Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / drivers / dma / amba-pl08x.c
blob3c2cad5b1165d7d458722bcdf714dc5e22c21c0b
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29 * channel.
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
37 * The PL080 has a dual bus master, PL081 has a single master.
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
54 * ASSUMES default (little) endianness for DMA transfers
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
69 * Global TODO:
70 * - Break out common code from arch/arm/mach-s3c64xx and share
72 #include <linux/amba/bus.h>
73 #include <linux/amba/pl08x.h>
74 #include <linux/debugfs.h>
75 #include <linux/delay.h>
76 #include <linux/device.h>
77 #include <linux/dmaengine.h>
78 #include <linux/dmapool.h>
79 #include <linux/dma-mapping.h>
80 #include <linux/init.h>
81 #include <linux/interrupt.h>
82 #include <linux/module.h>
83 #include <linux/pm_runtime.h>
84 #include <linux/seq_file.h>
85 #include <linux/slab.h>
86 #include <asm/hardware/pl080.h>
88 #define DRIVER_NAME "pl08xdmac"
90 /**
91 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
92 * @channels: the number of channels available in this variant
93 * @dualmaster: whether this version supports dual AHB masters or not.
95 struct vendor_data {
96 u8 channels;
97 bool dualmaster;
101 * PL08X private data structures
102 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
103 * start & end do not - their bus bit info is in cctl. Also note that these
104 * are fixed 32-bit quantities.
106 struct pl08x_lli {
107 u32 src;
108 u32 dst;
109 u32 lli;
110 u32 cctl;
114 * struct pl08x_driver_data - the local state holder for the PL08x
115 * @slave: slave engine for this instance
116 * @memcpy: memcpy engine for this instance
117 * @base: virtual memory base (remapped) for the PL08x
118 * @adev: the corresponding AMBA (PrimeCell) bus entry
119 * @vd: vendor data for this PL08x variant
120 * @pd: platform data passed in from the platform/machine
121 * @phy_chans: array of data for the physical channels
122 * @pool: a pool for the LLI descriptors
123 * @pool_ctr: counter of LLIs in the pool
124 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
125 * fetches
126 * @mem_buses: set to indicate memory transfers on AHB2.
127 * @lock: a spinlock for this struct
129 struct pl08x_driver_data {
130 struct dma_device slave;
131 struct dma_device memcpy;
132 void __iomem *base;
133 struct amba_device *adev;
134 const struct vendor_data *vd;
135 struct pl08x_platform_data *pd;
136 struct pl08x_phy_chan *phy_chans;
137 struct dma_pool *pool;
138 int pool_ctr;
139 u8 lli_buses;
140 u8 mem_buses;
141 spinlock_t lock;
145 * PL08X specific defines
148 /* Size (bytes) of each LLI buffer allocated for one transfer */
149 # define PL08X_LLI_TSFR_SIZE 0x2000
151 /* Maximum times we call dma_pool_alloc on this pool without freeing */
152 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
153 #define PL08X_ALIGN 8
155 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
157 return container_of(chan, struct pl08x_dma_chan, chan);
160 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
162 return container_of(tx, struct pl08x_txd, tx);
166 * Physical channel handling
169 /* Whether a certain channel is busy or not */
170 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
172 unsigned int val;
174 val = readl(ch->base + PL080_CH_CONFIG);
175 return val & PL080_CONFIG_ACTIVE;
179 * Set the initial DMA register values i.e. those for the first LLI
180 * The next LLI pointer and the configuration interrupt bit have
181 * been set when the LLIs were constructed. Poke them into the hardware
182 * and start the transfer.
184 static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
185 struct pl08x_txd *txd)
187 struct pl08x_driver_data *pl08x = plchan->host;
188 struct pl08x_phy_chan *phychan = plchan->phychan;
189 struct pl08x_lli *lli = &txd->llis_va[0];
190 u32 val;
192 plchan->at = txd;
194 /* Wait for channel inactive */
195 while (pl08x_phy_channel_busy(phychan))
196 cpu_relax();
198 dev_vdbg(&pl08x->adev->dev,
199 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
200 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
201 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
202 txd->ccfg);
204 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
205 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
206 writel(lli->lli, phychan->base + PL080_CH_LLI);
207 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
208 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
210 /* Enable the DMA channel */
211 /* Do not access config register until channel shows as disabled */
212 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
213 cpu_relax();
215 /* Do not access config register until channel shows as inactive */
216 val = readl(phychan->base + PL080_CH_CONFIG);
217 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
218 val = readl(phychan->base + PL080_CH_CONFIG);
220 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
224 * Pause the channel by setting the HALT bit.
226 * For M->P transfers, pause the DMAC first and then stop the peripheral -
227 * the FIFO can only drain if the peripheral is still requesting data.
228 * (note: this can still timeout if the DMAC FIFO never drains of data.)
230 * For P->M transfers, disable the peripheral first to stop it filling
231 * the DMAC FIFO, and then pause the DMAC.
233 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
235 u32 val;
236 int timeout;
238 /* Set the HALT bit and wait for the FIFO to drain */
239 val = readl(ch->base + PL080_CH_CONFIG);
240 val |= PL080_CONFIG_HALT;
241 writel(val, ch->base + PL080_CH_CONFIG);
243 /* Wait for channel inactive */
244 for (timeout = 1000; timeout; timeout--) {
245 if (!pl08x_phy_channel_busy(ch))
246 break;
247 udelay(1);
249 if (pl08x_phy_channel_busy(ch))
250 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
253 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
255 u32 val;
257 /* Clear the HALT bit */
258 val = readl(ch->base + PL080_CH_CONFIG);
259 val &= ~PL080_CONFIG_HALT;
260 writel(val, ch->base + PL080_CH_CONFIG);
264 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
265 * clears any pending interrupt status. This should not be used for
266 * an on-going transfer, but as a method of shutting down a channel
267 * (eg, when it's no longer used) or terminating a transfer.
269 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
270 struct pl08x_phy_chan *ch)
272 u32 val = readl(ch->base + PL080_CH_CONFIG);
274 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
275 PL080_CONFIG_TC_IRQ_MASK);
277 writel(val, ch->base + PL080_CH_CONFIG);
279 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
280 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
283 static inline u32 get_bytes_in_cctl(u32 cctl)
285 /* The source width defines the number of bytes */
286 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
288 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
289 case PL080_WIDTH_8BIT:
290 break;
291 case PL080_WIDTH_16BIT:
292 bytes *= 2;
293 break;
294 case PL080_WIDTH_32BIT:
295 bytes *= 4;
296 break;
298 return bytes;
301 /* The channel should be paused when calling this */
302 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
304 struct pl08x_phy_chan *ch;
305 struct pl08x_txd *txd;
306 unsigned long flags;
307 size_t bytes = 0;
309 spin_lock_irqsave(&plchan->lock, flags);
310 ch = plchan->phychan;
311 txd = plchan->at;
314 * Follow the LLIs to get the number of remaining
315 * bytes in the currently active transaction.
317 if (ch && txd) {
318 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
320 /* First get the remaining bytes in the active transfer */
321 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
323 if (clli) {
324 struct pl08x_lli *llis_va = txd->llis_va;
325 dma_addr_t llis_bus = txd->llis_bus;
326 int index;
328 BUG_ON(clli < llis_bus || clli >= llis_bus +
329 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
332 * Locate the next LLI - as this is an array,
333 * it's simple maths to find.
335 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
337 for (; index < MAX_NUM_TSFR_LLIS; index++) {
338 bytes += get_bytes_in_cctl(llis_va[index].cctl);
341 * A LLI pointer of 0 terminates the LLI list
343 if (!llis_va[index].lli)
344 break;
349 /* Sum up all queued transactions */
350 if (!list_empty(&plchan->pend_list)) {
351 struct pl08x_txd *txdi;
352 list_for_each_entry(txdi, &plchan->pend_list, node) {
353 bytes += txdi->len;
357 spin_unlock_irqrestore(&plchan->lock, flags);
359 return bytes;
363 * Allocate a physical channel for a virtual channel
365 * Try to locate a physical channel to be used for this transfer. If all
366 * are taken return NULL and the requester will have to cope by using
367 * some fallback PIO mode or retrying later.
369 static struct pl08x_phy_chan *
370 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
371 struct pl08x_dma_chan *virt_chan)
373 struct pl08x_phy_chan *ch = NULL;
374 unsigned long flags;
375 int i;
377 for (i = 0; i < pl08x->vd->channels; i++) {
378 ch = &pl08x->phy_chans[i];
380 spin_lock_irqsave(&ch->lock, flags);
382 if (!ch->serving) {
383 ch->serving = virt_chan;
384 ch->signal = -1;
385 spin_unlock_irqrestore(&ch->lock, flags);
386 break;
389 spin_unlock_irqrestore(&ch->lock, flags);
392 if (i == pl08x->vd->channels) {
393 /* No physical channel available, cope with it */
394 return NULL;
397 pm_runtime_get_sync(&pl08x->adev->dev);
398 return ch;
401 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
402 struct pl08x_phy_chan *ch)
404 unsigned long flags;
406 spin_lock_irqsave(&ch->lock, flags);
408 /* Stop the channel and clear its interrupts */
409 pl08x_terminate_phy_chan(pl08x, ch);
411 pm_runtime_put(&pl08x->adev->dev);
413 /* Mark it as free */
414 ch->serving = NULL;
415 spin_unlock_irqrestore(&ch->lock, flags);
419 * LLI handling
422 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
424 switch (coded) {
425 case PL080_WIDTH_8BIT:
426 return 1;
427 case PL080_WIDTH_16BIT:
428 return 2;
429 case PL080_WIDTH_32BIT:
430 return 4;
431 default:
432 break;
434 BUG();
435 return 0;
438 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
439 size_t tsize)
441 u32 retbits = cctl;
443 /* Remove all src, dst and transfer size bits */
444 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
445 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
446 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
448 /* Then set the bits according to the parameters */
449 switch (srcwidth) {
450 case 1:
451 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
452 break;
453 case 2:
454 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
455 break;
456 case 4:
457 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
458 break;
459 default:
460 BUG();
461 break;
464 switch (dstwidth) {
465 case 1:
466 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
467 break;
468 case 2:
469 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
470 break;
471 case 4:
472 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
473 break;
474 default:
475 BUG();
476 break;
479 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
480 return retbits;
483 struct pl08x_lli_build_data {
484 struct pl08x_txd *txd;
485 struct pl08x_bus_data srcbus;
486 struct pl08x_bus_data dstbus;
487 size_t remainder;
488 u32 lli_bus;
492 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
493 * victim in case src & dest are not similarly aligned. i.e. If after aligning
494 * masters address with width requirements of transfer (by sending few byte by
495 * byte data), slave is still not aligned, then its width will be reduced to
496 * BYTE.
497 * - prefers the destination bus if both available
498 * - prefers bus with fixed address (i.e. peripheral)
500 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
501 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
503 if (!(cctl & PL080_CONTROL_DST_INCR)) {
504 *mbus = &bd->dstbus;
505 *sbus = &bd->srcbus;
506 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
507 *mbus = &bd->srcbus;
508 *sbus = &bd->dstbus;
509 } else {
510 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
511 *mbus = &bd->dstbus;
512 *sbus = &bd->srcbus;
513 } else {
514 *mbus = &bd->srcbus;
515 *sbus = &bd->dstbus;
521 * Fills in one LLI for a certain transfer descriptor and advance the counter
523 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
524 int num_llis, int len, u32 cctl)
526 struct pl08x_lli *llis_va = bd->txd->llis_va;
527 dma_addr_t llis_bus = bd->txd->llis_bus;
529 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
531 llis_va[num_llis].cctl = cctl;
532 llis_va[num_llis].src = bd->srcbus.addr;
533 llis_va[num_llis].dst = bd->dstbus.addr;
534 llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
535 sizeof(struct pl08x_lli);
536 llis_va[num_llis].lli |= bd->lli_bus;
538 if (cctl & PL080_CONTROL_SRC_INCR)
539 bd->srcbus.addr += len;
540 if (cctl & PL080_CONTROL_DST_INCR)
541 bd->dstbus.addr += len;
543 BUG_ON(bd->remainder < len);
545 bd->remainder -= len;
548 static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
549 u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
551 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
552 pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
553 (*total_bytes) += len;
557 * This fills in the table of LLIs for the transfer descriptor
558 * Note that we assume we never have to change the burst sizes
559 * Return 0 for error
561 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
562 struct pl08x_txd *txd)
564 struct pl08x_bus_data *mbus, *sbus;
565 struct pl08x_lli_build_data bd;
566 int num_llis = 0;
567 u32 cctl, early_bytes = 0;
568 size_t max_bytes_per_lli, total_bytes = 0;
569 struct pl08x_lli *llis_va;
571 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
572 if (!txd->llis_va) {
573 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
574 return 0;
577 pl08x->pool_ctr++;
579 /* Get the default CCTL */
580 cctl = txd->cctl;
582 bd.txd = txd;
583 bd.srcbus.addr = txd->src_addr;
584 bd.dstbus.addr = txd->dst_addr;
585 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
587 /* Find maximum width of the source bus */
588 bd.srcbus.maxwidth =
589 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
590 PL080_CONTROL_SWIDTH_SHIFT);
592 /* Find maximum width of the destination bus */
593 bd.dstbus.maxwidth =
594 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
595 PL080_CONTROL_DWIDTH_SHIFT);
597 /* Set up the bus widths to the maximum */
598 bd.srcbus.buswidth = bd.srcbus.maxwidth;
599 bd.dstbus.buswidth = bd.dstbus.maxwidth;
601 /* We need to count this down to zero */
602 bd.remainder = txd->len;
604 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
606 dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
607 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
608 bd.srcbus.buswidth,
609 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
610 bd.dstbus.buswidth,
611 bd.remainder);
612 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
613 mbus == &bd.srcbus ? "src" : "dst",
614 sbus == &bd.srcbus ? "src" : "dst");
617 * Zero length is only allowed if all these requirements are met:
618 * - flow controller is peripheral.
619 * - src.addr is aligned to src.width
620 * - dst.addr is aligned to dst.width
622 * sg_len == 1 should be true, as there can be two cases here:
623 * - Memory addresses are contiguous and are not scattered. Here, Only
624 * one sg will be passed by user driver, with memory address and zero
625 * length. We pass this to controller and after the transfer it will
626 * receive the last burst request from peripheral and so transfer
627 * finishes.
629 * - Memory addresses are scattered and are not contiguous. Here,
630 * Obviously as DMA controller doesn't know when a lli's transfer gets
631 * over, it can't load next lli. So in this case, there has to be an
632 * assumption that only one lli is supported. Thus, we can't have
633 * scattered addresses.
635 if (!bd.remainder) {
636 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
637 PL080_CONFIG_FLOW_CONTROL_SHIFT;
638 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
639 (fc <= PL080_FLOW_SRC2DST_SRC))) {
640 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
641 __func__);
642 return 0;
645 if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
646 (bd.srcbus.addr % bd.srcbus.buswidth)) {
647 dev_err(&pl08x->adev->dev,
648 "%s src & dst address must be aligned to src"
649 " & dst width if peripheral is flow controller",
650 __func__);
651 return 0;
654 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
655 bd.dstbus.buswidth, 0);
656 pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
660 * Send byte by byte for following cases
661 * - Less than a bus width available
662 * - until master bus is aligned
664 if (bd.remainder < mbus->buswidth)
665 early_bytes = bd.remainder;
666 else if ((mbus->addr) % (mbus->buswidth)) {
667 early_bytes = mbus->buswidth - (mbus->addr) % (mbus->buswidth);
668 if ((bd.remainder - early_bytes) < mbus->buswidth)
669 early_bytes = bd.remainder;
672 if (early_bytes) {
673 dev_vdbg(&pl08x->adev->dev, "%s byte width LLIs "
674 "(remain 0x%08x)\n", __func__, bd.remainder);
675 prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
676 &total_bytes);
679 if (bd.remainder) {
681 * Master now aligned
682 * - if slave is not then we must set its width down
684 if (sbus->addr % sbus->buswidth) {
685 dev_dbg(&pl08x->adev->dev,
686 "%s set down bus width to one byte\n",
687 __func__);
689 sbus->buswidth = 1;
692 /* Bytes transferred = tsize * src width, not MIN(buswidths) */
693 max_bytes_per_lli = bd.srcbus.buswidth *
694 PL080_CONTROL_TRANSFER_SIZE_MASK;
697 * Make largest possible LLIs until less than one bus
698 * width left
700 while (bd.remainder > (mbus->buswidth - 1)) {
701 size_t lli_len, tsize, width;
704 * If enough left try to send max possible,
705 * otherwise try to send the remainder
707 lli_len = min(bd.remainder, max_bytes_per_lli);
710 * Check against maximum bus alignment: Calculate actual
711 * transfer size in relation to bus width and get a
712 * maximum remainder of the highest bus width - 1
714 width = max(mbus->buswidth, sbus->buswidth);
715 lli_len = (lli_len / width) * width;
716 tsize = lli_len / bd.srcbus.buswidth;
718 dev_vdbg(&pl08x->adev->dev,
719 "%s fill lli with single lli chunk of "
720 "size 0x%08zx (remainder 0x%08zx)\n",
721 __func__, lli_len, bd.remainder);
723 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
724 bd.dstbus.buswidth, tsize);
725 pl08x_fill_lli_for_desc(&bd, num_llis++, lli_len, cctl);
726 total_bytes += lli_len;
730 * Send any odd bytes
732 if (bd.remainder) {
733 dev_vdbg(&pl08x->adev->dev,
734 "%s align with boundary, send odd bytes (remain %zu)\n",
735 __func__, bd.remainder);
736 prep_byte_width_lli(&bd, &cctl, bd.remainder,
737 num_llis++, &total_bytes);
741 if (total_bytes != txd->len) {
742 dev_err(&pl08x->adev->dev,
743 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
744 __func__, total_bytes, txd->len);
745 return 0;
748 if (num_llis >= MAX_NUM_TSFR_LLIS) {
749 dev_err(&pl08x->adev->dev,
750 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
751 __func__, (u32) MAX_NUM_TSFR_LLIS);
752 return 0;
755 llis_va = txd->llis_va;
756 /* The final LLI terminates the LLI. */
757 llis_va[num_llis - 1].lli = 0;
758 /* The final LLI element shall also fire an interrupt. */
759 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
761 #ifdef VERBOSE_DEBUG
763 int i;
765 dev_vdbg(&pl08x->adev->dev,
766 "%-3s %-9s %-10s %-10s %-10s %s\n",
767 "lli", "", "csrc", "cdst", "clli", "cctl");
768 for (i = 0; i < num_llis; i++) {
769 dev_vdbg(&pl08x->adev->dev,
770 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
771 i, &llis_va[i], llis_va[i].src,
772 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
776 #endif
778 return num_llis;
781 /* You should call this with the struct pl08x lock held */
782 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
783 struct pl08x_txd *txd)
785 /* Free the LLI */
786 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
788 pl08x->pool_ctr--;
790 kfree(txd);
793 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
794 struct pl08x_dma_chan *plchan)
796 struct pl08x_txd *txdi = NULL;
797 struct pl08x_txd *next;
799 if (!list_empty(&plchan->pend_list)) {
800 list_for_each_entry_safe(txdi,
801 next, &plchan->pend_list, node) {
802 list_del(&txdi->node);
803 pl08x_free_txd(pl08x, txdi);
809 * The DMA ENGINE API
811 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
813 return 0;
816 static void pl08x_free_chan_resources(struct dma_chan *chan)
821 * This should be called with the channel plchan->lock held
823 static int prep_phy_channel(struct pl08x_dma_chan *plchan,
824 struct pl08x_txd *txd)
826 struct pl08x_driver_data *pl08x = plchan->host;
827 struct pl08x_phy_chan *ch;
828 int ret;
830 /* Check if we already have a channel */
831 if (plchan->phychan)
832 return 0;
834 ch = pl08x_get_phy_channel(pl08x, plchan);
835 if (!ch) {
836 /* No physical channel available, cope with it */
837 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
838 return -EBUSY;
842 * OK we have a physical channel: for memcpy() this is all we
843 * need, but for slaves the physical signals may be muxed!
844 * Can the platform allow us to use this channel?
846 if (plchan->slave && pl08x->pd->get_signal) {
847 ret = pl08x->pd->get_signal(plchan);
848 if (ret < 0) {
849 dev_dbg(&pl08x->adev->dev,
850 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
851 ch->id, plchan->name);
852 /* Release physical channel & return */
853 pl08x_put_phy_channel(pl08x, ch);
854 return -EBUSY;
856 ch->signal = ret;
858 /* Assign the flow control signal to this channel */
859 if (txd->direction == DMA_TO_DEVICE)
860 txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
861 else if (txd->direction == DMA_FROM_DEVICE)
862 txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
865 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
866 ch->id,
867 ch->signal,
868 plchan->name);
870 plchan->phychan_hold++;
871 plchan->phychan = ch;
873 return 0;
876 static void release_phy_channel(struct pl08x_dma_chan *plchan)
878 struct pl08x_driver_data *pl08x = plchan->host;
880 if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
881 pl08x->pd->put_signal(plchan);
882 plchan->phychan->signal = -1;
884 pl08x_put_phy_channel(pl08x, plchan->phychan);
885 plchan->phychan = NULL;
888 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
890 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
891 struct pl08x_txd *txd = to_pl08x_txd(tx);
892 unsigned long flags;
894 spin_lock_irqsave(&plchan->lock, flags);
896 plchan->chan.cookie += 1;
897 if (plchan->chan.cookie < 0)
898 plchan->chan.cookie = 1;
899 tx->cookie = plchan->chan.cookie;
901 /* Put this onto the pending list */
902 list_add_tail(&txd->node, &plchan->pend_list);
905 * If there was no physical channel available for this memcpy,
906 * stack the request up and indicate that the channel is waiting
907 * for a free physical channel.
909 if (!plchan->slave && !plchan->phychan) {
910 /* Do this memcpy whenever there is a channel ready */
911 plchan->state = PL08X_CHAN_WAITING;
912 plchan->waiting = txd;
913 } else {
914 plchan->phychan_hold--;
917 spin_unlock_irqrestore(&plchan->lock, flags);
919 return tx->cookie;
922 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
923 struct dma_chan *chan, unsigned long flags)
925 struct dma_async_tx_descriptor *retval = NULL;
927 return retval;
931 * Code accessing dma_async_is_complete() in a tight loop may give problems.
932 * If slaves are relying on interrupts to signal completion this function
933 * must not be called with interrupts disabled.
935 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
936 dma_cookie_t cookie, struct dma_tx_state *txstate)
938 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
939 dma_cookie_t last_used;
940 dma_cookie_t last_complete;
941 enum dma_status ret;
942 u32 bytesleft = 0;
944 last_used = plchan->chan.cookie;
945 last_complete = plchan->lc;
947 ret = dma_async_is_complete(cookie, last_complete, last_used);
948 if (ret == DMA_SUCCESS) {
949 dma_set_tx_state(txstate, last_complete, last_used, 0);
950 return ret;
954 * This cookie not complete yet
956 last_used = plchan->chan.cookie;
957 last_complete = plchan->lc;
959 /* Get number of bytes left in the active transactions and queue */
960 bytesleft = pl08x_getbytes_chan(plchan);
962 dma_set_tx_state(txstate, last_complete, last_used,
963 bytesleft);
965 if (plchan->state == PL08X_CHAN_PAUSED)
966 return DMA_PAUSED;
968 /* Whether waiting or running, we're in progress */
969 return DMA_IN_PROGRESS;
972 /* PrimeCell DMA extension */
973 struct burst_table {
974 u32 burstwords;
975 u32 reg;
978 static const struct burst_table burst_sizes[] = {
980 .burstwords = 256,
981 .reg = PL080_BSIZE_256,
984 .burstwords = 128,
985 .reg = PL080_BSIZE_128,
988 .burstwords = 64,
989 .reg = PL080_BSIZE_64,
992 .burstwords = 32,
993 .reg = PL080_BSIZE_32,
996 .burstwords = 16,
997 .reg = PL080_BSIZE_16,
1000 .burstwords = 8,
1001 .reg = PL080_BSIZE_8,
1004 .burstwords = 4,
1005 .reg = PL080_BSIZE_4,
1008 .burstwords = 0,
1009 .reg = PL080_BSIZE_1,
1014 * Given the source and destination available bus masks, select which
1015 * will be routed to each port. We try to have source and destination
1016 * on separate ports, but always respect the allowable settings.
1018 static u32 pl08x_select_bus(u8 src, u8 dst)
1020 u32 cctl = 0;
1022 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1023 cctl |= PL080_CONTROL_DST_AHB2;
1024 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1025 cctl |= PL080_CONTROL_SRC_AHB2;
1027 return cctl;
1030 static u32 pl08x_cctl(u32 cctl)
1032 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1033 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1034 PL080_CONTROL_PROT_MASK);
1036 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1037 return cctl | PL080_CONTROL_PROT_SYS;
1040 static u32 pl08x_width(enum dma_slave_buswidth width)
1042 switch (width) {
1043 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1044 return PL080_WIDTH_8BIT;
1045 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1046 return PL080_WIDTH_16BIT;
1047 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1048 return PL080_WIDTH_32BIT;
1049 default:
1050 return ~0;
1054 static u32 pl08x_burst(u32 maxburst)
1056 int i;
1058 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1059 if (burst_sizes[i].burstwords <= maxburst)
1060 break;
1062 return burst_sizes[i].reg;
1065 static int dma_set_runtime_config(struct dma_chan *chan,
1066 struct dma_slave_config *config)
1068 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1069 struct pl08x_driver_data *pl08x = plchan->host;
1070 enum dma_slave_buswidth addr_width;
1071 u32 width, burst, maxburst;
1072 u32 cctl = 0;
1074 if (!plchan->slave)
1075 return -EINVAL;
1077 /* Transfer direction */
1078 plchan->runtime_direction = config->direction;
1079 if (config->direction == DMA_TO_DEVICE) {
1080 addr_width = config->dst_addr_width;
1081 maxburst = config->dst_maxburst;
1082 } else if (config->direction == DMA_FROM_DEVICE) {
1083 addr_width = config->src_addr_width;
1084 maxburst = config->src_maxburst;
1085 } else {
1086 dev_err(&pl08x->adev->dev,
1087 "bad runtime_config: alien transfer direction\n");
1088 return -EINVAL;
1091 width = pl08x_width(addr_width);
1092 if (width == ~0) {
1093 dev_err(&pl08x->adev->dev,
1094 "bad runtime_config: alien address width\n");
1095 return -EINVAL;
1098 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1099 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1102 * If this channel will only request single transfers, set this
1103 * down to ONE element. Also select one element if no maxburst
1104 * is specified.
1106 if (plchan->cd->single)
1107 maxburst = 1;
1109 burst = pl08x_burst(maxburst);
1110 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1111 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1113 if (plchan->runtime_direction == DMA_FROM_DEVICE) {
1114 plchan->src_addr = config->src_addr;
1115 plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
1116 pl08x_select_bus(plchan->cd->periph_buses,
1117 pl08x->mem_buses);
1118 } else {
1119 plchan->dst_addr = config->dst_addr;
1120 plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
1121 pl08x_select_bus(pl08x->mem_buses,
1122 plchan->cd->periph_buses);
1125 dev_dbg(&pl08x->adev->dev,
1126 "configured channel %s (%s) for %s, data width %d, "
1127 "maxburst %d words, LE, CCTL=0x%08x\n",
1128 dma_chan_name(chan), plchan->name,
1129 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1130 addr_width,
1131 maxburst,
1132 cctl);
1134 return 0;
1138 * Slave transactions callback to the slave device to allow
1139 * synchronization of slave DMA signals with the DMAC enable
1141 static void pl08x_issue_pending(struct dma_chan *chan)
1143 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1144 unsigned long flags;
1146 spin_lock_irqsave(&plchan->lock, flags);
1147 /* Something is already active, or we're waiting for a channel... */
1148 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1149 spin_unlock_irqrestore(&plchan->lock, flags);
1150 return;
1153 /* Take the first element in the queue and execute it */
1154 if (!list_empty(&plchan->pend_list)) {
1155 struct pl08x_txd *next;
1157 next = list_first_entry(&plchan->pend_list,
1158 struct pl08x_txd,
1159 node);
1160 list_del(&next->node);
1161 plchan->state = PL08X_CHAN_RUNNING;
1163 pl08x_start_txd(plchan, next);
1166 spin_unlock_irqrestore(&plchan->lock, flags);
1169 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1170 struct pl08x_txd *txd)
1172 struct pl08x_driver_data *pl08x = plchan->host;
1173 unsigned long flags;
1174 int num_llis, ret;
1176 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1177 if (!num_llis) {
1178 spin_lock_irqsave(&plchan->lock, flags);
1179 pl08x_free_txd(pl08x, txd);
1180 spin_unlock_irqrestore(&plchan->lock, flags);
1181 return -EINVAL;
1184 spin_lock_irqsave(&plchan->lock, flags);
1187 * See if we already have a physical channel allocated,
1188 * else this is the time to try to get one.
1190 ret = prep_phy_channel(plchan, txd);
1191 if (ret) {
1193 * No physical channel was available.
1195 * memcpy transfers can be sorted out at submission time.
1197 * Slave transfers may have been denied due to platform
1198 * channel muxing restrictions. Since there is no guarantee
1199 * that this will ever be resolved, and the signal must be
1200 * acquired AFTER acquiring the physical channel, we will let
1201 * them be NACK:ed with -EBUSY here. The drivers can retry
1202 * the prep() call if they are eager on doing this using DMA.
1204 if (plchan->slave) {
1205 pl08x_free_txd_list(pl08x, plchan);
1206 pl08x_free_txd(pl08x, txd);
1207 spin_unlock_irqrestore(&plchan->lock, flags);
1208 return -EBUSY;
1210 } else
1212 * Else we're all set, paused and ready to roll, status
1213 * will switch to PL08X_CHAN_RUNNING when we call
1214 * issue_pending(). If there is something running on the
1215 * channel already we don't change its state.
1217 if (plchan->state == PL08X_CHAN_IDLE)
1218 plchan->state = PL08X_CHAN_PAUSED;
1220 spin_unlock_irqrestore(&plchan->lock, flags);
1222 return 0;
1225 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1226 unsigned long flags)
1228 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1230 if (txd) {
1231 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1232 txd->tx.flags = flags;
1233 txd->tx.tx_submit = pl08x_tx_submit;
1234 INIT_LIST_HEAD(&txd->node);
1236 /* Always enable error and terminal interrupts */
1237 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1238 PL080_CONFIG_TC_IRQ_MASK;
1240 return txd;
1244 * Initialize a descriptor to be used by memcpy submit
1246 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1247 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1248 size_t len, unsigned long flags)
1250 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1251 struct pl08x_driver_data *pl08x = plchan->host;
1252 struct pl08x_txd *txd;
1253 int ret;
1255 txd = pl08x_get_txd(plchan, flags);
1256 if (!txd) {
1257 dev_err(&pl08x->adev->dev,
1258 "%s no memory for descriptor\n", __func__);
1259 return NULL;
1262 txd->direction = DMA_NONE;
1263 txd->src_addr = src;
1264 txd->dst_addr = dest;
1265 txd->len = len;
1267 /* Set platform data for m2m */
1268 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1269 txd->cctl = pl08x->pd->memcpy_channel.cctl &
1270 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1272 /* Both to be incremented or the code will break */
1273 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1275 if (pl08x->vd->dualmaster)
1276 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1277 pl08x->mem_buses);
1279 ret = pl08x_prep_channel_resources(plchan, txd);
1280 if (ret)
1281 return NULL;
1283 return &txd->tx;
1286 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1287 struct dma_chan *chan, struct scatterlist *sgl,
1288 unsigned int sg_len, enum dma_data_direction direction,
1289 unsigned long flags)
1291 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1292 struct pl08x_driver_data *pl08x = plchan->host;
1293 struct pl08x_txd *txd;
1294 int ret, tmp;
1297 * Current implementation ASSUMES only one sg
1299 if (sg_len != 1) {
1300 dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1301 __func__);
1302 BUG();
1305 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1306 __func__, sgl->length, plchan->name);
1308 txd = pl08x_get_txd(plchan, flags);
1309 if (!txd) {
1310 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1311 return NULL;
1314 if (direction != plchan->runtime_direction)
1315 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1316 "the direction configured for the PrimeCell\n",
1317 __func__);
1320 * Set up addresses, the PrimeCell configured address
1321 * will take precedence since this may configure the
1322 * channel target address dynamically at runtime.
1324 txd->direction = direction;
1325 txd->len = sgl->length;
1327 if (direction == DMA_TO_DEVICE) {
1328 txd->cctl = plchan->dst_cctl;
1329 txd->src_addr = sgl->dma_address;
1330 txd->dst_addr = plchan->dst_addr;
1331 } else if (direction == DMA_FROM_DEVICE) {
1332 txd->cctl = plchan->src_cctl;
1333 txd->src_addr = plchan->src_addr;
1334 txd->dst_addr = sgl->dma_address;
1335 } else {
1336 dev_err(&pl08x->adev->dev,
1337 "%s direction unsupported\n", __func__);
1338 return NULL;
1341 if (plchan->cd->device_fc)
1342 tmp = (direction == DMA_TO_DEVICE) ? PL080_FLOW_MEM2PER_PER :
1343 PL080_FLOW_PER2MEM_PER;
1344 else
1345 tmp = (direction == DMA_TO_DEVICE) ? PL080_FLOW_MEM2PER :
1346 PL080_FLOW_PER2MEM;
1348 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1350 ret = pl08x_prep_channel_resources(plchan, txd);
1351 if (ret)
1352 return NULL;
1354 return &txd->tx;
1357 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1358 unsigned long arg)
1360 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1361 struct pl08x_driver_data *pl08x = plchan->host;
1362 unsigned long flags;
1363 int ret = 0;
1365 /* Controls applicable to inactive channels */
1366 if (cmd == DMA_SLAVE_CONFIG) {
1367 return dma_set_runtime_config(chan,
1368 (struct dma_slave_config *)arg);
1372 * Anything succeeds on channels with no physical allocation and
1373 * no queued transfers.
1375 spin_lock_irqsave(&plchan->lock, flags);
1376 if (!plchan->phychan && !plchan->at) {
1377 spin_unlock_irqrestore(&plchan->lock, flags);
1378 return 0;
1381 switch (cmd) {
1382 case DMA_TERMINATE_ALL:
1383 plchan->state = PL08X_CHAN_IDLE;
1385 if (plchan->phychan) {
1386 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1389 * Mark physical channel as free and free any slave
1390 * signal
1392 release_phy_channel(plchan);
1394 /* Dequeue jobs and free LLIs */
1395 if (plchan->at) {
1396 pl08x_free_txd(pl08x, plchan->at);
1397 plchan->at = NULL;
1399 /* Dequeue jobs not yet fired as well */
1400 pl08x_free_txd_list(pl08x, plchan);
1401 break;
1402 case DMA_PAUSE:
1403 pl08x_pause_phy_chan(plchan->phychan);
1404 plchan->state = PL08X_CHAN_PAUSED;
1405 break;
1406 case DMA_RESUME:
1407 pl08x_resume_phy_chan(plchan->phychan);
1408 plchan->state = PL08X_CHAN_RUNNING;
1409 break;
1410 default:
1411 /* Unknown command */
1412 ret = -ENXIO;
1413 break;
1416 spin_unlock_irqrestore(&plchan->lock, flags);
1418 return ret;
1421 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1423 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1424 char *name = chan_id;
1426 /* Check that the channel is not taken! */
1427 if (!strcmp(plchan->name, name))
1428 return true;
1430 return false;
1434 * Just check that the device is there and active
1435 * TODO: turn this bit on/off depending on the number of physical channels
1436 * actually used, if it is zero... well shut it off. That will save some
1437 * power. Cut the clock at the same time.
1439 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1441 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1444 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1446 struct device *dev = txd->tx.chan->device->dev;
1448 if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1449 if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1450 dma_unmap_single(dev, txd->src_addr, txd->len,
1451 DMA_TO_DEVICE);
1452 else
1453 dma_unmap_page(dev, txd->src_addr, txd->len,
1454 DMA_TO_DEVICE);
1456 if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1457 if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1458 dma_unmap_single(dev, txd->dst_addr, txd->len,
1459 DMA_FROM_DEVICE);
1460 else
1461 dma_unmap_page(dev, txd->dst_addr, txd->len,
1462 DMA_FROM_DEVICE);
1466 static void pl08x_tasklet(unsigned long data)
1468 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1469 struct pl08x_driver_data *pl08x = plchan->host;
1470 struct pl08x_txd *txd;
1471 unsigned long flags;
1473 spin_lock_irqsave(&plchan->lock, flags);
1475 txd = plchan->at;
1476 plchan->at = NULL;
1478 if (txd) {
1479 /* Update last completed */
1480 plchan->lc = txd->tx.cookie;
1483 /* If a new descriptor is queued, set it up plchan->at is NULL here */
1484 if (!list_empty(&plchan->pend_list)) {
1485 struct pl08x_txd *next;
1487 next = list_first_entry(&plchan->pend_list,
1488 struct pl08x_txd,
1489 node);
1490 list_del(&next->node);
1492 pl08x_start_txd(plchan, next);
1493 } else if (plchan->phychan_hold) {
1495 * This channel is still in use - we have a new txd being
1496 * prepared and will soon be queued. Don't give up the
1497 * physical channel.
1499 } else {
1500 struct pl08x_dma_chan *waiting = NULL;
1503 * No more jobs, so free up the physical channel
1504 * Free any allocated signal on slave transfers too
1506 release_phy_channel(plchan);
1507 plchan->state = PL08X_CHAN_IDLE;
1510 * And NOW before anyone else can grab that free:d up
1511 * physical channel, see if there is some memcpy pending
1512 * that seriously needs to start because of being stacked
1513 * up while we were choking the physical channels with data.
1515 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1516 chan.device_node) {
1517 if (waiting->state == PL08X_CHAN_WAITING &&
1518 waiting->waiting != NULL) {
1519 int ret;
1521 /* This should REALLY not fail now */
1522 ret = prep_phy_channel(waiting,
1523 waiting->waiting);
1524 BUG_ON(ret);
1525 waiting->phychan_hold--;
1526 waiting->state = PL08X_CHAN_RUNNING;
1527 waiting->waiting = NULL;
1528 pl08x_issue_pending(&waiting->chan);
1529 break;
1534 spin_unlock_irqrestore(&plchan->lock, flags);
1536 if (txd) {
1537 dma_async_tx_callback callback = txd->tx.callback;
1538 void *callback_param = txd->tx.callback_param;
1540 /* Don't try to unmap buffers on slave channels */
1541 if (!plchan->slave)
1542 pl08x_unmap_buffers(txd);
1544 /* Free the descriptor */
1545 spin_lock_irqsave(&plchan->lock, flags);
1546 pl08x_free_txd(pl08x, txd);
1547 spin_unlock_irqrestore(&plchan->lock, flags);
1549 /* Callback to signal completion */
1550 if (callback)
1551 callback(callback_param);
1555 static irqreturn_t pl08x_irq(int irq, void *dev)
1557 struct pl08x_driver_data *pl08x = dev;
1558 u32 mask = 0, err, tc, i;
1560 /* check & clear - ERR & TC interrupts */
1561 err = readl(pl08x->base + PL080_ERR_STATUS);
1562 if (err) {
1563 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1564 __func__, err);
1565 writel(err, pl08x->base + PL080_ERR_CLEAR);
1567 tc = readl(pl08x->base + PL080_INT_STATUS);
1568 if (tc)
1569 writel(tc, pl08x->base + PL080_TC_CLEAR);
1571 if (!err && !tc)
1572 return IRQ_NONE;
1574 for (i = 0; i < pl08x->vd->channels; i++) {
1575 if (((1 << i) & err) || ((1 << i) & tc)) {
1576 /* Locate physical channel */
1577 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1578 struct pl08x_dma_chan *plchan = phychan->serving;
1580 if (!plchan) {
1581 dev_err(&pl08x->adev->dev,
1582 "%s Error TC interrupt on unused channel: 0x%08x\n",
1583 __func__, i);
1584 continue;
1587 /* Schedule tasklet on this channel */
1588 tasklet_schedule(&plchan->tasklet);
1589 mask |= (1 << i);
1593 return mask ? IRQ_HANDLED : IRQ_NONE;
1596 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1598 u32 cctl = pl08x_cctl(chan->cd->cctl);
1600 chan->slave = true;
1601 chan->name = chan->cd->bus_id;
1602 chan->src_addr = chan->cd->addr;
1603 chan->dst_addr = chan->cd->addr;
1604 chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
1605 pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
1606 chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
1607 pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
1611 * Initialise the DMAC memcpy/slave channels.
1612 * Make a local wrapper to hold required data
1614 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1615 struct dma_device *dmadev, unsigned int channels, bool slave)
1617 struct pl08x_dma_chan *chan;
1618 int i;
1620 INIT_LIST_HEAD(&dmadev->channels);
1623 * Register as many many memcpy as we have physical channels,
1624 * we won't always be able to use all but the code will have
1625 * to cope with that situation.
1627 for (i = 0; i < channels; i++) {
1628 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1629 if (!chan) {
1630 dev_err(&pl08x->adev->dev,
1631 "%s no memory for channel\n", __func__);
1632 return -ENOMEM;
1635 chan->host = pl08x;
1636 chan->state = PL08X_CHAN_IDLE;
1638 if (slave) {
1639 chan->cd = &pl08x->pd->slave_channels[i];
1640 pl08x_dma_slave_init(chan);
1641 } else {
1642 chan->cd = &pl08x->pd->memcpy_channel;
1643 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1644 if (!chan->name) {
1645 kfree(chan);
1646 return -ENOMEM;
1649 if (chan->cd->circular_buffer) {
1650 dev_err(&pl08x->adev->dev,
1651 "channel %s: circular buffers not supported\n",
1652 chan->name);
1653 kfree(chan);
1654 continue;
1656 dev_dbg(&pl08x->adev->dev,
1657 "initialize virtual channel \"%s\"\n",
1658 chan->name);
1660 chan->chan.device = dmadev;
1661 chan->chan.cookie = 0;
1662 chan->lc = 0;
1664 spin_lock_init(&chan->lock);
1665 INIT_LIST_HEAD(&chan->pend_list);
1666 tasklet_init(&chan->tasklet, pl08x_tasklet,
1667 (unsigned long) chan);
1669 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1671 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1672 i, slave ? "slave" : "memcpy");
1673 return i;
1676 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1678 struct pl08x_dma_chan *chan = NULL;
1679 struct pl08x_dma_chan *next;
1681 list_for_each_entry_safe(chan,
1682 next, &dmadev->channels, chan.device_node) {
1683 list_del(&chan->chan.device_node);
1684 kfree(chan);
1688 #ifdef CONFIG_DEBUG_FS
1689 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1691 switch (state) {
1692 case PL08X_CHAN_IDLE:
1693 return "idle";
1694 case PL08X_CHAN_RUNNING:
1695 return "running";
1696 case PL08X_CHAN_PAUSED:
1697 return "paused";
1698 case PL08X_CHAN_WAITING:
1699 return "waiting";
1700 default:
1701 break;
1703 return "UNKNOWN STATE";
1706 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1708 struct pl08x_driver_data *pl08x = s->private;
1709 struct pl08x_dma_chan *chan;
1710 struct pl08x_phy_chan *ch;
1711 unsigned long flags;
1712 int i;
1714 seq_printf(s, "PL08x physical channels:\n");
1715 seq_printf(s, "CHANNEL:\tUSER:\n");
1716 seq_printf(s, "--------\t-----\n");
1717 for (i = 0; i < pl08x->vd->channels; i++) {
1718 struct pl08x_dma_chan *virt_chan;
1720 ch = &pl08x->phy_chans[i];
1722 spin_lock_irqsave(&ch->lock, flags);
1723 virt_chan = ch->serving;
1725 seq_printf(s, "%d\t\t%s\n",
1726 ch->id, virt_chan ? virt_chan->name : "(none)");
1728 spin_unlock_irqrestore(&ch->lock, flags);
1731 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1732 seq_printf(s, "CHANNEL:\tSTATE:\n");
1733 seq_printf(s, "--------\t------\n");
1734 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1735 seq_printf(s, "%s\t\t%s\n", chan->name,
1736 pl08x_state_str(chan->state));
1739 seq_printf(s, "\nPL08x virtual slave channels:\n");
1740 seq_printf(s, "CHANNEL:\tSTATE:\n");
1741 seq_printf(s, "--------\t------\n");
1742 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1743 seq_printf(s, "%s\t\t%s\n", chan->name,
1744 pl08x_state_str(chan->state));
1747 return 0;
1750 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1752 return single_open(file, pl08x_debugfs_show, inode->i_private);
1755 static const struct file_operations pl08x_debugfs_operations = {
1756 .open = pl08x_debugfs_open,
1757 .read = seq_read,
1758 .llseek = seq_lseek,
1759 .release = single_release,
1762 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1764 /* Expose a simple debugfs interface to view all clocks */
1765 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
1766 S_IFREG | S_IRUGO, NULL, pl08x,
1767 &pl08x_debugfs_operations);
1770 #else
1771 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1774 #endif
1776 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1778 struct pl08x_driver_data *pl08x;
1779 const struct vendor_data *vd = id->data;
1780 int ret = 0;
1781 int i;
1783 ret = amba_request_regions(adev, NULL);
1784 if (ret)
1785 return ret;
1787 /* Create the driver state holder */
1788 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1789 if (!pl08x) {
1790 ret = -ENOMEM;
1791 goto out_no_pl08x;
1794 pm_runtime_set_active(&adev->dev);
1795 pm_runtime_enable(&adev->dev);
1797 /* Initialize memcpy engine */
1798 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1799 pl08x->memcpy.dev = &adev->dev;
1800 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1801 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1802 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1803 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1804 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1805 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1806 pl08x->memcpy.device_control = pl08x_control;
1808 /* Initialize slave engine */
1809 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1810 pl08x->slave.dev = &adev->dev;
1811 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1812 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1813 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1814 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1815 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1816 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1817 pl08x->slave.device_control = pl08x_control;
1819 /* Get the platform data */
1820 pl08x->pd = dev_get_platdata(&adev->dev);
1821 if (!pl08x->pd) {
1822 dev_err(&adev->dev, "no platform data supplied\n");
1823 goto out_no_platdata;
1826 /* Assign useful pointers to the driver state */
1827 pl08x->adev = adev;
1828 pl08x->vd = vd;
1830 /* By default, AHB1 only. If dualmaster, from platform */
1831 pl08x->lli_buses = PL08X_AHB1;
1832 pl08x->mem_buses = PL08X_AHB1;
1833 if (pl08x->vd->dualmaster) {
1834 pl08x->lli_buses = pl08x->pd->lli_buses;
1835 pl08x->mem_buses = pl08x->pd->mem_buses;
1838 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1839 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1840 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1841 if (!pl08x->pool) {
1842 ret = -ENOMEM;
1843 goto out_no_lli_pool;
1846 spin_lock_init(&pl08x->lock);
1848 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1849 if (!pl08x->base) {
1850 ret = -ENOMEM;
1851 goto out_no_ioremap;
1854 /* Turn on the PL08x */
1855 pl08x_ensure_on(pl08x);
1857 /* Attach the interrupt handler */
1858 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1859 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1861 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1862 DRIVER_NAME, pl08x);
1863 if (ret) {
1864 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1865 __func__, adev->irq[0]);
1866 goto out_no_irq;
1869 /* Initialize physical channels */
1870 pl08x->phy_chans = kmalloc((vd->channels * sizeof(*pl08x->phy_chans)),
1871 GFP_KERNEL);
1872 if (!pl08x->phy_chans) {
1873 dev_err(&adev->dev, "%s failed to allocate "
1874 "physical channel holders\n",
1875 __func__);
1876 goto out_no_phychans;
1879 for (i = 0; i < vd->channels; i++) {
1880 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1882 ch->id = i;
1883 ch->base = pl08x->base + PL080_Cx_BASE(i);
1884 spin_lock_init(&ch->lock);
1885 ch->serving = NULL;
1886 ch->signal = -1;
1887 dev_dbg(&adev->dev, "physical channel %d is %s\n",
1888 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1891 /* Register as many memcpy channels as there are physical channels */
1892 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1893 pl08x->vd->channels, false);
1894 if (ret <= 0) {
1895 dev_warn(&pl08x->adev->dev,
1896 "%s failed to enumerate memcpy channels - %d\n",
1897 __func__, ret);
1898 goto out_no_memcpy;
1900 pl08x->memcpy.chancnt = ret;
1902 /* Register slave channels */
1903 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1904 pl08x->pd->num_slave_channels, true);
1905 if (ret <= 0) {
1906 dev_warn(&pl08x->adev->dev,
1907 "%s failed to enumerate slave channels - %d\n",
1908 __func__, ret);
1909 goto out_no_slave;
1911 pl08x->slave.chancnt = ret;
1913 ret = dma_async_device_register(&pl08x->memcpy);
1914 if (ret) {
1915 dev_warn(&pl08x->adev->dev,
1916 "%s failed to register memcpy as an async device - %d\n",
1917 __func__, ret);
1918 goto out_no_memcpy_reg;
1921 ret = dma_async_device_register(&pl08x->slave);
1922 if (ret) {
1923 dev_warn(&pl08x->adev->dev,
1924 "%s failed to register slave as an async device - %d\n",
1925 __func__, ret);
1926 goto out_no_slave_reg;
1929 amba_set_drvdata(adev, pl08x);
1930 init_pl08x_debugfs(pl08x);
1931 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
1932 amba_part(adev), amba_rev(adev),
1933 (unsigned long long)adev->res.start, adev->irq[0]);
1935 pm_runtime_put(&adev->dev);
1936 return 0;
1938 out_no_slave_reg:
1939 dma_async_device_unregister(&pl08x->memcpy);
1940 out_no_memcpy_reg:
1941 pl08x_free_virtual_channels(&pl08x->slave);
1942 out_no_slave:
1943 pl08x_free_virtual_channels(&pl08x->memcpy);
1944 out_no_memcpy:
1945 kfree(pl08x->phy_chans);
1946 out_no_phychans:
1947 free_irq(adev->irq[0], pl08x);
1948 out_no_irq:
1949 iounmap(pl08x->base);
1950 out_no_ioremap:
1951 dma_pool_destroy(pl08x->pool);
1952 out_no_lli_pool:
1953 out_no_platdata:
1954 pm_runtime_put(&adev->dev);
1955 pm_runtime_disable(&adev->dev);
1957 kfree(pl08x);
1958 out_no_pl08x:
1959 amba_release_regions(adev);
1960 return ret;
1963 /* PL080 has 8 channels and the PL080 have just 2 */
1964 static struct vendor_data vendor_pl080 = {
1965 .channels = 8,
1966 .dualmaster = true,
1969 static struct vendor_data vendor_pl081 = {
1970 .channels = 2,
1971 .dualmaster = false,
1974 static struct amba_id pl08x_ids[] = {
1975 /* PL080 */
1977 .id = 0x00041080,
1978 .mask = 0x000fffff,
1979 .data = &vendor_pl080,
1981 /* PL081 */
1983 .id = 0x00041081,
1984 .mask = 0x000fffff,
1985 .data = &vendor_pl081,
1987 /* Nomadik 8815 PL080 variant */
1989 .id = 0x00280880,
1990 .mask = 0x00ffffff,
1991 .data = &vendor_pl080,
1993 { 0, 0 },
1996 static struct amba_driver pl08x_amba_driver = {
1997 .drv.name = DRIVER_NAME,
1998 .id_table = pl08x_ids,
1999 .probe = pl08x_probe,
2002 static int __init pl08x_init(void)
2004 int retval;
2005 retval = amba_driver_register(&pl08x_amba_driver);
2006 if (retval)
2007 printk(KERN_WARNING DRIVER_NAME
2008 "failed to register as an AMBA device (%d)\n",
2009 retval);
2010 return retval;
2012 subsys_initcall(pl08x_init);