Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / arch / tile / mm / fault.c
blob25b7b90fd62064b46cf6faf0204a7cbc78b28cc1
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
14 * From i386 code copyright (C) 1995 Linus Torvalds
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/mm.h>
26 #include <linux/smp.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/tty.h>
30 #include <linux/vt_kern.h> /* For unblank_screen() */
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/kprobes.h>
34 #include <linux/hugetlb.h>
35 #include <linux/syscalls.h>
36 #include <linux/uaccess.h>
38 #include <asm/system.h>
39 #include <asm/pgalloc.h>
40 #include <asm/sections.h>
41 #include <asm/traps.h>
42 #include <asm/syscalls.h>
44 #include <arch/interrupts.h>
46 static noinline void force_sig_info_fault(const char *type, int si_signo,
47 int si_code, unsigned long address,
48 int fault_num,
49 struct task_struct *tsk,
50 struct pt_regs *regs)
52 siginfo_t info;
54 if (unlikely(tsk->pid < 2)) {
55 panic("Signal %d (code %d) at %#lx sent to %s!",
56 si_signo, si_code & 0xffff, address,
57 tsk->pid ? "init" : "the idle task");
60 info.si_signo = si_signo;
61 info.si_errno = 0;
62 info.si_code = si_code;
63 info.si_addr = (void __user *)address;
64 info.si_trapno = fault_num;
65 trace_unhandled_signal(type, regs, address, si_signo);
66 force_sig_info(si_signo, &info, tsk);
69 #ifndef __tilegx__
71 * Synthesize the fault a PL0 process would get by doing a word-load of
72 * an unaligned address or a high kernel address.
74 SYSCALL_DEFINE2(cmpxchg_badaddr, unsigned long, address,
75 struct pt_regs *, regs)
77 if (address >= PAGE_OFFSET)
78 force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
79 address, INT_DTLB_MISS, current, regs);
80 else
81 force_sig_info_fault("atomic alignment fault", SIGBUS,
82 BUS_ADRALN, address,
83 INT_UNALIGN_DATA, current, regs);
86 * Adjust pc to point at the actual instruction, which is unusual
87 * for syscalls normally, but is appropriate when we are claiming
88 * that a syscall swint1 caused a page fault or bus error.
90 regs->pc -= 8;
93 * Mark this as a caller-save interrupt, like a normal page fault,
94 * so that when we go through the signal handler path we will
95 * properly restore r0, r1, and r2 for the signal handler arguments.
97 regs->flags |= PT_FLAGS_CALLER_SAVES;
99 return 0;
101 #endif
103 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
105 unsigned index = pgd_index(address);
106 pgd_t *pgd_k;
107 pud_t *pud, *pud_k;
108 pmd_t *pmd, *pmd_k;
110 pgd += index;
111 pgd_k = init_mm.pgd + index;
113 if (!pgd_present(*pgd_k))
114 return NULL;
116 pud = pud_offset(pgd, address);
117 pud_k = pud_offset(pgd_k, address);
118 if (!pud_present(*pud_k))
119 return NULL;
121 pmd = pmd_offset(pud, address);
122 pmd_k = pmd_offset(pud_k, address);
123 if (!pmd_present(*pmd_k))
124 return NULL;
125 if (!pmd_present(*pmd)) {
126 set_pmd(pmd, *pmd_k);
127 arch_flush_lazy_mmu_mode();
128 } else
129 BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
130 return pmd_k;
134 * Handle a fault on the vmalloc or module mapping area
136 static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
138 pmd_t *pmd_k;
139 pte_t *pte_k;
141 /* Make sure we are in vmalloc area */
142 if (!(address >= VMALLOC_START && address < VMALLOC_END))
143 return -1;
146 * Synchronize this task's top level page-table
147 * with the 'reference' page table.
149 pmd_k = vmalloc_sync_one(pgd, address);
150 if (!pmd_k)
151 return -1;
152 if (pmd_huge(*pmd_k))
153 return 0; /* support TILE huge_vmap() API */
154 pte_k = pte_offset_kernel(pmd_k, address);
155 if (!pte_present(*pte_k))
156 return -1;
157 return 0;
160 /* Wait until this PTE has completed migration. */
161 static void wait_for_migration(pte_t *pte)
163 if (pte_migrating(*pte)) {
165 * Wait until the migrater fixes up this pte.
166 * We scale the loop count by the clock rate so we'll wait for
167 * a few seconds here.
169 int retries = 0;
170 int bound = get_clock_rate();
171 while (pte_migrating(*pte)) {
172 barrier();
173 if (++retries > bound)
174 panic("Hit migrating PTE (%#llx) and"
175 " page PFN %#lx still migrating",
176 pte->val, pte_pfn(*pte));
182 * It's not generally safe to use "current" to get the page table pointer,
183 * since we might be running an oprofile interrupt in the middle of a
184 * task switch.
186 static pgd_t *get_current_pgd(void)
188 HV_Context ctx = hv_inquire_context();
189 unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
190 struct page *pgd_page = pfn_to_page(pgd_pfn);
191 BUG_ON(PageHighMem(pgd_page)); /* oops, HIGHPTE? */
192 return (pgd_t *) __va(ctx.page_table);
196 * We can receive a page fault from a migrating PTE at any time.
197 * Handle it by just waiting until the fault resolves.
199 * It's also possible to get a migrating kernel PTE that resolves
200 * itself during the downcall from hypervisor to Linux. We just check
201 * here to see if the PTE seems valid, and if so we retry it.
203 * NOTE! We MUST NOT take any locks for this case. We may be in an
204 * interrupt or a critical region, and must do as little as possible.
205 * Similarly, we can't use atomic ops here, since we may be handling a
206 * fault caused by an atomic op access.
208 static int handle_migrating_pte(pgd_t *pgd, int fault_num,
209 unsigned long address,
210 int is_kernel_mode, int write)
212 pud_t *pud;
213 pmd_t *pmd;
214 pte_t *pte;
215 pte_t pteval;
217 if (pgd_addr_invalid(address))
218 return 0;
220 pgd += pgd_index(address);
221 pud = pud_offset(pgd, address);
222 if (!pud || !pud_present(*pud))
223 return 0;
224 pmd = pmd_offset(pud, address);
225 if (!pmd || !pmd_present(*pmd))
226 return 0;
227 pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
228 pte_offset_kernel(pmd, address);
229 pteval = *pte;
230 if (pte_migrating(pteval)) {
231 wait_for_migration(pte);
232 return 1;
235 if (!is_kernel_mode || !pte_present(pteval))
236 return 0;
237 if (fault_num == INT_ITLB_MISS) {
238 if (pte_exec(pteval))
239 return 1;
240 } else if (write) {
241 if (pte_write(pteval))
242 return 1;
243 } else {
244 if (pte_read(pteval))
245 return 1;
248 return 0;
252 * This routine is responsible for faulting in user pages.
253 * It passes the work off to one of the appropriate routines.
254 * It returns true if the fault was successfully handled.
256 static int handle_page_fault(struct pt_regs *regs,
257 int fault_num,
258 int is_page_fault,
259 unsigned long address,
260 int write)
262 struct task_struct *tsk;
263 struct mm_struct *mm;
264 struct vm_area_struct *vma;
265 unsigned long stack_offset;
266 int fault;
267 int si_code;
268 int is_kernel_mode;
269 pgd_t *pgd;
271 /* on TILE, protection faults are always writes */
272 if (!is_page_fault)
273 write = 1;
275 is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL);
277 tsk = validate_current();
280 * Check to see if we might be overwriting the stack, and bail
281 * out if so. The page fault code is a relatively likely
282 * place to get trapped in an infinite regress, and once we
283 * overwrite the whole stack, it becomes very hard to recover.
285 stack_offset = stack_pointer & (THREAD_SIZE-1);
286 if (stack_offset < THREAD_SIZE / 8) {
287 pr_alert("Potential stack overrun: sp %#lx\n",
288 stack_pointer);
289 show_regs(regs);
290 pr_alert("Killing current process %d/%s\n",
291 tsk->pid, tsk->comm);
292 do_group_exit(SIGKILL);
296 * Early on, we need to check for migrating PTE entries;
297 * see homecache.c. If we find a migrating PTE, we wait until
298 * the backing page claims to be done migrating, then we proceed.
299 * For kernel PTEs, we rewrite the PTE and return and retry.
300 * Otherwise, we treat the fault like a normal "no PTE" fault,
301 * rather than trying to patch up the existing PTE.
303 pgd = get_current_pgd();
304 if (handle_migrating_pte(pgd, fault_num, address,
305 is_kernel_mode, write))
306 return 1;
308 si_code = SEGV_MAPERR;
311 * We fault-in kernel-space virtual memory on-demand. The
312 * 'reference' page table is init_mm.pgd.
314 * NOTE! We MUST NOT take any locks for this case. We may
315 * be in an interrupt or a critical region, and should
316 * only copy the information from the master page table,
317 * nothing more.
319 * This verifies that the fault happens in kernel space
320 * and that the fault was not a protection fault.
322 if (unlikely(address >= TASK_SIZE &&
323 !is_arch_mappable_range(address, 0))) {
324 if (is_kernel_mode && is_page_fault &&
325 vmalloc_fault(pgd, address) >= 0)
326 return 1;
328 * Don't take the mm semaphore here. If we fixup a prefetch
329 * fault we could otherwise deadlock.
331 mm = NULL; /* happy compiler */
332 vma = NULL;
333 goto bad_area_nosemaphore;
337 * If we're trying to touch user-space addresses, we must
338 * be either at PL0, or else with interrupts enabled in the
339 * kernel, so either way we can re-enable interrupts here.
341 local_irq_enable();
343 mm = tsk->mm;
346 * If we're in an interrupt, have no user context or are running in an
347 * atomic region then we must not take the fault.
349 if (in_atomic() || !mm) {
350 vma = NULL; /* happy compiler */
351 goto bad_area_nosemaphore;
355 * When running in the kernel we expect faults to occur only to
356 * addresses in user space. All other faults represent errors in the
357 * kernel and should generate an OOPS. Unfortunately, in the case of an
358 * erroneous fault occurring in a code path which already holds mmap_sem
359 * we will deadlock attempting to validate the fault against the
360 * address space. Luckily the kernel only validly references user
361 * space from well defined areas of code, which are listed in the
362 * exceptions table.
364 * As the vast majority of faults will be valid we will only perform
365 * the source reference check when there is a possibility of a deadlock.
366 * Attempt to lock the address space, if we cannot we then validate the
367 * source. If this is invalid we can skip the address space check,
368 * thus avoiding the deadlock.
370 if (!down_read_trylock(&mm->mmap_sem)) {
371 if (is_kernel_mode &&
372 !search_exception_tables(regs->pc)) {
373 vma = NULL; /* happy compiler */
374 goto bad_area_nosemaphore;
376 down_read(&mm->mmap_sem);
379 vma = find_vma(mm, address);
380 if (!vma)
381 goto bad_area;
382 if (vma->vm_start <= address)
383 goto good_area;
384 if (!(vma->vm_flags & VM_GROWSDOWN))
385 goto bad_area;
386 if (regs->sp < PAGE_OFFSET) {
388 * accessing the stack below sp is always a bug.
390 if (address < regs->sp)
391 goto bad_area;
393 if (expand_stack(vma, address))
394 goto bad_area;
397 * Ok, we have a good vm_area for this memory access, so
398 * we can handle it..
400 good_area:
401 si_code = SEGV_ACCERR;
402 if (fault_num == INT_ITLB_MISS) {
403 if (!(vma->vm_flags & VM_EXEC))
404 goto bad_area;
405 } else if (write) {
406 #ifdef TEST_VERIFY_AREA
407 if (!is_page_fault && regs->cs == KERNEL_CS)
408 pr_err("WP fault at "REGFMT"\n", regs->eip);
409 #endif
410 if (!(vma->vm_flags & VM_WRITE))
411 goto bad_area;
412 } else {
413 if (!is_page_fault || !(vma->vm_flags & VM_READ))
414 goto bad_area;
417 survive:
419 * If for any reason at all we couldn't handle the fault,
420 * make sure we exit gracefully rather than endlessly redo
421 * the fault.
423 fault = handle_mm_fault(mm, vma, address, write);
424 if (unlikely(fault & VM_FAULT_ERROR)) {
425 if (fault & VM_FAULT_OOM)
426 goto out_of_memory;
427 else if (fault & VM_FAULT_SIGBUS)
428 goto do_sigbus;
429 BUG();
431 if (fault & VM_FAULT_MAJOR)
432 tsk->maj_flt++;
433 else
434 tsk->min_flt++;
436 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
438 * If this was an asynchronous fault,
439 * restart the appropriate engine.
441 switch (fault_num) {
442 #if CHIP_HAS_TILE_DMA()
443 case INT_DMATLB_MISS:
444 case INT_DMATLB_MISS_DWNCL:
445 case INT_DMATLB_ACCESS:
446 case INT_DMATLB_ACCESS_DWNCL:
447 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
448 break;
449 #endif
450 #if CHIP_HAS_SN_PROC()
451 case INT_SNITLB_MISS:
452 case INT_SNITLB_MISS_DWNCL:
453 __insn_mtspr(SPR_SNCTL,
454 __insn_mfspr(SPR_SNCTL) &
455 ~SPR_SNCTL__FRZPROC_MASK);
456 break;
457 #endif
459 #endif
461 up_read(&mm->mmap_sem);
462 return 1;
465 * Something tried to access memory that isn't in our memory map..
466 * Fix it, but check if it's kernel or user first..
468 bad_area:
469 up_read(&mm->mmap_sem);
471 bad_area_nosemaphore:
472 /* User mode accesses just cause a SIGSEGV */
473 if (!is_kernel_mode) {
475 * It's possible to have interrupts off here.
477 local_irq_enable();
479 force_sig_info_fault("segfault", SIGSEGV, si_code, address,
480 fault_num, tsk, regs);
481 return 0;
484 no_context:
485 /* Are we prepared to handle this kernel fault? */
486 if (fixup_exception(regs))
487 return 0;
490 * Oops. The kernel tried to access some bad page. We'll have to
491 * terminate things with extreme prejudice.
494 bust_spinlocks(1);
496 /* FIXME: no lookup_address() yet */
497 #ifdef SUPPORT_LOOKUP_ADDRESS
498 if (fault_num == INT_ITLB_MISS) {
499 pte_t *pte = lookup_address(address);
501 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
502 pr_crit("kernel tried to execute"
503 " non-executable page - exploit attempt?"
504 " (uid: %d)\n", current->uid);
506 #endif
507 if (address < PAGE_SIZE)
508 pr_alert("Unable to handle kernel NULL pointer dereference\n");
509 else
510 pr_alert("Unable to handle kernel paging request\n");
511 pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n",
512 address, regs->pc);
514 show_regs(regs);
516 if (unlikely(tsk->pid < 2)) {
517 panic("Kernel page fault running %s!",
518 tsk->pid ? "init" : "the idle task");
522 * More FIXME: we should probably copy the i386 here and
523 * implement a generic die() routine. Not today.
525 #ifdef SUPPORT_DIE
526 die("Oops", regs);
527 #endif
528 bust_spinlocks(1);
530 do_group_exit(SIGKILL);
533 * We ran out of memory, or some other thing happened to us that made
534 * us unable to handle the page fault gracefully.
536 out_of_memory:
537 up_read(&mm->mmap_sem);
538 if (is_global_init(tsk)) {
539 yield();
540 down_read(&mm->mmap_sem);
541 goto survive;
543 pr_alert("VM: killing process %s\n", tsk->comm);
544 if (!is_kernel_mode)
545 do_group_exit(SIGKILL);
546 goto no_context;
548 do_sigbus:
549 up_read(&mm->mmap_sem);
551 /* Kernel mode? Handle exceptions or die */
552 if (is_kernel_mode)
553 goto no_context;
555 force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
556 fault_num, tsk, regs);
557 return 0;
560 #ifndef __tilegx__
562 /* We must release ICS before panicking or we won't get anywhere. */
563 #define ics_panic(fmt, ...) do { \
564 __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
565 panic(fmt, __VA_ARGS__); \
566 } while (0)
569 * When we take an ITLB or DTLB fault or access violation in the
570 * supervisor while the critical section bit is set, the hypervisor is
571 * reluctant to write new values into the EX_CONTEXT_K_x registers,
572 * since that might indicate we have not yet squirreled the SPR
573 * contents away and can thus safely take a recursive interrupt.
574 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
576 * Note that this routine is called before homecache_tlb_defer_enter(),
577 * which means that we can properly unlock any atomics that might
578 * be used there (good), but also means we must be very sensitive
579 * to not touch any data structures that might be located in memory
580 * that could migrate, as we could be entering the kernel on a dataplane
581 * cpu that has been deferring kernel TLB updates. This means, for
582 * example, that we can't migrate init_mm or its pgd.
584 struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
585 unsigned long address,
586 unsigned long info)
588 unsigned long pc = info & ~1;
589 int write = info & 1;
590 pgd_t *pgd = get_current_pgd();
592 /* Retval is 1 at first since we will handle the fault fully. */
593 struct intvec_state state = {
594 do_page_fault, fault_num, address, write, 1
597 /* Validate that we are plausibly in the right routine. */
598 if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
599 (fault_num != INT_DTLB_MISS &&
600 fault_num != INT_DTLB_ACCESS)) {
601 unsigned long old_pc = regs->pc;
602 regs->pc = pc;
603 ics_panic("Bad ICS page fault args:"
604 " old PC %#lx, fault %d/%d at %#lx\n",
605 old_pc, fault_num, write, address);
608 /* We might be faulting on a vmalloc page, so check that first. */
609 if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
610 return state;
613 * If we faulted with ICS set in sys_cmpxchg, we are providing
614 * a user syscall service that should generate a signal on
615 * fault. We didn't set up a kernel stack on initial entry to
616 * sys_cmpxchg, but instead had one set up by the fault, which
617 * (because sys_cmpxchg never releases ICS) came to us via the
618 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
619 * still referencing the original user code. We release the
620 * atomic lock and rewrite pt_regs so that it appears that we
621 * came from user-space directly, and after we finish the
622 * fault we'll go back to user space and re-issue the swint.
623 * This way the backtrace information is correct if we need to
624 * emit a stack dump at any point while handling this.
626 * Must match register use in sys_cmpxchg().
628 if (pc >= (unsigned long) sys_cmpxchg &&
629 pc < (unsigned long) __sys_cmpxchg_end) {
630 #ifdef CONFIG_SMP
631 /* Don't unlock before we could have locked. */
632 if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
633 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
634 __atomic_fault_unlock(lock_ptr);
636 #endif
637 regs->sp = regs->regs[27];
641 * We can also fault in the atomic assembly, in which
642 * case we use the exception table to do the first-level fixup.
643 * We may re-fixup again in the real fault handler if it
644 * turns out the faulting address is just bad, and not,
645 * for example, migrating.
647 else if (pc >= (unsigned long) __start_atomic_asm_code &&
648 pc < (unsigned long) __end_atomic_asm_code) {
649 const struct exception_table_entry *fixup;
650 #ifdef CONFIG_SMP
651 /* Unlock the atomic lock. */
652 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
653 __atomic_fault_unlock(lock_ptr);
654 #endif
655 fixup = search_exception_tables(pc);
656 if (!fixup)
657 ics_panic("ICS atomic fault not in table:"
658 " PC %#lx, fault %d", pc, fault_num);
659 regs->pc = fixup->fixup;
660 regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
664 * Now that we have released the atomic lock (if necessary),
665 * it's safe to spin if the PTE that caused the fault was migrating.
667 if (fault_num == INT_DTLB_ACCESS)
668 write = 1;
669 if (handle_migrating_pte(pgd, fault_num, address, 1, write))
670 return state;
672 /* Return zero so that we continue on with normal fault handling. */
673 state.retval = 0;
674 return state;
677 #endif /* !__tilegx__ */
680 * This routine handles page faults. It determines the address, and the
681 * problem, and then passes it handle_page_fault() for normal DTLB and
682 * ITLB issues, and for DMA or SN processor faults when we are in user
683 * space. For the latter, if we're in kernel mode, we just save the
684 * interrupt away appropriately and return immediately. We can't do
685 * page faults for user code while in kernel mode.
687 void do_page_fault(struct pt_regs *regs, int fault_num,
688 unsigned long address, unsigned long write)
690 int is_page_fault;
692 /* This case should have been handled by do_page_fault_ics(). */
693 BUG_ON(write & ~1);
695 #if CHIP_HAS_TILE_DMA()
697 * If it's a DMA fault, suspend the transfer while we're
698 * handling the miss; we'll restart after it's handled. If we
699 * don't suspend, it's possible that this process could swap
700 * out and back in, and restart the engine since the DMA is
701 * still 'running'.
703 if (fault_num == INT_DMATLB_MISS ||
704 fault_num == INT_DMATLB_ACCESS ||
705 fault_num == INT_DMATLB_MISS_DWNCL ||
706 fault_num == INT_DMATLB_ACCESS_DWNCL) {
707 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
708 while (__insn_mfspr(SPR_DMA_USER_STATUS) &
709 SPR_DMA_STATUS__BUSY_MASK)
712 #endif
714 /* Validate fault num and decide if this is a first-time page fault. */
715 switch (fault_num) {
716 case INT_ITLB_MISS:
717 case INT_DTLB_MISS:
718 #if CHIP_HAS_TILE_DMA()
719 case INT_DMATLB_MISS:
720 case INT_DMATLB_MISS_DWNCL:
721 #endif
722 #if CHIP_HAS_SN_PROC()
723 case INT_SNITLB_MISS:
724 case INT_SNITLB_MISS_DWNCL:
725 #endif
726 is_page_fault = 1;
727 break;
729 case INT_DTLB_ACCESS:
730 #if CHIP_HAS_TILE_DMA()
731 case INT_DMATLB_ACCESS:
732 case INT_DMATLB_ACCESS_DWNCL:
733 #endif
734 is_page_fault = 0;
735 break;
737 default:
738 panic("Bad fault number %d in do_page_fault", fault_num);
741 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
742 if (EX1_PL(regs->ex1) != USER_PL) {
743 struct async_tlb *async;
744 switch (fault_num) {
745 #if CHIP_HAS_TILE_DMA()
746 case INT_DMATLB_MISS:
747 case INT_DMATLB_ACCESS:
748 case INT_DMATLB_MISS_DWNCL:
749 case INT_DMATLB_ACCESS_DWNCL:
750 async = &current->thread.dma_async_tlb;
751 break;
752 #endif
753 #if CHIP_HAS_SN_PROC()
754 case INT_SNITLB_MISS:
755 case INT_SNITLB_MISS_DWNCL:
756 async = &current->thread.sn_async_tlb;
757 break;
758 #endif
759 default:
760 async = NULL;
762 if (async) {
765 * No vmalloc check required, so we can allow
766 * interrupts immediately at this point.
768 local_irq_enable();
770 set_thread_flag(TIF_ASYNC_TLB);
771 if (async->fault_num != 0) {
772 panic("Second async fault %d;"
773 " old fault was %d (%#lx/%ld)",
774 fault_num, async->fault_num,
775 address, write);
777 BUG_ON(fault_num == 0);
778 async->fault_num = fault_num;
779 async->is_fault = is_page_fault;
780 async->is_write = write;
781 async->address = address;
782 return;
785 #endif
787 handle_page_fault(regs, fault_num, is_page_fault, address, write);
791 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
793 * Check an async_tlb structure to see if a deferred fault is waiting,
794 * and if so pass it to the page-fault code.
796 static void handle_async_page_fault(struct pt_regs *regs,
797 struct async_tlb *async)
799 if (async->fault_num) {
801 * Clear async->fault_num before calling the page-fault
802 * handler so that if we re-interrupt before returning
803 * from the function we have somewhere to put the
804 * information from the new interrupt.
806 int fault_num = async->fault_num;
807 async->fault_num = 0;
808 handle_page_fault(regs, fault_num, async->is_fault,
809 async->address, async->is_write);
814 * This routine effectively re-issues asynchronous page faults
815 * when we are returning to user space.
817 void do_async_page_fault(struct pt_regs *regs)
820 * Clear thread flag early. If we re-interrupt while processing
821 * code here, we will reset it and recall this routine before
822 * returning to user space.
824 clear_thread_flag(TIF_ASYNC_TLB);
826 #if CHIP_HAS_TILE_DMA()
827 handle_async_page_fault(regs, &current->thread.dma_async_tlb);
828 #endif
829 #if CHIP_HAS_SN_PROC()
830 handle_async_page_fault(regs, &current->thread.sn_async_tlb);
831 #endif
833 #endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */
836 void vmalloc_sync_all(void)
838 #ifdef __tilegx__
839 /* Currently all L1 kernel pmd's are static and shared. */
840 BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START));
841 #else
843 * Note that races in the updates of insync and start aren't
844 * problematic: insync can only get set bits added, and updates to
845 * start are only improving performance (without affecting correctness
846 * if undone).
848 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
849 static unsigned long start = PAGE_OFFSET;
850 unsigned long address;
852 BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
853 for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
854 if (!test_bit(pgd_index(address), insync)) {
855 unsigned long flags;
856 struct list_head *pos;
858 spin_lock_irqsave(&pgd_lock, flags);
859 list_for_each(pos, &pgd_list)
860 if (!vmalloc_sync_one(list_to_pgd(pos),
861 address)) {
862 /* Must be at first entry in list. */
863 BUG_ON(pos != pgd_list.next);
864 break;
866 spin_unlock_irqrestore(&pgd_lock, flags);
867 if (pos != pgd_list.next)
868 set_bit(pgd_index(address), insync);
870 if (address == start && test_bit(pgd_index(address), insync))
871 start = address + PGDIR_SIZE;
873 #endif