2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/kallsyms.h>
22 #include <linux/bootmem.h>
23 #include <linux/interrupt.h>
24 #include <linux/ptrace.h>
25 #include <linux/kgdb.h>
26 #include <linux/kdebug.h>
27 #include <linux/kprobes.h>
28 #include <linux/notifier.h>
29 #include <linux/kdb.h>
30 #include <linux/irq.h>
31 #include <linux/perf_event.h>
33 #include <asm/bootinfo.h>
34 #include <asm/branch.h>
35 #include <asm/break.h>
40 #include <asm/fpu_emulator.h>
41 #include <asm/mipsregs.h>
42 #include <asm/mipsmtregs.h>
43 #include <asm/module.h>
44 #include <asm/pgtable.h>
45 #include <asm/ptrace.h>
46 #include <asm/sections.h>
47 #include <asm/system.h>
48 #include <asm/tlbdebug.h>
49 #include <asm/traps.h>
50 #include <asm/uaccess.h>
51 #include <asm/watch.h>
52 #include <asm/mmu_context.h>
53 #include <asm/types.h>
54 #include <asm/stacktrace.h>
57 extern void check_wait(void);
58 extern asmlinkage
void r4k_wait(void);
59 extern asmlinkage
void rollback_handle_int(void);
60 extern asmlinkage
void handle_int(void);
61 extern asmlinkage
void handle_tlbm(void);
62 extern asmlinkage
void handle_tlbl(void);
63 extern asmlinkage
void handle_tlbs(void);
64 extern asmlinkage
void handle_adel(void);
65 extern asmlinkage
void handle_ades(void);
66 extern asmlinkage
void handle_ibe(void);
67 extern asmlinkage
void handle_dbe(void);
68 extern asmlinkage
void handle_sys(void);
69 extern asmlinkage
void handle_bp(void);
70 extern asmlinkage
void handle_ri(void);
71 extern asmlinkage
void handle_ri_rdhwr_vivt(void);
72 extern asmlinkage
void handle_ri_rdhwr(void);
73 extern asmlinkage
void handle_cpu(void);
74 extern asmlinkage
void handle_ov(void);
75 extern asmlinkage
void handle_tr(void);
76 extern asmlinkage
void handle_fpe(void);
77 extern asmlinkage
void handle_mdmx(void);
78 extern asmlinkage
void handle_watch(void);
79 extern asmlinkage
void handle_mt(void);
80 extern asmlinkage
void handle_dsp(void);
81 extern asmlinkage
void handle_mcheck(void);
82 extern asmlinkage
void handle_reserved(void);
84 extern int fpu_emulator_cop1Handler(struct pt_regs
*xcp
,
85 struct mips_fpu_struct
*ctx
, int has_fpu
,
86 void *__user
*fault_addr
);
88 void (*board_be_init
)(void);
89 int (*board_be_handler
)(struct pt_regs
*regs
, int is_fixup
);
90 void (*board_nmi_handler_setup
)(void);
91 void (*board_ejtag_handler_setup
)(void);
92 void (*board_bind_eic_interrupt
)(int irq
, int regset
);
95 static void show_raw_backtrace(unsigned long reg29
)
97 unsigned long *sp
= (unsigned long *)(reg29
& ~3);
100 printk("Call Trace:");
101 #ifdef CONFIG_KALLSYMS
104 while (!kstack_end(sp
)) {
105 unsigned long __user
*p
=
106 (unsigned long __user
*)(unsigned long)sp
++;
107 if (__get_user(addr
, p
)) {
108 printk(" (Bad stack address)");
111 if (__kernel_text_address(addr
))
117 #ifdef CONFIG_KALLSYMS
119 static int __init
set_raw_show_trace(char *str
)
124 __setup("raw_show_trace", set_raw_show_trace
);
127 static void show_backtrace(struct task_struct
*task
, const struct pt_regs
*regs
)
129 unsigned long sp
= regs
->regs
[29];
130 unsigned long ra
= regs
->regs
[31];
131 unsigned long pc
= regs
->cp0_epc
;
133 if (raw_show_trace
|| !__kernel_text_address(pc
)) {
134 show_raw_backtrace(sp
);
137 printk("Call Trace:\n");
140 pc
= unwind_stack(task
, &sp
, pc
, &ra
);
146 * This routine abuses get_user()/put_user() to reference pointers
147 * with at least a bit of error checking ...
149 static void show_stacktrace(struct task_struct
*task
,
150 const struct pt_regs
*regs
)
152 const int field
= 2 * sizeof(unsigned long);
155 unsigned long __user
*sp
= (unsigned long __user
*)regs
->regs
[29];
159 while ((unsigned long) sp
& (PAGE_SIZE
- 1)) {
160 if (i
&& ((i
% (64 / field
)) == 0))
167 if (__get_user(stackdata
, sp
++)) {
168 printk(" (Bad stack address)");
172 printk(" %0*lx", field
, stackdata
);
176 show_backtrace(task
, regs
);
179 void show_stack(struct task_struct
*task
, unsigned long *sp
)
183 regs
.regs
[29] = (unsigned long)sp
;
187 if (task
&& task
!= current
) {
188 regs
.regs
[29] = task
->thread
.reg29
;
190 regs
.cp0_epc
= task
->thread
.reg31
;
191 #ifdef CONFIG_KGDB_KDB
192 } else if (atomic_read(&kgdb_active
) != -1 &&
194 memcpy(®s
, kdb_current_regs
, sizeof(regs
));
195 #endif /* CONFIG_KGDB_KDB */
197 prepare_frametrace(®s
);
200 show_stacktrace(task
, ®s
);
204 * The architecture-independent dump_stack generator
206 void dump_stack(void)
210 prepare_frametrace(®s
);
211 show_backtrace(current
, ®s
);
214 EXPORT_SYMBOL(dump_stack
);
216 static void show_code(unsigned int __user
*pc
)
219 unsigned short __user
*pc16
= NULL
;
223 if ((unsigned long)pc
& 1)
224 pc16
= (unsigned short __user
*)((unsigned long)pc
& ~1);
225 for(i
= -3 ; i
< 6 ; i
++) {
227 if (pc16
? __get_user(insn
, pc16
+ i
) : __get_user(insn
, pc
+ i
)) {
228 printk(" (Bad address in epc)\n");
231 printk("%c%0*x%c", (i
?' ':'<'), pc16
? 4 : 8, insn
, (i
?' ':'>'));
235 static void __show_regs(const struct pt_regs
*regs
)
237 const int field
= 2 * sizeof(unsigned long);
238 unsigned int cause
= regs
->cp0_cause
;
241 printk("Cpu %d\n", smp_processor_id());
244 * Saved main processor registers
246 for (i
= 0; i
< 32; ) {
250 printk(" %0*lx", field
, 0UL);
251 else if (i
== 26 || i
== 27)
252 printk(" %*s", field
, "");
254 printk(" %0*lx", field
, regs
->regs
[i
]);
261 #ifdef CONFIG_CPU_HAS_SMARTMIPS
262 printk("Acx : %0*lx\n", field
, regs
->acx
);
264 printk("Hi : %0*lx\n", field
, regs
->hi
);
265 printk("Lo : %0*lx\n", field
, regs
->lo
);
268 * Saved cp0 registers
270 printk("epc : %0*lx %pS\n", field
, regs
->cp0_epc
,
271 (void *) regs
->cp0_epc
);
272 printk(" %s\n", print_tainted());
273 printk("ra : %0*lx %pS\n", field
, regs
->regs
[31],
274 (void *) regs
->regs
[31]);
276 printk("Status: %08x ", (uint32_t) regs
->cp0_status
);
278 if (current_cpu_data
.isa_level
== MIPS_CPU_ISA_I
) {
279 if (regs
->cp0_status
& ST0_KUO
)
281 if (regs
->cp0_status
& ST0_IEO
)
283 if (regs
->cp0_status
& ST0_KUP
)
285 if (regs
->cp0_status
& ST0_IEP
)
287 if (regs
->cp0_status
& ST0_KUC
)
289 if (regs
->cp0_status
& ST0_IEC
)
292 if (regs
->cp0_status
& ST0_KX
)
294 if (regs
->cp0_status
& ST0_SX
)
296 if (regs
->cp0_status
& ST0_UX
)
298 switch (regs
->cp0_status
& ST0_KSU
) {
303 printk("SUPERVISOR ");
312 if (regs
->cp0_status
& ST0_ERL
)
314 if (regs
->cp0_status
& ST0_EXL
)
316 if (regs
->cp0_status
& ST0_IE
)
321 printk("Cause : %08x\n", cause
);
323 cause
= (cause
& CAUSEF_EXCCODE
) >> CAUSEB_EXCCODE
;
324 if (1 <= cause
&& cause
<= 5)
325 printk("BadVA : %0*lx\n", field
, regs
->cp0_badvaddr
);
327 printk("PrId : %08x (%s)\n", read_c0_prid(),
332 * FIXME: really the generic show_regs should take a const pointer argument.
334 void show_regs(struct pt_regs
*regs
)
336 __show_regs((struct pt_regs
*)regs
);
339 void show_registers(struct pt_regs
*regs
)
341 const int field
= 2 * sizeof(unsigned long);
345 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
346 current
->comm
, current
->pid
, current_thread_info(), current
,
347 field
, current_thread_info()->tp_value
);
348 if (cpu_has_userlocal
) {
351 tls
= read_c0_userlocal();
352 if (tls
!= current_thread_info()->tp_value
)
353 printk("*HwTLS: %0*lx\n", field
, tls
);
356 show_stacktrace(current
, regs
);
357 show_code((unsigned int __user
*) regs
->cp0_epc
);
361 static int regs_to_trapnr(struct pt_regs
*regs
)
363 return (regs
->cp0_cause
>> 2) & 0x1f;
366 static DEFINE_RAW_SPINLOCK(die_lock
);
368 void __noreturn
die(const char *str
, struct pt_regs
*regs
)
370 static int die_counter
;
372 #ifdef CONFIG_MIPS_MT_SMTC
373 unsigned long dvpret
= dvpe();
374 #endif /* CONFIG_MIPS_MT_SMTC */
376 if (notify_die(DIE_OOPS
, str
, regs
, 0, regs_to_trapnr(regs
), SIGSEGV
) == NOTIFY_STOP
)
380 raw_spin_lock_irq(&die_lock
);
382 #ifdef CONFIG_MIPS_MT_SMTC
383 mips_mt_regdump(dvpret
);
384 #endif /* CONFIG_MIPS_MT_SMTC */
386 printk("%s[#%d]:\n", str
, ++die_counter
);
387 show_registers(regs
);
388 add_taint(TAINT_DIE
);
389 raw_spin_unlock_irq(&die_lock
);
392 panic("Fatal exception in interrupt");
395 printk(KERN_EMERG
"Fatal exception: panic in 5 seconds\n");
397 panic("Fatal exception");
403 extern struct exception_table_entry __start___dbe_table
[];
404 extern struct exception_table_entry __stop___dbe_table
[];
407 " .section __dbe_table, \"a\"\n"
410 /* Given an address, look for it in the exception tables. */
411 static const struct exception_table_entry
*search_dbe_tables(unsigned long addr
)
413 const struct exception_table_entry
*e
;
415 e
= search_extable(__start___dbe_table
, __stop___dbe_table
- 1, addr
);
417 e
= search_module_dbetables(addr
);
421 asmlinkage
void do_be(struct pt_regs
*regs
)
423 const int field
= 2 * sizeof(unsigned long);
424 const struct exception_table_entry
*fixup
= NULL
;
425 int data
= regs
->cp0_cause
& 4;
426 int action
= MIPS_BE_FATAL
;
428 /* XXX For now. Fixme, this searches the wrong table ... */
429 if (data
&& !user_mode(regs
))
430 fixup
= search_dbe_tables(exception_epc(regs
));
433 action
= MIPS_BE_FIXUP
;
435 if (board_be_handler
)
436 action
= board_be_handler(regs
, fixup
!= NULL
);
439 case MIPS_BE_DISCARD
:
443 regs
->cp0_epc
= fixup
->nextinsn
;
452 * Assume it would be too dangerous to continue ...
454 printk(KERN_ALERT
"%s bus error, epc == %0*lx, ra == %0*lx\n",
455 data
? "Data" : "Instruction",
456 field
, regs
->cp0_epc
, field
, regs
->regs
[31]);
457 if (notify_die(DIE_OOPS
, "bus error", regs
, 0, regs_to_trapnr(regs
), SIGBUS
)
461 die_if_kernel("Oops", regs
);
462 force_sig(SIGBUS
, current
);
466 * ll/sc, rdhwr, sync emulation
469 #define OPCODE 0xfc000000
470 #define BASE 0x03e00000
471 #define RT 0x001f0000
472 #define OFFSET 0x0000ffff
473 #define LL 0xc0000000
474 #define SC 0xe0000000
475 #define SPEC0 0x00000000
476 #define SPEC3 0x7c000000
477 #define RD 0x0000f800
478 #define FUNC 0x0000003f
479 #define SYNC 0x0000000f
480 #define RDHWR 0x0000003b
483 * The ll_bit is cleared by r*_switch.S
487 struct task_struct
*ll_task
;
489 static inline int simulate_ll(struct pt_regs
*regs
, unsigned int opcode
)
491 unsigned long value
, __user
*vaddr
;
495 * analyse the ll instruction that just caused a ri exception
496 * and put the referenced address to addr.
499 /* sign extend offset */
500 offset
= opcode
& OFFSET
;
504 vaddr
= (unsigned long __user
*)
505 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
507 if ((unsigned long)vaddr
& 3)
509 if (get_user(value
, vaddr
))
514 if (ll_task
== NULL
|| ll_task
== current
) {
523 regs
->regs
[(opcode
& RT
) >> 16] = value
;
528 static inline int simulate_sc(struct pt_regs
*regs
, unsigned int opcode
)
530 unsigned long __user
*vaddr
;
535 * analyse the sc instruction that just caused a ri exception
536 * and put the referenced address to addr.
539 /* sign extend offset */
540 offset
= opcode
& OFFSET
;
544 vaddr
= (unsigned long __user
*)
545 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
546 reg
= (opcode
& RT
) >> 16;
548 if ((unsigned long)vaddr
& 3)
553 if (ll_bit
== 0 || ll_task
!= current
) {
561 if (put_user(regs
->regs
[reg
], vaddr
))
570 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
571 * opcodes are supposed to result in coprocessor unusable exceptions if
572 * executed on ll/sc-less processors. That's the theory. In practice a
573 * few processors such as NEC's VR4100 throw reserved instruction exceptions
574 * instead, so we're doing the emulation thing in both exception handlers.
576 static int simulate_llsc(struct pt_regs
*regs
, unsigned int opcode
)
578 if ((opcode
& OPCODE
) == LL
) {
579 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
581 return simulate_ll(regs
, opcode
);
583 if ((opcode
& OPCODE
) == SC
) {
584 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
586 return simulate_sc(regs
, opcode
);
589 return -1; /* Must be something else ... */
593 * Simulate trapping 'rdhwr' instructions to provide user accessible
594 * registers not implemented in hardware.
596 static int simulate_rdhwr(struct pt_regs
*regs
, unsigned int opcode
)
598 struct thread_info
*ti
= task_thread_info(current
);
600 if ((opcode
& OPCODE
) == SPEC3
&& (opcode
& FUNC
) == RDHWR
) {
601 int rd
= (opcode
& RD
) >> 11;
602 int rt
= (opcode
& RT
) >> 16;
603 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
606 case 0: /* CPU number */
607 regs
->regs
[rt
] = smp_processor_id();
609 case 1: /* SYNCI length */
610 regs
->regs
[rt
] = min(current_cpu_data
.dcache
.linesz
,
611 current_cpu_data
.icache
.linesz
);
613 case 2: /* Read count register */
614 regs
->regs
[rt
] = read_c0_count();
616 case 3: /* Count register resolution */
617 switch (current_cpu_data
.cputype
) {
627 regs
->regs
[rt
] = ti
->tp_value
;
638 static int simulate_sync(struct pt_regs
*regs
, unsigned int opcode
)
640 if ((opcode
& OPCODE
) == SPEC0
&& (opcode
& FUNC
) == SYNC
) {
641 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
646 return -1; /* Must be something else ... */
649 asmlinkage
void do_ov(struct pt_regs
*regs
)
653 die_if_kernel("Integer overflow", regs
);
655 info
.si_code
= FPE_INTOVF
;
656 info
.si_signo
= SIGFPE
;
658 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
659 force_sig_info(SIGFPE
, &info
, current
);
662 static int process_fpemu_return(int sig
, void __user
*fault_addr
)
664 if (sig
== SIGSEGV
|| sig
== SIGBUS
) {
665 struct siginfo si
= {0};
666 si
.si_addr
= fault_addr
;
668 if (sig
== SIGSEGV
) {
669 if (find_vma(current
->mm
, (unsigned long)fault_addr
))
670 si
.si_code
= SEGV_ACCERR
;
672 si
.si_code
= SEGV_MAPERR
;
674 si
.si_code
= BUS_ADRERR
;
676 force_sig_info(sig
, &si
, current
);
679 force_sig(sig
, current
);
687 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
689 asmlinkage
void do_fpe(struct pt_regs
*regs
, unsigned long fcr31
)
691 siginfo_t info
= {0};
693 if (notify_die(DIE_FP
, "FP exception", regs
, 0, regs_to_trapnr(regs
), SIGFPE
)
696 die_if_kernel("FP exception in kernel code", regs
);
698 if (fcr31
& FPU_CSR_UNI_X
) {
700 void __user
*fault_addr
= NULL
;
703 * Unimplemented operation exception. If we've got the full
704 * software emulator on-board, let's use it...
706 * Force FPU to dump state into task/thread context. We're
707 * moving a lot of data here for what is probably a single
708 * instruction, but the alternative is to pre-decode the FP
709 * register operands before invoking the emulator, which seems
710 * a bit extreme for what should be an infrequent event.
712 /* Ensure 'resume' not overwrite saved fp context again. */
715 /* Run the emulator */
716 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
720 * We can't allow the emulated instruction to leave any of
721 * the cause bit set in $fcr31.
723 current
->thread
.fpu
.fcr31
&= ~FPU_CSR_ALL_X
;
725 /* Restore the hardware register state */
726 own_fpu(1); /* Using the FPU again. */
728 /* If something went wrong, signal */
729 process_fpemu_return(sig
, fault_addr
);
732 } else if (fcr31
& FPU_CSR_INV_X
)
733 info
.si_code
= FPE_FLTINV
;
734 else if (fcr31
& FPU_CSR_DIV_X
)
735 info
.si_code
= FPE_FLTDIV
;
736 else if (fcr31
& FPU_CSR_OVF_X
)
737 info
.si_code
= FPE_FLTOVF
;
738 else if (fcr31
& FPU_CSR_UDF_X
)
739 info
.si_code
= FPE_FLTUND
;
740 else if (fcr31
& FPU_CSR_INE_X
)
741 info
.si_code
= FPE_FLTRES
;
743 info
.si_code
= __SI_FAULT
;
744 info
.si_signo
= SIGFPE
;
746 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
747 force_sig_info(SIGFPE
, &info
, current
);
750 static void do_trap_or_bp(struct pt_regs
*regs
, unsigned int code
,
756 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
757 if (kgdb_ll_trap(DIE_TRAP
, str
, regs
, code
, regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
759 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
761 if (notify_die(DIE_TRAP
, str
, regs
, code
, regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
765 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
766 * insns, even for trap and break codes that indicate arithmetic
767 * failures. Weird ...
768 * But should we continue the brokenness??? --macro
773 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
774 die_if_kernel(b
, regs
);
775 if (code
== BRK_DIVZERO
)
776 info
.si_code
= FPE_INTDIV
;
778 info
.si_code
= FPE_INTOVF
;
779 info
.si_signo
= SIGFPE
;
781 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
782 force_sig_info(SIGFPE
, &info
, current
);
785 die_if_kernel("Kernel bug detected", regs
);
786 force_sig(SIGTRAP
, current
);
790 * Address errors may be deliberately induced by the FPU
791 * emulator to retake control of the CPU after executing the
792 * instruction in the delay slot of an emulated branch.
794 * Terminate if exception was recognized as a delay slot return
795 * otherwise handle as normal.
797 if (do_dsemulret(regs
))
800 die_if_kernel("Math emu break/trap", regs
);
801 force_sig(SIGTRAP
, current
);
804 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
805 die_if_kernel(b
, regs
);
806 force_sig(SIGTRAP
, current
);
810 asmlinkage
void do_bp(struct pt_regs
*regs
)
812 unsigned int opcode
, bcode
;
814 if (__get_user(opcode
, (unsigned int __user
*) exception_epc(regs
)))
818 * There is the ancient bug in the MIPS assemblers that the break
819 * code starts left to bit 16 instead to bit 6 in the opcode.
820 * Gas is bug-compatible, but not always, grrr...
821 * We handle both cases with a simple heuristics. --macro
823 bcode
= ((opcode
>> 6) & ((1 << 20) - 1));
824 if (bcode
>= (1 << 10))
828 * notify the kprobe handlers, if instruction is likely to
833 if (notify_die(DIE_BREAK
, "debug", regs
, bcode
, regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
837 case BRK_KPROBE_SSTEPBP
:
838 if (notify_die(DIE_SSTEPBP
, "single_step", regs
, bcode
, regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
846 do_trap_or_bp(regs
, bcode
, "Break");
850 force_sig(SIGSEGV
, current
);
853 asmlinkage
void do_tr(struct pt_regs
*regs
)
855 unsigned int opcode
, tcode
= 0;
857 if (__get_user(opcode
, (unsigned int __user
*) exception_epc(regs
)))
860 /* Immediate versions don't provide a code. */
861 if (!(opcode
& OPCODE
))
862 tcode
= ((opcode
>> 6) & ((1 << 10) - 1));
864 do_trap_or_bp(regs
, tcode
, "Trap");
868 force_sig(SIGSEGV
, current
);
871 asmlinkage
void do_ri(struct pt_regs
*regs
)
873 unsigned int __user
*epc
= (unsigned int __user
*)exception_epc(regs
);
874 unsigned long old_epc
= regs
->cp0_epc
;
875 unsigned int opcode
= 0;
878 if (notify_die(DIE_RI
, "RI Fault", regs
, 0, regs_to_trapnr(regs
), SIGILL
)
882 die_if_kernel("Reserved instruction in kernel code", regs
);
884 if (unlikely(compute_return_epc(regs
) < 0))
887 if (unlikely(get_user(opcode
, epc
) < 0))
890 if (!cpu_has_llsc
&& status
< 0)
891 status
= simulate_llsc(regs
, opcode
);
894 status
= simulate_rdhwr(regs
, opcode
);
897 status
= simulate_sync(regs
, opcode
);
902 if (unlikely(status
> 0)) {
903 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
904 force_sig(status
, current
);
909 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
910 * emulated more than some threshold number of instructions, force migration to
911 * a "CPU" that has FP support.
913 static void mt_ase_fp_affinity(void)
915 #ifdef CONFIG_MIPS_MT_FPAFF
916 if (mt_fpemul_threshold
> 0 &&
917 ((current
->thread
.emulated_fp
++ > mt_fpemul_threshold
))) {
919 * If there's no FPU present, or if the application has already
920 * restricted the allowed set to exclude any CPUs with FPUs,
921 * we'll skip the procedure.
923 if (cpus_intersects(current
->cpus_allowed
, mt_fpu_cpumask
)) {
926 current
->thread
.user_cpus_allowed
927 = current
->cpus_allowed
;
928 cpus_and(tmask
, current
->cpus_allowed
,
930 set_cpus_allowed_ptr(current
, &tmask
);
931 set_thread_flag(TIF_FPUBOUND
);
934 #endif /* CONFIG_MIPS_MT_FPAFF */
938 * No lock; only written during early bootup by CPU 0.
940 static RAW_NOTIFIER_HEAD(cu2_chain
);
942 int __ref
register_cu2_notifier(struct notifier_block
*nb
)
944 return raw_notifier_chain_register(&cu2_chain
, nb
);
947 int cu2_notifier_call_chain(unsigned long val
, void *v
)
949 return raw_notifier_call_chain(&cu2_chain
, val
, v
);
952 static int default_cu2_call(struct notifier_block
*nfb
, unsigned long action
,
955 struct pt_regs
*regs
= data
;
959 die_if_kernel("Unhandled kernel unaligned access or invalid "
960 "instruction", regs
);
964 force_sig(SIGILL
, current
);
970 asmlinkage
void do_cpu(struct pt_regs
*regs
)
972 unsigned int __user
*epc
;
973 unsigned long old_epc
;
977 unsigned long __maybe_unused flags
;
979 die_if_kernel("do_cpu invoked from kernel context!", regs
);
981 cpid
= (regs
->cp0_cause
>> CAUSEB_CE
) & 3;
985 epc
= (unsigned int __user
*)exception_epc(regs
);
986 old_epc
= regs
->cp0_epc
;
990 if (unlikely(compute_return_epc(regs
) < 0))
993 if (unlikely(get_user(opcode
, epc
) < 0))
996 if (!cpu_has_llsc
&& status
< 0)
997 status
= simulate_llsc(regs
, opcode
);
1000 status
= simulate_rdhwr(regs
, opcode
);
1005 if (unlikely(status
> 0)) {
1006 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1007 force_sig(status
, current
);
1013 if (used_math()) /* Using the FPU again. */
1015 else { /* First time FPU user. */
1020 if (!raw_cpu_has_fpu
) {
1022 void __user
*fault_addr
= NULL
;
1023 sig
= fpu_emulator_cop1Handler(regs
,
1024 ¤t
->thread
.fpu
,
1026 if (!process_fpemu_return(sig
, fault_addr
))
1027 mt_ase_fp_affinity();
1033 raw_notifier_call_chain(&cu2_chain
, CU2_EXCEPTION
, regs
);
1040 force_sig(SIGILL
, current
);
1043 asmlinkage
void do_mdmx(struct pt_regs
*regs
)
1045 force_sig(SIGILL
, current
);
1049 * Called with interrupts disabled.
1051 asmlinkage
void do_watch(struct pt_regs
*regs
)
1056 * Clear WP (bit 22) bit of cause register so we don't loop
1059 cause
= read_c0_cause();
1060 cause
&= ~(1 << 22);
1061 write_c0_cause(cause
);
1064 * If the current thread has the watch registers loaded, save
1065 * their values and send SIGTRAP. Otherwise another thread
1066 * left the registers set, clear them and continue.
1068 if (test_tsk_thread_flag(current
, TIF_LOAD_WATCH
)) {
1069 mips_read_watch_registers();
1071 force_sig(SIGTRAP
, current
);
1073 mips_clear_watch_registers();
1078 asmlinkage
void do_mcheck(struct pt_regs
*regs
)
1080 const int field
= 2 * sizeof(unsigned long);
1081 int multi_match
= regs
->cp0_status
& ST0_TS
;
1086 printk("Index : %0x\n", read_c0_index());
1087 printk("Pagemask: %0x\n", read_c0_pagemask());
1088 printk("EntryHi : %0*lx\n", field
, read_c0_entryhi());
1089 printk("EntryLo0: %0*lx\n", field
, read_c0_entrylo0());
1090 printk("EntryLo1: %0*lx\n", field
, read_c0_entrylo1());
1095 show_code((unsigned int __user
*) regs
->cp0_epc
);
1098 * Some chips may have other causes of machine check (e.g. SB1
1101 panic("Caught Machine Check exception - %scaused by multiple "
1102 "matching entries in the TLB.",
1103 (multi_match
) ? "" : "not ");
1106 asmlinkage
void do_mt(struct pt_regs
*regs
)
1110 subcode
= (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT
)
1111 >> VPECONTROL_EXCPT_SHIFT
;
1114 printk(KERN_DEBUG
"Thread Underflow\n");
1117 printk(KERN_DEBUG
"Thread Overflow\n");
1120 printk(KERN_DEBUG
"Invalid YIELD Qualifier\n");
1123 printk(KERN_DEBUG
"Gating Storage Exception\n");
1126 printk(KERN_DEBUG
"YIELD Scheduler Exception\n");
1129 printk(KERN_DEBUG
"Gating Storage Schedulier Exception\n");
1132 printk(KERN_DEBUG
"*** UNKNOWN THREAD EXCEPTION %d ***\n",
1136 die_if_kernel("MIPS MT Thread exception in kernel", regs
);
1138 force_sig(SIGILL
, current
);
1142 asmlinkage
void do_dsp(struct pt_regs
*regs
)
1145 panic("Unexpected DSP exception\n");
1147 force_sig(SIGILL
, current
);
1150 asmlinkage
void do_reserved(struct pt_regs
*regs
)
1153 * Game over - no way to handle this if it ever occurs. Most probably
1154 * caused by a new unknown cpu type or after another deadly
1155 * hard/software error.
1158 panic("Caught reserved exception %ld - should not happen.",
1159 (regs
->cp0_cause
& 0x7f) >> 2);
1162 static int __initdata l1parity
= 1;
1163 static int __init
nol1parity(char *s
)
1168 __setup("nol1par", nol1parity
);
1169 static int __initdata l2parity
= 1;
1170 static int __init
nol2parity(char *s
)
1175 __setup("nol2par", nol2parity
);
1178 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1179 * it different ways.
1181 static inline void parity_protection_init(void)
1183 switch (current_cpu_type()) {
1189 #define ERRCTL_PE 0x80000000
1190 #define ERRCTL_L2P 0x00800000
1191 unsigned long errctl
;
1192 unsigned int l1parity_present
, l2parity_present
;
1194 errctl
= read_c0_ecc();
1195 errctl
&= ~(ERRCTL_PE
|ERRCTL_L2P
);
1197 /* probe L1 parity support */
1198 write_c0_ecc(errctl
| ERRCTL_PE
);
1199 back_to_back_c0_hazard();
1200 l1parity_present
= (read_c0_ecc() & ERRCTL_PE
);
1202 /* probe L2 parity support */
1203 write_c0_ecc(errctl
|ERRCTL_L2P
);
1204 back_to_back_c0_hazard();
1205 l2parity_present
= (read_c0_ecc() & ERRCTL_L2P
);
1207 if (l1parity_present
&& l2parity_present
) {
1209 errctl
|= ERRCTL_PE
;
1210 if (l1parity
^ l2parity
)
1211 errctl
|= ERRCTL_L2P
;
1212 } else if (l1parity_present
) {
1214 errctl
|= ERRCTL_PE
;
1215 } else if (l2parity_present
) {
1217 errctl
|= ERRCTL_L2P
;
1219 /* No parity available */
1222 printk(KERN_INFO
"Writing ErrCtl register=%08lx\n", errctl
);
1224 write_c0_ecc(errctl
);
1225 back_to_back_c0_hazard();
1226 errctl
= read_c0_ecc();
1227 printk(KERN_INFO
"Readback ErrCtl register=%08lx\n", errctl
);
1229 if (l1parity_present
)
1230 printk(KERN_INFO
"Cache parity protection %sabled\n",
1231 (errctl
& ERRCTL_PE
) ? "en" : "dis");
1233 if (l2parity_present
) {
1234 if (l1parity_present
&& l1parity
)
1235 errctl
^= ERRCTL_L2P
;
1236 printk(KERN_INFO
"L2 cache parity protection %sabled\n",
1237 (errctl
& ERRCTL_L2P
) ? "en" : "dis");
1243 write_c0_ecc(0x80000000);
1244 back_to_back_c0_hazard();
1245 /* Set the PE bit (bit 31) in the c0_errctl register. */
1246 printk(KERN_INFO
"Cache parity protection %sabled\n",
1247 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1251 /* Clear the DE bit (bit 16) in the c0_status register. */
1252 printk(KERN_INFO
"Enable cache parity protection for "
1253 "MIPS 20KC/25KF CPUs.\n");
1254 clear_c0_status(ST0_DE
);
1261 asmlinkage
void cache_parity_error(void)
1263 const int field
= 2 * sizeof(unsigned long);
1264 unsigned int reg_val
;
1266 /* For the moment, report the problem and hang. */
1267 printk("Cache error exception:\n");
1268 printk("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1269 reg_val
= read_c0_cacheerr();
1270 printk("c0_cacheerr == %08x\n", reg_val
);
1272 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1273 reg_val
& (1<<30) ? "secondary" : "primary",
1274 reg_val
& (1<<31) ? "data" : "insn");
1275 printk("Error bits: %s%s%s%s%s%s%s\n",
1276 reg_val
& (1<<29) ? "ED " : "",
1277 reg_val
& (1<<28) ? "ET " : "",
1278 reg_val
& (1<<26) ? "EE " : "",
1279 reg_val
& (1<<25) ? "EB " : "",
1280 reg_val
& (1<<24) ? "EI " : "",
1281 reg_val
& (1<<23) ? "E1 " : "",
1282 reg_val
& (1<<22) ? "E0 " : "");
1283 printk("IDX: 0x%08x\n", reg_val
& ((1<<22)-1));
1285 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1286 if (reg_val
& (1<<22))
1287 printk("DErrAddr0: 0x%0*lx\n", field
, read_c0_derraddr0());
1289 if (reg_val
& (1<<23))
1290 printk("DErrAddr1: 0x%0*lx\n", field
, read_c0_derraddr1());
1293 panic("Can't handle the cache error!");
1297 * SDBBP EJTAG debug exception handler.
1298 * We skip the instruction and return to the next instruction.
1300 void ejtag_exception_handler(struct pt_regs
*regs
)
1302 const int field
= 2 * sizeof(unsigned long);
1303 unsigned long depc
, old_epc
;
1306 printk(KERN_DEBUG
"SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1307 depc
= read_c0_depc();
1308 debug
= read_c0_debug();
1309 printk(KERN_DEBUG
"c0_depc = %0*lx, DEBUG = %08x\n", field
, depc
, debug
);
1310 if (debug
& 0x80000000) {
1312 * In branch delay slot.
1313 * We cheat a little bit here and use EPC to calculate the
1314 * debug return address (DEPC). EPC is restored after the
1317 old_epc
= regs
->cp0_epc
;
1318 regs
->cp0_epc
= depc
;
1319 __compute_return_epc(regs
);
1320 depc
= regs
->cp0_epc
;
1321 regs
->cp0_epc
= old_epc
;
1324 write_c0_depc(depc
);
1327 printk(KERN_DEBUG
"\n\n----- Enable EJTAG single stepping ----\n\n");
1328 write_c0_debug(debug
| 0x100);
1333 * NMI exception handler.
1335 NORET_TYPE
void ATTRIB_NORET
nmi_exception_handler(struct pt_regs
*regs
)
1338 printk("NMI taken!!!!\n");
1342 #define VECTORSPACING 0x100 /* for EI/VI mode */
1344 unsigned long ebase
;
1345 unsigned long exception_handlers
[32];
1346 unsigned long vi_handlers
[64];
1348 void __init
*set_except_vector(int n
, void *addr
)
1350 unsigned long handler
= (unsigned long) addr
;
1351 unsigned long old_handler
= exception_handlers
[n
];
1353 exception_handlers
[n
] = handler
;
1354 if (n
== 0 && cpu_has_divec
) {
1355 unsigned long jump_mask
= ~((1 << 28) - 1);
1356 u32
*buf
= (u32
*)(ebase
+ 0x200);
1357 unsigned int k0
= 26;
1358 if ((handler
& jump_mask
) == ((ebase
+ 0x200) & jump_mask
)) {
1359 uasm_i_j(&buf
, handler
& ~jump_mask
);
1362 UASM_i_LA(&buf
, k0
, handler
);
1363 uasm_i_jr(&buf
, k0
);
1366 local_flush_icache_range(ebase
+ 0x200, (unsigned long)buf
);
1368 return (void *)old_handler
;
1371 static asmlinkage
void do_default_vi(void)
1373 show_regs(get_irq_regs());
1374 panic("Caught unexpected vectored interrupt.");
1377 static void *set_vi_srs_handler(int n
, vi_handler_t addr
, int srs
)
1379 unsigned long handler
;
1380 unsigned long old_handler
= vi_handlers
[n
];
1381 int srssets
= current_cpu_data
.srsets
;
1385 BUG_ON(!cpu_has_veic
&& !cpu_has_vint
);
1388 handler
= (unsigned long) do_default_vi
;
1391 handler
= (unsigned long) addr
;
1392 vi_handlers
[n
] = (unsigned long) addr
;
1394 b
= (unsigned char *)(ebase
+ 0x200 + n
*VECTORSPACING
);
1397 panic("Shadow register set %d not supported", srs
);
1400 if (board_bind_eic_interrupt
)
1401 board_bind_eic_interrupt(n
, srs
);
1402 } else if (cpu_has_vint
) {
1403 /* SRSMap is only defined if shadow sets are implemented */
1405 change_c0_srsmap(0xf << n
*4, srs
<< n
*4);
1410 * If no shadow set is selected then use the default handler
1411 * that does normal register saving and a standard interrupt exit
1414 extern char except_vec_vi
, except_vec_vi_lui
;
1415 extern char except_vec_vi_ori
, except_vec_vi_end
;
1416 extern char rollback_except_vec_vi
;
1417 char *vec_start
= (cpu_wait
== r4k_wait
) ?
1418 &rollback_except_vec_vi
: &except_vec_vi
;
1419 #ifdef CONFIG_MIPS_MT_SMTC
1421 * We need to provide the SMTC vectored interrupt handler
1422 * not only with the address of the handler, but with the
1423 * Status.IM bit to be masked before going there.
1425 extern char except_vec_vi_mori
;
1426 const int mori_offset
= &except_vec_vi_mori
- vec_start
;
1427 #endif /* CONFIG_MIPS_MT_SMTC */
1428 const int handler_len
= &except_vec_vi_end
- vec_start
;
1429 const int lui_offset
= &except_vec_vi_lui
- vec_start
;
1430 const int ori_offset
= &except_vec_vi_ori
- vec_start
;
1432 if (handler_len
> VECTORSPACING
) {
1434 * Sigh... panicing won't help as the console
1435 * is probably not configured :(
1437 panic("VECTORSPACING too small");
1440 memcpy(b
, vec_start
, handler_len
);
1441 #ifdef CONFIG_MIPS_MT_SMTC
1442 BUG_ON(n
> 7); /* Vector index %d exceeds SMTC maximum. */
1444 w
= (u32
*)(b
+ mori_offset
);
1445 *w
= (*w
& 0xffff0000) | (0x100 << n
);
1446 #endif /* CONFIG_MIPS_MT_SMTC */
1447 w
= (u32
*)(b
+ lui_offset
);
1448 *w
= (*w
& 0xffff0000) | (((u32
)handler
>> 16) & 0xffff);
1449 w
= (u32
*)(b
+ ori_offset
);
1450 *w
= (*w
& 0xffff0000) | ((u32
)handler
& 0xffff);
1451 local_flush_icache_range((unsigned long)b
,
1452 (unsigned long)(b
+handler_len
));
1456 * In other cases jump directly to the interrupt handler
1458 * It is the handlers responsibility to save registers if required
1459 * (eg hi/lo) and return from the exception using "eret"
1462 *w
++ = 0x08000000 | (((u32
)handler
>> 2) & 0x03fffff); /* j handler */
1464 local_flush_icache_range((unsigned long)b
,
1465 (unsigned long)(b
+8));
1468 return (void *)old_handler
;
1471 void *set_vi_handler(int n
, vi_handler_t addr
)
1473 return set_vi_srs_handler(n
, addr
, 0);
1476 extern void cpu_cache_init(void);
1477 extern void tlb_init(void);
1478 extern void flush_tlb_handlers(void);
1483 int cp0_compare_irq
;
1484 int cp0_compare_irq_shift
;
1487 * Performance counter IRQ or -1 if shared with timer
1489 int cp0_perfcount_irq
;
1490 EXPORT_SYMBOL_GPL(cp0_perfcount_irq
);
1492 static int __cpuinitdata noulri
;
1494 static int __init
ulri_disable(char *s
)
1496 pr_info("Disabling ulri\n");
1501 __setup("noulri", ulri_disable
);
1503 void __cpuinit
per_cpu_trap_init(void)
1505 unsigned int cpu
= smp_processor_id();
1506 unsigned int status_set
= ST0_CU0
;
1507 unsigned int hwrena
= cpu_hwrena_impl_bits
;
1508 #ifdef CONFIG_MIPS_MT_SMTC
1509 int secondaryTC
= 0;
1510 int bootTC
= (cpu
== 0);
1513 * Only do per_cpu_trap_init() for first TC of Each VPE.
1514 * Note that this hack assumes that the SMTC init code
1515 * assigns TCs consecutively and in ascending order.
1518 if (((read_c0_tcbind() & TCBIND_CURTC
) != 0) &&
1519 ((read_c0_tcbind() & TCBIND_CURVPE
) == cpu_data
[cpu
- 1].vpe_id
))
1521 #endif /* CONFIG_MIPS_MT_SMTC */
1524 * Disable coprocessors and select 32-bit or 64-bit addressing
1525 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1526 * flag that some firmware may have left set and the TS bit (for
1527 * IP27). Set XX for ISA IV code to work.
1530 status_set
|= ST0_FR
|ST0_KX
|ST0_SX
|ST0_UX
;
1532 if (current_cpu_data
.isa_level
== MIPS_CPU_ISA_IV
)
1533 status_set
|= ST0_XX
;
1535 status_set
|= ST0_MX
;
1537 change_c0_status(ST0_CU
|ST0_MX
|ST0_RE
|ST0_FR
|ST0_BEV
|ST0_TS
|ST0_KX
|ST0_SX
|ST0_UX
,
1540 if (cpu_has_mips_r2
)
1541 hwrena
|= 0x0000000f;
1543 if (!noulri
&& cpu_has_userlocal
)
1544 hwrena
|= (1 << 29);
1547 write_c0_hwrena(hwrena
);
1549 #ifdef CONFIG_MIPS_MT_SMTC
1551 #endif /* CONFIG_MIPS_MT_SMTC */
1553 if (cpu_has_veic
|| cpu_has_vint
) {
1554 unsigned long sr
= set_c0_status(ST0_BEV
);
1555 write_c0_ebase(ebase
);
1556 write_c0_status(sr
);
1557 /* Setting vector spacing enables EI/VI mode */
1558 change_c0_intctl(0x3e0, VECTORSPACING
);
1560 if (cpu_has_divec
) {
1561 if (cpu_has_mipsmt
) {
1562 unsigned int vpflags
= dvpe();
1563 set_c0_cause(CAUSEF_IV
);
1566 set_c0_cause(CAUSEF_IV
);
1570 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1572 * o read IntCtl.IPTI to determine the timer interrupt
1573 * o read IntCtl.IPPCI to determine the performance counter interrupt
1575 if (cpu_has_mips_r2
) {
1576 cp0_compare_irq_shift
= CAUSEB_TI
- CAUSEB_IP
;
1577 cp0_compare_irq
= (read_c0_intctl() >> INTCTLB_IPTI
) & 7;
1578 cp0_perfcount_irq
= (read_c0_intctl() >> INTCTLB_IPPCI
) & 7;
1579 if (cp0_perfcount_irq
== cp0_compare_irq
)
1580 cp0_perfcount_irq
= -1;
1582 cp0_compare_irq
= CP0_LEGACY_COMPARE_IRQ
;
1583 cp0_compare_irq_shift
= cp0_compare_irq
;
1584 cp0_perfcount_irq
= -1;
1587 #ifdef CONFIG_MIPS_MT_SMTC
1589 #endif /* CONFIG_MIPS_MT_SMTC */
1591 cpu_data
[cpu
].asid_cache
= ASID_FIRST_VERSION
;
1593 atomic_inc(&init_mm
.mm_count
);
1594 current
->active_mm
= &init_mm
;
1595 BUG_ON(current
->mm
);
1596 enter_lazy_tlb(&init_mm
, current
);
1598 #ifdef CONFIG_MIPS_MT_SMTC
1600 #endif /* CONFIG_MIPS_MT_SMTC */
1603 #ifdef CONFIG_MIPS_MT_SMTC
1604 } else if (!secondaryTC
) {
1606 * First TC in non-boot VPE must do subset of tlb_init()
1607 * for MMU countrol registers.
1609 write_c0_pagemask(PM_DEFAULT_MASK
);
1612 #endif /* CONFIG_MIPS_MT_SMTC */
1613 TLBMISS_HANDLER_SETUP();
1616 /* Install CPU exception handler */
1617 void __init
set_handler(unsigned long offset
, void *addr
, unsigned long size
)
1619 memcpy((void *)(ebase
+ offset
), addr
, size
);
1620 local_flush_icache_range(ebase
+ offset
, ebase
+ offset
+ size
);
1623 static char panic_null_cerr
[] __cpuinitdata
=
1624 "Trying to set NULL cache error exception handler";
1627 * Install uncached CPU exception handler.
1628 * This is suitable only for the cache error exception which is the only
1629 * exception handler that is being run uncached.
1631 void __cpuinit
set_uncached_handler(unsigned long offset
, void *addr
,
1634 unsigned long uncached_ebase
= CKSEG1ADDR(ebase
);
1637 panic(panic_null_cerr
);
1639 memcpy((void *)(uncached_ebase
+ offset
), addr
, size
);
1642 static int __initdata rdhwr_noopt
;
1643 static int __init
set_rdhwr_noopt(char *str
)
1649 __setup("rdhwr_noopt", set_rdhwr_noopt
);
1651 void __init
trap_init(void)
1653 extern char except_vec3_generic
, except_vec3_r4000
;
1654 extern char except_vec4
;
1659 rollback
= (cpu_wait
== r4k_wait
);
1661 #if defined(CONFIG_KGDB)
1662 if (kgdb_early_setup
)
1663 return; /* Already done */
1666 if (cpu_has_veic
|| cpu_has_vint
) {
1667 unsigned long size
= 0x200 + VECTORSPACING
*64;
1668 ebase
= (unsigned long)
1669 __alloc_bootmem(size
, 1 << fls(size
), 0);
1672 if (cpu_has_mips_r2
)
1673 ebase
+= (read_c0_ebase() & 0x3ffff000);
1676 per_cpu_trap_init();
1679 * Copy the generic exception handlers to their final destination.
1680 * This will be overriden later as suitable for a particular
1683 set_handler(0x180, &except_vec3_generic
, 0x80);
1686 * Setup default vectors
1688 for (i
= 0; i
<= 31; i
++)
1689 set_except_vector(i
, handle_reserved
);
1692 * Copy the EJTAG debug exception vector handler code to it's final
1695 if (cpu_has_ejtag
&& board_ejtag_handler_setup
)
1696 board_ejtag_handler_setup();
1699 * Only some CPUs have the watch exceptions.
1702 set_except_vector(23, handle_watch
);
1705 * Initialise interrupt handlers
1707 if (cpu_has_veic
|| cpu_has_vint
) {
1708 int nvec
= cpu_has_veic
? 64 : 8;
1709 for (i
= 0; i
< nvec
; i
++)
1710 set_vi_handler(i
, NULL
);
1712 else if (cpu_has_divec
)
1713 set_handler(0x200, &except_vec4
, 0x8);
1716 * Some CPUs can enable/disable for cache parity detection, but does
1717 * it different ways.
1719 parity_protection_init();
1722 * The Data Bus Errors / Instruction Bus Errors are signaled
1723 * by external hardware. Therefore these two exceptions
1724 * may have board specific handlers.
1729 set_except_vector(0, rollback
? rollback_handle_int
: handle_int
);
1730 set_except_vector(1, handle_tlbm
);
1731 set_except_vector(2, handle_tlbl
);
1732 set_except_vector(3, handle_tlbs
);
1734 set_except_vector(4, handle_adel
);
1735 set_except_vector(5, handle_ades
);
1737 set_except_vector(6, handle_ibe
);
1738 set_except_vector(7, handle_dbe
);
1740 set_except_vector(8, handle_sys
);
1741 set_except_vector(9, handle_bp
);
1742 set_except_vector(10, rdhwr_noopt
? handle_ri
:
1743 (cpu_has_vtag_icache
?
1744 handle_ri_rdhwr_vivt
: handle_ri_rdhwr
));
1745 set_except_vector(11, handle_cpu
);
1746 set_except_vector(12, handle_ov
);
1747 set_except_vector(13, handle_tr
);
1749 if (current_cpu_type() == CPU_R6000
||
1750 current_cpu_type() == CPU_R6000A
) {
1752 * The R6000 is the only R-series CPU that features a machine
1753 * check exception (similar to the R4000 cache error) and
1754 * unaligned ldc1/sdc1 exception. The handlers have not been
1755 * written yet. Well, anyway there is no R6000 machine on the
1756 * current list of targets for Linux/MIPS.
1757 * (Duh, crap, there is someone with a triple R6k machine)
1759 //set_except_vector(14, handle_mc);
1760 //set_except_vector(15, handle_ndc);
1764 if (board_nmi_handler_setup
)
1765 board_nmi_handler_setup();
1767 if (cpu_has_fpu
&& !cpu_has_nofpuex
)
1768 set_except_vector(15, handle_fpe
);
1770 set_except_vector(22, handle_mdmx
);
1773 set_except_vector(24, handle_mcheck
);
1776 set_except_vector(25, handle_mt
);
1778 set_except_vector(26, handle_dsp
);
1781 /* Special exception: R4[04]00 uses also the divec space. */
1782 memcpy((void *)(ebase
+ 0x180), &except_vec3_r4000
, 0x100);
1783 else if (cpu_has_4kex
)
1784 memcpy((void *)(ebase
+ 0x180), &except_vec3_generic
, 0x80);
1786 memcpy((void *)(ebase
+ 0x080), &except_vec3_generic
, 0x80);
1788 local_flush_icache_range(ebase
, ebase
+ 0x400);
1789 flush_tlb_handlers();
1791 sort_extable(__start___dbe_table
, __stop___dbe_table
);
1793 cu2_notifier(default_cu2_call
, 0x80000000); /* Run last */