Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / arch / x86 / mm / init.c
bloba90ccc44db6953132a4a56f606bc77f61e39c190
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
7 #include <asm/cacheflush.h>
8 #include <asm/e820.h>
9 #include <asm/init.h>
10 #include <asm/page.h>
11 #include <asm/page_types.h>
12 #include <asm/sections.h>
13 #include <asm/setup.h>
14 #include <asm/system.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
19 unsigned long __initdata pgt_buf_start;
20 unsigned long __meminitdata pgt_buf_end;
21 unsigned long __meminitdata pgt_buf_top;
23 int after_bootmem;
25 int direct_gbpages
26 #ifdef CONFIG_DIRECT_GBPAGES
27 = 1
28 #endif
31 static unsigned long __init find_early_fixmap_space(void)
33 unsigned long size = 0;
34 #ifdef CONFIG_X86_32
35 int kmap_begin_pmd_idx, kmap_end_pmd_idx;
36 int fixmap_begin_pmd_idx, fixmap_end_pmd_idx;
37 int btmap_begin_pmd_idx;
39 fixmap_begin_pmd_idx =
40 __fix_to_virt(__end_of_fixed_addresses - 1) >> PMD_SHIFT;
42 * fixmap_end_pmd_idx is the end of the fixmap minus the PMD that
43 * has been defined in the data section by head_32.S (see
44 * initial_pg_fixmap).
45 * Note: This is similar to what early_ioremap_page_table_range_init
46 * does except that the "end" has PMD_SIZE expunged as per previous
47 * comment.
49 fixmap_end_pmd_idx = (FIXADDR_TOP - 1) >> PMD_SHIFT;
50 btmap_begin_pmd_idx = __fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT;
51 kmap_begin_pmd_idx = __fix_to_virt(FIX_KMAP_END) >> PMD_SHIFT;
52 kmap_end_pmd_idx = __fix_to_virt(FIX_KMAP_BEGIN) >> PMD_SHIFT;
54 size = fixmap_end_pmd_idx - fixmap_begin_pmd_idx;
56 * early_ioremap_init has already allocated a PMD at
57 * btmap_begin_pmd_idx
59 if (btmap_begin_pmd_idx < fixmap_end_pmd_idx)
60 size--;
62 #ifdef CONFIG_HIGHMEM
64 * see page_table_kmap_check: if the kmap spans multiple PMDs, make
65 * sure the pte pages are allocated contiguously. It might need up
66 * to two additional pte pages to replace the page declared by
67 * head_32.S and the one allocated by early_ioremap_init, if they
68 * are even partially used for the kmap.
70 if (kmap_begin_pmd_idx != kmap_end_pmd_idx) {
71 if (kmap_end_pmd_idx == fixmap_end_pmd_idx)
72 size++;
73 if (btmap_begin_pmd_idx >= kmap_begin_pmd_idx &&
74 btmap_begin_pmd_idx <= kmap_end_pmd_idx)
75 size++;
77 #endif
78 #endif
79 return (size * PMD_SIZE + PAGE_SIZE - 1) >> PAGE_SHIFT;
82 static void __init find_early_table_space(unsigned long start,
83 unsigned long end, int use_pse, int use_gbpages)
85 unsigned long pmds = 0, ptes = 0, tables = 0, good_end = end,
86 pud_mapped = 0, pmd_mapped = 0, size = end - start;
87 phys_addr_t base;
89 pud_mapped = DIV_ROUND_UP(PFN_PHYS(max_pfn_mapped),
90 (PUD_SIZE * PTRS_PER_PUD));
91 pud_mapped *= (PUD_SIZE * PTRS_PER_PUD);
92 pmd_mapped = DIV_ROUND_UP(PFN_PHYS(max_pfn_mapped),
93 (PMD_SIZE * PTRS_PER_PMD));
94 pmd_mapped *= (PMD_SIZE * PTRS_PER_PMD);
97 * On x86_64 do not limit the size we need to cover with 4KB pages
98 * depending on the initial allocation because head_64.S always uses
99 * 2MB pages.
101 #ifdef CONFIG_X86_32
102 if (start < PFN_PHYS(max_pfn_mapped)) {
103 if (PFN_PHYS(max_pfn_mapped) < end)
104 size -= PFN_PHYS(max_pfn_mapped) - start;
105 else
106 size = 0;
108 #endif
110 #ifndef __PAGETABLE_PUD_FOLDED
111 if (end > pud_mapped) {
112 unsigned long puds;
113 if (start < pud_mapped)
114 puds = (end - pud_mapped + PUD_SIZE - 1) >> PUD_SHIFT;
115 else
116 puds = (end - start + PUD_SIZE - 1) >> PUD_SHIFT;
117 tables += roundup(puds * sizeof(pud_t), PAGE_SIZE);
119 #endif
121 if (use_gbpages) {
122 unsigned long extra;
124 extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
125 pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
127 #ifndef __PAGETABLE_PMD_FOLDED
128 else if (end > pmd_mapped) {
129 if (start < pmd_mapped)
130 pmds = (end - pmd_mapped + PMD_SIZE - 1) >> PMD_SHIFT;
131 else
132 pmds = (end - start + PMD_SIZE - 1) >> PMD_SHIFT;
134 #endif
136 tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
138 if (use_pse) {
139 unsigned long extra;
141 extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
142 ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
143 } else
144 ptes = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
146 ptes += find_early_fixmap_space();
148 tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
150 if (!tables)
151 return;
153 #ifdef CONFIG_X86_32
154 good_end = max_pfn_mapped << PAGE_SHIFT;
155 #endif
157 base = memblock_find_in_range(0x00, good_end, tables, PAGE_SIZE);
158 if (base == MEMBLOCK_ERROR)
159 panic("Cannot find space for the kernel page tables");
161 pgt_buf_start = base >> PAGE_SHIFT;
162 pgt_buf_end = pgt_buf_start;
163 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
165 printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
166 end, pgt_buf_start << PAGE_SHIFT, pgt_buf_top << PAGE_SHIFT);
168 if (pgt_buf_top > pgt_buf_start)
169 memblock_x86_reserve_range(pgt_buf_start << PAGE_SHIFT,
170 pgt_buf_top << PAGE_SHIFT, "PGTABLE");
173 struct map_range {
174 unsigned long start;
175 unsigned long end;
176 unsigned page_size_mask;
179 #ifdef CONFIG_X86_32
180 #define NR_RANGE_MR 3
181 #else /* CONFIG_X86_64 */
182 #define NR_RANGE_MR 5
183 #endif
185 static int __meminit save_mr(struct map_range *mr, int nr_range,
186 unsigned long start_pfn, unsigned long end_pfn,
187 unsigned long page_size_mask)
189 if (start_pfn < end_pfn) {
190 if (nr_range >= NR_RANGE_MR)
191 panic("run out of range for init_memory_mapping\n");
192 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
193 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
194 mr[nr_range].page_size_mask = page_size_mask;
195 nr_range++;
198 return nr_range;
202 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
203 * This runs before bootmem is initialized and gets pages directly from
204 * the physical memory. To access them they are temporarily mapped.
206 unsigned long __init_refok init_memory_mapping(unsigned long start,
207 unsigned long end)
209 unsigned long page_size_mask = 0;
210 unsigned long start_pfn, end_pfn;
211 unsigned long ret = 0;
212 unsigned long pos;
214 struct map_range mr[NR_RANGE_MR];
215 int nr_range, i;
216 int use_pse, use_gbpages;
218 printk(KERN_INFO "init_memory_mapping: %016lx-%016lx\n", start, end);
220 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KMEMCHECK)
222 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
223 * This will simplify cpa(), which otherwise needs to support splitting
224 * large pages into small in interrupt context, etc.
226 use_pse = use_gbpages = 0;
227 #else
228 use_pse = cpu_has_pse;
229 use_gbpages = direct_gbpages;
230 #endif
232 /* Enable PSE if available */
233 if (cpu_has_pse)
234 set_in_cr4(X86_CR4_PSE);
236 /* Enable PGE if available */
237 if (cpu_has_pge) {
238 set_in_cr4(X86_CR4_PGE);
239 __supported_pte_mask |= _PAGE_GLOBAL;
242 if (use_gbpages)
243 page_size_mask |= 1 << PG_LEVEL_1G;
244 if (use_pse)
245 page_size_mask |= 1 << PG_LEVEL_2M;
247 memset(mr, 0, sizeof(mr));
248 nr_range = 0;
250 /* head if not big page alignment ? */
251 start_pfn = start >> PAGE_SHIFT;
252 pos = start_pfn << PAGE_SHIFT;
253 #ifdef CONFIG_X86_32
255 * Don't use a large page for the first 2/4MB of memory
256 * because there are often fixed size MTRRs in there
257 * and overlapping MTRRs into large pages can cause
258 * slowdowns.
260 if (pos == 0)
261 end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT);
262 else
263 end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
264 << (PMD_SHIFT - PAGE_SHIFT);
265 #else /* CONFIG_X86_64 */
266 end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT)
267 << (PMD_SHIFT - PAGE_SHIFT);
268 #endif
269 if (end_pfn > (end >> PAGE_SHIFT))
270 end_pfn = end >> PAGE_SHIFT;
271 if (start_pfn < end_pfn) {
272 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
273 pos = end_pfn << PAGE_SHIFT;
276 /* big page (2M) range */
277 start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
278 << (PMD_SHIFT - PAGE_SHIFT);
279 #ifdef CONFIG_X86_32
280 end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
281 #else /* CONFIG_X86_64 */
282 end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
283 << (PUD_SHIFT - PAGE_SHIFT);
284 if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)))
285 end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT));
286 #endif
288 if (start_pfn < end_pfn) {
289 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
290 page_size_mask & (1<<PG_LEVEL_2M));
291 pos = end_pfn << PAGE_SHIFT;
294 #ifdef CONFIG_X86_64
295 /* big page (1G) range */
296 start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
297 << (PUD_SHIFT - PAGE_SHIFT);
298 end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
299 if (start_pfn < end_pfn) {
300 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
301 page_size_mask &
302 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
303 pos = end_pfn << PAGE_SHIFT;
306 /* tail is not big page (1G) alignment */
307 start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
308 << (PMD_SHIFT - PAGE_SHIFT);
309 end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
310 if (start_pfn < end_pfn) {
311 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
312 page_size_mask & (1<<PG_LEVEL_2M));
313 pos = end_pfn << PAGE_SHIFT;
315 #endif
317 /* tail is not big page (2M) alignment */
318 start_pfn = pos>>PAGE_SHIFT;
319 end_pfn = end>>PAGE_SHIFT;
320 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
322 /* try to merge same page size and continuous */
323 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
324 unsigned long old_start;
325 if (mr[i].end != mr[i+1].start ||
326 mr[i].page_size_mask != mr[i+1].page_size_mask)
327 continue;
328 /* move it */
329 old_start = mr[i].start;
330 memmove(&mr[i], &mr[i+1],
331 (nr_range - 1 - i) * sizeof(struct map_range));
332 mr[i--].start = old_start;
333 nr_range--;
336 for (i = 0; i < nr_range; i++)
337 printk(KERN_DEBUG " %010lx - %010lx page %s\n",
338 mr[i].start, mr[i].end,
339 (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
340 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
343 * Find space for the kernel direct mapping tables.
345 * Later we should allocate these tables in the local node of the
346 * memory mapped. Unfortunately this is done currently before the
347 * nodes are discovered.
349 if (!after_bootmem)
350 find_early_table_space(start, end, use_pse, use_gbpages);
352 for (i = 0; i < nr_range; i++)
353 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
354 mr[i].page_size_mask);
356 #ifdef CONFIG_X86_32
357 early_ioremap_page_table_range_init();
359 load_cr3(swapper_pg_dir);
360 #endif
362 __flush_tlb_all();
364 if (pgt_buf_end != pgt_buf_top)
365 printk(KERN_DEBUG "initial kernel pagetable allocation wasted %lx"
366 " pages\n", pgt_buf_top - pgt_buf_end);
368 if (!after_bootmem)
369 early_memtest(start, end);
371 return ret >> PAGE_SHIFT;
376 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
377 * is valid. The argument is a physical page number.
380 * On x86, access has to be given to the first megabyte of ram because that area
381 * contains bios code and data regions used by X and dosemu and similar apps.
382 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
383 * mmio resources as well as potential bios/acpi data regions.
385 int devmem_is_allowed(unsigned long pagenr)
387 if (pagenr <= 256)
388 return 1;
389 if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
390 return 0;
391 if (!page_is_ram(pagenr))
392 return 1;
393 return 0;
396 void free_init_pages(char *what, unsigned long begin, unsigned long end)
398 unsigned long addr;
399 unsigned long begin_aligned, end_aligned;
401 /* Make sure boundaries are page aligned */
402 begin_aligned = PAGE_ALIGN(begin);
403 end_aligned = end & PAGE_MASK;
405 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
406 begin = begin_aligned;
407 end = end_aligned;
410 if (begin >= end)
411 return;
413 addr = begin;
416 * If debugging page accesses then do not free this memory but
417 * mark them not present - any buggy init-section access will
418 * create a kernel page fault:
420 #ifdef CONFIG_DEBUG_PAGEALLOC
421 printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
422 begin, end);
423 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
424 #else
426 * We just marked the kernel text read only above, now that
427 * we are going to free part of that, we need to make that
428 * writeable and non-executable first.
430 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
431 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
433 printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
435 for (; addr < end; addr += PAGE_SIZE) {
436 ClearPageReserved(virt_to_page(addr));
437 init_page_count(virt_to_page(addr));
438 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
439 free_page(addr);
440 totalram_pages++;
442 #endif
445 void free_initmem(void)
447 free_init_pages("unused kernel memory",
448 (unsigned long)(&__init_begin),
449 (unsigned long)(&__init_end));
452 #ifdef CONFIG_BLK_DEV_INITRD
453 void free_initrd_mem(unsigned long start, unsigned long end)
456 * end could be not aligned, and We can not align that,
457 * decompresser could be confused by aligned initrd_end
458 * We already reserve the end partial page before in
459 * - i386_start_kernel()
460 * - x86_64_start_kernel()
461 * - relocate_initrd()
462 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
464 free_init_pages("initrd memory", start, PAGE_ALIGN(end));
466 #endif