Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / arch / unicore32 / mm / mmu.c
blob3e5c3e5a0b4542a99cb1e6bda573ab3dfc002dcc
1 /*
2 * linux/arch/unicore32/mm/mmu.c
4 * Code specific to PKUnity SoC and UniCore ISA
6 * Copyright (C) 2001-2010 GUAN Xue-tao
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/errno.h>
15 #include <linux/init.h>
16 #include <linux/mman.h>
17 #include <linux/nodemask.h>
18 #include <linux/memblock.h>
19 #include <linux/fs.h>
20 #include <linux/bootmem.h>
21 #include <linux/io.h>
23 #include <asm/cputype.h>
24 #include <asm/sections.h>
25 #include <asm/setup.h>
26 #include <asm/sizes.h>
27 #include <asm/tlb.h>
29 #include <mach/map.h>
31 #include "mm.h"
34 * empty_zero_page is a special page that is used for
35 * zero-initialized data and COW.
37 struct page *empty_zero_page;
38 EXPORT_SYMBOL(empty_zero_page);
41 * The pmd table for the upper-most set of pages.
43 pmd_t *top_pmd;
45 pgprot_t pgprot_user;
46 EXPORT_SYMBOL(pgprot_user);
48 pgprot_t pgprot_kernel;
49 EXPORT_SYMBOL(pgprot_kernel);
51 static int __init noalign_setup(char *__unused)
53 cr_alignment &= ~CR_A;
54 cr_no_alignment &= ~CR_A;
55 set_cr(cr_alignment);
56 return 1;
58 __setup("noalign", noalign_setup);
60 void adjust_cr(unsigned long mask, unsigned long set)
62 unsigned long flags;
64 mask &= ~CR_A;
66 set &= mask;
68 local_irq_save(flags);
70 cr_no_alignment = (cr_no_alignment & ~mask) | set;
71 cr_alignment = (cr_alignment & ~mask) | set;
73 set_cr((get_cr() & ~mask) | set);
75 local_irq_restore(flags);
78 struct map_desc {
79 unsigned long virtual;
80 unsigned long pfn;
81 unsigned long length;
82 unsigned int type;
85 #define PROT_PTE_DEVICE (PTE_PRESENT | PTE_YOUNG | \
86 PTE_DIRTY | PTE_READ | PTE_WRITE)
87 #define PROT_SECT_DEVICE (PMD_TYPE_SECT | PMD_PRESENT | \
88 PMD_SECT_READ | PMD_SECT_WRITE)
90 static struct mem_type mem_types[] = {
91 [MT_DEVICE] = { /* Strongly ordered */
92 .prot_pte = PROT_PTE_DEVICE,
93 .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
94 .prot_sect = PROT_SECT_DEVICE,
97 * MT_KUSER: pte for vecpage -- cacheable,
98 * and sect for unigfx mmap -- noncacheable
100 [MT_KUSER] = {
101 .prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
102 PTE_CACHEABLE | PTE_READ | PTE_EXEC,
103 .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
104 .prot_sect = PROT_SECT_DEVICE,
106 [MT_HIGH_VECTORS] = {
107 .prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
108 PTE_CACHEABLE | PTE_READ | PTE_WRITE |
109 PTE_EXEC,
110 .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
112 [MT_MEMORY] = {
113 .prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
114 PTE_WRITE | PTE_EXEC,
115 .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
116 .prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
117 PMD_SECT_READ | PMD_SECT_WRITE | PMD_SECT_EXEC,
119 [MT_ROM] = {
120 .prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
121 PMD_SECT_READ,
125 const struct mem_type *get_mem_type(unsigned int type)
127 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
129 EXPORT_SYMBOL(get_mem_type);
132 * Adjust the PMD section entries according to the CPU in use.
134 static void __init build_mem_type_table(void)
136 pgprot_user = __pgprot(PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE);
137 pgprot_kernel = __pgprot(PTE_PRESENT | PTE_YOUNG |
138 PTE_DIRTY | PTE_READ | PTE_WRITE |
139 PTE_EXEC | PTE_CACHEABLE);
142 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
144 static void __init *early_alloc(unsigned long sz)
146 void *ptr = __va(memblock_alloc(sz, sz));
147 memset(ptr, 0, sz);
148 return ptr;
151 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
152 unsigned long prot)
154 if (pmd_none(*pmd)) {
155 pte_t *pte = early_alloc(PTRS_PER_PTE * sizeof(pte_t));
156 __pmd_populate(pmd, __pa(pte) | prot);
158 BUG_ON(pmd_bad(*pmd));
159 return pte_offset_kernel(pmd, addr);
162 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
163 unsigned long end, unsigned long pfn,
164 const struct mem_type *type)
166 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
167 do {
168 set_pte(pte, pfn_pte(pfn, __pgprot(type->prot_pte)));
169 pfn++;
170 } while (pte++, addr += PAGE_SIZE, addr != end);
173 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
174 unsigned long end, unsigned long phys,
175 const struct mem_type *type)
177 pmd_t *pmd = pmd_offset((pud_t *)pgd, addr);
180 * Try a section mapping - end, addr and phys must all be aligned
181 * to a section boundary.
183 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
184 pmd_t *p = pmd;
186 do {
187 set_pmd(pmd, __pmd(phys | type->prot_sect));
188 phys += SECTION_SIZE;
189 } while (pmd++, addr += SECTION_SIZE, addr != end);
191 flush_pmd_entry(p);
192 } else {
194 * No need to loop; pte's aren't interested in the
195 * individual L1 entries.
197 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
202 * Create the page directory entries and any necessary
203 * page tables for the mapping specified by `md'. We
204 * are able to cope here with varying sizes and address
205 * offsets, and we take full advantage of sections.
207 static void __init create_mapping(struct map_desc *md)
209 unsigned long phys, addr, length, end;
210 const struct mem_type *type;
211 pgd_t *pgd;
213 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
214 printk(KERN_WARNING "BUG: not creating mapping for "
215 "0x%08llx at 0x%08lx in user region\n",
216 __pfn_to_phys((u64)md->pfn), md->virtual);
217 return;
220 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
221 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
222 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
223 "overlaps vmalloc space\n",
224 __pfn_to_phys((u64)md->pfn), md->virtual);
227 type = &mem_types[md->type];
229 addr = md->virtual & PAGE_MASK;
230 phys = (unsigned long)__pfn_to_phys(md->pfn);
231 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
233 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
234 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
235 "be mapped using pages, ignoring.\n",
236 __pfn_to_phys(md->pfn), addr);
237 return;
240 pgd = pgd_offset_k(addr);
241 end = addr + length;
242 do {
243 unsigned long next = pgd_addr_end(addr, end);
245 alloc_init_section(pgd, addr, next, phys, type);
247 phys += next - addr;
248 addr = next;
249 } while (pgd++, addr != end);
252 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
255 * vmalloc=size forces the vmalloc area to be exactly 'size'
256 * bytes. This can be used to increase (or decrease) the vmalloc
257 * area - the default is 128m.
259 static int __init early_vmalloc(char *arg)
261 unsigned long vmalloc_reserve = memparse(arg, NULL);
263 if (vmalloc_reserve < SZ_16M) {
264 vmalloc_reserve = SZ_16M;
265 printk(KERN_WARNING
266 "vmalloc area too small, limiting to %luMB\n",
267 vmalloc_reserve >> 20);
270 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
271 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
272 printk(KERN_WARNING
273 "vmalloc area is too big, limiting to %luMB\n",
274 vmalloc_reserve >> 20);
277 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
278 return 0;
280 early_param("vmalloc", early_vmalloc);
282 static phys_addr_t lowmem_limit __initdata = SZ_1G;
284 static void __init sanity_check_meminfo(void)
286 int i, j;
288 lowmem_limit = __pa(vmalloc_min - 1) + 1;
289 memblock_set_current_limit(lowmem_limit);
291 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
292 struct membank *bank = &meminfo.bank[j];
293 *bank = meminfo.bank[i];
294 j++;
296 meminfo.nr_banks = j;
299 static inline void prepare_page_table(void)
301 unsigned long addr;
302 phys_addr_t end;
305 * Clear out all the mappings below the kernel image.
307 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
308 pmd_clear(pmd_off_k(addr));
310 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
311 pmd_clear(pmd_off_k(addr));
314 * Find the end of the first block of lowmem.
316 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
317 if (end >= lowmem_limit)
318 end = lowmem_limit;
321 * Clear out all the kernel space mappings, except for the first
322 * memory bank, up to the end of the vmalloc region.
324 for (addr = __phys_to_virt(end);
325 addr < VMALLOC_END; addr += PGDIR_SIZE)
326 pmd_clear(pmd_off_k(addr));
330 * Reserve the special regions of memory
332 void __init uc32_mm_memblock_reserve(void)
335 * Reserve the page tables. These are already in use,
336 * and can only be in node 0.
338 memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
342 * Set up device the mappings. Since we clear out the page tables for all
343 * mappings above VMALLOC_END, we will remove any debug device mappings.
344 * This means you have to be careful how you debug this function, or any
345 * called function. This means you can't use any function or debugging
346 * method which may touch any device, otherwise the kernel _will_ crash.
348 static void __init devicemaps_init(void)
350 struct map_desc map;
351 unsigned long addr;
352 void *vectors;
355 * Allocate the vector page early.
357 vectors = early_alloc(PAGE_SIZE);
359 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
360 pmd_clear(pmd_off_k(addr));
363 * Create a mapping for the machine vectors at the high-vectors
364 * location (0xffff0000). If we aren't using high-vectors, also
365 * create a mapping at the low-vectors virtual address.
367 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
368 map.virtual = VECTORS_BASE;
369 map.length = PAGE_SIZE;
370 map.type = MT_HIGH_VECTORS;
371 create_mapping(&map);
374 * Create a mapping for the kuser page at the special
375 * location (0xbfff0000) to the same vectors location.
377 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
378 map.virtual = KUSER_VECPAGE_BASE;
379 map.length = PAGE_SIZE;
380 map.type = MT_KUSER;
381 create_mapping(&map);
384 * Finally flush the caches and tlb to ensure that we're in a
385 * consistent state wrt the writebuffer. This also ensures that
386 * any write-allocated cache lines in the vector page are written
387 * back. After this point, we can start to touch devices again.
389 local_flush_tlb_all();
390 flush_cache_all();
393 static void __init map_lowmem(void)
395 struct memblock_region *reg;
397 /* Map all the lowmem memory banks. */
398 for_each_memblock(memory, reg) {
399 phys_addr_t start = reg->base;
400 phys_addr_t end = start + reg->size;
401 struct map_desc map;
403 if (end > lowmem_limit)
404 end = lowmem_limit;
405 if (start >= end)
406 break;
408 map.pfn = __phys_to_pfn(start);
409 map.virtual = __phys_to_virt(start);
410 map.length = end - start;
411 map.type = MT_MEMORY;
413 create_mapping(&map);
418 * paging_init() sets up the page tables, initialises the zone memory
419 * maps, and sets up the zero page, bad page and bad page tables.
421 void __init paging_init(void)
423 void *zero_page;
425 build_mem_type_table();
426 sanity_check_meminfo();
427 prepare_page_table();
428 map_lowmem();
429 devicemaps_init();
431 top_pmd = pmd_off_k(0xffff0000);
433 /* allocate the zero page. */
434 zero_page = early_alloc(PAGE_SIZE);
436 bootmem_init();
438 empty_zero_page = virt_to_page(zero_page);
439 __flush_dcache_page(NULL, empty_zero_page);
443 * In order to soft-boot, we need to insert a 1:1 mapping in place of
444 * the user-mode pages. This will then ensure that we have predictable
445 * results when turning the mmu off
447 void setup_mm_for_reboot(char mode)
449 unsigned long base_pmdval;
450 pgd_t *pgd;
451 int i;
454 * We need to access to user-mode page tables here. For kernel threads
455 * we don't have any user-mode mappings so we use the context that we
456 * "borrowed".
458 pgd = current->active_mm->pgd;
460 base_pmdval = PMD_SECT_WRITE | PMD_SECT_READ | PMD_TYPE_SECT;
462 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
463 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
464 pmd_t *pmd;
466 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
467 set_pmd(pmd, __pmd(pmdval));
468 flush_pmd_entry(pmd);
471 local_flush_tlb_all();
475 * Take care of architecture specific things when placing a new PTE into
476 * a page table, or changing an existing PTE. Basically, there are two
477 * things that we need to take care of:
479 * 1. If PG_dcache_clean is not set for the page, we need to ensure
480 * that any cache entries for the kernels virtual memory
481 * range are written back to the page.
482 * 2. If we have multiple shared mappings of the same space in
483 * an object, we need to deal with the cache aliasing issues.
485 * Note that the pte lock will be held.
487 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
488 pte_t *ptep)
490 unsigned long pfn = pte_pfn(*ptep);
491 struct address_space *mapping;
492 struct page *page;
494 if (!pfn_valid(pfn))
495 return;
498 * The zero page is never written to, so never has any dirty
499 * cache lines, and therefore never needs to be flushed.
501 page = pfn_to_page(pfn);
502 if (page == ZERO_PAGE(0))
503 return;
505 mapping = page_mapping(page);
506 if (!test_and_set_bit(PG_dcache_clean, &page->flags))
507 __flush_dcache_page(mapping, page);
508 if (mapping)
509 if (vma->vm_flags & VM_EXEC)
510 __flush_icache_all();