Merge remote-tracking branch 'cleancache/linux-next'
[linux-2.6/next.git] / drivers / net / tulip / de2104x.c
blob46d5a1b15036495d35cdefbc17d1ad0954c569b8
1 /* de2104x.c: A Linux PCI Ethernet driver for Intel/Digital 21040/1 chips. */
2 /*
3 Copyright 2001,2003 Jeff Garzik <jgarzik@pobox.com>
5 Copyright 1994, 1995 Digital Equipment Corporation. [de4x5.c]
6 Written/copyright 1994-2001 by Donald Becker. [tulip.c]
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL.
15 See the file COPYING in this distribution for more information.
17 TODO, in rough priority order:
18 * Support forcing media type with a module parameter,
19 like dl2k.c/sundance.c
20 * Constants (module parms?) for Rx work limit
21 * Complete reset on PciErr
22 * Jumbo frames / dev->change_mtu
23 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
24 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
25 * Implement Tx software interrupt mitigation via
26 Tx descriptor bit
30 #define DRV_NAME "de2104x"
31 #define DRV_VERSION "0.7"
32 #define DRV_RELDATE "Mar 17, 2004"
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/init.h>
39 #include <linux/pci.h>
40 #include <linux/delay.h>
41 #include <linux/ethtool.h>
42 #include <linux/compiler.h>
43 #include <linux/rtnetlink.h>
44 #include <linux/crc32.h>
45 #include <linux/slab.h>
47 #include <asm/io.h>
48 #include <asm/irq.h>
49 #include <asm/uaccess.h>
50 #include <asm/unaligned.h>
52 /* These identify the driver base version and may not be removed. */
53 static char version[] =
54 KERN_INFO DRV_NAME " PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
56 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
57 MODULE_DESCRIPTION("Intel/Digital 21040/1 series PCI Ethernet driver");
58 MODULE_LICENSE("GPL");
59 MODULE_VERSION(DRV_VERSION);
61 static int debug = -1;
62 module_param (debug, int, 0);
63 MODULE_PARM_DESC (debug, "de2104x bitmapped message enable number");
65 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
66 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
67 defined(CONFIG_SPARC) || defined(__ia64__) || \
68 defined(__sh__) || defined(__mips__)
69 static int rx_copybreak = 1518;
70 #else
71 static int rx_copybreak = 100;
72 #endif
73 module_param (rx_copybreak, int, 0);
74 MODULE_PARM_DESC (rx_copybreak, "de2104x Breakpoint at which Rx packets are copied");
76 #define PFX DRV_NAME ": "
78 #define DE_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
79 NETIF_MSG_PROBE | \
80 NETIF_MSG_LINK | \
81 NETIF_MSG_IFDOWN | \
82 NETIF_MSG_IFUP | \
83 NETIF_MSG_RX_ERR | \
84 NETIF_MSG_TX_ERR)
86 /* Descriptor skip length in 32 bit longwords. */
87 #ifndef CONFIG_DE2104X_DSL
88 #define DSL 0
89 #else
90 #define DSL CONFIG_DE2104X_DSL
91 #endif
93 #define DE_RX_RING_SIZE 64
94 #define DE_TX_RING_SIZE 64
95 #define DE_RING_BYTES \
96 ((sizeof(struct de_desc) * DE_RX_RING_SIZE) + \
97 (sizeof(struct de_desc) * DE_TX_RING_SIZE))
98 #define NEXT_TX(N) (((N) + 1) & (DE_TX_RING_SIZE - 1))
99 #define NEXT_RX(N) (((N) + 1) & (DE_RX_RING_SIZE - 1))
100 #define TX_BUFFS_AVAIL(CP) \
101 (((CP)->tx_tail <= (CP)->tx_head) ? \
102 (CP)->tx_tail + (DE_TX_RING_SIZE - 1) - (CP)->tx_head : \
103 (CP)->tx_tail - (CP)->tx_head - 1)
105 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
106 #define RX_OFFSET 2
108 #define DE_SETUP_SKB ((struct sk_buff *) 1)
109 #define DE_DUMMY_SKB ((struct sk_buff *) 2)
110 #define DE_SETUP_FRAME_WORDS 96
111 #define DE_EEPROM_WORDS 256
112 #define DE_EEPROM_SIZE (DE_EEPROM_WORDS * sizeof(u16))
113 #define DE_MAX_MEDIA 5
115 #define DE_MEDIA_TP_AUTO 0
116 #define DE_MEDIA_BNC 1
117 #define DE_MEDIA_AUI 2
118 #define DE_MEDIA_TP 3
119 #define DE_MEDIA_TP_FD 4
120 #define DE_MEDIA_INVALID DE_MAX_MEDIA
121 #define DE_MEDIA_FIRST 0
122 #define DE_MEDIA_LAST (DE_MAX_MEDIA - 1)
123 #define DE_AUI_BNC (SUPPORTED_AUI | SUPPORTED_BNC)
125 #define DE_TIMER_LINK (60 * HZ)
126 #define DE_TIMER_NO_LINK (5 * HZ)
128 #define DE_NUM_REGS 16
129 #define DE_REGS_SIZE (DE_NUM_REGS * sizeof(u32))
130 #define DE_REGS_VER 1
132 /* Time in jiffies before concluding the transmitter is hung. */
133 #define TX_TIMEOUT (6*HZ)
135 /* This is a mysterious value that can be written to CSR11 in the 21040 (only)
136 to support a pre-NWay full-duplex signaling mechanism using short frames.
137 No one knows what it should be, but if left at its default value some
138 10base2(!) packets trigger a full-duplex-request interrupt. */
139 #define FULL_DUPLEX_MAGIC 0x6969
141 enum {
142 /* NIC registers */
143 BusMode = 0x00,
144 TxPoll = 0x08,
145 RxPoll = 0x10,
146 RxRingAddr = 0x18,
147 TxRingAddr = 0x20,
148 MacStatus = 0x28,
149 MacMode = 0x30,
150 IntrMask = 0x38,
151 RxMissed = 0x40,
152 ROMCmd = 0x48,
153 CSR11 = 0x58,
154 SIAStatus = 0x60,
155 CSR13 = 0x68,
156 CSR14 = 0x70,
157 CSR15 = 0x78,
158 PCIPM = 0x40,
160 /* BusMode bits */
161 CmdReset = (1 << 0),
162 CacheAlign16 = 0x00008000,
163 BurstLen4 = 0x00000400,
164 DescSkipLen = (DSL << 2),
166 /* Rx/TxPoll bits */
167 NormalTxPoll = (1 << 0),
168 NormalRxPoll = (1 << 0),
170 /* Tx/Rx descriptor status bits */
171 DescOwn = (1 << 31),
172 RxError = (1 << 15),
173 RxErrLong = (1 << 7),
174 RxErrCRC = (1 << 1),
175 RxErrFIFO = (1 << 0),
176 RxErrRunt = (1 << 11),
177 RxErrFrame = (1 << 14),
178 RingEnd = (1 << 25),
179 FirstFrag = (1 << 29),
180 LastFrag = (1 << 30),
181 TxError = (1 << 15),
182 TxFIFOUnder = (1 << 1),
183 TxLinkFail = (1 << 2) | (1 << 10) | (1 << 11),
184 TxMaxCol = (1 << 8),
185 TxOWC = (1 << 9),
186 TxJabber = (1 << 14),
187 SetupFrame = (1 << 27),
188 TxSwInt = (1 << 31),
190 /* MacStatus bits */
191 IntrOK = (1 << 16),
192 IntrErr = (1 << 15),
193 RxIntr = (1 << 6),
194 RxEmpty = (1 << 7),
195 TxIntr = (1 << 0),
196 TxEmpty = (1 << 2),
197 PciErr = (1 << 13),
198 TxState = (1 << 22) | (1 << 21) | (1 << 20),
199 RxState = (1 << 19) | (1 << 18) | (1 << 17),
200 LinkFail = (1 << 12),
201 LinkPass = (1 << 4),
202 RxStopped = (1 << 8),
203 TxStopped = (1 << 1),
205 /* MacMode bits */
206 TxEnable = (1 << 13),
207 RxEnable = (1 << 1),
208 RxTx = TxEnable | RxEnable,
209 FullDuplex = (1 << 9),
210 AcceptAllMulticast = (1 << 7),
211 AcceptAllPhys = (1 << 6),
212 BOCnt = (1 << 5),
213 MacModeClear = (1<<12) | (1<<11) | (1<<10) | (1<<8) | (1<<3) |
214 RxTx | BOCnt | AcceptAllPhys | AcceptAllMulticast,
216 /* ROMCmd bits */
217 EE_SHIFT_CLK = 0x02, /* EEPROM shift clock. */
218 EE_CS = 0x01, /* EEPROM chip select. */
219 EE_DATA_WRITE = 0x04, /* Data from the Tulip to EEPROM. */
220 EE_WRITE_0 = 0x01,
221 EE_WRITE_1 = 0x05,
222 EE_DATA_READ = 0x08, /* Data from the EEPROM chip. */
223 EE_ENB = (0x4800 | EE_CS),
225 /* The EEPROM commands include the alway-set leading bit. */
226 EE_READ_CMD = 6,
228 /* RxMissed bits */
229 RxMissedOver = (1 << 16),
230 RxMissedMask = 0xffff,
232 /* SROM-related bits */
233 SROMC0InfoLeaf = 27,
234 MediaBlockMask = 0x3f,
235 MediaCustomCSRs = (1 << 6),
237 /* PCIPM bits */
238 PM_Sleep = (1 << 31),
239 PM_Snooze = (1 << 30),
240 PM_Mask = PM_Sleep | PM_Snooze,
242 /* SIAStatus bits */
243 NWayState = (1 << 14) | (1 << 13) | (1 << 12),
244 NWayRestart = (1 << 12),
245 NonselPortActive = (1 << 9),
246 SelPortActive = (1 << 8),
247 LinkFailStatus = (1 << 2),
248 NetCxnErr = (1 << 1),
251 static const u32 de_intr_mask =
252 IntrOK | IntrErr | RxIntr | RxEmpty | TxIntr | TxEmpty |
253 LinkPass | LinkFail | PciErr;
256 * Set the programmable burst length to 4 longwords for all:
257 * DMA errors result without these values. Cache align 16 long.
259 static const u32 de_bus_mode = CacheAlign16 | BurstLen4 | DescSkipLen;
261 struct de_srom_media_block {
262 u8 opts;
263 u16 csr13;
264 u16 csr14;
265 u16 csr15;
266 } __packed;
268 struct de_srom_info_leaf {
269 u16 default_media;
270 u8 n_blocks;
271 u8 unused;
272 } __packed;
274 struct de_desc {
275 __le32 opts1;
276 __le32 opts2;
277 __le32 addr1;
278 __le32 addr2;
279 #if DSL
280 __le32 skip[DSL];
281 #endif
284 struct media_info {
285 u16 type; /* DE_MEDIA_xxx */
286 u16 csr13;
287 u16 csr14;
288 u16 csr15;
291 struct ring_info {
292 struct sk_buff *skb;
293 dma_addr_t mapping;
296 struct de_private {
297 unsigned tx_head;
298 unsigned tx_tail;
299 unsigned rx_tail;
301 void __iomem *regs;
302 struct net_device *dev;
303 spinlock_t lock;
305 struct de_desc *rx_ring;
306 struct de_desc *tx_ring;
307 struct ring_info tx_skb[DE_TX_RING_SIZE];
308 struct ring_info rx_skb[DE_RX_RING_SIZE];
309 unsigned rx_buf_sz;
310 dma_addr_t ring_dma;
312 u32 msg_enable;
314 struct net_device_stats net_stats;
316 struct pci_dev *pdev;
318 u16 setup_frame[DE_SETUP_FRAME_WORDS];
320 u32 media_type;
321 u32 media_supported;
322 u32 media_advertise;
323 struct media_info media[DE_MAX_MEDIA];
324 struct timer_list media_timer;
326 u8 *ee_data;
327 unsigned board_idx;
328 unsigned de21040 : 1;
329 unsigned media_lock : 1;
333 static void de_set_rx_mode (struct net_device *dev);
334 static void de_tx (struct de_private *de);
335 static void de_clean_rings (struct de_private *de);
336 static void de_media_interrupt (struct de_private *de, u32 status);
337 static void de21040_media_timer (unsigned long data);
338 static void de21041_media_timer (unsigned long data);
339 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media);
342 static DEFINE_PCI_DEVICE_TABLE(de_pci_tbl) = {
343 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
344 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
345 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
346 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
347 { },
349 MODULE_DEVICE_TABLE(pci, de_pci_tbl);
351 static const char * const media_name[DE_MAX_MEDIA] = {
352 "10baseT auto",
353 "BNC",
354 "AUI",
355 "10baseT-HD",
356 "10baseT-FD"
359 /* 21040 transceiver register settings:
360 * TP AUTO(unused), BNC(unused), AUI, TP, TP FD*/
361 static u16 t21040_csr13[] = { 0, 0, 0x8F09, 0x8F01, 0x8F01, };
362 static u16 t21040_csr14[] = { 0, 0, 0x0705, 0xFFFF, 0xFFFD, };
363 static u16 t21040_csr15[] = { 0, 0, 0x0006, 0x0000, 0x0000, };
365 /* 21041 transceiver register settings: TP AUTO, BNC, AUI, TP, TP FD*/
366 static u16 t21041_csr13[] = { 0xEF01, 0xEF09, 0xEF09, 0xEF01, 0xEF09, };
367 static u16 t21041_csr14[] = { 0xFFFF, 0xF7FD, 0xF7FD, 0x7F3F, 0x7F3D, };
368 /* If on-chip autonegotiation is broken, use half-duplex (FF3F) instead */
369 static u16 t21041_csr14_brk[] = { 0xFF3F, 0xF7FD, 0xF7FD, 0x7F3F, 0x7F3D, };
370 static u16 t21041_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, };
373 #define dr32(reg) ioread32(de->regs + (reg))
374 #define dw32(reg, val) iowrite32((val), de->regs + (reg))
377 static void de_rx_err_acct (struct de_private *de, unsigned rx_tail,
378 u32 status, u32 len)
380 if (netif_msg_rx_err (de))
381 printk (KERN_DEBUG
382 "%s: rx err, slot %d status 0x%x len %d\n",
383 de->dev->name, rx_tail, status, len);
385 if ((status & 0x38000300) != 0x0300) {
386 /* Ingore earlier buffers. */
387 if ((status & 0xffff) != 0x7fff) {
388 if (netif_msg_rx_err(de))
389 dev_warn(&de->dev->dev,
390 "Oversized Ethernet frame spanned multiple buffers, status %08x!\n",
391 status);
392 de->net_stats.rx_length_errors++;
394 } else if (status & RxError) {
395 /* There was a fatal error. */
396 de->net_stats.rx_errors++; /* end of a packet.*/
397 if (status & 0x0890) de->net_stats.rx_length_errors++;
398 if (status & RxErrCRC) de->net_stats.rx_crc_errors++;
399 if (status & RxErrFIFO) de->net_stats.rx_fifo_errors++;
403 static void de_rx (struct de_private *de)
405 unsigned rx_tail = de->rx_tail;
406 unsigned rx_work = DE_RX_RING_SIZE;
407 unsigned drop = 0;
408 int rc;
410 while (--rx_work) {
411 u32 status, len;
412 dma_addr_t mapping;
413 struct sk_buff *skb, *copy_skb;
414 unsigned copying_skb, buflen;
416 skb = de->rx_skb[rx_tail].skb;
417 BUG_ON(!skb);
418 rmb();
419 status = le32_to_cpu(de->rx_ring[rx_tail].opts1);
420 if (status & DescOwn)
421 break;
423 len = ((status >> 16) & 0x7ff) - 4;
424 mapping = de->rx_skb[rx_tail].mapping;
426 if (unlikely(drop)) {
427 de->net_stats.rx_dropped++;
428 goto rx_next;
431 if (unlikely((status & 0x38008300) != 0x0300)) {
432 de_rx_err_acct(de, rx_tail, status, len);
433 goto rx_next;
436 copying_skb = (len <= rx_copybreak);
438 if (unlikely(netif_msg_rx_status(de)))
439 printk(KERN_DEBUG "%s: rx slot %d status 0x%x len %d copying? %d\n",
440 de->dev->name, rx_tail, status, len,
441 copying_skb);
443 buflen = copying_skb ? (len + RX_OFFSET) : de->rx_buf_sz;
444 copy_skb = dev_alloc_skb (buflen);
445 if (unlikely(!copy_skb)) {
446 de->net_stats.rx_dropped++;
447 drop = 1;
448 rx_work = 100;
449 goto rx_next;
452 if (!copying_skb) {
453 pci_unmap_single(de->pdev, mapping,
454 buflen, PCI_DMA_FROMDEVICE);
455 skb_put(skb, len);
457 mapping =
458 de->rx_skb[rx_tail].mapping =
459 pci_map_single(de->pdev, copy_skb->data,
460 buflen, PCI_DMA_FROMDEVICE);
461 de->rx_skb[rx_tail].skb = copy_skb;
462 } else {
463 pci_dma_sync_single_for_cpu(de->pdev, mapping, len, PCI_DMA_FROMDEVICE);
464 skb_reserve(copy_skb, RX_OFFSET);
465 skb_copy_from_linear_data(skb, skb_put(copy_skb, len),
466 len);
467 pci_dma_sync_single_for_device(de->pdev, mapping, len, PCI_DMA_FROMDEVICE);
469 /* We'll reuse the original ring buffer. */
470 skb = copy_skb;
473 skb->protocol = eth_type_trans (skb, de->dev);
475 de->net_stats.rx_packets++;
476 de->net_stats.rx_bytes += skb->len;
477 rc = netif_rx (skb);
478 if (rc == NET_RX_DROP)
479 drop = 1;
481 rx_next:
482 if (rx_tail == (DE_RX_RING_SIZE - 1))
483 de->rx_ring[rx_tail].opts2 =
484 cpu_to_le32(RingEnd | de->rx_buf_sz);
485 else
486 de->rx_ring[rx_tail].opts2 = cpu_to_le32(de->rx_buf_sz);
487 de->rx_ring[rx_tail].addr1 = cpu_to_le32(mapping);
488 wmb();
489 de->rx_ring[rx_tail].opts1 = cpu_to_le32(DescOwn);
490 rx_tail = NEXT_RX(rx_tail);
493 if (!rx_work)
494 dev_warn(&de->dev->dev, "rx work limit reached\n");
496 de->rx_tail = rx_tail;
499 static irqreturn_t de_interrupt (int irq, void *dev_instance)
501 struct net_device *dev = dev_instance;
502 struct de_private *de = netdev_priv(dev);
503 u32 status;
505 status = dr32(MacStatus);
506 if ((!(status & (IntrOK|IntrErr))) || (status == 0xFFFF))
507 return IRQ_NONE;
509 if (netif_msg_intr(de))
510 printk(KERN_DEBUG "%s: intr, status %08x mode %08x desc %u/%u/%u\n",
511 dev->name, status, dr32(MacMode),
512 de->rx_tail, de->tx_head, de->tx_tail);
514 dw32(MacStatus, status);
516 if (status & (RxIntr | RxEmpty)) {
517 de_rx(de);
518 if (status & RxEmpty)
519 dw32(RxPoll, NormalRxPoll);
522 spin_lock(&de->lock);
524 if (status & (TxIntr | TxEmpty))
525 de_tx(de);
527 if (status & (LinkPass | LinkFail))
528 de_media_interrupt(de, status);
530 spin_unlock(&de->lock);
532 if (status & PciErr) {
533 u16 pci_status;
535 pci_read_config_word(de->pdev, PCI_STATUS, &pci_status);
536 pci_write_config_word(de->pdev, PCI_STATUS, pci_status);
537 dev_err(&de->dev->dev,
538 "PCI bus error, status=%08x, PCI status=%04x\n",
539 status, pci_status);
542 return IRQ_HANDLED;
545 static void de_tx (struct de_private *de)
547 unsigned tx_head = de->tx_head;
548 unsigned tx_tail = de->tx_tail;
550 while (tx_tail != tx_head) {
551 struct sk_buff *skb;
552 u32 status;
554 rmb();
555 status = le32_to_cpu(de->tx_ring[tx_tail].opts1);
556 if (status & DescOwn)
557 break;
559 skb = de->tx_skb[tx_tail].skb;
560 BUG_ON(!skb);
561 if (unlikely(skb == DE_DUMMY_SKB))
562 goto next;
564 if (unlikely(skb == DE_SETUP_SKB)) {
565 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping,
566 sizeof(de->setup_frame), PCI_DMA_TODEVICE);
567 goto next;
570 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping,
571 skb->len, PCI_DMA_TODEVICE);
573 if (status & LastFrag) {
574 if (status & TxError) {
575 if (netif_msg_tx_err(de))
576 printk(KERN_DEBUG "%s: tx err, status 0x%x\n",
577 de->dev->name, status);
578 de->net_stats.tx_errors++;
579 if (status & TxOWC)
580 de->net_stats.tx_window_errors++;
581 if (status & TxMaxCol)
582 de->net_stats.tx_aborted_errors++;
583 if (status & TxLinkFail)
584 de->net_stats.tx_carrier_errors++;
585 if (status & TxFIFOUnder)
586 de->net_stats.tx_fifo_errors++;
587 } else {
588 de->net_stats.tx_packets++;
589 de->net_stats.tx_bytes += skb->len;
590 if (netif_msg_tx_done(de))
591 printk(KERN_DEBUG "%s: tx done, slot %d\n",
592 de->dev->name, tx_tail);
594 dev_kfree_skb_irq(skb);
597 next:
598 de->tx_skb[tx_tail].skb = NULL;
600 tx_tail = NEXT_TX(tx_tail);
603 de->tx_tail = tx_tail;
605 if (netif_queue_stopped(de->dev) && (TX_BUFFS_AVAIL(de) > (DE_TX_RING_SIZE / 4)))
606 netif_wake_queue(de->dev);
609 static netdev_tx_t de_start_xmit (struct sk_buff *skb,
610 struct net_device *dev)
612 struct de_private *de = netdev_priv(dev);
613 unsigned int entry, tx_free;
614 u32 mapping, len, flags = FirstFrag | LastFrag;
615 struct de_desc *txd;
617 spin_lock_irq(&de->lock);
619 tx_free = TX_BUFFS_AVAIL(de);
620 if (tx_free == 0) {
621 netif_stop_queue(dev);
622 spin_unlock_irq(&de->lock);
623 return NETDEV_TX_BUSY;
625 tx_free--;
627 entry = de->tx_head;
629 txd = &de->tx_ring[entry];
631 len = skb->len;
632 mapping = pci_map_single(de->pdev, skb->data, len, PCI_DMA_TODEVICE);
633 if (entry == (DE_TX_RING_SIZE - 1))
634 flags |= RingEnd;
635 if (!tx_free || (tx_free == (DE_TX_RING_SIZE / 2)))
636 flags |= TxSwInt;
637 flags |= len;
638 txd->opts2 = cpu_to_le32(flags);
639 txd->addr1 = cpu_to_le32(mapping);
641 de->tx_skb[entry].skb = skb;
642 de->tx_skb[entry].mapping = mapping;
643 wmb();
645 txd->opts1 = cpu_to_le32(DescOwn);
646 wmb();
648 de->tx_head = NEXT_TX(entry);
649 if (netif_msg_tx_queued(de))
650 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
651 dev->name, entry, skb->len);
653 if (tx_free == 0)
654 netif_stop_queue(dev);
656 spin_unlock_irq(&de->lock);
658 /* Trigger an immediate transmit demand. */
659 dw32(TxPoll, NormalTxPoll);
661 return NETDEV_TX_OK;
664 /* Set or clear the multicast filter for this adaptor.
665 Note that we only use exclusion around actually queueing the
666 new frame, not around filling de->setup_frame. This is non-deterministic
667 when re-entered but still correct. */
669 #undef set_bit_le
670 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
672 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
674 struct de_private *de = netdev_priv(dev);
675 u16 hash_table[32];
676 struct netdev_hw_addr *ha;
677 int i;
678 u16 *eaddrs;
680 memset(hash_table, 0, sizeof(hash_table));
681 set_bit_le(255, hash_table); /* Broadcast entry */
682 /* This should work on big-endian machines as well. */
683 netdev_for_each_mc_addr(ha, dev) {
684 int index = ether_crc_le(ETH_ALEN, ha->addr) & 0x1ff;
686 set_bit_le(index, hash_table);
689 for (i = 0; i < 32; i++) {
690 *setup_frm++ = hash_table[i];
691 *setup_frm++ = hash_table[i];
693 setup_frm = &de->setup_frame[13*6];
695 /* Fill the final entry with our physical address. */
696 eaddrs = (u16 *)dev->dev_addr;
697 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
698 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
699 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
702 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
704 struct de_private *de = netdev_priv(dev);
705 struct netdev_hw_addr *ha;
706 u16 *eaddrs;
708 /* We have <= 14 addresses so we can use the wonderful
709 16 address perfect filtering of the Tulip. */
710 netdev_for_each_mc_addr(ha, dev) {
711 eaddrs = (u16 *) ha->addr;
712 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
713 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
714 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
716 /* Fill the unused entries with the broadcast address. */
717 memset(setup_frm, 0xff, (15 - netdev_mc_count(dev)) * 12);
718 setup_frm = &de->setup_frame[15*6];
720 /* Fill the final entry with our physical address. */
721 eaddrs = (u16 *)dev->dev_addr;
722 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
723 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
724 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
728 static void __de_set_rx_mode (struct net_device *dev)
730 struct de_private *de = netdev_priv(dev);
731 u32 macmode;
732 unsigned int entry;
733 u32 mapping;
734 struct de_desc *txd;
735 struct de_desc *dummy_txd = NULL;
737 macmode = dr32(MacMode) & ~(AcceptAllMulticast | AcceptAllPhys);
739 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
740 macmode |= AcceptAllMulticast | AcceptAllPhys;
741 goto out;
744 if ((netdev_mc_count(dev) > 1000) || (dev->flags & IFF_ALLMULTI)) {
745 /* Too many to filter well -- accept all multicasts. */
746 macmode |= AcceptAllMulticast;
747 goto out;
750 /* Note that only the low-address shortword of setup_frame is valid!
751 The values are doubled for big-endian architectures. */
752 if (netdev_mc_count(dev) > 14) /* Must use a multicast hash table. */
753 build_setup_frame_hash (de->setup_frame, dev);
754 else
755 build_setup_frame_perfect (de->setup_frame, dev);
758 * Now add this frame to the Tx list.
761 entry = de->tx_head;
763 /* Avoid a chip errata by prefixing a dummy entry. */
764 if (entry != 0) {
765 de->tx_skb[entry].skb = DE_DUMMY_SKB;
767 dummy_txd = &de->tx_ring[entry];
768 dummy_txd->opts2 = (entry == (DE_TX_RING_SIZE - 1)) ?
769 cpu_to_le32(RingEnd) : 0;
770 dummy_txd->addr1 = 0;
772 /* Must set DescOwned later to avoid race with chip */
774 entry = NEXT_TX(entry);
777 de->tx_skb[entry].skb = DE_SETUP_SKB;
778 de->tx_skb[entry].mapping = mapping =
779 pci_map_single (de->pdev, de->setup_frame,
780 sizeof (de->setup_frame), PCI_DMA_TODEVICE);
782 /* Put the setup frame on the Tx list. */
783 txd = &de->tx_ring[entry];
784 if (entry == (DE_TX_RING_SIZE - 1))
785 txd->opts2 = cpu_to_le32(SetupFrame | RingEnd | sizeof (de->setup_frame));
786 else
787 txd->opts2 = cpu_to_le32(SetupFrame | sizeof (de->setup_frame));
788 txd->addr1 = cpu_to_le32(mapping);
789 wmb();
791 txd->opts1 = cpu_to_le32(DescOwn);
792 wmb();
794 if (dummy_txd) {
795 dummy_txd->opts1 = cpu_to_le32(DescOwn);
796 wmb();
799 de->tx_head = NEXT_TX(entry);
801 if (TX_BUFFS_AVAIL(de) == 0)
802 netif_stop_queue(dev);
804 /* Trigger an immediate transmit demand. */
805 dw32(TxPoll, NormalTxPoll);
807 out:
808 if (macmode != dr32(MacMode))
809 dw32(MacMode, macmode);
812 static void de_set_rx_mode (struct net_device *dev)
814 unsigned long flags;
815 struct de_private *de = netdev_priv(dev);
817 spin_lock_irqsave (&de->lock, flags);
818 __de_set_rx_mode(dev);
819 spin_unlock_irqrestore (&de->lock, flags);
822 static inline void de_rx_missed(struct de_private *de, u32 rx_missed)
824 if (unlikely(rx_missed & RxMissedOver))
825 de->net_stats.rx_missed_errors += RxMissedMask;
826 else
827 de->net_stats.rx_missed_errors += (rx_missed & RxMissedMask);
830 static void __de_get_stats(struct de_private *de)
832 u32 tmp = dr32(RxMissed); /* self-clearing */
834 de_rx_missed(de, tmp);
837 static struct net_device_stats *de_get_stats(struct net_device *dev)
839 struct de_private *de = netdev_priv(dev);
841 /* The chip only need report frame silently dropped. */
842 spin_lock_irq(&de->lock);
843 if (netif_running(dev) && netif_device_present(dev))
844 __de_get_stats(de);
845 spin_unlock_irq(&de->lock);
847 return &de->net_stats;
850 static inline int de_is_running (struct de_private *de)
852 return (dr32(MacStatus) & (RxState | TxState)) ? 1 : 0;
855 static void de_stop_rxtx (struct de_private *de)
857 u32 macmode;
858 unsigned int i = 1300/100;
860 macmode = dr32(MacMode);
861 if (macmode & RxTx) {
862 dw32(MacMode, macmode & ~RxTx);
863 dr32(MacMode);
866 /* wait until in-flight frame completes.
867 * Max time @ 10BT: 1500*8b/10Mbps == 1200us (+ 100us margin)
868 * Typically expect this loop to end in < 50 us on 100BT.
870 while (--i) {
871 if (!de_is_running(de))
872 return;
873 udelay(100);
876 dev_warn(&de->dev->dev, "timeout expired stopping DMA\n");
879 static inline void de_start_rxtx (struct de_private *de)
881 u32 macmode;
883 macmode = dr32(MacMode);
884 if ((macmode & RxTx) != RxTx) {
885 dw32(MacMode, macmode | RxTx);
886 dr32(MacMode);
890 static void de_stop_hw (struct de_private *de)
893 udelay(5);
894 dw32(IntrMask, 0);
896 de_stop_rxtx(de);
898 dw32(MacStatus, dr32(MacStatus));
900 udelay(10);
902 de->rx_tail = 0;
903 de->tx_head = de->tx_tail = 0;
906 static void de_link_up(struct de_private *de)
908 if (!netif_carrier_ok(de->dev)) {
909 netif_carrier_on(de->dev);
910 if (netif_msg_link(de))
911 dev_info(&de->dev->dev, "link up, media %s\n",
912 media_name[de->media_type]);
916 static void de_link_down(struct de_private *de)
918 if (netif_carrier_ok(de->dev)) {
919 netif_carrier_off(de->dev);
920 if (netif_msg_link(de))
921 dev_info(&de->dev->dev, "link down\n");
925 static void de_set_media (struct de_private *de)
927 unsigned media = de->media_type;
928 u32 macmode = dr32(MacMode);
930 if (de_is_running(de))
931 dev_warn(&de->dev->dev,
932 "chip is running while changing media!\n");
934 if (de->de21040)
935 dw32(CSR11, FULL_DUPLEX_MAGIC);
936 dw32(CSR13, 0); /* Reset phy */
937 dw32(CSR14, de->media[media].csr14);
938 dw32(CSR15, de->media[media].csr15);
939 dw32(CSR13, de->media[media].csr13);
941 /* must delay 10ms before writing to other registers,
942 * especially CSR6
944 mdelay(10);
946 if (media == DE_MEDIA_TP_FD)
947 macmode |= FullDuplex;
948 else
949 macmode &= ~FullDuplex;
951 if (netif_msg_link(de))
952 dev_info(&de->dev->dev, "set link %s\n", media_name[media]);
953 if (netif_msg_hw(de)) {
954 dev_info(&de->dev->dev, "mode 0x%x, sia 0x%x,0x%x,0x%x,0x%x\n",
955 dr32(MacMode), dr32(SIAStatus),
956 dr32(CSR13), dr32(CSR14), dr32(CSR15));
958 dev_info(&de->dev->dev,
959 "set mode 0x%x, set sia 0x%x,0x%x,0x%x\n",
960 macmode, de->media[media].csr13,
961 de->media[media].csr14, de->media[media].csr15);
963 if (macmode != dr32(MacMode))
964 dw32(MacMode, macmode);
967 static void de_next_media (struct de_private *de, const u32 *media,
968 unsigned int n_media)
970 unsigned int i;
972 for (i = 0; i < n_media; i++) {
973 if (de_ok_to_advertise(de, media[i])) {
974 de->media_type = media[i];
975 return;
980 static void de21040_media_timer (unsigned long data)
982 struct de_private *de = (struct de_private *) data;
983 struct net_device *dev = de->dev;
984 u32 status = dr32(SIAStatus);
985 unsigned int carrier;
986 unsigned long flags;
988 carrier = (status & NetCxnErr) ? 0 : 1;
990 if (carrier) {
991 if (de->media_type != DE_MEDIA_AUI && (status & LinkFailStatus))
992 goto no_link_yet;
994 de->media_timer.expires = jiffies + DE_TIMER_LINK;
995 add_timer(&de->media_timer);
996 if (!netif_carrier_ok(dev))
997 de_link_up(de);
998 else
999 if (netif_msg_timer(de))
1000 dev_info(&dev->dev, "%s link ok, status %x\n",
1001 media_name[de->media_type], status);
1002 return;
1005 de_link_down(de);
1007 if (de->media_lock)
1008 return;
1010 if (de->media_type == DE_MEDIA_AUI) {
1011 static const u32 next_state = DE_MEDIA_TP;
1012 de_next_media(de, &next_state, 1);
1013 } else {
1014 static const u32 next_state = DE_MEDIA_AUI;
1015 de_next_media(de, &next_state, 1);
1018 spin_lock_irqsave(&de->lock, flags);
1019 de_stop_rxtx(de);
1020 spin_unlock_irqrestore(&de->lock, flags);
1021 de_set_media(de);
1022 de_start_rxtx(de);
1024 no_link_yet:
1025 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1026 add_timer(&de->media_timer);
1028 if (netif_msg_timer(de))
1029 dev_info(&dev->dev, "no link, trying media %s, status %x\n",
1030 media_name[de->media_type], status);
1033 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media)
1035 switch (new_media) {
1036 case DE_MEDIA_TP_AUTO:
1037 if (!(de->media_advertise & ADVERTISED_Autoneg))
1038 return 0;
1039 if (!(de->media_advertise & (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full)))
1040 return 0;
1041 break;
1042 case DE_MEDIA_BNC:
1043 if (!(de->media_advertise & ADVERTISED_BNC))
1044 return 0;
1045 break;
1046 case DE_MEDIA_AUI:
1047 if (!(de->media_advertise & ADVERTISED_AUI))
1048 return 0;
1049 break;
1050 case DE_MEDIA_TP:
1051 if (!(de->media_advertise & ADVERTISED_10baseT_Half))
1052 return 0;
1053 break;
1054 case DE_MEDIA_TP_FD:
1055 if (!(de->media_advertise & ADVERTISED_10baseT_Full))
1056 return 0;
1057 break;
1060 return 1;
1063 static void de21041_media_timer (unsigned long data)
1065 struct de_private *de = (struct de_private *) data;
1066 struct net_device *dev = de->dev;
1067 u32 status = dr32(SIAStatus);
1068 unsigned int carrier;
1069 unsigned long flags;
1071 /* clear port active bits */
1072 dw32(SIAStatus, NonselPortActive | SelPortActive);
1074 carrier = (status & NetCxnErr) ? 0 : 1;
1076 if (carrier) {
1077 if ((de->media_type == DE_MEDIA_TP_AUTO ||
1078 de->media_type == DE_MEDIA_TP ||
1079 de->media_type == DE_MEDIA_TP_FD) &&
1080 (status & LinkFailStatus))
1081 goto no_link_yet;
1083 de->media_timer.expires = jiffies + DE_TIMER_LINK;
1084 add_timer(&de->media_timer);
1085 if (!netif_carrier_ok(dev))
1086 de_link_up(de);
1087 else
1088 if (netif_msg_timer(de))
1089 dev_info(&dev->dev,
1090 "%s link ok, mode %x status %x\n",
1091 media_name[de->media_type],
1092 dr32(MacMode), status);
1093 return;
1096 de_link_down(de);
1098 /* if media type locked, don't switch media */
1099 if (de->media_lock)
1100 goto set_media;
1102 /* if activity detected, use that as hint for new media type */
1103 if (status & NonselPortActive) {
1104 unsigned int have_media = 1;
1106 /* if AUI/BNC selected, then activity is on TP port */
1107 if (de->media_type == DE_MEDIA_AUI ||
1108 de->media_type == DE_MEDIA_BNC) {
1109 if (de_ok_to_advertise(de, DE_MEDIA_TP_AUTO))
1110 de->media_type = DE_MEDIA_TP_AUTO;
1111 else
1112 have_media = 0;
1115 /* TP selected. If there is only TP and BNC, then it's BNC */
1116 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_BNC) &&
1117 de_ok_to_advertise(de, DE_MEDIA_BNC))
1118 de->media_type = DE_MEDIA_BNC;
1120 /* TP selected. If there is only TP and AUI, then it's AUI */
1121 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_AUI) &&
1122 de_ok_to_advertise(de, DE_MEDIA_AUI))
1123 de->media_type = DE_MEDIA_AUI;
1125 /* otherwise, ignore the hint */
1126 else
1127 have_media = 0;
1129 if (have_media)
1130 goto set_media;
1134 * Absent or ambiguous activity hint, move to next advertised
1135 * media state. If de->media_type is left unchanged, this
1136 * simply resets the PHY and reloads the current media settings.
1138 if (de->media_type == DE_MEDIA_AUI) {
1139 static const u32 next_states[] = {
1140 DE_MEDIA_BNC, DE_MEDIA_TP_AUTO
1142 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1143 } else if (de->media_type == DE_MEDIA_BNC) {
1144 static const u32 next_states[] = {
1145 DE_MEDIA_TP_AUTO, DE_MEDIA_AUI
1147 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1148 } else {
1149 static const u32 next_states[] = {
1150 DE_MEDIA_AUI, DE_MEDIA_BNC, DE_MEDIA_TP_AUTO
1152 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1155 set_media:
1156 spin_lock_irqsave(&de->lock, flags);
1157 de_stop_rxtx(de);
1158 spin_unlock_irqrestore(&de->lock, flags);
1159 de_set_media(de);
1160 de_start_rxtx(de);
1162 no_link_yet:
1163 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1164 add_timer(&de->media_timer);
1166 if (netif_msg_timer(de))
1167 dev_info(&dev->dev, "no link, trying media %s, status %x\n",
1168 media_name[de->media_type], status);
1171 static void de_media_interrupt (struct de_private *de, u32 status)
1173 if (status & LinkPass) {
1174 /* Ignore if current media is AUI or BNC and we can't use TP */
1175 if ((de->media_type == DE_MEDIA_AUI ||
1176 de->media_type == DE_MEDIA_BNC) &&
1177 (de->media_lock ||
1178 !de_ok_to_advertise(de, DE_MEDIA_TP_AUTO)))
1179 return;
1180 /* If current media is not TP, change it to TP */
1181 if ((de->media_type == DE_MEDIA_AUI ||
1182 de->media_type == DE_MEDIA_BNC)) {
1183 de->media_type = DE_MEDIA_TP_AUTO;
1184 de_stop_rxtx(de);
1185 de_set_media(de);
1186 de_start_rxtx(de);
1188 de_link_up(de);
1189 mod_timer(&de->media_timer, jiffies + DE_TIMER_LINK);
1190 return;
1193 BUG_ON(!(status & LinkFail));
1194 /* Mark the link as down only if current media is TP */
1195 if (netif_carrier_ok(de->dev) && de->media_type != DE_MEDIA_AUI &&
1196 de->media_type != DE_MEDIA_BNC) {
1197 de_link_down(de);
1198 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1202 static int de_reset_mac (struct de_private *de)
1204 u32 status, tmp;
1207 * Reset MAC. de4x5.c and tulip.c examined for "advice"
1208 * in this area.
1211 if (dr32(BusMode) == 0xffffffff)
1212 return -EBUSY;
1214 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
1215 dw32 (BusMode, CmdReset);
1216 mdelay (1);
1218 dw32 (BusMode, de_bus_mode);
1219 mdelay (1);
1221 for (tmp = 0; tmp < 5; tmp++) {
1222 dr32 (BusMode);
1223 mdelay (1);
1226 mdelay (1);
1228 status = dr32(MacStatus);
1229 if (status & (RxState | TxState))
1230 return -EBUSY;
1231 if (status == 0xffffffff)
1232 return -ENODEV;
1233 return 0;
1236 static void de_adapter_wake (struct de_private *de)
1238 u32 pmctl;
1240 if (de->de21040)
1241 return;
1243 pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1244 if (pmctl & PM_Mask) {
1245 pmctl &= ~PM_Mask;
1246 pci_write_config_dword(de->pdev, PCIPM, pmctl);
1248 /* de4x5.c delays, so we do too */
1249 msleep(10);
1253 static void de_adapter_sleep (struct de_private *de)
1255 u32 pmctl;
1257 if (de->de21040)
1258 return;
1260 dw32(CSR13, 0); /* Reset phy */
1261 pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1262 pmctl |= PM_Sleep;
1263 pci_write_config_dword(de->pdev, PCIPM, pmctl);
1266 static int de_init_hw (struct de_private *de)
1268 struct net_device *dev = de->dev;
1269 u32 macmode;
1270 int rc;
1272 de_adapter_wake(de);
1274 macmode = dr32(MacMode) & ~MacModeClear;
1276 rc = de_reset_mac(de);
1277 if (rc)
1278 return rc;
1280 de_set_media(de); /* reset phy */
1282 dw32(RxRingAddr, de->ring_dma);
1283 dw32(TxRingAddr, de->ring_dma + (sizeof(struct de_desc) * DE_RX_RING_SIZE));
1285 dw32(MacMode, RxTx | macmode);
1287 dr32(RxMissed); /* self-clearing */
1289 dw32(IntrMask, de_intr_mask);
1291 de_set_rx_mode(dev);
1293 return 0;
1296 static int de_refill_rx (struct de_private *de)
1298 unsigned i;
1300 for (i = 0; i < DE_RX_RING_SIZE; i++) {
1301 struct sk_buff *skb;
1303 skb = dev_alloc_skb(de->rx_buf_sz);
1304 if (!skb)
1305 goto err_out;
1307 skb->dev = de->dev;
1309 de->rx_skb[i].mapping = pci_map_single(de->pdev,
1310 skb->data, de->rx_buf_sz, PCI_DMA_FROMDEVICE);
1311 de->rx_skb[i].skb = skb;
1313 de->rx_ring[i].opts1 = cpu_to_le32(DescOwn);
1314 if (i == (DE_RX_RING_SIZE - 1))
1315 de->rx_ring[i].opts2 =
1316 cpu_to_le32(RingEnd | de->rx_buf_sz);
1317 else
1318 de->rx_ring[i].opts2 = cpu_to_le32(de->rx_buf_sz);
1319 de->rx_ring[i].addr1 = cpu_to_le32(de->rx_skb[i].mapping);
1320 de->rx_ring[i].addr2 = 0;
1323 return 0;
1325 err_out:
1326 de_clean_rings(de);
1327 return -ENOMEM;
1330 static int de_init_rings (struct de_private *de)
1332 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1333 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1335 de->rx_tail = 0;
1336 de->tx_head = de->tx_tail = 0;
1338 return de_refill_rx (de);
1341 static int de_alloc_rings (struct de_private *de)
1343 de->rx_ring = pci_alloc_consistent(de->pdev, DE_RING_BYTES, &de->ring_dma);
1344 if (!de->rx_ring)
1345 return -ENOMEM;
1346 de->tx_ring = &de->rx_ring[DE_RX_RING_SIZE];
1347 return de_init_rings(de);
1350 static void de_clean_rings (struct de_private *de)
1352 unsigned i;
1354 memset(de->rx_ring, 0, sizeof(struct de_desc) * DE_RX_RING_SIZE);
1355 de->rx_ring[DE_RX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1356 wmb();
1357 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1358 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1359 wmb();
1361 for (i = 0; i < DE_RX_RING_SIZE; i++) {
1362 if (de->rx_skb[i].skb) {
1363 pci_unmap_single(de->pdev, de->rx_skb[i].mapping,
1364 de->rx_buf_sz, PCI_DMA_FROMDEVICE);
1365 dev_kfree_skb(de->rx_skb[i].skb);
1369 for (i = 0; i < DE_TX_RING_SIZE; i++) {
1370 struct sk_buff *skb = de->tx_skb[i].skb;
1371 if ((skb) && (skb != DE_DUMMY_SKB)) {
1372 if (skb != DE_SETUP_SKB) {
1373 de->net_stats.tx_dropped++;
1374 pci_unmap_single(de->pdev,
1375 de->tx_skb[i].mapping,
1376 skb->len, PCI_DMA_TODEVICE);
1377 dev_kfree_skb(skb);
1378 } else {
1379 pci_unmap_single(de->pdev,
1380 de->tx_skb[i].mapping,
1381 sizeof(de->setup_frame),
1382 PCI_DMA_TODEVICE);
1387 memset(&de->rx_skb, 0, sizeof(struct ring_info) * DE_RX_RING_SIZE);
1388 memset(&de->tx_skb, 0, sizeof(struct ring_info) * DE_TX_RING_SIZE);
1391 static void de_free_rings (struct de_private *de)
1393 de_clean_rings(de);
1394 pci_free_consistent(de->pdev, DE_RING_BYTES, de->rx_ring, de->ring_dma);
1395 de->rx_ring = NULL;
1396 de->tx_ring = NULL;
1399 static int de_open (struct net_device *dev)
1401 struct de_private *de = netdev_priv(dev);
1402 int rc;
1404 if (netif_msg_ifup(de))
1405 printk(KERN_DEBUG "%s: enabling interface\n", dev->name);
1407 de->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1409 rc = de_alloc_rings(de);
1410 if (rc) {
1411 dev_err(&dev->dev, "ring allocation failure, err=%d\n", rc);
1412 return rc;
1415 dw32(IntrMask, 0);
1417 rc = request_irq(dev->irq, de_interrupt, IRQF_SHARED, dev->name, dev);
1418 if (rc) {
1419 dev_err(&dev->dev, "IRQ %d request failure, err=%d\n",
1420 dev->irq, rc);
1421 goto err_out_free;
1424 rc = de_init_hw(de);
1425 if (rc) {
1426 dev_err(&dev->dev, "h/w init failure, err=%d\n", rc);
1427 goto err_out_free_irq;
1430 netif_start_queue(dev);
1431 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1433 return 0;
1435 err_out_free_irq:
1436 free_irq(dev->irq, dev);
1437 err_out_free:
1438 de_free_rings(de);
1439 return rc;
1442 static int de_close (struct net_device *dev)
1444 struct de_private *de = netdev_priv(dev);
1445 unsigned long flags;
1447 if (netif_msg_ifdown(de))
1448 printk(KERN_DEBUG "%s: disabling interface\n", dev->name);
1450 del_timer_sync(&de->media_timer);
1452 spin_lock_irqsave(&de->lock, flags);
1453 de_stop_hw(de);
1454 netif_stop_queue(dev);
1455 netif_carrier_off(dev);
1456 spin_unlock_irqrestore(&de->lock, flags);
1458 free_irq(dev->irq, dev);
1460 de_free_rings(de);
1461 de_adapter_sleep(de);
1462 return 0;
1465 static void de_tx_timeout (struct net_device *dev)
1467 struct de_private *de = netdev_priv(dev);
1469 printk(KERN_DEBUG "%s: NIC status %08x mode %08x sia %08x desc %u/%u/%u\n",
1470 dev->name, dr32(MacStatus), dr32(MacMode), dr32(SIAStatus),
1471 de->rx_tail, de->tx_head, de->tx_tail);
1473 del_timer_sync(&de->media_timer);
1475 disable_irq(dev->irq);
1476 spin_lock_irq(&de->lock);
1478 de_stop_hw(de);
1479 netif_stop_queue(dev);
1480 netif_carrier_off(dev);
1482 spin_unlock_irq(&de->lock);
1483 enable_irq(dev->irq);
1485 /* Update the error counts. */
1486 __de_get_stats(de);
1488 synchronize_irq(dev->irq);
1489 de_clean_rings(de);
1491 de_init_rings(de);
1493 de_init_hw(de);
1495 netif_wake_queue(dev);
1498 static void __de_get_regs(struct de_private *de, u8 *buf)
1500 int i;
1501 u32 *rbuf = (u32 *)buf;
1503 /* read all CSRs */
1504 for (i = 0; i < DE_NUM_REGS; i++)
1505 rbuf[i] = dr32(i * 8);
1507 /* handle self-clearing RxMissed counter, CSR8 */
1508 de_rx_missed(de, rbuf[8]);
1511 static int __de_get_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1513 ecmd->supported = de->media_supported;
1514 ecmd->transceiver = XCVR_INTERNAL;
1515 ecmd->phy_address = 0;
1516 ecmd->advertising = de->media_advertise;
1518 switch (de->media_type) {
1519 case DE_MEDIA_AUI:
1520 ecmd->port = PORT_AUI;
1521 break;
1522 case DE_MEDIA_BNC:
1523 ecmd->port = PORT_BNC;
1524 break;
1525 default:
1526 ecmd->port = PORT_TP;
1527 break;
1530 ethtool_cmd_speed_set(ecmd, 10);
1532 if (dr32(MacMode) & FullDuplex)
1533 ecmd->duplex = DUPLEX_FULL;
1534 else
1535 ecmd->duplex = DUPLEX_HALF;
1537 if (de->media_lock)
1538 ecmd->autoneg = AUTONEG_DISABLE;
1539 else
1540 ecmd->autoneg = AUTONEG_ENABLE;
1542 /* ignore maxtxpkt, maxrxpkt for now */
1544 return 0;
1547 static int __de_set_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1549 u32 new_media;
1550 unsigned int media_lock;
1552 if (ethtool_cmd_speed(ecmd) != 10)
1553 return -EINVAL;
1554 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
1555 return -EINVAL;
1556 if (ecmd->port != PORT_TP && ecmd->port != PORT_AUI && ecmd->port != PORT_BNC)
1557 return -EINVAL;
1558 if (de->de21040 && ecmd->port == PORT_BNC)
1559 return -EINVAL;
1560 if (ecmd->transceiver != XCVR_INTERNAL)
1561 return -EINVAL;
1562 if (ecmd->autoneg != AUTONEG_DISABLE && ecmd->autoneg != AUTONEG_ENABLE)
1563 return -EINVAL;
1564 if (ecmd->advertising & ~de->media_supported)
1565 return -EINVAL;
1566 if (ecmd->autoneg == AUTONEG_ENABLE &&
1567 (!(ecmd->advertising & ADVERTISED_Autoneg)))
1568 return -EINVAL;
1570 switch (ecmd->port) {
1571 case PORT_AUI:
1572 new_media = DE_MEDIA_AUI;
1573 if (!(ecmd->advertising & ADVERTISED_AUI))
1574 return -EINVAL;
1575 break;
1576 case PORT_BNC:
1577 new_media = DE_MEDIA_BNC;
1578 if (!(ecmd->advertising & ADVERTISED_BNC))
1579 return -EINVAL;
1580 break;
1581 default:
1582 if (ecmd->autoneg == AUTONEG_ENABLE)
1583 new_media = DE_MEDIA_TP_AUTO;
1584 else if (ecmd->duplex == DUPLEX_FULL)
1585 new_media = DE_MEDIA_TP_FD;
1586 else
1587 new_media = DE_MEDIA_TP;
1588 if (!(ecmd->advertising & ADVERTISED_TP))
1589 return -EINVAL;
1590 if (!(ecmd->advertising & (ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half)))
1591 return -EINVAL;
1592 break;
1595 media_lock = (ecmd->autoneg == AUTONEG_ENABLE) ? 0 : 1;
1597 if ((new_media == de->media_type) &&
1598 (media_lock == de->media_lock) &&
1599 (ecmd->advertising == de->media_advertise))
1600 return 0; /* nothing to change */
1602 de_link_down(de);
1603 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1604 de_stop_rxtx(de);
1606 de->media_type = new_media;
1607 de->media_lock = media_lock;
1608 de->media_advertise = ecmd->advertising;
1609 de_set_media(de);
1610 if (netif_running(de->dev))
1611 de_start_rxtx(de);
1613 return 0;
1616 static void de_get_drvinfo (struct net_device *dev,struct ethtool_drvinfo *info)
1618 struct de_private *de = netdev_priv(dev);
1620 strcpy (info->driver, DRV_NAME);
1621 strcpy (info->version, DRV_VERSION);
1622 strcpy (info->bus_info, pci_name(de->pdev));
1623 info->eedump_len = DE_EEPROM_SIZE;
1626 static int de_get_regs_len(struct net_device *dev)
1628 return DE_REGS_SIZE;
1631 static int de_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1633 struct de_private *de = netdev_priv(dev);
1634 int rc;
1636 spin_lock_irq(&de->lock);
1637 rc = __de_get_settings(de, ecmd);
1638 spin_unlock_irq(&de->lock);
1640 return rc;
1643 static int de_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1645 struct de_private *de = netdev_priv(dev);
1646 int rc;
1648 spin_lock_irq(&de->lock);
1649 rc = __de_set_settings(de, ecmd);
1650 spin_unlock_irq(&de->lock);
1652 return rc;
1655 static u32 de_get_msglevel(struct net_device *dev)
1657 struct de_private *de = netdev_priv(dev);
1659 return de->msg_enable;
1662 static void de_set_msglevel(struct net_device *dev, u32 msglvl)
1664 struct de_private *de = netdev_priv(dev);
1666 de->msg_enable = msglvl;
1669 static int de_get_eeprom(struct net_device *dev,
1670 struct ethtool_eeprom *eeprom, u8 *data)
1672 struct de_private *de = netdev_priv(dev);
1674 if (!de->ee_data)
1675 return -EOPNOTSUPP;
1676 if ((eeprom->offset != 0) || (eeprom->magic != 0) ||
1677 (eeprom->len != DE_EEPROM_SIZE))
1678 return -EINVAL;
1679 memcpy(data, de->ee_data, eeprom->len);
1681 return 0;
1684 static int de_nway_reset(struct net_device *dev)
1686 struct de_private *de = netdev_priv(dev);
1687 u32 status;
1689 if (de->media_type != DE_MEDIA_TP_AUTO)
1690 return -EINVAL;
1691 if (netif_carrier_ok(de->dev))
1692 de_link_down(de);
1694 status = dr32(SIAStatus);
1695 dw32(SIAStatus, (status & ~NWayState) | NWayRestart);
1696 if (netif_msg_link(de))
1697 dev_info(&de->dev->dev, "link nway restart, status %x,%x\n",
1698 status, dr32(SIAStatus));
1699 return 0;
1702 static void de_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1703 void *data)
1705 struct de_private *de = netdev_priv(dev);
1707 regs->version = (DE_REGS_VER << 2) | de->de21040;
1709 spin_lock_irq(&de->lock);
1710 __de_get_regs(de, data);
1711 spin_unlock_irq(&de->lock);
1714 static const struct ethtool_ops de_ethtool_ops = {
1715 .get_link = ethtool_op_get_link,
1716 .get_drvinfo = de_get_drvinfo,
1717 .get_regs_len = de_get_regs_len,
1718 .get_settings = de_get_settings,
1719 .set_settings = de_set_settings,
1720 .get_msglevel = de_get_msglevel,
1721 .set_msglevel = de_set_msglevel,
1722 .get_eeprom = de_get_eeprom,
1723 .nway_reset = de_nway_reset,
1724 .get_regs = de_get_regs,
1727 static void __devinit de21040_get_mac_address (struct de_private *de)
1729 unsigned i;
1731 dw32 (ROMCmd, 0); /* Reset the pointer with a dummy write. */
1732 udelay(5);
1734 for (i = 0; i < 6; i++) {
1735 int value, boguscnt = 100000;
1736 do {
1737 value = dr32(ROMCmd);
1738 rmb();
1739 } while (value < 0 && --boguscnt > 0);
1740 de->dev->dev_addr[i] = value;
1741 udelay(1);
1742 if (boguscnt <= 0)
1743 pr_warning(PFX "timeout reading 21040 MAC address byte %u\n", i);
1747 static void __devinit de21040_get_media_info(struct de_private *de)
1749 unsigned int i;
1751 de->media_type = DE_MEDIA_TP;
1752 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full |
1753 SUPPORTED_10baseT_Half | SUPPORTED_AUI;
1754 de->media_advertise = de->media_supported;
1756 for (i = 0; i < DE_MAX_MEDIA; i++) {
1757 switch (i) {
1758 case DE_MEDIA_AUI:
1759 case DE_MEDIA_TP:
1760 case DE_MEDIA_TP_FD:
1761 de->media[i].type = i;
1762 de->media[i].csr13 = t21040_csr13[i];
1763 de->media[i].csr14 = t21040_csr14[i];
1764 de->media[i].csr15 = t21040_csr15[i];
1765 break;
1766 default:
1767 de->media[i].type = DE_MEDIA_INVALID;
1768 break;
1773 /* Note: this routine returns extra data bits for size detection. */
1774 static unsigned __devinit tulip_read_eeprom(void __iomem *regs, int location, int addr_len)
1776 int i;
1777 unsigned retval = 0;
1778 void __iomem *ee_addr = regs + ROMCmd;
1779 int read_cmd = location | (EE_READ_CMD << addr_len);
1781 writel(EE_ENB & ~EE_CS, ee_addr);
1782 writel(EE_ENB, ee_addr);
1784 /* Shift the read command bits out. */
1785 for (i = 4 + addr_len; i >= 0; i--) {
1786 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1787 writel(EE_ENB | dataval, ee_addr);
1788 readl(ee_addr);
1789 writel(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1790 readl(ee_addr);
1791 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1793 writel(EE_ENB, ee_addr);
1794 readl(ee_addr);
1796 for (i = 16; i > 0; i--) {
1797 writel(EE_ENB | EE_SHIFT_CLK, ee_addr);
1798 readl(ee_addr);
1799 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1800 writel(EE_ENB, ee_addr);
1801 readl(ee_addr);
1804 /* Terminate the EEPROM access. */
1805 writel(EE_ENB & ~EE_CS, ee_addr);
1806 return retval;
1809 static void __devinit de21041_get_srom_info (struct de_private *de)
1811 unsigned i, sa_offset = 0, ofs;
1812 u8 ee_data[DE_EEPROM_SIZE + 6] = {};
1813 unsigned ee_addr_size = tulip_read_eeprom(de->regs, 0xff, 8) & 0x40000 ? 8 : 6;
1814 struct de_srom_info_leaf *il;
1815 void *bufp;
1817 /* download entire eeprom */
1818 for (i = 0; i < DE_EEPROM_WORDS; i++)
1819 ((__le16 *)ee_data)[i] =
1820 cpu_to_le16(tulip_read_eeprom(de->regs, i, ee_addr_size));
1822 /* DEC now has a specification but early board makers
1823 just put the address in the first EEPROM locations. */
1824 /* This does memcmp(eedata, eedata+16, 8) */
1826 #ifndef CONFIG_MIPS_COBALT
1828 for (i = 0; i < 8; i ++)
1829 if (ee_data[i] != ee_data[16+i])
1830 sa_offset = 20;
1832 #endif
1834 /* store MAC address */
1835 for (i = 0; i < 6; i ++)
1836 de->dev->dev_addr[i] = ee_data[i + sa_offset];
1838 /* get offset of controller 0 info leaf. ignore 2nd byte. */
1839 ofs = ee_data[SROMC0InfoLeaf];
1840 if (ofs >= (sizeof(ee_data) - sizeof(struct de_srom_info_leaf) - sizeof(struct de_srom_media_block)))
1841 goto bad_srom;
1843 /* get pointer to info leaf */
1844 il = (struct de_srom_info_leaf *) &ee_data[ofs];
1846 /* paranoia checks */
1847 if (il->n_blocks == 0)
1848 goto bad_srom;
1849 if ((sizeof(ee_data) - ofs) <
1850 (sizeof(struct de_srom_info_leaf) + (sizeof(struct de_srom_media_block) * il->n_blocks)))
1851 goto bad_srom;
1853 /* get default media type */
1854 switch (get_unaligned(&il->default_media)) {
1855 case 0x0001: de->media_type = DE_MEDIA_BNC; break;
1856 case 0x0002: de->media_type = DE_MEDIA_AUI; break;
1857 case 0x0204: de->media_type = DE_MEDIA_TP_FD; break;
1858 default: de->media_type = DE_MEDIA_TP_AUTO; break;
1861 if (netif_msg_probe(de))
1862 pr_info("de%d: SROM leaf offset %u, default media %s\n",
1863 de->board_idx, ofs, media_name[de->media_type]);
1865 /* init SIA register values to defaults */
1866 for (i = 0; i < DE_MAX_MEDIA; i++) {
1867 de->media[i].type = DE_MEDIA_INVALID;
1868 de->media[i].csr13 = 0xffff;
1869 de->media[i].csr14 = 0xffff;
1870 de->media[i].csr15 = 0xffff;
1873 /* parse media blocks to see what medias are supported,
1874 * and if any custom CSR values are provided
1876 bufp = ((void *)il) + sizeof(*il);
1877 for (i = 0; i < il->n_blocks; i++) {
1878 struct de_srom_media_block *ib = bufp;
1879 unsigned idx;
1881 /* index based on media type in media block */
1882 switch(ib->opts & MediaBlockMask) {
1883 case 0: /* 10baseT */
1884 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Half
1885 | SUPPORTED_Autoneg;
1886 idx = DE_MEDIA_TP;
1887 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1888 break;
1889 case 1: /* BNC */
1890 de->media_supported |= SUPPORTED_BNC;
1891 idx = DE_MEDIA_BNC;
1892 break;
1893 case 2: /* AUI */
1894 de->media_supported |= SUPPORTED_AUI;
1895 idx = DE_MEDIA_AUI;
1896 break;
1897 case 4: /* 10baseT-FD */
1898 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full
1899 | SUPPORTED_Autoneg;
1900 idx = DE_MEDIA_TP_FD;
1901 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1902 break;
1903 default:
1904 goto bad_srom;
1907 de->media[idx].type = idx;
1909 if (netif_msg_probe(de))
1910 pr_info("de%d: media block #%u: %s",
1911 de->board_idx, i,
1912 media_name[de->media[idx].type]);
1914 bufp += sizeof (ib->opts);
1916 if (ib->opts & MediaCustomCSRs) {
1917 de->media[idx].csr13 = get_unaligned(&ib->csr13);
1918 de->media[idx].csr14 = get_unaligned(&ib->csr14);
1919 de->media[idx].csr15 = get_unaligned(&ib->csr15);
1920 bufp += sizeof(ib->csr13) + sizeof(ib->csr14) +
1921 sizeof(ib->csr15);
1923 if (netif_msg_probe(de))
1924 pr_cont(" (%x,%x,%x)\n",
1925 de->media[idx].csr13,
1926 de->media[idx].csr14,
1927 de->media[idx].csr15);
1929 } else if (netif_msg_probe(de))
1930 pr_cont("\n");
1932 if (bufp > ((void *)&ee_data[DE_EEPROM_SIZE - 3]))
1933 break;
1936 de->media_advertise = de->media_supported;
1938 fill_defaults:
1939 /* fill in defaults, for cases where custom CSRs not used */
1940 for (i = 0; i < DE_MAX_MEDIA; i++) {
1941 if (de->media[i].csr13 == 0xffff)
1942 de->media[i].csr13 = t21041_csr13[i];
1943 if (de->media[i].csr14 == 0xffff) {
1944 /* autonegotiation is broken at least on some chip
1945 revisions - rev. 0x21 works, 0x11 does not */
1946 if (de->pdev->revision < 0x20)
1947 de->media[i].csr14 = t21041_csr14_brk[i];
1948 else
1949 de->media[i].csr14 = t21041_csr14[i];
1951 if (de->media[i].csr15 == 0xffff)
1952 de->media[i].csr15 = t21041_csr15[i];
1955 de->ee_data = kmemdup(&ee_data[0], DE_EEPROM_SIZE, GFP_KERNEL);
1957 return;
1959 bad_srom:
1960 /* for error cases, it's ok to assume we support all these */
1961 for (i = 0; i < DE_MAX_MEDIA; i++)
1962 de->media[i].type = i;
1963 de->media_supported =
1964 SUPPORTED_10baseT_Half |
1965 SUPPORTED_10baseT_Full |
1966 SUPPORTED_Autoneg |
1967 SUPPORTED_TP |
1968 SUPPORTED_AUI |
1969 SUPPORTED_BNC;
1970 goto fill_defaults;
1973 static const struct net_device_ops de_netdev_ops = {
1974 .ndo_open = de_open,
1975 .ndo_stop = de_close,
1976 .ndo_set_multicast_list = de_set_rx_mode,
1977 .ndo_start_xmit = de_start_xmit,
1978 .ndo_get_stats = de_get_stats,
1979 .ndo_tx_timeout = de_tx_timeout,
1980 .ndo_change_mtu = eth_change_mtu,
1981 .ndo_set_mac_address = eth_mac_addr,
1982 .ndo_validate_addr = eth_validate_addr,
1985 static int __devinit de_init_one (struct pci_dev *pdev,
1986 const struct pci_device_id *ent)
1988 struct net_device *dev;
1989 struct de_private *de;
1990 int rc;
1991 void __iomem *regs;
1992 unsigned long pciaddr;
1993 static int board_idx = -1;
1995 board_idx++;
1997 #ifndef MODULE
1998 if (board_idx == 0)
1999 printk("%s", version);
2000 #endif
2002 /* allocate a new ethernet device structure, and fill in defaults */
2003 dev = alloc_etherdev(sizeof(struct de_private));
2004 if (!dev)
2005 return -ENOMEM;
2007 dev->netdev_ops = &de_netdev_ops;
2008 SET_NETDEV_DEV(dev, &pdev->dev);
2009 dev->ethtool_ops = &de_ethtool_ops;
2010 dev->watchdog_timeo = TX_TIMEOUT;
2012 de = netdev_priv(dev);
2013 de->de21040 = ent->driver_data == 0 ? 1 : 0;
2014 de->pdev = pdev;
2015 de->dev = dev;
2016 de->msg_enable = (debug < 0 ? DE_DEF_MSG_ENABLE : debug);
2017 de->board_idx = board_idx;
2018 spin_lock_init (&de->lock);
2019 init_timer(&de->media_timer);
2020 if (de->de21040)
2021 de->media_timer.function = de21040_media_timer;
2022 else
2023 de->media_timer.function = de21041_media_timer;
2024 de->media_timer.data = (unsigned long) de;
2026 netif_carrier_off(dev);
2028 /* wake up device, assign resources */
2029 rc = pci_enable_device(pdev);
2030 if (rc)
2031 goto err_out_free;
2033 /* reserve PCI resources to ensure driver atomicity */
2034 rc = pci_request_regions(pdev, DRV_NAME);
2035 if (rc)
2036 goto err_out_disable;
2038 /* check for invalid IRQ value */
2039 if (pdev->irq < 2) {
2040 rc = -EIO;
2041 pr_err(PFX "invalid irq (%d) for pci dev %s\n",
2042 pdev->irq, pci_name(pdev));
2043 goto err_out_res;
2046 dev->irq = pdev->irq;
2048 /* obtain and check validity of PCI I/O address */
2049 pciaddr = pci_resource_start(pdev, 1);
2050 if (!pciaddr) {
2051 rc = -EIO;
2052 pr_err(PFX "no MMIO resource for pci dev %s\n", pci_name(pdev));
2053 goto err_out_res;
2055 if (pci_resource_len(pdev, 1) < DE_REGS_SIZE) {
2056 rc = -EIO;
2057 pr_err(PFX "MMIO resource (%llx) too small on pci dev %s\n",
2058 (unsigned long long)pci_resource_len(pdev, 1),
2059 pci_name(pdev));
2060 goto err_out_res;
2063 /* remap CSR registers */
2064 regs = ioremap_nocache(pciaddr, DE_REGS_SIZE);
2065 if (!regs) {
2066 rc = -EIO;
2067 pr_err(PFX "Cannot map PCI MMIO (%llx@%lx) on pci dev %s\n",
2068 (unsigned long long)pci_resource_len(pdev, 1),
2069 pciaddr, pci_name(pdev));
2070 goto err_out_res;
2072 dev->base_addr = (unsigned long) regs;
2073 de->regs = regs;
2075 de_adapter_wake(de);
2077 /* make sure hardware is not running */
2078 rc = de_reset_mac(de);
2079 if (rc) {
2080 pr_err(PFX "Cannot reset MAC, pci dev %s\n", pci_name(pdev));
2081 goto err_out_iomap;
2084 /* get MAC address, initialize default media type and
2085 * get list of supported media
2087 if (de->de21040) {
2088 de21040_get_mac_address(de);
2089 de21040_get_media_info(de);
2090 } else {
2091 de21041_get_srom_info(de);
2094 /* register new network interface with kernel */
2095 rc = register_netdev(dev);
2096 if (rc)
2097 goto err_out_iomap;
2099 /* print info about board and interface just registered */
2100 dev_info(&dev->dev, "%s at 0x%lx, %pM, IRQ %d\n",
2101 de->de21040 ? "21040" : "21041",
2102 dev->base_addr,
2103 dev->dev_addr,
2104 dev->irq);
2106 pci_set_drvdata(pdev, dev);
2108 /* enable busmastering */
2109 pci_set_master(pdev);
2111 /* put adapter to sleep */
2112 de_adapter_sleep(de);
2114 return 0;
2116 err_out_iomap:
2117 kfree(de->ee_data);
2118 iounmap(regs);
2119 err_out_res:
2120 pci_release_regions(pdev);
2121 err_out_disable:
2122 pci_disable_device(pdev);
2123 err_out_free:
2124 free_netdev(dev);
2125 return rc;
2128 static void __devexit de_remove_one (struct pci_dev *pdev)
2130 struct net_device *dev = pci_get_drvdata(pdev);
2131 struct de_private *de = netdev_priv(dev);
2133 BUG_ON(!dev);
2134 unregister_netdev(dev);
2135 kfree(de->ee_data);
2136 iounmap(de->regs);
2137 pci_release_regions(pdev);
2138 pci_disable_device(pdev);
2139 pci_set_drvdata(pdev, NULL);
2140 free_netdev(dev);
2143 #ifdef CONFIG_PM
2145 static int de_suspend (struct pci_dev *pdev, pm_message_t state)
2147 struct net_device *dev = pci_get_drvdata (pdev);
2148 struct de_private *de = netdev_priv(dev);
2150 rtnl_lock();
2151 if (netif_running (dev)) {
2152 del_timer_sync(&de->media_timer);
2154 disable_irq(dev->irq);
2155 spin_lock_irq(&de->lock);
2157 de_stop_hw(de);
2158 netif_stop_queue(dev);
2159 netif_device_detach(dev);
2160 netif_carrier_off(dev);
2162 spin_unlock_irq(&de->lock);
2163 enable_irq(dev->irq);
2165 /* Update the error counts. */
2166 __de_get_stats(de);
2168 synchronize_irq(dev->irq);
2169 de_clean_rings(de);
2171 de_adapter_sleep(de);
2172 pci_disable_device(pdev);
2173 } else {
2174 netif_device_detach(dev);
2176 rtnl_unlock();
2177 return 0;
2180 static int de_resume (struct pci_dev *pdev)
2182 struct net_device *dev = pci_get_drvdata (pdev);
2183 struct de_private *de = netdev_priv(dev);
2184 int retval = 0;
2186 rtnl_lock();
2187 if (netif_device_present(dev))
2188 goto out;
2189 if (!netif_running(dev))
2190 goto out_attach;
2191 if ((retval = pci_enable_device(pdev))) {
2192 dev_err(&dev->dev, "pci_enable_device failed in resume\n");
2193 goto out;
2195 pci_set_master(pdev);
2196 de_init_rings(de);
2197 de_init_hw(de);
2198 out_attach:
2199 netif_device_attach(dev);
2200 out:
2201 rtnl_unlock();
2202 return 0;
2205 #endif /* CONFIG_PM */
2207 static struct pci_driver de_driver = {
2208 .name = DRV_NAME,
2209 .id_table = de_pci_tbl,
2210 .probe = de_init_one,
2211 .remove = __devexit_p(de_remove_one),
2212 #ifdef CONFIG_PM
2213 .suspend = de_suspend,
2214 .resume = de_resume,
2215 #endif
2218 static int __init de_init (void)
2220 #ifdef MODULE
2221 printk("%s", version);
2222 #endif
2223 return pci_register_driver(&de_driver);
2226 static void __exit de_exit (void)
2228 pci_unregister_driver (&de_driver);
2231 module_init(de_init);
2232 module_exit(de_exit);