, 0);
1266 card_stats
= SMC_GET_COUNTER(lp
);
1267 SMC_SELECT_BANK(lp
, 2);
1269 /* single collisions */
1270 dev
->stats
.collisions
+= card_stats
& 0xF;
1273 /* multiple collisions */
1274 dev
->stats
.collisions
+= card_stats
& 0xF;
1275 } else if (status
& IM_RX_OVRN_INT
) {
1276 DBG(1, "%s: RX overrun (EPH_ST 0x%04x)\n", dev
->name
,
1277 ({ int eph_st
; SMC_SELECT_BANK(lp
, 0);
1278 eph_st
= SMC_GET_EPH_STATUS(lp
);
1279 SMC_SELECT_BANK(lp
, 2); eph_st
; }));
1280 SMC_ACK_INT(lp
, IM_RX_OVRN_INT
);
1281 dev
->stats
.rx_errors
++;
1282 dev
->stats
.rx_fifo_errors
++;
1283 } else if (status
& IM_EPH_INT
) {
1284 smc_eph_interrupt(dev
);
1285 } else if (status
& IM_MDINT
) {
1286 SMC_ACK_INT(lp
, IM_MDINT
);
1287 smc_phy_interrupt(dev
);
1288 } else if (status
& IM_ERCV_INT
) {
1289 SMC_ACK_INT(lp
, IM_ERCV_INT
);
1290 PRINTK("%s: UNSUPPORTED: ERCV INTERRUPT\n", dev
->name
);
1292 } while (--timeout
);
1294 /* restore register states */
1295 SMC_SET_PTR(lp
, saved_pointer
);
1296 SMC_SET_INT_MASK(lp
, mask
);
1297 spin_unlock(&lp
->lock
);
1299 #ifndef CONFIG_NET_POLL_CONTROLLER
1300 if (timeout
== MAX_IRQ_LOOPS
)
1301 PRINTK("%s: spurious interrupt (mask = 0x%02x)\n",
1304 DBG(3, "%s: Interrupt done (%d loops)\n",
1305 dev
->name
, MAX_IRQ_LOOPS
- timeout
);
1308 * We return IRQ_HANDLED unconditionally here even if there was
1309 * nothing to do. There is a possibility that a packet might
1310 * get enqueued into the chip right after TX_EMPTY_INT is raised
1311 * but just before the CPU acknowledges the IRQ.
1312 * Better take an unneeded IRQ in some occasions than complexifying
1313 * the code for all cases.
1318 #ifdef CONFIG_NET_POLL_CONTROLLER
1320 * Polling receive - used by netconsole and other diagnostic tools
1321 * to allow network i/o with interrupts disabled.
1323 static void smc_poll_controller(struct net_device
*dev
)
1325 disable_irq(dev
->irq
);
1326 smc_interrupt(dev
->irq
, dev
);
1327 enable_irq(dev
->irq
);
1331 /* Our watchdog timed out. Called by the networking layer */
1332 static void smc_timeout(struct net_device
*dev
)
1334 struct smc_local
*lp
= netdev_priv(dev
);
1335 void __iomem
*ioaddr
= lp
->base
;
1336 int status
, mask
, eph_st
, meminfo
, fifo
;
1338 DBG(2, "%s: %s\n", dev
->name
, __func__
);
1340 spin_lock_irq(&lp
->lock
);
1341 status
= SMC_GET_INT(lp
);
1342 mask
= SMC_GET_INT_MASK(lp
);
1343 fifo
= SMC_GET_FIFO(lp
);
1344 SMC_SELECT_BANK(lp
, 0);
1345 eph_st
= SMC_GET_EPH_STATUS(lp
);
1346 meminfo
= SMC_GET_MIR(lp
);
1347 SMC_SELECT_BANK(lp
, 2);
1348 spin_unlock_irq(&lp
->lock
);
1349 PRINTK( "%s: TX timeout (INT 0x%02x INTMASK 0x%02x "
1350 "MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1351 dev
->name
, status
, mask
, meminfo
, fifo
, eph_st
);
1357 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1358 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1359 * which calls schedule(). Hence we use a work queue.
1361 if (lp
->phy_type
!= 0)
1362 schedule_work(&lp
->phy_configure
);
1364 /* We can accept TX packets again */
1365 dev
->trans_start
= jiffies
; /* prevent tx timeout */
1366 netif_wake_queue(dev
);
1370 * This routine will, depending on the values passed to it,
1371 * either make it accept multicast packets, go into
1372 * promiscuous mode (for TCPDUMP and cousins) or accept
1373 * a select set of multicast packets
1375 static void smc_set_multicast_list(struct net_device
*dev
)
1377 struct smc_local
*lp
= netdev_priv(dev
);
1378 void __iomem
*ioaddr
= lp
->base
;
1379 unsigned char multicast_table
[8];
1380 int update_multicast
= 0;
1382 DBG(2, "%s: %s\n", dev
->name
, __func__
);
1384 if (dev
->flags
& IFF_PROMISC
) {
1385 DBG(2, "%s: RCR_PRMS\n", dev
->name
);
1386 lp
->rcr_cur_mode
|= RCR_PRMS
;
1389 /* BUG? I never disable promiscuous mode if multicasting was turned on.
1390 Now, I turn off promiscuous mode, but I don't do anything to multicasting
1391 when promiscuous mode is turned on.
1395 * Here, I am setting this to accept all multicast packets.
1396 * I don't need to zero the multicast table, because the flag is
1397 * checked before the table is
1399 else if (dev
->flags
& IFF_ALLMULTI
|| netdev_mc_count(dev
) > 16) {
1400 DBG(2, "%s: RCR_ALMUL\n", dev
->name
);
1401 lp
->rcr_cur_mode
|= RCR_ALMUL
;
1405 * This sets the internal hardware table to filter out unwanted
1406 * multicast packets before they take up memory.
1408 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1409 * address are the offset into the table. If that bit is 1, then the
1410 * multicast packet is accepted. Otherwise, it's dropped silently.
1412 * To use the 6 bits as an offset into the table, the high 3 bits are
1413 * the number of the 8 bit register, while the low 3 bits are the bit
1414 * within that register.
1416 else if (!netdev_mc_empty(dev
)) {
1417 struct netdev_hw_addr
*ha
;
1419 /* table for flipping the order of 3 bits */
1420 static const unsigned char invert3
[] = {0, 4, 2, 6, 1, 5, 3, 7};
1422 /* start with a table of all zeros: reject all */
1423 memset(multicast_table
, 0, sizeof(multicast_table
));
1425 netdev_for_each_mc_addr(ha
, dev
) {
1428 /* make sure this is a multicast address -
1429 shouldn't this be a given if we have it here ? */
1430 if (!(*ha
->addr
& 1))
1433 /* only use the low order bits */
1434 position
= crc32_le(~0, ha
->addr
, 6) & 0x3f;
1436 /* do some messy swapping to put the bit in the right spot */
1437 multicast_table
[invert3
[position
&7]] |=
1438 (1<<invert3
[(position
>>3)&7]);
1441 /* be sure I get rid of flags I might have set */
1442 lp
->rcr_cur_mode
&= ~(RCR_PRMS
| RCR_ALMUL
);
1444 /* now, the table can be loaded into the chipset */
1445 update_multicast
= 1;
1447 DBG(2, "%s: ~(RCR_PRMS|RCR_ALMUL)\n", dev
->name
);
1448 lp
->rcr_cur_mode
&= ~(RCR_PRMS
| RCR_ALMUL
);
1451 * since I'm disabling all multicast entirely, I need to
1452 * clear the multicast list
1454 memset(multicast_table
, 0, sizeof(multicast_table
));
1455 update_multicast
= 1;
1458 spin_lock_irq(&lp
->lock
);
1459 SMC_SELECT_BANK(lp
, 0);
1460 SMC_SET_RCR(lp
, lp
->rcr_cur_mode
);
1461 if (update_multicast
) {
1462 SMC_SELECT_BANK(lp
, 3);
1463 SMC_SET_MCAST(lp
, multicast_table
);
1465 SMC_SELECT_BANK(lp
, 2);
1466 spin_unlock_irq(&lp
->lock
);
1471 * Open and Initialize the board
1473 * Set up everything, reset the card, etc..
1476 smc_open(struct net_device
*dev
)
1478 struct smc_local
*lp
= netdev_priv(dev
);
1480 DBG(2, "%s: %s\n", dev
->name
, __func__
);
1483 * Check that the address is valid. If its not, refuse
1484 * to bring the device up. The user must specify an
1485 * address using ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx
1487 if (!is_valid_ether_addr(dev
->dev_addr
)) {
1488 PRINTK("%s: no valid ethernet hw addr\n", __func__
);
1492 /* Setup the default Register Modes */
1493 lp
->tcr_cur_mode
= TCR_DEFAULT
;
1494 lp
->rcr_cur_mode
= RCR_DEFAULT
;
1495 lp
->rpc_cur_mode
= RPC_DEFAULT
|
1496 lp
->cfg
.leda
<< RPC_LSXA_SHFT
|
1497 lp
->cfg
.ledb
<< RPC_LSXB_SHFT
;
1500 * If we are not using a MII interface, we need to
1501 * monitor our own carrier signal to detect faults.
1503 if (lp
->phy_type
== 0)
1504 lp
->tcr_cur_mode
|= TCR_MON_CSN
;
1506 /* reset the hardware */
1510 /* Configure the PHY, initialize the link state */
1511 if (lp
->phy_type
!= 0)
1512 smc_phy_configure(&lp
->phy_configure
);
1514 spin_lock_irq(&lp
->lock
);
1515 smc_10bt_check_media(dev
, 1);
1516 spin_unlock_irq(&lp
->lock
);
1519 netif_start_queue(dev
);
1526 * this makes the board clean up everything that it can
1527 * and not talk to the outside world. Caused by
1528 * an 'ifconfig ethX down'
1530 static int smc_close(struct net_device
*dev
)
1532 struct smc_local
*lp
= netdev_priv(dev
);
1534 DBG(2, "%s: %s\n", dev
->name
, __func__
);
1536 netif_stop_queue(dev
);
1537 netif_carrier_off(dev
);
1539 /* clear everything */
1541 tasklet_kill(&lp
->tx_task
);
1542 smc_phy_powerdown(dev
);
1550 smc_ethtool_getsettings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1552 struct smc_local
*lp
= netdev_priv(dev
);
1558 if (lp
->phy_type
!= 0) {
1559 spin_lock_irq(&lp
->lock
);
1560 ret
= mii_ethtool_gset(&lp
->mii
, cmd
);
1561 spin_unlock_irq(&lp
->lock
);
1563 cmd
->supported
= SUPPORTED_10baseT_Half
|
1564 SUPPORTED_10baseT_Full
|
1565 SUPPORTED_TP
| SUPPORTED_AUI
;
1567 if (lp
->ctl_rspeed
== 10)
1568 ethtool_cmd_speed_set(cmd
, SPEED_10
);
1569 else if (lp
->ctl_rspeed
== 100)
1570 ethtool_cmd_speed_set(cmd
, SPEED_100
);
1572 cmd
->autoneg
= AUTONEG_DISABLE
;
1573 cmd
->transceiver
= XCVR_INTERNAL
;
1575 cmd
->duplex
= lp
->tcr_cur_mode
& TCR_SWFDUP
? DUPLEX_FULL
: DUPLEX_HALF
;
1584 smc_ethtool_setsettings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1586 struct smc_local
*lp
= netdev_priv(dev
);
1589 if (lp
->phy_type
!= 0) {
1590 spin_lock_irq(&lp
->lock
);
1591 ret
= mii_ethtool_sset(&lp
->mii
, cmd
);
1592 spin_unlock_irq(&lp
->lock
);
1594 if (cmd
->autoneg
!= AUTONEG_DISABLE
||
1595 cmd
->speed
!= SPEED_10
||
1596 (cmd
->duplex
!= DUPLEX_HALF
&& cmd
->duplex
!= DUPLEX_FULL
) ||
1597 (cmd
->port
!= PORT_TP
&& cmd
->port
!= PORT_AUI
))
1600 // lp->port = cmd->port;
1601 lp
->ctl_rfduplx
= cmd
->duplex
== DUPLEX_FULL
;
1603 // if (netif_running(dev))
1604 // smc_set_port(dev);
1613 smc_ethtool_getdrvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1615 strncpy(info
->driver
, CARDNAME
, sizeof(info
->driver
));
1616 strncpy(info
->version
, version
, sizeof(info
->version
));
1617 strncpy(info
->bus_info
, dev_name(dev
->dev
.parent
), sizeof(info
->bus_info
));
1620 static int smc_ethtool_nwayreset(struct net_device
*dev
)
1622 struct smc_local
*lp
= netdev_priv(dev
);
1625 if (lp
->phy_type
!= 0) {
1626 spin_lock_irq(&lp
->lock
);
1627 ret
= mii_nway_restart(&lp
->mii
);
1628 spin_unlock_irq(&lp
->lock
);
1634 static u32
smc_ethtool_getmsglevel(struct net_device
*dev
)
1636 struct smc_local
*lp
= netdev_priv(dev
);
1637 return lp
->msg_enable
;
1640 static void smc_ethtool_setmsglevel(struct net_device
*dev
, u32 level
)
1642 struct smc_local
*lp
= netdev_priv(dev
);
1643 lp
->msg_enable
= level
;
1646 static int smc_write_eeprom_word(struct net_device
*dev
, u16 addr
, u16 word
)
1649 struct smc_local
*lp
= netdev_priv(dev
);
1650 void __iomem
*ioaddr
= lp
->base
;
1652 spin_lock_irq(&lp
->lock
);
1653 /* load word into GP register */
1654 SMC_SELECT_BANK(lp
, 1);
1655 SMC_SET_GP(lp
, word
);
1656 /* set the address to put the data in EEPROM */
1657 SMC_SELECT_BANK(lp
, 2);
1658 SMC_SET_PTR(lp
, addr
);
1659 /* tell it to write */
1660 SMC_SELECT_BANK(lp
, 1);
1661 ctl
= SMC_GET_CTL(lp
);
1662 SMC_SET_CTL(lp
, ctl
| (CTL_EEPROM_SELECT
| CTL_STORE
));
1663 /* wait for it to finish */
1666 } while (SMC_GET_CTL(lp
) & CTL_STORE
);
1668 SMC_SET_CTL(lp
, ctl
);
1669 SMC_SELECT_BANK(lp
, 2);
1670 spin_unlock_irq(&lp
->lock
);
1674 static int smc_read_eeprom_word(struct net_device
*dev
, u16 addr
, u16
*word
)
1677 struct smc_local
*lp
= netdev_priv(dev
);
1678 void __iomem
*ioaddr
= lp
->base
;
1680 spin_lock_irq(&lp
->lock
);
1681 /* set the EEPROM address to get the data from */
1682 SMC_SELECT_BANK(lp
, 2);
1683 SMC_SET_PTR(lp
, addr
| PTR_READ
);
1684 /* tell it to load */
1685 SMC_SELECT_BANK(lp
, 1);
1686 SMC_SET_GP(lp
, 0xffff); /* init to known */
1687 ctl
= SMC_GET_CTL(lp
);
1688 SMC_SET_CTL(lp
, ctl
| (CTL_EEPROM_SELECT
| CTL_RELOAD
));
1689 /* wait for it to finish */
1692 } while (SMC_GET_CTL(lp
) & CTL_RELOAD
);
1693 /* read word from GP register */
1694 *word
= SMC_GET_GP(lp
);
1696 SMC_SET_CTL(lp
, ctl
);
1697 SMC_SELECT_BANK(lp
, 2);
1698 spin_unlock_irq(&lp
->lock
);
1702 static int smc_ethtool_geteeprom_len(struct net_device
*dev
)
1707 static int smc_ethtool_geteeprom(struct net_device
*dev
,
1708 struct ethtool_eeprom
*eeprom
, u8
*data
)
1713 DBG(1, "Reading %d bytes at %d(0x%x)\n",
1714 eeprom
->len
, eeprom
->offset
, eeprom
->offset
);
1715 imax
= smc_ethtool_geteeprom_len(dev
);
1716 for (i
= 0; i
< eeprom
->len
; i
+= 2) {
1719 int offset
= i
+ eeprom
->offset
;
1722 ret
= smc_read_eeprom_word(dev
, offset
>> 1, &wbuf
);
1725 DBG(2, "Read 0x%x from 0x%x\n", wbuf
, offset
>> 1);
1726 data
[i
] = (wbuf
>> 8) & 0xff;
1727 data
[i
+1] = wbuf
& 0xff;
1732 static int smc_ethtool_seteeprom(struct net_device
*dev
,
1733 struct ethtool_eeprom
*eeprom
, u8
*data
)
1738 DBG(1, "Writing %d bytes to %d(0x%x)\n",
1739 eeprom
->len
, eeprom
->offset
, eeprom
->offset
);
1740 imax
= smc_ethtool_geteeprom_len(dev
);
1741 for (i
= 0; i
< eeprom
->len
; i
+= 2) {
1744 int offset
= i
+ eeprom
->offset
;
1747 wbuf
= (data
[i
] << 8) | data
[i
+ 1];
1748 DBG(2, "Writing 0x%x to 0x%x\n", wbuf
, offset
>> 1);
1749 ret
= smc_write_eeprom_word(dev
, offset
>> 1, wbuf
);
1757 static const struct ethtool_ops smc_ethtool_ops
= {
1758 .get_settings
= smc_ethtool_getsettings
,
1759 .set_settings
= smc_ethtool_setsettings
,
1760 .get_drvinfo
= smc_ethtool_getdrvinfo
,
1762 .get_msglevel
= smc_ethtool_getmsglevel
,
1763 .set_msglevel
= smc_ethtool_setmsglevel
,
1764 .nway_reset
= smc_ethtool_nwayreset
,
1765 .get_link
= ethtool_op_get_link
,
1766 .get_eeprom_len
= smc_ethtool_geteeprom_len
,
1767 .get_eeprom
= smc_ethtool_geteeprom
,
1768 .set_eeprom
= smc_ethtool_seteeprom
,
1771 static const struct net_device_ops smc_netdev_ops
= {
1772 .ndo_open
= smc_open
,
1773 .ndo_stop
= smc_close
,
1774 .ndo_start_xmit
= smc_hard_start_xmit
,
1775 .ndo_tx_timeout
= smc_timeout
,
1776 .ndo_set_multicast_list
= smc_set_multicast_list
,
1777 .ndo_change_mtu
= eth_change_mtu
,
1778 .ndo_validate_addr
= eth_validate_addr
,
1779 .ndo_set_mac_address
= eth_mac_addr
,
1780 #ifdef CONFIG_NET_POLL_CONTROLLER
1781 .ndo_poll_controller
= smc_poll_controller
,
1788 * This routine has a simple purpose -- make the SMC chip generate an
1789 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1792 * does this still work?
1794 * I just deleted auto_irq.c, since it was never built...
1797 static int __devinit
smc_findirq(struct smc_local
*lp
)
1799 void __iomem
*ioaddr
= lp
->base
;
1801 unsigned long cookie
;
1803 DBG(2, "%s: %s\n", CARDNAME
, __func__
);
1805 cookie
= probe_irq_on();
1808 * What I try to do here is trigger an ALLOC_INT. This is done
1809 * by allocating a small chunk of memory, which will give an interrupt
1812 /* enable ALLOCation interrupts ONLY */
1813 SMC_SELECT_BANK(lp
, 2);
1814 SMC_SET_INT_MASK(lp
, IM_ALLOC_INT
);
1817 * Allocate 512 bytes of memory. Note that the chip was just
1818 * reset so all the memory is available
1820 SMC_SET_MMU_CMD(lp
, MC_ALLOC
| 1);
1823 * Wait until positive that the interrupt has been generated
1828 int_status
= SMC_GET_INT(lp
);
1829 if (int_status
& IM_ALLOC_INT
)
1830 break; /* got the interrupt */
1831 } while (--timeout
);
1834 * there is really nothing that I can do here if timeout fails,
1835 * as autoirq_report will return a 0 anyway, which is what I
1836 * want in this case. Plus, the clean up is needed in both
1840 /* and disable all interrupts again */
1841 SMC_SET_INT_MASK(lp
, 0);
1843 /* and return what I found */
1844 return probe_irq_off(cookie
);
1848 * Function: smc_probe(unsigned long ioaddr)
1851 * Tests to see if a given ioaddr points to an SMC91x chip.
1852 * Returns a 0 on success
1855 * (1) see if the high byte of BANK_SELECT is 0x33
1856 * (2) compare the ioaddr with the base register's address
1857 * (3) see if I recognize the chip ID in the appropriate register
1859 * Here I do typical initialization tasks.
1861 * o Initialize the structure if needed
1862 * o print out my vanity message if not done so already
1863 * o print out what type of hardware is detected
1864 * o print out the ethernet address
1866 * o set up my private data
1867 * o configure the dev structure with my subroutines
1868 * o actually GRAB the irq.
1871 static int __devinit
smc_probe(struct net_device
*dev
, void __iomem
*ioaddr
,
1872 unsigned long irq_flags
)
1874 struct smc_local
*lp
= netdev_priv(dev
);
1875 static int version_printed
= 0;
1877 unsigned int val
, revision_register
;
1878 const char *version_string
;
1880 DBG(2, "%s: %s\n", CARDNAME
, __func__
);
1882 /* First, see if the high byte is 0x33 */
1883 val
= SMC_CURRENT_BANK(lp
);
1884 DBG(2, "%s: bank signature probe returned 0x%04x\n", CARDNAME
, val
);
1885 if ((val
& 0xFF00) != 0x3300) {
1886 if ((val
& 0xFF) == 0x33) {
1888 "%s: Detected possible byte-swapped interface"
1889 " at IOADDR %p\n", CARDNAME
, ioaddr
);
1896 * The above MIGHT indicate a device, but I need to write to
1897 * further test this.
1899 SMC_SELECT_BANK(lp
, 0);
1900 val
= SMC_CURRENT_BANK(lp
);
1901 if ((val
& 0xFF00) != 0x3300) {
1907 * well, we've already written once, so hopefully another
1908 * time won't hurt. This time, I need to switch the bank
1909 * register to bank 1, so I can access the base address
1912 SMC_SELECT_BANK(lp
, 1);
1913 val
= SMC_GET_BASE(lp
);
1914 val
= ((val
& 0x1F00) >> 3) << SMC_IO_SHIFT
;
1915 if (((unsigned int)ioaddr
& (0x3e0 << SMC_IO_SHIFT
)) != val
) {
1916 printk("%s: IOADDR %p doesn't match configuration (%x).\n",
1917 CARDNAME
, ioaddr
, val
);
1921 * check if the revision register is something that I
1922 * recognize. These might need to be added to later,
1923 * as future revisions could be added.
1925 SMC_SELECT_BANK(lp
, 3);
1926 revision_register
= SMC_GET_REV(lp
);
1927 DBG(2, "%s: revision = 0x%04x\n", CARDNAME
, revision_register
);
1928 version_string
= chip_ids
[ (revision_register
>> 4) & 0xF];
1929 if (!version_string
|| (revision_register
& 0xff00) != 0x3300) {
1930 /* I don't recognize this chip, so... */
1931 printk("%s: IO %p: Unrecognized revision register 0x%04x"
1932 ", Contact author.\n", CARDNAME
,
1933 ioaddr
, revision_register
);
1939 /* At this point I'll assume that the chip is an SMC91x. */
1940 if (version_printed
++ == 0)
1941 printk("%s", version
);
1943 /* fill in some of the fields */
1944 dev
->base_addr
= (unsigned long)ioaddr
;
1946 lp
->version
= revision_register
& 0xff;
1947 spin_lock_init(&lp
->lock
);
1949 /* Get the MAC address */
1950 SMC_SELECT_BANK(lp
, 1);
1951 SMC_GET_MAC_ADDR(lp
, dev
->dev_addr
);
1953 /* now, reset the chip, and put it into a known state */
1957 * If dev->irq is 0, then the device has to be banged on to see
1960 * This banging doesn't always detect the IRQ, for unknown reasons.
1961 * a workaround is to reset the chip and try again.
1963 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1964 * be what is requested on the command line. I don't do that, mostly
1965 * because the card that I have uses a non-standard method of accessing
1966 * the IRQs, and because this _should_ work in most configurations.
1968 * Specifying an IRQ is done with the assumption that the user knows
1969 * what (s)he is doing. No checking is done!!!!
1976 dev
->irq
= smc_findirq(lp
);
1979 /* kick the card and try again */
1983 if (dev
->irq
== 0) {
1984 printk("%s: Couldn't autodetect your IRQ. Use irq=xx.\n",
1989 dev
->irq
= irq_canonicalize(dev
->irq
);
1991 /* Fill in the fields of the device structure with ethernet values. */
1994 dev
->watchdog_timeo
= msecs_to_jiffies(watchdog
);
1995 dev
->netdev_ops
= &smc_netdev_ops
;
1996 dev
->ethtool_ops
= &smc_ethtool_ops
;
1998 tasklet_init(&lp
->tx_task
, smc_hardware_send_pkt
, (unsigned long)dev
);
1999 INIT_WORK(&lp
->phy_configure
, smc_phy_configure
);
2001 lp
->mii
.phy_id_mask
= 0x1f;
2002 lp
->mii
.reg_num_mask
= 0x1f;
2003 lp
->mii
.force_media
= 0;
2004 lp
->mii
.full_duplex
= 0;
2006 lp
->mii
.mdio_read
= smc_phy_read
;
2007 lp
->mii
.mdio_write
= smc_phy_write
;
2010 * Locate the phy, if any.
2012 if (lp
->version
>= (CHIP_91100
<< 4))
2013 smc_phy_detect(dev
);
2015 /* then shut everything down to save power */
2017 smc_phy_powerdown(dev
);
2019 /* Set default parameters */
2020 lp
->msg_enable
= NETIF_MSG_LINK
;
2021 lp
->ctl_rfduplx
= 0;
2022 lp
->ctl_rspeed
= 10;
2024 if (lp
->version
>= (CHIP_91100
<< 4)) {
2025 lp
->ctl_rfduplx
= 1;
2026 lp
->ctl_rspeed
= 100;
2030 retval
= request_irq(dev
->irq
, smc_interrupt
, irq_flags
, dev
->name
, dev
);
2034 #ifdef CONFIG_ARCH_PXA
2035 # ifdef SMC_USE_PXA_DMA
2036 lp
->cfg
.flags
|= SMC91X_USE_DMA
;
2038 if (lp
->cfg
.flags
& SMC91X_USE_DMA
) {
2039 int dma
= pxa_request_dma(dev
->name
, DMA_PRIO_LOW
,
2040 smc_pxa_dma_irq
, NULL
);
2046 retval
= register_netdev(dev
);
2048 /* now, print out the card info, in a short format.. */
2049 printk("%s: %s (rev %d) at %p IRQ %d",
2050 dev
->name
, version_string
, revision_register
& 0x0f,
2051 lp
->base
, dev
->irq
);
2053 if (dev
->dma
!= (unsigned char)-1)
2054 printk(" DMA %d", dev
->dma
);
2057 lp
->cfg
.flags
& SMC91X_NOWAIT
? " [nowait]" : "",
2058 THROTTLE_TX_PKTS
? " [throttle_tx]" : "");
2060 if (!is_valid_ether_addr(dev
->dev_addr
)) {
2061 printk("%s: Invalid ethernet MAC address. Please "
2062 "set using ifconfig\n", dev
->name
);
2064 /* Print the Ethernet address */
2065 printk("%s: Ethernet addr: %pM\n",
2066 dev
->name
, dev
->dev_addr
);
2069 if (lp
->phy_type
== 0) {
2070 PRINTK("%s: No PHY found\n", dev
->name
);
2071 } else if ((lp
->phy_type
& 0xfffffff0) == 0x0016f840) {
2072 PRINTK("%s: PHY LAN83C183 (LAN91C111 Internal)\n", dev
->name
);
2073 } else if ((lp
->phy_type
& 0xfffffff0) == 0x02821c50) {
2074 PRINTK("%s: PHY LAN83C180\n", dev
->name
);
2079 #ifdef CONFIG_ARCH_PXA
2080 if (retval
&& dev
->dma
!= (unsigned char)-1)
2081 pxa_free_dma(dev
->dma
);
2086 static int smc_enable_device(struct platform_device
*pdev
)
2088 struct net_device
*ndev
= platform_get_drvdata(pdev
);
2089 struct smc_local
*lp
= netdev_priv(ndev
);
2090 unsigned long flags
;
2091 unsigned char ecor
, ecsr
;
2093 struct resource
* res
;
2095 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "smc91x-attrib");
2100 * Map the attribute space. This is overkill, but clean.
2102 addr
= ioremap(res
->start
, ATTRIB_SIZE
);
2107 * Reset the device. We must disable IRQs around this
2108 * since a reset causes the IRQ line become active.
2110 local_irq_save(flags
);
2111 ecor
= readb(addr
+ (ECOR
<< SMC_IO_SHIFT
)) & ~ECOR_RESET
;
2112 writeb(ecor
| ECOR_RESET
, addr
+ (ECOR
<< SMC_IO_SHIFT
));
2113 readb(addr
+ (ECOR
<< SMC_IO_SHIFT
));
2116 * Wait 100us for the chip to reset.
2121 * The device will ignore all writes to the enable bit while
2122 * reset is asserted, even if the reset bit is cleared in the
2123 * same write. Must clear reset first, then enable the device.
2125 writeb(ecor
, addr
+ (ECOR
<< SMC_IO_SHIFT
));
2126 writeb(ecor
| ECOR_ENABLE
, addr
+ (ECOR
<< SMC_IO_SHIFT
));
2129 * Set the appropriate byte/word mode.
2131 ecsr
= readb(addr
+ (ECSR
<< SMC_IO_SHIFT
)) & ~ECSR_IOIS8
;
2134 writeb(ecsr
, addr
+ (ECSR
<< SMC_IO_SHIFT
));
2135 local_irq_restore(flags
);
2140 * Wait for the chip to wake up. We could poll the control
2141 * register in the main register space, but that isn't mapped
2142 * yet. We know this is going to take 750us.
2149 static int smc_request_attrib(struct platform_device
*pdev
,
2150 struct net_device
*ndev
)
2152 struct resource
* res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "smc91x-attrib");
2153 struct smc_local
*lp __maybe_unused
= netdev_priv(ndev
);
2158 if (!request_mem_region(res
->start
, ATTRIB_SIZE
, CARDNAME
))
2164 static void smc_release_attrib(struct platform_device
*pdev
,
2165 struct net_device
*ndev
)
2167 struct resource
* res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "smc91x-attrib");
2168 struct smc_local
*lp __maybe_unused
= netdev_priv(ndev
);
2171 release_mem_region(res
->start
, ATTRIB_SIZE
);
2174 static inline void smc_request_datacs(struct platform_device
*pdev
, struct net_device
*ndev
)
2176 if (SMC_CAN_USE_DATACS
) {
2177 struct resource
* res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "smc91x-data32");
2178 struct smc_local
*lp
= netdev_priv(ndev
);
2183 if(!request_mem_region(res
->start
, SMC_DATA_EXTENT
, CARDNAME
)) {
2184 printk(KERN_INFO
"%s: failed to request datacs memory region.\n", CARDNAME
);
2188 lp
->datacs
= ioremap(res
->start
, SMC_DATA_EXTENT
);
2192 static void smc_release_datacs(struct platform_device
*pdev
, struct net_device
*ndev
)
2194 if (SMC_CAN_USE_DATACS
) {
2195 struct smc_local
*lp
= netdev_priv(ndev
);
2196 struct resource
* res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "smc91x-data32");
2199 iounmap(lp
->datacs
);
2204 release_mem_region(res
->start
, SMC_DATA_EXTENT
);
2211 * dev->base_addr == 0, try to find all possible locations
2212 * dev->base_addr > 0x1ff, this is the address to check
2213 * dev->base_addr == <anything else>, return failure code
2216 * 0 --> there is a device
2217 * anything else, error
2219 static int __devinit
smc_drv_probe(struct platform_device
*pdev
)
2221 struct smc91x_platdata
*pd
= pdev
->dev
.platform_data
;
2222 struct smc_local
*lp
;
2223 struct net_device
*ndev
;
2224 struct resource
*res
, *ires
;
2225 unsigned int __iomem
*addr
;
2226 unsigned long irq_flags
= SMC_IRQ_FLAGS
;
2229 ndev
= alloc_etherdev(sizeof(struct smc_local
));
2231 printk("%s: could not allocate device.\n", CARDNAME
);
2235 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
2237 /* get configuration from platform data, only allow use of
2238 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2241 lp
= netdev_priv(ndev
);
2244 memcpy(&lp
->cfg
, pd
, sizeof(lp
->cfg
));
2245 lp
->io_shift
= SMC91X_IO_SHIFT(lp
->cfg
.flags
);
2247 lp
->cfg
.flags
|= (SMC_CAN_USE_8BIT
) ? SMC91X_USE_8BIT
: 0;
2248 lp
->cfg
.flags
|= (SMC_CAN_USE_16BIT
) ? SMC91X_USE_16BIT
: 0;
2249 lp
->cfg
.flags
|= (SMC_CAN_USE_32BIT
) ? SMC91X_USE_32BIT
: 0;
2250 lp
->cfg
.flags
|= (nowait
) ? SMC91X_NOWAIT
: 0;
2253 if (!lp
->cfg
.leda
&& !lp
->cfg
.ledb
) {
2254 lp
->cfg
.leda
= RPC_LSA_DEFAULT
;
2255 lp
->cfg
.ledb
= RPC_LSB_DEFAULT
;
2258 ndev
->dma
= (unsigned char)-1;
2260 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "smc91x-regs");
2262 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2265 goto out_free_netdev
;
2269 if (!request_mem_region(res
->start
, SMC_IO_EXTENT
, CARDNAME
)) {
2271 goto out_free_netdev
;
2274 ires
= platform_get_resource(pdev
, IORESOURCE_IRQ
, 0);
2277 goto out_release_io
;
2280 ndev
->irq
= ires
->start
;
2282 if (irq_flags
== -1 || ires
->flags
& IRQF_TRIGGER_MASK
)
2283 irq_flags
= ires
->flags
& IRQF_TRIGGER_MASK
;
2285 ret
= smc_request_attrib(pdev
, ndev
);
2287 goto out_release_io
;
2288 #if defined(CONFIG_SA1100_ASSABET)
2289 NCR_0
|= NCR_ENET_OSC_EN
;
2291 platform_set_drvdata(pdev
, ndev
);
2292 ret
= smc_enable_device(pdev
);
2294 goto out_release_attrib
;
2296 addr
= ioremap(res
->start
, SMC_IO_EXTENT
);
2299 goto out_release_attrib
;
2302 #ifdef CONFIG_ARCH_PXA
2304 struct smc_local
*lp
= netdev_priv(ndev
);
2305 lp
->device
= &pdev
->dev
;
2306 lp
->physaddr
= res
->start
;
2310 ret
= smc_probe(ndev
, addr
, irq_flags
);
2314 smc_request_datacs(pdev
, ndev
);
2319 platform_set_drvdata(pdev
, NULL
);
2322 smc_release_attrib(pdev
, ndev
);
2324 release_mem_region(res
->start
, SMC_IO_EXTENT
);
2328 printk("%s: not found (%d).\n", CARDNAME
, ret
);
2333 static int __devexit
smc_drv_remove(struct platform_device
*pdev
)
2335 struct net_device
*ndev
= platform_get_drvdata(pdev
);
2336 struct smc_local
*lp
= netdev_priv(ndev
);
2337 struct resource
*res
;
2339 platform_set_drvdata(pdev
, NULL
);
2341 unregister_netdev(ndev
);
2343 free_irq(ndev
->irq
, ndev
);
2345 #ifdef CONFIG_ARCH_PXA
2346 if (ndev
->dma
!= (unsigned char)-1)
2347 pxa_free_dma(ndev
->dma
);
2351 smc_release_datacs(pdev
,ndev
);
2352 smc_release_attrib(pdev
,ndev
);
2354 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "smc91x-regs");
2356 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2357 release_mem_region(res
->start
, SMC_IO_EXTENT
);
2364 static int smc_drv_suspend(struct device
*dev
)
2366 struct platform_device
*pdev
= to_platform_device(dev
);
2367 struct net_device
*ndev
= platform_get_drvdata(pdev
);
2370 if (netif_running(ndev
)) {
2371 netif_device_detach(ndev
);
2373 smc_phy_powerdown(ndev
);
2379 static int smc_drv_resume(struct device
*dev
)
2381 struct platform_device
*pdev
= to_platform_device(dev
);
2382 struct net_device
*ndev
= platform_get_drvdata(pdev
);
2385 struct smc_local
*lp
= netdev_priv(ndev
);
2386 smc_enable_device(pdev
);
2387 if (netif_running(ndev
)) {
2390 if (lp
->phy_type
!= 0)
2391 smc_phy_configure(&lp
->phy_configure
);
2392 netif_device_attach(ndev
);
2399 static const struct of_device_id smc91x_match
[] = {
2400 { .compatible
= "smsc,lan91c94", },
2401 { .compatible
= "smsc,lan91c111", },
2404 MODULE_DEVICE_TABLE(of
, smc91x_match
);
2407 static struct dev_pm_ops smc_drv_pm_ops
= {
2408 .suspend
= smc_drv_suspend
,
2409 .resume
= smc_drv_resume
,
2412 static struct platform_driver smc_driver
= {
2413 .probe
= smc_drv_probe
,
2414 .remove
= __devexit_p(smc_drv_remove
),
2417 .owner
= THIS_MODULE
,
2418 .pm
= &smc_drv_pm_ops
,
2420 .of_match_table
= smc91x_match
,
2425 static int __init
smc_init(void)
2427 return platform_driver_register(&smc_driver
);
2430 static void __exit
smc_cleanup(void)
2432 platform_driver_unregister(&smc_driver
);
2435 module_init(smc_init
);
2436 module_exit(smc_cleanup
);