Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / arch / arm / mach-at91 / at91rm9200_time.c
blob1dd69c85dfecc4c3583bd9cc511a675b3376bf45
1 /*
2 * linux/arch/arm/mach-at91/at91rm9200_time.c
4 * Copyright (C) 2003 SAN People
5 * Copyright (C) 2003 ATMEL
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/kernel.h>
23 #include <linux/interrupt.h>
24 #include <linux/irq.h>
25 #include <linux/clockchips.h>
27 #include <asm/mach/time.h>
29 #include <mach/at91_st.h>
31 static unsigned long last_crtr;
32 static u32 irqmask;
33 static struct clock_event_device clkevt;
36 * The ST_CRTR is updated asynchronously to the master clock ... but
37 * the updates as seen by the CPU don't seem to be strictly monotonic.
38 * Waiting until we read the same value twice avoids glitching.
40 static inline unsigned long read_CRTR(void)
42 unsigned long x1, x2;
44 x1 = at91_sys_read(AT91_ST_CRTR);
45 do {
46 x2 = at91_sys_read(AT91_ST_CRTR);
47 if (x1 == x2)
48 break;
49 x1 = x2;
50 } while (1);
51 return x1;
55 * IRQ handler for the timer.
57 static irqreturn_t at91rm9200_timer_interrupt(int irq, void *dev_id)
59 u32 sr = at91_sys_read(AT91_ST_SR) & irqmask;
62 * irqs should be disabled here, but as the irq is shared they are only
63 * guaranteed to be off if the timer irq is registered first.
65 WARN_ON_ONCE(!irqs_disabled());
67 /* simulate "oneshot" timer with alarm */
68 if (sr & AT91_ST_ALMS) {
69 clkevt.event_handler(&clkevt);
70 return IRQ_HANDLED;
73 /* periodic mode should handle delayed ticks */
74 if (sr & AT91_ST_PITS) {
75 u32 crtr = read_CRTR();
77 while (((crtr - last_crtr) & AT91_ST_CRTV) >= LATCH) {
78 last_crtr += LATCH;
79 clkevt.event_handler(&clkevt);
81 return IRQ_HANDLED;
84 /* this irq is shared ... */
85 return IRQ_NONE;
88 static struct irqaction at91rm9200_timer_irq = {
89 .name = "at91_tick",
90 .flags = IRQF_SHARED | IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
91 .handler = at91rm9200_timer_interrupt
94 static cycle_t read_clk32k(struct clocksource *cs)
96 return read_CRTR();
99 static struct clocksource clk32k = {
100 .name = "32k_counter",
101 .rating = 150,
102 .read = read_clk32k,
103 .mask = CLOCKSOURCE_MASK(20),
104 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
107 static void
108 clkevt32k_mode(enum clock_event_mode mode, struct clock_event_device *dev)
110 /* Disable and flush pending timer interrupts */
111 at91_sys_write(AT91_ST_IDR, AT91_ST_PITS | AT91_ST_ALMS);
112 (void) at91_sys_read(AT91_ST_SR);
114 last_crtr = read_CRTR();
115 switch (mode) {
116 case CLOCK_EVT_MODE_PERIODIC:
117 /* PIT for periodic irqs; fixed rate of 1/HZ */
118 irqmask = AT91_ST_PITS;
119 at91_sys_write(AT91_ST_PIMR, LATCH);
120 break;
121 case CLOCK_EVT_MODE_ONESHOT:
122 /* ALM for oneshot irqs, set by next_event()
123 * before 32 seconds have passed
125 irqmask = AT91_ST_ALMS;
126 at91_sys_write(AT91_ST_RTAR, last_crtr);
127 break;
128 case CLOCK_EVT_MODE_SHUTDOWN:
129 case CLOCK_EVT_MODE_UNUSED:
130 case CLOCK_EVT_MODE_RESUME:
131 irqmask = 0;
132 break;
134 at91_sys_write(AT91_ST_IER, irqmask);
137 static int
138 clkevt32k_next_event(unsigned long delta, struct clock_event_device *dev)
140 u32 alm;
141 int status = 0;
143 BUG_ON(delta < 2);
145 /* The alarm IRQ uses absolute time (now+delta), not the relative
146 * time (delta) in our calling convention. Like all clockevents
147 * using such "match" hardware, we have a race to defend against.
149 * Our defense here is to have set up the clockevent device so the
150 * delta is at least two. That way we never end up writing RTAR
151 * with the value then held in CRTR ... which would mean the match
152 * wouldn't trigger until 32 seconds later, after CRTR wraps.
154 alm = read_CRTR();
156 /* Cancel any pending alarm; flush any pending IRQ */
157 at91_sys_write(AT91_ST_RTAR, alm);
158 (void) at91_sys_read(AT91_ST_SR);
160 /* Schedule alarm by writing RTAR. */
161 alm += delta;
162 at91_sys_write(AT91_ST_RTAR, alm);
164 return status;
167 static struct clock_event_device clkevt = {
168 .name = "at91_tick",
169 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
170 .shift = 32,
171 .rating = 150,
172 .set_next_event = clkevt32k_next_event,
173 .set_mode = clkevt32k_mode,
177 * ST (system timer) module supports both clockevents and clocksource.
179 void __init at91rm9200_timer_init(void)
181 /* Disable all timer interrupts, and clear any pending ones */
182 at91_sys_write(AT91_ST_IDR,
183 AT91_ST_PITS | AT91_ST_WDOVF | AT91_ST_RTTINC | AT91_ST_ALMS);
184 (void) at91_sys_read(AT91_ST_SR);
186 /* Make IRQs happen for the system timer */
187 setup_irq(AT91_ID_SYS, &at91rm9200_timer_irq);
189 /* The 32KiHz "Slow Clock" (tick every 30517.58 nanoseconds) is used
190 * directly for the clocksource and all clockevents, after adjusting
191 * its prescaler from the 1 Hz default.
193 at91_sys_write(AT91_ST_RTMR, 1);
195 /* Setup timer clockevent, with minimum of two ticks (important!!) */
196 clkevt.mult = div_sc(AT91_SLOW_CLOCK, NSEC_PER_SEC, clkevt.shift);
197 clkevt.max_delta_ns = clockevent_delta2ns(AT91_ST_ALMV, &clkevt);
198 clkevt.min_delta_ns = clockevent_delta2ns(2, &clkevt) + 1;
199 clkevt.cpumask = cpumask_of(0);
200 clockevents_register_device(&clkevt);
202 /* register clocksource */
203 clocksource_register_hz(&clk32k, AT91_SLOW_CLOCK);
206 struct sys_timer at91rm9200_timer = {
207 .init = at91rm9200_timer_init,