2 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3 * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
6 * Architecture- / platform-specific boot-time initialization code for
7 * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
8 * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
19 #include <linux/init.h>
20 #include <linux/threads.h>
21 #include <linux/smp.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/export.h>
25 #include <linux/seq_file.h>
26 #include <linux/kdev_t.h>
27 #include <linux/kexec.h>
28 #include <linux/major.h>
29 #include <linux/root_dev.h>
30 #include <linux/kernel.h>
31 #include <linux/hrtimer.h>
32 #include <linux/tick.h>
34 #include <asm/processor.h>
35 #include <asm/machdep.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu_context.h>
40 #include <asm/cputable.h>
41 #include <asm/sections.h>
42 #include <asm/iommu.h>
43 #include <asm/firmware.h>
44 #include <asm/system.h>
47 #include <asm/cache.h>
48 #include <asm/abs_addr.h>
49 #include <asm/iseries/hv_lp_config.h>
50 #include <asm/iseries/hv_call_event.h>
51 #include <asm/iseries/hv_call_xm.h>
52 #include <asm/iseries/it_lp_queue.h>
53 #include <asm/iseries/mf.h>
54 #include <asm/iseries/hv_lp_event.h>
55 #include <asm/iseries/lpar_map.h>
62 #include "vpd_areas.h"
63 #include "processor_vpd.h"
64 #include "it_lp_naca.h"
65 #include "main_store.h"
71 #define DBG(fmt...) udbg_printf(fmt)
76 /* Function Prototypes */
77 static unsigned long build_iSeries_Memory_Map(void);
78 static void iseries_shared_idle(void);
79 static void iseries_dedicated_idle(void);
83 unsigned long absStart
;
85 unsigned long logicalStart
;
86 unsigned long logicalEnd
;
90 * Process the main store vpd to determine where the holes in memory are
91 * and return the number of physical blocks and fill in the array of
94 static unsigned long iSeries_process_Condor_mainstore_vpd(
95 struct MemoryBlock
*mb_array
, unsigned long max_entries
)
97 unsigned long holeFirstChunk
, holeSizeChunks
;
98 unsigned long numMemoryBlocks
= 1;
99 struct IoHriMainStoreSegment4
*msVpd
=
100 (struct IoHriMainStoreSegment4
*)xMsVpd
;
101 unsigned long holeStart
= msVpd
->nonInterleavedBlocksStartAdr
;
102 unsigned long holeEnd
= msVpd
->nonInterleavedBlocksEndAdr
;
103 unsigned long holeSize
= holeEnd
- holeStart
;
105 printk("Mainstore_VPD: Condor\n");
107 * Determine if absolute memory has any
108 * holes so that we can interpret the
109 * access map we get back from the hypervisor
112 mb_array
[0].logicalStart
= 0;
113 mb_array
[0].logicalEnd
= 0x100000000UL
;
114 mb_array
[0].absStart
= 0;
115 mb_array
[0].absEnd
= 0x100000000UL
;
119 holeStart
= holeStart
& 0x000fffffffffffffUL
;
120 holeStart
= addr_to_chunk(holeStart
);
121 holeFirstChunk
= holeStart
;
122 holeSize
= addr_to_chunk(holeSize
);
123 holeSizeChunks
= holeSize
;
124 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
125 holeFirstChunk
, holeSizeChunks
);
126 mb_array
[0].logicalEnd
= holeFirstChunk
;
127 mb_array
[0].absEnd
= holeFirstChunk
;
128 mb_array
[1].logicalStart
= holeFirstChunk
;
129 mb_array
[1].logicalEnd
= 0x100000000UL
- holeSizeChunks
;
130 mb_array
[1].absStart
= holeFirstChunk
+ holeSizeChunks
;
131 mb_array
[1].absEnd
= 0x100000000UL
;
133 return numMemoryBlocks
;
136 #define MaxSegmentAreas 32
137 #define MaxSegmentAdrRangeBlocks 128
138 #define MaxAreaRangeBlocks 4
140 static unsigned long iSeries_process_Regatta_mainstore_vpd(
141 struct MemoryBlock
*mb_array
, unsigned long max_entries
)
143 struct IoHriMainStoreSegment5
*msVpdP
=
144 (struct IoHriMainStoreSegment5
*)xMsVpd
;
145 unsigned long numSegmentBlocks
= 0;
146 u32 existsBits
= msVpdP
->msAreaExists
;
147 unsigned long area_num
;
149 printk("Mainstore_VPD: Regatta\n");
151 for (area_num
= 0; area_num
< MaxSegmentAreas
; ++area_num
) {
152 unsigned long numAreaBlocks
;
153 struct IoHriMainStoreArea4
*currentArea
;
155 if (existsBits
& 0x80000000) {
156 unsigned long block_num
;
158 currentArea
= &msVpdP
->msAreaArray
[area_num
];
159 numAreaBlocks
= currentArea
->numAdrRangeBlocks
;
160 printk("ms_vpd: processing area %2ld blocks=%ld",
161 area_num
, numAreaBlocks
);
162 for (block_num
= 0; block_num
< numAreaBlocks
;
164 /* Process an address range block */
165 struct MemoryBlock tempBlock
;
169 (unsigned long)currentArea
->xAdrRangeBlock
[block_num
].blockStart
;
171 (unsigned long)currentArea
->xAdrRangeBlock
[block_num
].blockEnd
;
172 tempBlock
.logicalStart
= 0;
173 tempBlock
.logicalEnd
= 0;
174 printk("\n block %ld absStart=%016lx absEnd=%016lx",
175 block_num
, tempBlock
.absStart
,
178 for (i
= 0; i
< numSegmentBlocks
; ++i
) {
179 if (mb_array
[i
].absStart
==
183 if (i
== numSegmentBlocks
) {
184 if (numSegmentBlocks
== max_entries
)
185 panic("iSeries_process_mainstore_vpd: too many memory blocks");
186 mb_array
[numSegmentBlocks
] = tempBlock
;
189 printk(" (duplicate)");
195 /* Now sort the blocks found into ascending sequence */
196 if (numSegmentBlocks
> 1) {
199 for (m
= 0; m
< numSegmentBlocks
- 1; ++m
) {
200 for (n
= numSegmentBlocks
- 1; m
< n
; --n
) {
201 if (mb_array
[n
].absStart
<
202 mb_array
[n
-1].absStart
) {
203 struct MemoryBlock tempBlock
;
205 tempBlock
= mb_array
[n
];
206 mb_array
[n
] = mb_array
[n
-1];
207 mb_array
[n
-1] = tempBlock
;
213 * Assign "logical" addresses to each block. These
214 * addresses correspond to the hypervisor "bitmap" space.
215 * Convert all addresses into units of 256K chunks.
218 unsigned long i
, nextBitmapAddress
;
220 printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks
);
221 nextBitmapAddress
= 0;
222 for (i
= 0; i
< numSegmentBlocks
; ++i
) {
223 unsigned long length
= mb_array
[i
].absEnd
-
224 mb_array
[i
].absStart
;
226 mb_array
[i
].logicalStart
= nextBitmapAddress
;
227 mb_array
[i
].logicalEnd
= nextBitmapAddress
+ length
;
228 nextBitmapAddress
+= length
;
229 printk(" Bitmap range: %016lx - %016lx\n"
230 " Absolute range: %016lx - %016lx\n",
231 mb_array
[i
].logicalStart
,
232 mb_array
[i
].logicalEnd
,
233 mb_array
[i
].absStart
, mb_array
[i
].absEnd
);
234 mb_array
[i
].absStart
= addr_to_chunk(mb_array
[i
].absStart
&
235 0x000fffffffffffffUL
);
236 mb_array
[i
].absEnd
= addr_to_chunk(mb_array
[i
].absEnd
&
237 0x000fffffffffffffUL
);
238 mb_array
[i
].logicalStart
=
239 addr_to_chunk(mb_array
[i
].logicalStart
);
240 mb_array
[i
].logicalEnd
= addr_to_chunk(mb_array
[i
].logicalEnd
);
244 return numSegmentBlocks
;
247 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock
*mb_array
,
248 unsigned long max_entries
)
251 unsigned long mem_blocks
= 0;
253 if (mmu_has_feature(MMU_FTR_SLB
))
254 mem_blocks
= iSeries_process_Regatta_mainstore_vpd(mb_array
,
257 mem_blocks
= iSeries_process_Condor_mainstore_vpd(mb_array
,
260 printk("Mainstore_VPD: numMemoryBlocks = %ld\n", mem_blocks
);
261 for (i
= 0; i
< mem_blocks
; ++i
) {
262 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
263 " abs chunks %016lx - %016lx\n",
264 i
, mb_array
[i
].logicalStart
, mb_array
[i
].logicalEnd
,
265 mb_array
[i
].absStart
, mb_array
[i
].absEnd
);
270 static void __init
iSeries_get_cmdline(void)
274 /* copy the command line parameter from the primary VSP */
275 HvCallEvent_dmaToSp(cmd_line
, 2 * 64* 1024, 256,
276 HvLpDma_Direction_RemoteToLocal
);
281 if (!*p
|| *p
== '\n')
288 static void __init
iSeries_init_early(void)
290 DBG(" -> iSeries_init_early()\n");
292 /* Snapshot the timebase, for use in later recalibration */
293 iSeries_time_init_early();
296 * Initialize the DMA/TCE management
298 iommu_init_early_iSeries();
300 /* Initialize machine-dependency vectors */
305 /* Associate Lp Event Queue 0 with processor 0 */
306 HvCallEvent_setLpEventQueueInterruptProc(0, 0);
310 DBG(" <- iSeries_init_early()\n");
313 struct mschunks_map mschunks_map
= {
314 /* XXX We don't use these, but Piranha might need them. */
315 .chunk_size
= MSCHUNKS_CHUNK_SIZE
,
316 .chunk_shift
= MSCHUNKS_CHUNK_SHIFT
,
317 .chunk_mask
= MSCHUNKS_OFFSET_MASK
,
319 EXPORT_SYMBOL(mschunks_map
);
321 static void mschunks_alloc(unsigned long num_chunks
)
323 klimit
= _ALIGN(klimit
, sizeof(u32
));
324 mschunks_map
.mapping
= (u32
*)klimit
;
325 klimit
+= num_chunks
* sizeof(u32
);
326 mschunks_map
.num_chunks
= num_chunks
;
330 * The iSeries may have very large memories ( > 128 GB ) and a partition
331 * may get memory in "chunks" that may be anywhere in the 2**52 real
332 * address space. The chunks are 256K in size. To map this to the
333 * memory model Linux expects, the AS/400 specific code builds a
334 * translation table to translate what Linux thinks are "physical"
335 * addresses to the actual real addresses. This allows us to make
336 * it appear to Linux that we have contiguous memory starting at
337 * physical address zero while in fact this could be far from the truth.
338 * To avoid confusion, I'll let the words physical and/or real address
339 * apply to the Linux addresses while I'll use "absolute address" to
340 * refer to the actual hardware real address.
342 * build_iSeries_Memory_Map gets information from the Hypervisor and
343 * looks at the Main Store VPD to determine the absolute addresses
344 * of the memory that has been assigned to our partition and builds
345 * a table used to translate Linux's physical addresses to these
346 * absolute addresses. Absolute addresses are needed when
347 * communicating with the hypervisor (e.g. to build HPT entries)
349 * Returns the physical memory size
352 static unsigned long __init
build_iSeries_Memory_Map(void)
354 u32 loadAreaFirstChunk
, loadAreaLastChunk
, loadAreaSize
;
356 u32 hptFirstChunk
, hptLastChunk
, hptSizeChunks
, hptSizePages
;
357 u32 totalChunks
,moreChunks
;
358 u32 currChunk
, thisChunk
, absChunk
;
362 struct MemoryBlock mb
[32];
363 unsigned long numMemoryBlocks
, curBlock
;
365 /* Chunk size on iSeries is 256K bytes */
366 totalChunks
= (u32
)HvLpConfig_getMsChunks();
367 mschunks_alloc(totalChunks
);
370 * Get absolute address of our load area
371 * and map it to physical address 0
372 * This guarantees that the loadarea ends up at physical 0
373 * otherwise, it might not be returned by PLIC as the first
377 loadAreaFirstChunk
= (u32
)addr_to_chunk(itLpNaca
.xLoadAreaAddr
);
378 loadAreaSize
= itLpNaca
.xLoadAreaChunks
;
381 * Only add the pages already mapped here.
382 * Otherwise we might add the hpt pages
383 * The rest of the pages of the load area
384 * aren't in the HPT yet and can still
385 * be assigned an arbitrary physical address
387 if ((loadAreaSize
* 64) > HvPagesToMap
)
388 loadAreaSize
= HvPagesToMap
/ 64;
390 loadAreaLastChunk
= loadAreaFirstChunk
+ loadAreaSize
- 1;
393 * TODO Do we need to do something if the HPT is in the 64MB load area?
394 * This would be required if the itLpNaca.xLoadAreaChunks includes
398 printk("Mapping load area - physical addr = 0000000000000000\n"
399 " absolute addr = %016lx\n",
400 chunk_to_addr(loadAreaFirstChunk
));
401 printk("Load area size %dK\n", loadAreaSize
* 256);
403 for (nextPhysChunk
= 0; nextPhysChunk
< loadAreaSize
; ++nextPhysChunk
)
404 mschunks_map
.mapping
[nextPhysChunk
] =
405 loadAreaFirstChunk
+ nextPhysChunk
;
408 * Get absolute address of our HPT and remember it so
409 * we won't map it to any physical address
411 hptFirstChunk
= (u32
)addr_to_chunk(HvCallHpt_getHptAddress());
412 hptSizePages
= (u32
)HvCallHpt_getHptPages();
413 hptSizeChunks
= hptSizePages
>>
414 (MSCHUNKS_CHUNK_SHIFT
- HW_PAGE_SHIFT
);
415 hptLastChunk
= hptFirstChunk
+ hptSizeChunks
- 1;
417 printk("HPT absolute addr = %016lx, size = %dK\n",
418 chunk_to_addr(hptFirstChunk
), hptSizeChunks
* 256);
421 * Determine if absolute memory has any
422 * holes so that we can interpret the
423 * access map we get back from the hypervisor
426 numMemoryBlocks
= iSeries_process_mainstore_vpd(mb
, 32);
429 * Process the main store access map from the hypervisor
430 * to build up our physical -> absolute translation table
435 moreChunks
= totalChunks
;
438 map
= HvCallSm_get64BitsOfAccessMap(itLpNaca
.xLpIndex
,
440 thisChunk
= currChunk
;
442 chunkBit
= map
>> 63;
446 while (thisChunk
>= mb
[curBlock
].logicalEnd
) {
448 if (curBlock
>= numMemoryBlocks
)
449 panic("out of memory blocks");
451 if (thisChunk
< mb
[curBlock
].logicalStart
)
452 panic("memory block error");
454 absChunk
= mb
[curBlock
].absStart
+
455 (thisChunk
- mb
[curBlock
].logicalStart
);
456 if (((absChunk
< hptFirstChunk
) ||
457 (absChunk
> hptLastChunk
)) &&
458 ((absChunk
< loadAreaFirstChunk
) ||
459 (absChunk
> loadAreaLastChunk
))) {
460 mschunks_map
.mapping
[nextPhysChunk
] =
472 * main store size (in chunks) is
473 * totalChunks - hptSizeChunks
474 * which should be equal to
477 return chunk_to_addr(nextPhysChunk
);
483 static void __init
iSeries_setup_arch(void)
485 if (get_lppaca()->shared_proc
) {
486 ppc_md
.idle_loop
= iseries_shared_idle
;
487 printk(KERN_DEBUG
"Using shared processor idle loop\n");
489 ppc_md
.idle_loop
= iseries_dedicated_idle
;
490 printk(KERN_DEBUG
"Using dedicated idle loop\n");
493 /* Setup the Lp Event Queue */
494 setup_hvlpevent_queue();
496 printk("Max logical processors = %d\n",
497 itVpdAreas
.xSlicMaxLogicalProcs
);
498 printk("Max physical processors = %d\n",
499 itVpdAreas
.xSlicMaxPhysicalProcs
);
501 iSeries_pcibios_init();
504 static void iSeries_show_cpuinfo(struct seq_file
*m
)
506 seq_printf(m
, "machine\t\t: 64-bit iSeries Logical Partition\n");
509 static void __init
iSeries_progress(char * st
, unsigned short code
)
511 printk("Progress: [%04x] - %s\n", (unsigned)code
, st
);
512 mf_display_progress(code
);
515 static void __init
iSeries_fixup_klimit(void)
518 * Change klimit to take into account any ram disk
519 * that may be included
522 klimit
= KERNELBASE
+ (u64
)naca
.xRamDisk
+
523 (naca
.xRamDiskSize
* HW_PAGE_SIZE
);
526 static int __init
iSeries_src_init(void)
528 /* clear the progress line */
529 if (firmware_has_feature(FW_FEATURE_ISERIES
))
530 ppc_md
.progress(" ", 0xffff);
534 late_initcall(iSeries_src_init
);
536 static inline void process_iSeries_events(void)
538 asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
541 static void yield_shared_processor(void)
545 HvCall_setEnabledInterrupts(HvCall_MaskIPI
|
551 /* Compute future tb value when yield should expire */
552 HvCall_yieldProcessor(HvCall_YieldTimed
, tb
+tb_ticks_per_jiffy
);
555 * The decrementer stops during the yield. Force a fake decrementer
556 * here and let the timer_interrupt code sort out the actual time.
558 get_lppaca()->int_dword
.fields
.decr_int
= 1;
560 process_iSeries_events();
563 static void iseries_shared_idle(void)
566 tick_nohz_stop_sched_tick(1);
567 while (!need_resched() && !hvlpevent_is_pending()) {
569 ppc64_runlatch_off();
571 /* Recheck with irqs off */
572 if (!need_resched() && !hvlpevent_is_pending())
573 yield_shared_processor();
580 tick_nohz_restart_sched_tick();
582 if (hvlpevent_is_pending())
583 process_iSeries_events();
585 preempt_enable_no_resched();
591 static void iseries_dedicated_idle(void)
593 set_thread_flag(TIF_POLLING_NRFLAG
);
596 tick_nohz_stop_sched_tick(1);
597 if (!need_resched()) {
598 while (!need_resched()) {
599 ppc64_runlatch_off();
602 if (hvlpevent_is_pending()) {
605 process_iSeries_events();
613 tick_nohz_restart_sched_tick();
614 preempt_enable_no_resched();
620 static void __iomem
*iseries_ioremap(phys_addr_t address
, unsigned long size
,
621 unsigned long flags
, void *caller
)
623 return (void __iomem
*)address
;
626 static void iseries_iounmap(volatile void __iomem
*token
)
630 static int __init
iseries_probe(void)
632 unsigned long root
= of_get_flat_dt_root();
633 if (!of_flat_dt_is_compatible(root
, "IBM,iSeries"))
637 /* iSeries does not support 16M pages */
638 cur_cpu_spec
->mmu_features
&= ~MMU_FTR_16M_PAGE
;
644 static int iseries_kexec_prepare(struct kimage
*image
)
650 define_machine(iseries
) {
652 .setup_arch
= iSeries_setup_arch
,
653 .show_cpuinfo
= iSeries_show_cpuinfo
,
654 .init_IRQ
= iSeries_init_IRQ
,
655 .get_irq
= iSeries_get_irq
,
656 .init_early
= iSeries_init_early
,
657 .pcibios_fixup
= iSeries_pci_final_fixup
,
658 .pcibios_fixup_resources
= iSeries_pcibios_fixup_resources
,
659 .restart
= mf_reboot
,
660 .power_off
= mf_power_off
,
661 .halt
= mf_power_off
,
662 .get_boot_time
= iSeries_get_boot_time
,
663 .set_rtc_time
= iSeries_set_rtc_time
,
664 .get_rtc_time
= iSeries_get_rtc_time
,
665 .calibrate_decr
= generic_calibrate_decr
,
666 .progress
= iSeries_progress
,
667 .probe
= iseries_probe
,
668 .ioremap
= iseries_ioremap
,
669 .iounmap
= iseries_iounmap
,
671 .machine_kexec_prepare
= iseries_kexec_prepare
,
673 /* XXX Implement enable_pmcs for iSeries */
676 void * __init
iSeries_early_setup(void)
678 unsigned long phys_mem_size
;
680 /* Identify CPU type. This is done again by the common code later
681 * on but calling this function multiple times is fine.
683 identify_cpu(0, mfspr(SPRN_PVR
));
684 initialise_paca(&boot_paca
, 0);
686 powerpc_firmware_features
|= FW_FEATURE_ISERIES
;
687 powerpc_firmware_features
|= FW_FEATURE_LPAR
;
690 /* On iSeries we know we can never have more than 64 cpus */
691 nr_cpu_ids
= max(nr_cpu_ids
, 64);
694 iSeries_fixup_klimit();
697 * Initialize the table which translate Linux physical addresses to
698 * AS/400 absolute addresses
700 phys_mem_size
= build_iSeries_Memory_Map();
702 iSeries_get_cmdline();
704 return (void *) __pa(build_flat_dt(phys_mem_size
));
707 static void hvputc(char c
)
712 HvCall_writeLogBuffer(&c
, 1);
715 void __init
udbg_init_iseries(void)