2 * Common EFI (Extensible Firmware Interface) support functions
3 * Based on Extensible Firmware Interface Specification version 1.0
5 * Copyright (C) 1999 VA Linux Systems
6 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7 * Copyright (C) 1999-2002 Hewlett-Packard Co.
8 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Stephane Eranian <eranian@hpl.hp.com>
10 * Copyright (C) 2005-2008 Intel Co.
11 * Fenghua Yu <fenghua.yu@intel.com>
12 * Bibo Mao <bibo.mao@intel.com>
13 * Chandramouli Narayanan <mouli@linux.intel.com>
14 * Huang Ying <ying.huang@intel.com>
16 * Copied from efi_32.c to eliminate the duplicated code between EFI
17 * 32/64 support code. --ying 2007-10-26
19 * All EFI Runtime Services are not implemented yet as EFI only
20 * supports physical mode addressing on SoftSDV. This is to be fixed
21 * in a future version. --drummond 1999-07-20
23 * Implemented EFI runtime services and virtual mode calls. --davidm
25 * Goutham Rao: <goutham.rao@intel.com>
26 * Skip non-WB memory and ignore empty memory ranges.
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/efi.h>
32 #include <linux/export.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/spinlock.h>
36 #include <linux/uaccess.h>
37 #include <linux/time.h>
39 #include <linux/reboot.h>
40 #include <linux/bcd.h>
42 #include <asm/setup.h>
45 #include <asm/cacheflush.h>
46 #include <asm/tlbflush.h>
47 #include <asm/x86_init.h>
53 EXPORT_SYMBOL(efi_enabled
);
55 struct efi __read_mostly efi
= {
56 .mps
= EFI_INVALID_TABLE_ADDR
,
57 .acpi
= EFI_INVALID_TABLE_ADDR
,
58 .acpi20
= EFI_INVALID_TABLE_ADDR
,
59 .smbios
= EFI_INVALID_TABLE_ADDR
,
60 .sal_systab
= EFI_INVALID_TABLE_ADDR
,
61 .boot_info
= EFI_INVALID_TABLE_ADDR
,
62 .hcdp
= EFI_INVALID_TABLE_ADDR
,
63 .uga
= EFI_INVALID_TABLE_ADDR
,
64 .uv_systab
= EFI_INVALID_TABLE_ADDR
,
68 struct efi_memory_map memmap
;
70 static struct efi efi_phys __initdata
;
71 static efi_system_table_t efi_systab __initdata
;
73 static int __init
setup_noefi(char *arg
)
78 early_param("noefi", setup_noefi
);
81 EXPORT_SYMBOL(add_efi_memmap
);
83 static int __init
setup_add_efi_memmap(char *arg
)
88 early_param("add_efi_memmap", setup_add_efi_memmap
);
91 static efi_status_t
virt_efi_get_time(efi_time_t
*tm
, efi_time_cap_t
*tc
)
96 spin_lock_irqsave(&rtc_lock
, flags
);
97 status
= efi_call_virt2(get_time
, tm
, tc
);
98 spin_unlock_irqrestore(&rtc_lock
, flags
);
102 static efi_status_t
virt_efi_set_time(efi_time_t
*tm
)
107 spin_lock_irqsave(&rtc_lock
, flags
);
108 status
= efi_call_virt1(set_time
, tm
);
109 spin_unlock_irqrestore(&rtc_lock
, flags
);
113 static efi_status_t
virt_efi_get_wakeup_time(efi_bool_t
*enabled
,
120 spin_lock_irqsave(&rtc_lock
, flags
);
121 status
= efi_call_virt3(get_wakeup_time
,
122 enabled
, pending
, tm
);
123 spin_unlock_irqrestore(&rtc_lock
, flags
);
127 static efi_status_t
virt_efi_set_wakeup_time(efi_bool_t enabled
, efi_time_t
*tm
)
132 spin_lock_irqsave(&rtc_lock
, flags
);
133 status
= efi_call_virt2(set_wakeup_time
,
135 spin_unlock_irqrestore(&rtc_lock
, flags
);
139 static efi_status_t
virt_efi_get_variable(efi_char16_t
*name
,
142 unsigned long *data_size
,
145 return efi_call_virt5(get_variable
,
150 static efi_status_t
virt_efi_get_next_variable(unsigned long *name_size
,
154 return efi_call_virt3(get_next_variable
,
155 name_size
, name
, vendor
);
158 static efi_status_t
virt_efi_set_variable(efi_char16_t
*name
,
161 unsigned long data_size
,
164 return efi_call_virt5(set_variable
,
169 static efi_status_t
virt_efi_query_variable_info(u32 attr
,
171 u64
*remaining_space
,
172 u64
*max_variable_size
)
174 if (efi
.runtime_version
< EFI_2_00_SYSTEM_TABLE_REVISION
)
175 return EFI_UNSUPPORTED
;
177 return efi_call_virt4(query_variable_info
, attr
, storage_space
,
178 remaining_space
, max_variable_size
);
181 static efi_status_t
virt_efi_get_next_high_mono_count(u32
*count
)
183 return efi_call_virt1(get_next_high_mono_count
, count
);
186 static void virt_efi_reset_system(int reset_type
,
188 unsigned long data_size
,
191 efi_call_virt4(reset_system
, reset_type
, status
,
195 static efi_status_t
virt_efi_update_capsule(efi_capsule_header_t
**capsules
,
197 unsigned long sg_list
)
199 if (efi
.runtime_version
< EFI_2_00_SYSTEM_TABLE_REVISION
)
200 return EFI_UNSUPPORTED
;
202 return efi_call_virt3(update_capsule
, capsules
, count
, sg_list
);
205 static efi_status_t
virt_efi_query_capsule_caps(efi_capsule_header_t
**capsules
,
210 if (efi
.runtime_version
< EFI_2_00_SYSTEM_TABLE_REVISION
)
211 return EFI_UNSUPPORTED
;
213 return efi_call_virt4(query_capsule_caps
, capsules
, count
, max_size
,
217 static efi_status_t __init
phys_efi_set_virtual_address_map(
218 unsigned long memory_map_size
,
219 unsigned long descriptor_size
,
220 u32 descriptor_version
,
221 efi_memory_desc_t
*virtual_map
)
225 efi_call_phys_prelog();
226 status
= efi_call_phys4(efi_phys
.set_virtual_address_map
,
227 memory_map_size
, descriptor_size
,
228 descriptor_version
, virtual_map
);
229 efi_call_phys_epilog();
233 static efi_status_t __init
phys_efi_get_time(efi_time_t
*tm
,
239 spin_lock_irqsave(&rtc_lock
, flags
);
240 efi_call_phys_prelog();
241 status
= efi_call_phys2(efi_phys
.get_time
, tm
, tc
);
242 efi_call_phys_epilog();
243 spin_unlock_irqrestore(&rtc_lock
, flags
);
247 int efi_set_rtc_mmss(unsigned long nowtime
)
249 int real_seconds
, real_minutes
;
254 status
= efi
.get_time(&eft
, &cap
);
255 if (status
!= EFI_SUCCESS
) {
256 printk(KERN_ERR
"Oops: efitime: can't read time!\n");
260 real_seconds
= nowtime
% 60;
261 real_minutes
= nowtime
/ 60;
262 if (((abs(real_minutes
- eft
.minute
) + 15)/30) & 1)
265 eft
.minute
= real_minutes
;
266 eft
.second
= real_seconds
;
268 status
= efi
.set_time(&eft
);
269 if (status
!= EFI_SUCCESS
) {
270 printk(KERN_ERR
"Oops: efitime: can't write time!\n");
276 unsigned long efi_get_time(void)
282 status
= efi
.get_time(&eft
, &cap
);
283 if (status
!= EFI_SUCCESS
)
284 printk(KERN_ERR
"Oops: efitime: can't read time!\n");
286 return mktime(eft
.year
, eft
.month
, eft
.day
, eft
.hour
,
287 eft
.minute
, eft
.second
);
291 * Tell the kernel about the EFI memory map. This might include
292 * more than the max 128 entries that can fit in the e820 legacy
293 * (zeropage) memory map.
296 static void __init
do_add_efi_memmap(void)
300 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
301 efi_memory_desc_t
*md
= p
;
302 unsigned long long start
= md
->phys_addr
;
303 unsigned long long size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
307 case EFI_LOADER_CODE
:
308 case EFI_LOADER_DATA
:
309 case EFI_BOOT_SERVICES_CODE
:
310 case EFI_BOOT_SERVICES_DATA
:
311 case EFI_CONVENTIONAL_MEMORY
:
312 if (md
->attribute
& EFI_MEMORY_WB
)
313 e820_type
= E820_RAM
;
315 e820_type
= E820_RESERVED
;
317 case EFI_ACPI_RECLAIM_MEMORY
:
318 e820_type
= E820_ACPI
;
320 case EFI_ACPI_MEMORY_NVS
:
321 e820_type
= E820_NVS
;
323 case EFI_UNUSABLE_MEMORY
:
324 e820_type
= E820_UNUSABLE
;
328 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
329 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
330 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
332 e820_type
= E820_RESERVED
;
335 e820_add_region(start
, size
, e820_type
);
337 sanitize_e820_map(e820
.map
, ARRAY_SIZE(e820
.map
), &e820
.nr_map
);
340 void __init
efi_memblock_x86_reserve_range(void)
345 pmap
= boot_params
.efi_info
.efi_memmap
;
347 pmap
= (boot_params
.efi_info
.efi_memmap
|
348 ((__u64
)boot_params
.efi_info
.efi_memmap_hi
<<32));
350 memmap
.phys_map
= (void *)pmap
;
351 memmap
.nr_map
= boot_params
.efi_info
.efi_memmap_size
/
352 boot_params
.efi_info
.efi_memdesc_size
;
353 memmap
.desc_version
= boot_params
.efi_info
.efi_memdesc_version
;
354 memmap
.desc_size
= boot_params
.efi_info
.efi_memdesc_size
;
355 memblock_x86_reserve_range(pmap
, pmap
+ memmap
.nr_map
* memmap
.desc_size
,
360 static void __init
print_efi_memmap(void)
362 efi_memory_desc_t
*md
;
366 for (p
= memmap
.map
, i
= 0;
368 p
+= memmap
.desc_size
, i
++) {
370 printk(KERN_INFO PFX
"mem%02u: type=%u, attr=0x%llx, "
371 "range=[0x%016llx-0x%016llx) (%lluMB)\n",
372 i
, md
->type
, md
->attribute
, md
->phys_addr
,
373 md
->phys_addr
+ (md
->num_pages
<< EFI_PAGE_SHIFT
),
374 (md
->num_pages
>> (20 - EFI_PAGE_SHIFT
)));
377 #endif /* EFI_DEBUG */
379 void __init
efi_reserve_boot_services(void)
383 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
384 efi_memory_desc_t
*md
= p
;
385 u64 start
= md
->phys_addr
;
386 u64 size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
388 if (md
->type
!= EFI_BOOT_SERVICES_CODE
&&
389 md
->type
!= EFI_BOOT_SERVICES_DATA
)
391 /* Only reserve where possible:
392 * - Not within any already allocated areas
393 * - Not over any memory area (really needed, if above?)
394 * - Not within any part of the kernel
395 * - Not the bios reserved area
397 if ((start
+size
>= virt_to_phys(_text
)
398 && start
<= virt_to_phys(_end
)) ||
399 !e820_all_mapped(start
, start
+size
, E820_RAM
) ||
400 memblock_x86_check_reserved_size(&start
, &size
,
401 1<<EFI_PAGE_SHIFT
)) {
402 /* Could not reserve, skip it */
404 memblock_dbg(PFX
"Could not reserve boot range "
405 "[0x%010llx-0x%010llx]\n",
406 start
, start
+size
-1);
408 memblock_x86_reserve_range(start
, start
+size
,
413 static void __init
efi_free_boot_services(void)
417 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
418 efi_memory_desc_t
*md
= p
;
419 unsigned long long start
= md
->phys_addr
;
420 unsigned long long size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
422 if (md
->type
!= EFI_BOOT_SERVICES_CODE
&&
423 md
->type
!= EFI_BOOT_SERVICES_DATA
)
426 /* Could not reserve boot area */
430 free_bootmem_late(start
, size
);
434 void __init
efi_init(void)
436 efi_config_table_t
*config_tables
;
437 efi_runtime_services_t
*runtime
;
439 char vendor
[100] = "unknown";
444 efi_phys
.systab
= (efi_system_table_t
*)boot_params
.efi_info
.efi_systab
;
446 efi_phys
.systab
= (efi_system_table_t
*)
447 (boot_params
.efi_info
.efi_systab
|
448 ((__u64
)boot_params
.efi_info
.efi_systab_hi
<<32));
451 efi
.systab
= early_ioremap((unsigned long)efi_phys
.systab
,
452 sizeof(efi_system_table_t
));
453 if (efi
.systab
== NULL
)
454 printk(KERN_ERR
"Couldn't map the EFI system table!\n");
455 memcpy(&efi_systab
, efi
.systab
, sizeof(efi_system_table_t
));
456 early_iounmap(efi
.systab
, sizeof(efi_system_table_t
));
457 efi
.systab
= &efi_systab
;
460 * Verify the EFI Table
462 if (efi
.systab
->hdr
.signature
!= EFI_SYSTEM_TABLE_SIGNATURE
)
463 printk(KERN_ERR
"EFI system table signature incorrect!\n");
464 if ((efi
.systab
->hdr
.revision
>> 16) == 0)
465 printk(KERN_ERR
"Warning: EFI system table version "
466 "%d.%02d, expected 1.00 or greater!\n",
467 efi
.systab
->hdr
.revision
>> 16,
468 efi
.systab
->hdr
.revision
& 0xffff);
471 * Show what we know for posterity
473 c16
= tmp
= early_ioremap(efi
.systab
->fw_vendor
, 2);
475 for (i
= 0; i
< sizeof(vendor
) - 1 && *c16
; ++i
)
479 printk(KERN_ERR PFX
"Could not map the firmware vendor!\n");
480 early_iounmap(tmp
, 2);
482 printk(KERN_INFO
"EFI v%u.%.02u by %s\n",
483 efi
.systab
->hdr
.revision
>> 16,
484 efi
.systab
->hdr
.revision
& 0xffff, vendor
);
487 * Let's see what config tables the firmware passed to us.
489 config_tables
= early_ioremap(
491 efi
.systab
->nr_tables
* sizeof(efi_config_table_t
));
492 if (config_tables
== NULL
)
493 printk(KERN_ERR
"Could not map EFI Configuration Table!\n");
496 for (i
= 0; i
< efi
.systab
->nr_tables
; i
++) {
497 if (!efi_guidcmp(config_tables
[i
].guid
, MPS_TABLE_GUID
)) {
498 efi
.mps
= config_tables
[i
].table
;
499 printk(" MPS=0x%lx ", config_tables
[i
].table
);
500 } else if (!efi_guidcmp(config_tables
[i
].guid
,
501 ACPI_20_TABLE_GUID
)) {
502 efi
.acpi20
= config_tables
[i
].table
;
503 printk(" ACPI 2.0=0x%lx ", config_tables
[i
].table
);
504 } else if (!efi_guidcmp(config_tables
[i
].guid
,
506 efi
.acpi
= config_tables
[i
].table
;
507 printk(" ACPI=0x%lx ", config_tables
[i
].table
);
508 } else if (!efi_guidcmp(config_tables
[i
].guid
,
509 SMBIOS_TABLE_GUID
)) {
510 efi
.smbios
= config_tables
[i
].table
;
511 printk(" SMBIOS=0x%lx ", config_tables
[i
].table
);
513 } else if (!efi_guidcmp(config_tables
[i
].guid
,
514 UV_SYSTEM_TABLE_GUID
)) {
515 efi
.uv_systab
= config_tables
[i
].table
;
516 printk(" UVsystab=0x%lx ", config_tables
[i
].table
);
518 } else if (!efi_guidcmp(config_tables
[i
].guid
,
520 efi
.hcdp
= config_tables
[i
].table
;
521 printk(" HCDP=0x%lx ", config_tables
[i
].table
);
522 } else if (!efi_guidcmp(config_tables
[i
].guid
,
523 UGA_IO_PROTOCOL_GUID
)) {
524 efi
.uga
= config_tables
[i
].table
;
525 printk(" UGA=0x%lx ", config_tables
[i
].table
);
529 early_iounmap(config_tables
,
530 efi
.systab
->nr_tables
* sizeof(efi_config_table_t
));
533 * Check out the runtime services table. We need to map
534 * the runtime services table so that we can grab the physical
535 * address of several of the EFI runtime functions, needed to
536 * set the firmware into virtual mode.
538 runtime
= early_ioremap((unsigned long)efi
.systab
->runtime
,
539 sizeof(efi_runtime_services_t
));
540 if (runtime
!= NULL
) {
542 * We will only need *early* access to the following
543 * two EFI runtime services before set_virtual_address_map
546 efi_phys
.get_time
= (efi_get_time_t
*)runtime
->get_time
;
547 efi_phys
.set_virtual_address_map
=
548 (efi_set_virtual_address_map_t
*)
549 runtime
->set_virtual_address_map
;
551 * Make efi_get_time can be called before entering
554 efi
.get_time
= phys_efi_get_time
;
556 printk(KERN_ERR
"Could not map the EFI runtime service "
558 early_iounmap(runtime
, sizeof(efi_runtime_services_t
));
560 /* Map the EFI memory map */
561 memmap
.map
= early_ioremap((unsigned long)memmap
.phys_map
,
562 memmap
.nr_map
* memmap
.desc_size
);
563 if (memmap
.map
== NULL
)
564 printk(KERN_ERR
"Could not map the EFI memory map!\n");
565 memmap
.map_end
= memmap
.map
+ (memmap
.nr_map
* memmap
.desc_size
);
567 if (memmap
.desc_size
!= sizeof(efi_memory_desc_t
))
569 "Kernel-defined memdesc doesn't match the one from EFI!\n");
575 x86_platform
.get_wallclock
= efi_get_time
;
576 x86_platform
.set_wallclock
= efi_set_rtc_mmss
;
584 void __init
efi_set_executable(efi_memory_desc_t
*md
, bool executable
)
588 addr
= md
->virt_addr
;
589 npages
= md
->num_pages
;
591 memrange_efi_to_native(&addr
, &npages
);
594 set_memory_x(addr
, npages
);
596 set_memory_nx(addr
, npages
);
599 static void __init
runtime_code_page_mkexec(void)
601 efi_memory_desc_t
*md
;
604 /* Make EFI runtime service code area executable */
605 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
608 if (md
->type
!= EFI_RUNTIME_SERVICES_CODE
)
611 efi_set_executable(md
, true);
616 * This function will switch the EFI runtime services to virtual mode.
617 * Essentially, look through the EFI memmap and map every region that
618 * has the runtime attribute bit set in its memory descriptor and update
619 * that memory descriptor with the virtual address obtained from ioremap().
620 * This enables the runtime services to be called without having to
621 * thunk back into physical mode for every invocation.
623 void __init
efi_enter_virtual_mode(void)
625 efi_memory_desc_t
*md
, *prev_md
= NULL
;
628 u64 end
, systab
, addr
, npages
, end_pfn
;
629 void *p
, *va
, *new_memmap
= NULL
;
634 /* Merge contiguous regions of the same type and attribute */
635 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
644 if (prev_md
->type
!= md
->type
||
645 prev_md
->attribute
!= md
->attribute
) {
650 prev_size
= prev_md
->num_pages
<< EFI_PAGE_SHIFT
;
652 if (md
->phys_addr
== (prev_md
->phys_addr
+ prev_size
)) {
653 prev_md
->num_pages
+= md
->num_pages
;
654 md
->type
= EFI_RESERVED_TYPE
;
661 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
663 if (!(md
->attribute
& EFI_MEMORY_RUNTIME
) &&
664 md
->type
!= EFI_BOOT_SERVICES_CODE
&&
665 md
->type
!= EFI_BOOT_SERVICES_DATA
)
668 size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
669 end
= md
->phys_addr
+ size
;
671 end_pfn
= PFN_UP(end
);
672 if (end_pfn
<= max_low_pfn_mapped
673 || (end_pfn
> (1UL << (32 - PAGE_SHIFT
))
674 && end_pfn
<= max_pfn_mapped
))
675 va
= __va(md
->phys_addr
);
677 va
= efi_ioremap(md
->phys_addr
, size
, md
->type
);
679 md
->virt_addr
= (u64
) (unsigned long) va
;
682 printk(KERN_ERR PFX
"ioremap of 0x%llX failed!\n",
683 (unsigned long long)md
->phys_addr
);
687 if (!(md
->attribute
& EFI_MEMORY_WB
)) {
688 addr
= md
->virt_addr
;
689 npages
= md
->num_pages
;
690 memrange_efi_to_native(&addr
, &npages
);
691 set_memory_uc(addr
, npages
);
694 systab
= (u64
) (unsigned long) efi_phys
.systab
;
695 if (md
->phys_addr
<= systab
&& systab
< end
) {
696 systab
+= md
->virt_addr
- md
->phys_addr
;
697 efi
.systab
= (efi_system_table_t
*) (unsigned long) systab
;
699 new_memmap
= krealloc(new_memmap
,
700 (count
+ 1) * memmap
.desc_size
,
702 memcpy(new_memmap
+ (count
* memmap
.desc_size
), md
,
709 status
= phys_efi_set_virtual_address_map(
710 memmap
.desc_size
* count
,
713 (efi_memory_desc_t
*)__pa(new_memmap
));
715 if (status
!= EFI_SUCCESS
) {
716 printk(KERN_ALERT
"Unable to switch EFI into virtual mode "
717 "(status=%lx)!\n", status
);
718 panic("EFI call to SetVirtualAddressMap() failed!");
722 * Thankfully, it does seem that no runtime services other than
723 * SetVirtualAddressMap() will touch boot services code, so we can
724 * get rid of it all at this point
726 efi_free_boot_services();
729 * Now that EFI is in virtual mode, update the function
730 * pointers in the runtime service table to the new virtual addresses.
732 * Call EFI services through wrapper functions.
734 efi
.get_time
= virt_efi_get_time
;
735 efi
.set_time
= virt_efi_set_time
;
736 efi
.get_wakeup_time
= virt_efi_get_wakeup_time
;
737 efi
.set_wakeup_time
= virt_efi_set_wakeup_time
;
738 efi
.get_variable
= virt_efi_get_variable
;
739 efi
.get_next_variable
= virt_efi_get_next_variable
;
740 efi
.set_variable
= virt_efi_set_variable
;
741 efi
.get_next_high_mono_count
= virt_efi_get_next_high_mono_count
;
742 efi
.reset_system
= virt_efi_reset_system
;
743 efi
.set_virtual_address_map
= NULL
;
744 efi
.query_variable_info
= virt_efi_query_variable_info
;
745 efi
.update_capsule
= virt_efi_update_capsule
;
746 efi
.query_capsule_caps
= virt_efi_query_capsule_caps
;
747 if (__supported_pte_mask
& _PAGE_NX
)
748 runtime_code_page_mkexec();
749 early_iounmap(memmap
.map
, memmap
.nr_map
* memmap
.desc_size
);
755 * Convenience functions to obtain memory types and attributes
757 u32
efi_mem_type(unsigned long phys_addr
)
759 efi_memory_desc_t
*md
;
762 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
764 if ((md
->phys_addr
<= phys_addr
) &&
765 (phys_addr
< (md
->phys_addr
+
766 (md
->num_pages
<< EFI_PAGE_SHIFT
))))
772 u64
efi_mem_attributes(unsigned long phys_addr
)
774 efi_memory_desc_t
*md
;
777 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
779 if ((md
->phys_addr
<= phys_addr
) &&
780 (phys_addr
< (md
->phys_addr
+
781 (md
->num_pages
<< EFI_PAGE_SHIFT
))))
782 return md
->attribute
;