Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / drivers / edac / i5000_edac.c
blob4dc3ac25a42261946fe9b8fc6798464ffc104db1
1 /*
2 * Intel 5000(P/V/X) class Memory Controllers kernel module
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Douglas Thompson Linux Networx (http://lnxi.com)
8 * norsk5@xmission.com
10 * This module is based on the following document:
12 * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
13 * http://developer.intel.com/design/chipsets/datashts/313070.htm
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/pci_ids.h>
21 #include <linux/slab.h>
22 #include <linux/edac.h>
23 #include <asm/mmzone.h>
25 #include "edac_core.h"
28 * Alter this version for the I5000 module when modifications are made
30 #define I5000_REVISION " Ver: 2.0.12"
31 #define EDAC_MOD_STR "i5000_edac"
33 #define i5000_printk(level, fmt, arg...) \
34 edac_printk(level, "i5000", fmt, ##arg)
36 #define i5000_mc_printk(mci, level, fmt, arg...) \
37 edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
39 #ifndef PCI_DEVICE_ID_INTEL_FBD_0
40 #define PCI_DEVICE_ID_INTEL_FBD_0 0x25F5
41 #endif
42 #ifndef PCI_DEVICE_ID_INTEL_FBD_1
43 #define PCI_DEVICE_ID_INTEL_FBD_1 0x25F6
44 #endif
46 /* Device 16,
47 * Function 0: System Address
48 * Function 1: Memory Branch Map, Control, Errors Register
49 * Function 2: FSB Error Registers
51 * All 3 functions of Device 16 (0,1,2) share the SAME DID
53 #define PCI_DEVICE_ID_INTEL_I5000_DEV16 0x25F0
55 /* OFFSETS for Function 0 */
57 /* OFFSETS for Function 1 */
58 #define AMBASE 0x48
59 #define MAXCH 0x56
60 #define MAXDIMMPERCH 0x57
61 #define TOLM 0x6C
62 #define REDMEMB 0x7C
63 #define RED_ECC_LOCATOR(x) ((x) & 0x3FFFF)
64 #define REC_ECC_LOCATOR_EVEN(x) ((x) & 0x001FF)
65 #define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3FE00)
66 #define MIR0 0x80
67 #define MIR1 0x84
68 #define MIR2 0x88
69 #define AMIR0 0x8C
70 #define AMIR1 0x90
71 #define AMIR2 0x94
73 #define FERR_FAT_FBD 0x98
74 #define NERR_FAT_FBD 0x9C
75 #define EXTRACT_FBDCHAN_INDX(x) (((x)>>28) & 0x3)
76 #define FERR_FAT_FBDCHAN 0x30000000
77 #define FERR_FAT_M3ERR 0x00000004
78 #define FERR_FAT_M2ERR 0x00000002
79 #define FERR_FAT_M1ERR 0x00000001
80 #define FERR_FAT_MASK (FERR_FAT_M1ERR | \
81 FERR_FAT_M2ERR | \
82 FERR_FAT_M3ERR)
84 #define FERR_NF_FBD 0xA0
86 /* Thermal and SPD or BFD errors */
87 #define FERR_NF_M28ERR 0x01000000
88 #define FERR_NF_M27ERR 0x00800000
89 #define FERR_NF_M26ERR 0x00400000
90 #define FERR_NF_M25ERR 0x00200000
91 #define FERR_NF_M24ERR 0x00100000
92 #define FERR_NF_M23ERR 0x00080000
93 #define FERR_NF_M22ERR 0x00040000
94 #define FERR_NF_M21ERR 0x00020000
96 /* Correctable errors */
97 #define FERR_NF_M20ERR 0x00010000
98 #define FERR_NF_M19ERR 0x00008000
99 #define FERR_NF_M18ERR 0x00004000
100 #define FERR_NF_M17ERR 0x00002000
102 /* Non-Retry or redundant Retry errors */
103 #define FERR_NF_M16ERR 0x00001000
104 #define FERR_NF_M15ERR 0x00000800
105 #define FERR_NF_M14ERR 0x00000400
106 #define FERR_NF_M13ERR 0x00000200
108 /* Uncorrectable errors */
109 #define FERR_NF_M12ERR 0x00000100
110 #define FERR_NF_M11ERR 0x00000080
111 #define FERR_NF_M10ERR 0x00000040
112 #define FERR_NF_M9ERR 0x00000020
113 #define FERR_NF_M8ERR 0x00000010
114 #define FERR_NF_M7ERR 0x00000008
115 #define FERR_NF_M6ERR 0x00000004
116 #define FERR_NF_M5ERR 0x00000002
117 #define FERR_NF_M4ERR 0x00000001
119 #define FERR_NF_UNCORRECTABLE (FERR_NF_M12ERR | \
120 FERR_NF_M11ERR | \
121 FERR_NF_M10ERR | \
122 FERR_NF_M9ERR | \
123 FERR_NF_M8ERR | \
124 FERR_NF_M7ERR | \
125 FERR_NF_M6ERR | \
126 FERR_NF_M5ERR | \
127 FERR_NF_M4ERR)
128 #define FERR_NF_CORRECTABLE (FERR_NF_M20ERR | \
129 FERR_NF_M19ERR | \
130 FERR_NF_M18ERR | \
131 FERR_NF_M17ERR)
132 #define FERR_NF_DIMM_SPARE (FERR_NF_M27ERR | \
133 FERR_NF_M28ERR)
134 #define FERR_NF_THERMAL (FERR_NF_M26ERR | \
135 FERR_NF_M25ERR | \
136 FERR_NF_M24ERR | \
137 FERR_NF_M23ERR)
138 #define FERR_NF_SPD_PROTOCOL (FERR_NF_M22ERR)
139 #define FERR_NF_NORTH_CRC (FERR_NF_M21ERR)
140 #define FERR_NF_NON_RETRY (FERR_NF_M13ERR | \
141 FERR_NF_M14ERR | \
142 FERR_NF_M15ERR)
144 #define NERR_NF_FBD 0xA4
145 #define FERR_NF_MASK (FERR_NF_UNCORRECTABLE | \
146 FERR_NF_CORRECTABLE | \
147 FERR_NF_DIMM_SPARE | \
148 FERR_NF_THERMAL | \
149 FERR_NF_SPD_PROTOCOL | \
150 FERR_NF_NORTH_CRC | \
151 FERR_NF_NON_RETRY)
153 #define EMASK_FBD 0xA8
154 #define EMASK_FBD_M28ERR 0x08000000
155 #define EMASK_FBD_M27ERR 0x04000000
156 #define EMASK_FBD_M26ERR 0x02000000
157 #define EMASK_FBD_M25ERR 0x01000000
158 #define EMASK_FBD_M24ERR 0x00800000
159 #define EMASK_FBD_M23ERR 0x00400000
160 #define EMASK_FBD_M22ERR 0x00200000
161 #define EMASK_FBD_M21ERR 0x00100000
162 #define EMASK_FBD_M20ERR 0x00080000
163 #define EMASK_FBD_M19ERR 0x00040000
164 #define EMASK_FBD_M18ERR 0x00020000
165 #define EMASK_FBD_M17ERR 0x00010000
167 #define EMASK_FBD_M15ERR 0x00004000
168 #define EMASK_FBD_M14ERR 0x00002000
169 #define EMASK_FBD_M13ERR 0x00001000
170 #define EMASK_FBD_M12ERR 0x00000800
171 #define EMASK_FBD_M11ERR 0x00000400
172 #define EMASK_FBD_M10ERR 0x00000200
173 #define EMASK_FBD_M9ERR 0x00000100
174 #define EMASK_FBD_M8ERR 0x00000080
175 #define EMASK_FBD_M7ERR 0x00000040
176 #define EMASK_FBD_M6ERR 0x00000020
177 #define EMASK_FBD_M5ERR 0x00000010
178 #define EMASK_FBD_M4ERR 0x00000008
179 #define EMASK_FBD_M3ERR 0x00000004
180 #define EMASK_FBD_M2ERR 0x00000002
181 #define EMASK_FBD_M1ERR 0x00000001
183 #define ENABLE_EMASK_FBD_FATAL_ERRORS (EMASK_FBD_M1ERR | \
184 EMASK_FBD_M2ERR | \
185 EMASK_FBD_M3ERR)
187 #define ENABLE_EMASK_FBD_UNCORRECTABLE (EMASK_FBD_M4ERR | \
188 EMASK_FBD_M5ERR | \
189 EMASK_FBD_M6ERR | \
190 EMASK_FBD_M7ERR | \
191 EMASK_FBD_M8ERR | \
192 EMASK_FBD_M9ERR | \
193 EMASK_FBD_M10ERR | \
194 EMASK_FBD_M11ERR | \
195 EMASK_FBD_M12ERR)
196 #define ENABLE_EMASK_FBD_CORRECTABLE (EMASK_FBD_M17ERR | \
197 EMASK_FBD_M18ERR | \
198 EMASK_FBD_M19ERR | \
199 EMASK_FBD_M20ERR)
200 #define ENABLE_EMASK_FBD_DIMM_SPARE (EMASK_FBD_M27ERR | \
201 EMASK_FBD_M28ERR)
202 #define ENABLE_EMASK_FBD_THERMALS (EMASK_FBD_M26ERR | \
203 EMASK_FBD_M25ERR | \
204 EMASK_FBD_M24ERR | \
205 EMASK_FBD_M23ERR)
206 #define ENABLE_EMASK_FBD_SPD_PROTOCOL (EMASK_FBD_M22ERR)
207 #define ENABLE_EMASK_FBD_NORTH_CRC (EMASK_FBD_M21ERR)
208 #define ENABLE_EMASK_FBD_NON_RETRY (EMASK_FBD_M15ERR | \
209 EMASK_FBD_M14ERR | \
210 EMASK_FBD_M13ERR)
212 #define ENABLE_EMASK_ALL (ENABLE_EMASK_FBD_NON_RETRY | \
213 ENABLE_EMASK_FBD_NORTH_CRC | \
214 ENABLE_EMASK_FBD_SPD_PROTOCOL | \
215 ENABLE_EMASK_FBD_THERMALS | \
216 ENABLE_EMASK_FBD_DIMM_SPARE | \
217 ENABLE_EMASK_FBD_FATAL_ERRORS | \
218 ENABLE_EMASK_FBD_CORRECTABLE | \
219 ENABLE_EMASK_FBD_UNCORRECTABLE)
221 #define ERR0_FBD 0xAC
222 #define ERR1_FBD 0xB0
223 #define ERR2_FBD 0xB4
224 #define MCERR_FBD 0xB8
225 #define NRECMEMA 0xBE
226 #define NREC_BANK(x) (((x)>>12) & 0x7)
227 #define NREC_RDWR(x) (((x)>>11) & 1)
228 #define NREC_RANK(x) (((x)>>8) & 0x7)
229 #define NRECMEMB 0xC0
230 #define NREC_CAS(x) (((x)>>16) & 0xFFFFFF)
231 #define NREC_RAS(x) ((x) & 0x7FFF)
232 #define NRECFGLOG 0xC4
233 #define NREEECFBDA 0xC8
234 #define NREEECFBDB 0xCC
235 #define NREEECFBDC 0xD0
236 #define NREEECFBDD 0xD4
237 #define NREEECFBDE 0xD8
238 #define REDMEMA 0xDC
239 #define RECMEMA 0xE2
240 #define REC_BANK(x) (((x)>>12) & 0x7)
241 #define REC_RDWR(x) (((x)>>11) & 1)
242 #define REC_RANK(x) (((x)>>8) & 0x7)
243 #define RECMEMB 0xE4
244 #define REC_CAS(x) (((x)>>16) & 0xFFFFFF)
245 #define REC_RAS(x) ((x) & 0x7FFF)
246 #define RECFGLOG 0xE8
247 #define RECFBDA 0xEC
248 #define RECFBDB 0xF0
249 #define RECFBDC 0xF4
250 #define RECFBDD 0xF8
251 #define RECFBDE 0xFC
253 /* OFFSETS for Function 2 */
256 * Device 21,
257 * Function 0: Memory Map Branch 0
259 * Device 22,
260 * Function 0: Memory Map Branch 1
262 #define PCI_DEVICE_ID_I5000_BRANCH_0 0x25F5
263 #define PCI_DEVICE_ID_I5000_BRANCH_1 0x25F6
265 #define AMB_PRESENT_0 0x64
266 #define AMB_PRESENT_1 0x66
267 #define MTR0 0x80
268 #define MTR1 0x84
269 #define MTR2 0x88
270 #define MTR3 0x8C
272 #define NUM_MTRS 4
273 #define CHANNELS_PER_BRANCH (2)
275 /* Defines to extract the vaious fields from the
276 * MTRx - Memory Technology Registers
278 #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (0x1 << 8))
279 #define MTR_DRAM_WIDTH(mtr) ((((mtr) >> 6) & 0x1) ? 8 : 4)
280 #define MTR_DRAM_BANKS(mtr) ((((mtr) >> 5) & 0x1) ? 8 : 4)
281 #define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
282 #define MTR_DIMM_RANK(mtr) (((mtr) >> 4) & 0x1)
283 #define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1)
284 #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
285 #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
286 #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
287 #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
289 #ifdef CONFIG_EDAC_DEBUG
290 static char *numrow_toString[] = {
291 "8,192 - 13 rows",
292 "16,384 - 14 rows",
293 "32,768 - 15 rows",
294 "reserved"
297 static char *numcol_toString[] = {
298 "1,024 - 10 columns",
299 "2,048 - 11 columns",
300 "4,096 - 12 columns",
301 "reserved"
303 #endif
305 /* enables the report of miscellaneous messages as CE errors - default off */
306 static int misc_messages;
308 /* Enumeration of supported devices */
309 enum i5000_chips {
310 I5000P = 0,
311 I5000V = 1, /* future */
312 I5000X = 2 /* future */
315 /* Device name and register DID (Device ID) */
316 struct i5000_dev_info {
317 const char *ctl_name; /* name for this device */
318 u16 fsb_mapping_errors; /* DID for the branchmap,control */
321 /* Table of devices attributes supported by this driver */
322 static const struct i5000_dev_info i5000_devs[] = {
323 [I5000P] = {
324 .ctl_name = "I5000",
325 .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
329 struct i5000_dimm_info {
330 int megabytes; /* size, 0 means not present */
331 int dual_rank;
334 #define MAX_CHANNELS 6 /* max possible channels */
335 #define MAX_CSROWS (8*2) /* max possible csrows per channel */
337 /* driver private data structure */
338 struct i5000_pvt {
339 struct pci_dev *system_address; /* 16.0 */
340 struct pci_dev *branchmap_werrors; /* 16.1 */
341 struct pci_dev *fsb_error_regs; /* 16.2 */
342 struct pci_dev *branch_0; /* 21.0 */
343 struct pci_dev *branch_1; /* 22.0 */
345 u16 tolm; /* top of low memory */
346 u64 ambase; /* AMB BAR */
348 u16 mir0, mir1, mir2;
350 u16 b0_mtr[NUM_MTRS]; /* Memory Technlogy Reg */
351 u16 b0_ambpresent0; /* Branch 0, Channel 0 */
352 u16 b0_ambpresent1; /* Brnach 0, Channel 1 */
354 u16 b1_mtr[NUM_MTRS]; /* Memory Technlogy Reg */
355 u16 b1_ambpresent0; /* Branch 1, Channel 8 */
356 u16 b1_ambpresent1; /* Branch 1, Channel 1 */
358 /* DIMM information matrix, allocating architecture maximums */
359 struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
361 /* Actual values for this controller */
362 int maxch; /* Max channels */
363 int maxdimmperch; /* Max DIMMs per channel */
366 /* I5000 MCH error information retrieved from Hardware */
367 struct i5000_error_info {
369 /* These registers are always read from the MC */
370 u32 ferr_fat_fbd; /* First Errors Fatal */
371 u32 nerr_fat_fbd; /* Next Errors Fatal */
372 u32 ferr_nf_fbd; /* First Errors Non-Fatal */
373 u32 nerr_nf_fbd; /* Next Errors Non-Fatal */
375 /* These registers are input ONLY if there was a Recoverable Error */
376 u32 redmemb; /* Recoverable Mem Data Error log B */
377 u16 recmema; /* Recoverable Mem Error log A */
378 u32 recmemb; /* Recoverable Mem Error log B */
380 /* These registers are input ONLY if there was a
381 * Non-Recoverable Error */
382 u16 nrecmema; /* Non-Recoverable Mem log A */
383 u16 nrecmemb; /* Non-Recoverable Mem log B */
387 static struct edac_pci_ctl_info *i5000_pci;
390 * i5000_get_error_info Retrieve the hardware error information from
391 * the hardware and cache it in the 'info'
392 * structure
394 static void i5000_get_error_info(struct mem_ctl_info *mci,
395 struct i5000_error_info *info)
397 struct i5000_pvt *pvt;
398 u32 value;
400 pvt = mci->pvt_info;
402 /* read in the 1st FATAL error register */
403 pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
405 /* Mask only the bits that the doc says are valid
407 value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
409 /* If there is an error, then read in the */
410 /* NEXT FATAL error register and the Memory Error Log Register A */
411 if (value & FERR_FAT_MASK) {
412 info->ferr_fat_fbd = value;
414 /* harvest the various error data we need */
415 pci_read_config_dword(pvt->branchmap_werrors,
416 NERR_FAT_FBD, &info->nerr_fat_fbd);
417 pci_read_config_word(pvt->branchmap_werrors,
418 NRECMEMA, &info->nrecmema);
419 pci_read_config_word(pvt->branchmap_werrors,
420 NRECMEMB, &info->nrecmemb);
422 /* Clear the error bits, by writing them back */
423 pci_write_config_dword(pvt->branchmap_werrors,
424 FERR_FAT_FBD, value);
425 } else {
426 info->ferr_fat_fbd = 0;
427 info->nerr_fat_fbd = 0;
428 info->nrecmema = 0;
429 info->nrecmemb = 0;
432 /* read in the 1st NON-FATAL error register */
433 pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
435 /* If there is an error, then read in the 1st NON-FATAL error
436 * register as well */
437 if (value & FERR_NF_MASK) {
438 info->ferr_nf_fbd = value;
440 /* harvest the various error data we need */
441 pci_read_config_dword(pvt->branchmap_werrors,
442 NERR_NF_FBD, &info->nerr_nf_fbd);
443 pci_read_config_word(pvt->branchmap_werrors,
444 RECMEMA, &info->recmema);
445 pci_read_config_dword(pvt->branchmap_werrors,
446 RECMEMB, &info->recmemb);
447 pci_read_config_dword(pvt->branchmap_werrors,
448 REDMEMB, &info->redmemb);
450 /* Clear the error bits, by writing them back */
451 pci_write_config_dword(pvt->branchmap_werrors,
452 FERR_NF_FBD, value);
453 } else {
454 info->ferr_nf_fbd = 0;
455 info->nerr_nf_fbd = 0;
456 info->recmema = 0;
457 info->recmemb = 0;
458 info->redmemb = 0;
463 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
464 * struct i5000_error_info *info,
465 * int handle_errors);
467 * handle the Intel FATAL errors, if any
469 static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
470 struct i5000_error_info *info,
471 int handle_errors)
473 char msg[EDAC_MC_LABEL_LEN + 1 + 160];
474 char *specific = NULL;
475 u32 allErrors;
476 int branch;
477 int channel;
478 int bank;
479 int rank;
480 int rdwr;
481 int ras, cas;
483 /* mask off the Error bits that are possible */
484 allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
485 if (!allErrors)
486 return; /* if no error, return now */
488 branch = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
489 channel = branch;
491 /* Use the NON-Recoverable macros to extract data */
492 bank = NREC_BANK(info->nrecmema);
493 rank = NREC_RANK(info->nrecmema);
494 rdwr = NREC_RDWR(info->nrecmema);
495 ras = NREC_RAS(info->nrecmemb);
496 cas = NREC_CAS(info->nrecmemb);
498 debugf0("\t\tCSROW= %d Channels= %d,%d (Branch= %d "
499 "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
500 rank, channel, channel + 1, branch >> 1, bank,
501 rdwr ? "Write" : "Read", ras, cas);
503 /* Only 1 bit will be on */
504 switch (allErrors) {
505 case FERR_FAT_M1ERR:
506 specific = "Alert on non-redundant retry or fast "
507 "reset timeout";
508 break;
509 case FERR_FAT_M2ERR:
510 specific = "Northbound CRC error on non-redundant "
511 "retry";
512 break;
513 case FERR_FAT_M3ERR:
515 static int done;
518 * This error is generated to inform that the intelligent
519 * throttling is disabled and the temperature passed the
520 * specified middle point. Since this is something the BIOS
521 * should take care of, we'll warn only once to avoid
522 * worthlessly flooding the log.
524 if (done)
525 return;
526 done++;
528 specific = ">Tmid Thermal event with intelligent "
529 "throttling disabled";
531 break;
534 /* Form out message */
535 snprintf(msg, sizeof(msg),
536 "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d CAS=%d "
537 "FATAL Err=0x%x (%s))",
538 branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas,
539 allErrors, specific);
541 /* Call the helper to output message */
542 edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
546 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
547 * struct i5000_error_info *info,
548 * int handle_errors);
550 * handle the Intel NON-FATAL errors, if any
552 static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
553 struct i5000_error_info *info,
554 int handle_errors)
556 char msg[EDAC_MC_LABEL_LEN + 1 + 170];
557 char *specific = NULL;
558 u32 allErrors;
559 u32 ue_errors;
560 u32 ce_errors;
561 u32 misc_errors;
562 int branch;
563 int channel;
564 int bank;
565 int rank;
566 int rdwr;
567 int ras, cas;
569 /* mask off the Error bits that are possible */
570 allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
571 if (!allErrors)
572 return; /* if no error, return now */
574 /* ONLY ONE of the possible error bits will be set, as per the docs */
575 ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
576 if (ue_errors) {
577 debugf0("\tUncorrected bits= 0x%x\n", ue_errors);
579 branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
582 * According with i5000 datasheet, bit 28 has no significance
583 * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
585 channel = branch & 2;
587 bank = NREC_BANK(info->nrecmema);
588 rank = NREC_RANK(info->nrecmema);
589 rdwr = NREC_RDWR(info->nrecmema);
590 ras = NREC_RAS(info->nrecmemb);
591 cas = NREC_CAS(info->nrecmemb);
593 debugf0
594 ("\t\tCSROW= %d Channels= %d,%d (Branch= %d "
595 "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
596 rank, channel, channel + 1, branch >> 1, bank,
597 rdwr ? "Write" : "Read", ras, cas);
599 switch (ue_errors) {
600 case FERR_NF_M12ERR:
601 specific = "Non-Aliased Uncorrectable Patrol Data ECC";
602 break;
603 case FERR_NF_M11ERR:
604 specific = "Non-Aliased Uncorrectable Spare-Copy "
605 "Data ECC";
606 break;
607 case FERR_NF_M10ERR:
608 specific = "Non-Aliased Uncorrectable Mirrored Demand "
609 "Data ECC";
610 break;
611 case FERR_NF_M9ERR:
612 specific = "Non-Aliased Uncorrectable Non-Mirrored "
613 "Demand Data ECC";
614 break;
615 case FERR_NF_M8ERR:
616 specific = "Aliased Uncorrectable Patrol Data ECC";
617 break;
618 case FERR_NF_M7ERR:
619 specific = "Aliased Uncorrectable Spare-Copy Data ECC";
620 break;
621 case FERR_NF_M6ERR:
622 specific = "Aliased Uncorrectable Mirrored Demand "
623 "Data ECC";
624 break;
625 case FERR_NF_M5ERR:
626 specific = "Aliased Uncorrectable Non-Mirrored Demand "
627 "Data ECC";
628 break;
629 case FERR_NF_M4ERR:
630 specific = "Uncorrectable Data ECC on Replay";
631 break;
634 /* Form out message */
635 snprintf(msg, sizeof(msg),
636 "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
637 "CAS=%d, UE Err=0x%x (%s))",
638 branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas,
639 ue_errors, specific);
641 /* Call the helper to output message */
642 edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
645 /* Check correctable errors */
646 ce_errors = allErrors & FERR_NF_CORRECTABLE;
647 if (ce_errors) {
648 debugf0("\tCorrected bits= 0x%x\n", ce_errors);
650 branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
652 channel = 0;
653 if (REC_ECC_LOCATOR_ODD(info->redmemb))
654 channel = 1;
656 /* Convert channel to be based from zero, instead of
657 * from branch base of 0 */
658 channel += branch;
660 bank = REC_BANK(info->recmema);
661 rank = REC_RANK(info->recmema);
662 rdwr = REC_RDWR(info->recmema);
663 ras = REC_RAS(info->recmemb);
664 cas = REC_CAS(info->recmemb);
666 debugf0("\t\tCSROW= %d Channel= %d (Branch %d "
667 "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
668 rank, channel, branch >> 1, bank,
669 rdwr ? "Write" : "Read", ras, cas);
671 switch (ce_errors) {
672 case FERR_NF_M17ERR:
673 specific = "Correctable Non-Mirrored Demand Data ECC";
674 break;
675 case FERR_NF_M18ERR:
676 specific = "Correctable Mirrored Demand Data ECC";
677 break;
678 case FERR_NF_M19ERR:
679 specific = "Correctable Spare-Copy Data ECC";
680 break;
681 case FERR_NF_M20ERR:
682 specific = "Correctable Patrol Data ECC";
683 break;
686 /* Form out message */
687 snprintf(msg, sizeof(msg),
688 "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
689 "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
690 rdwr ? "Write" : "Read", ras, cas, ce_errors,
691 specific);
693 /* Call the helper to output message */
694 edac_mc_handle_fbd_ce(mci, rank, channel, msg);
697 if (!misc_messages)
698 return;
700 misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
701 FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
702 if (misc_errors) {
703 switch (misc_errors) {
704 case FERR_NF_M13ERR:
705 specific = "Non-Retry or Redundant Retry FBD Memory "
706 "Alert or Redundant Fast Reset Timeout";
707 break;
708 case FERR_NF_M14ERR:
709 specific = "Non-Retry or Redundant Retry FBD "
710 "Configuration Alert";
711 break;
712 case FERR_NF_M15ERR:
713 specific = "Non-Retry or Redundant Retry FBD "
714 "Northbound CRC error on read data";
715 break;
716 case FERR_NF_M21ERR:
717 specific = "FBD Northbound CRC error on "
718 "FBD Sync Status";
719 break;
720 case FERR_NF_M22ERR:
721 specific = "SPD protocol error";
722 break;
723 case FERR_NF_M27ERR:
724 specific = "DIMM-spare copy started";
725 break;
726 case FERR_NF_M28ERR:
727 specific = "DIMM-spare copy completed";
728 break;
730 branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
732 /* Form out message */
733 snprintf(msg, sizeof(msg),
734 "(Branch=%d Err=%#x (%s))", branch >> 1,
735 misc_errors, specific);
737 /* Call the helper to output message */
738 edac_mc_handle_fbd_ce(mci, 0, 0, msg);
743 * i5000_process_error_info Process the error info that is
744 * in the 'info' structure, previously retrieved from hardware
746 static void i5000_process_error_info(struct mem_ctl_info *mci,
747 struct i5000_error_info *info,
748 int handle_errors)
750 /* First handle any fatal errors that occurred */
751 i5000_process_fatal_error_info(mci, info, handle_errors);
753 /* now handle any non-fatal errors that occurred */
754 i5000_process_nonfatal_error_info(mci, info, handle_errors);
758 * i5000_clear_error Retrieve any error from the hardware
759 * but do NOT process that error.
760 * Used for 'clearing' out of previous errors
761 * Called by the Core module.
763 static void i5000_clear_error(struct mem_ctl_info *mci)
765 struct i5000_error_info info;
767 i5000_get_error_info(mci, &info);
771 * i5000_check_error Retrieve and process errors reported by the
772 * hardware. Called by the Core module.
774 static void i5000_check_error(struct mem_ctl_info *mci)
776 struct i5000_error_info info;
777 debugf4("MC%d: %s: %s()\n", mci->mc_idx, __FILE__, __func__);
778 i5000_get_error_info(mci, &info);
779 i5000_process_error_info(mci, &info, 1);
783 * i5000_get_devices Find and perform 'get' operation on the MCH's
784 * device/functions we want to reference for this driver
786 * Need to 'get' device 16 func 1 and func 2
788 static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
790 //const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
791 struct i5000_pvt *pvt;
792 struct pci_dev *pdev;
794 pvt = mci->pvt_info;
796 /* Attempt to 'get' the MCH register we want */
797 pdev = NULL;
798 while (1) {
799 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
800 PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
802 /* End of list, leave */
803 if (pdev == NULL) {
804 i5000_printk(KERN_ERR,
805 "'system address,Process Bus' "
806 "device not found:"
807 "vendor 0x%x device 0x%x FUNC 1 "
808 "(broken BIOS?)\n",
809 PCI_VENDOR_ID_INTEL,
810 PCI_DEVICE_ID_INTEL_I5000_DEV16);
812 return 1;
815 /* Scan for device 16 func 1 */
816 if (PCI_FUNC(pdev->devfn) == 1)
817 break;
820 pvt->branchmap_werrors = pdev;
822 /* Attempt to 'get' the MCH register we want */
823 pdev = NULL;
824 while (1) {
825 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
826 PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
828 if (pdev == NULL) {
829 i5000_printk(KERN_ERR,
830 "MC: 'branchmap,control,errors' "
831 "device not found:"
832 "vendor 0x%x device 0x%x Func 2 "
833 "(broken BIOS?)\n",
834 PCI_VENDOR_ID_INTEL,
835 PCI_DEVICE_ID_INTEL_I5000_DEV16);
837 pci_dev_put(pvt->branchmap_werrors);
838 return 1;
841 /* Scan for device 16 func 1 */
842 if (PCI_FUNC(pdev->devfn) == 2)
843 break;
846 pvt->fsb_error_regs = pdev;
848 debugf1("System Address, processor bus- PCI Bus ID: %s %x:%x\n",
849 pci_name(pvt->system_address),
850 pvt->system_address->vendor, pvt->system_address->device);
851 debugf1("Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
852 pci_name(pvt->branchmap_werrors),
853 pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device);
854 debugf1("FSB Error Regs - PCI Bus ID: %s %x:%x\n",
855 pci_name(pvt->fsb_error_regs),
856 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
858 pdev = NULL;
859 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
860 PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
862 if (pdev == NULL) {
863 i5000_printk(KERN_ERR,
864 "MC: 'BRANCH 0' device not found:"
865 "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
866 PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
868 pci_dev_put(pvt->branchmap_werrors);
869 pci_dev_put(pvt->fsb_error_regs);
870 return 1;
873 pvt->branch_0 = pdev;
875 /* If this device claims to have more than 2 channels then
876 * fetch Branch 1's information
878 if (pvt->maxch >= CHANNELS_PER_BRANCH) {
879 pdev = NULL;
880 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
881 PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
883 if (pdev == NULL) {
884 i5000_printk(KERN_ERR,
885 "MC: 'BRANCH 1' device not found:"
886 "vendor 0x%x device 0x%x Func 0 "
887 "(broken BIOS?)\n",
888 PCI_VENDOR_ID_INTEL,
889 PCI_DEVICE_ID_I5000_BRANCH_1);
891 pci_dev_put(pvt->branchmap_werrors);
892 pci_dev_put(pvt->fsb_error_regs);
893 pci_dev_put(pvt->branch_0);
894 return 1;
897 pvt->branch_1 = pdev;
900 return 0;
904 * i5000_put_devices 'put' all the devices that we have
905 * reserved via 'get'
907 static void i5000_put_devices(struct mem_ctl_info *mci)
909 struct i5000_pvt *pvt;
911 pvt = mci->pvt_info;
913 pci_dev_put(pvt->branchmap_werrors); /* FUNC 1 */
914 pci_dev_put(pvt->fsb_error_regs); /* FUNC 2 */
915 pci_dev_put(pvt->branch_0); /* DEV 21 */
917 /* Only if more than 2 channels do we release the second branch */
918 if (pvt->maxch >= CHANNELS_PER_BRANCH)
919 pci_dev_put(pvt->branch_1); /* DEV 22 */
923 * determine_amb_resent
925 * the information is contained in NUM_MTRS different registers
926 * determineing which of the NUM_MTRS requires knowing
927 * which channel is in question
929 * 2 branches, each with 2 channels
930 * b0_ambpresent0 for channel '0'
931 * b0_ambpresent1 for channel '1'
932 * b1_ambpresent0 for channel '2'
933 * b1_ambpresent1 for channel '3'
935 static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
937 int amb_present;
939 if (channel < CHANNELS_PER_BRANCH) {
940 if (channel & 0x1)
941 amb_present = pvt->b0_ambpresent1;
942 else
943 amb_present = pvt->b0_ambpresent0;
944 } else {
945 if (channel & 0x1)
946 amb_present = pvt->b1_ambpresent1;
947 else
948 amb_present = pvt->b1_ambpresent0;
951 return amb_present;
955 * determine_mtr(pvt, csrow, channel)
957 * return the proper MTR register as determine by the csrow and channel desired
959 static int determine_mtr(struct i5000_pvt *pvt, int csrow, int channel)
961 int mtr;
963 if (channel < CHANNELS_PER_BRANCH)
964 mtr = pvt->b0_mtr[csrow >> 1];
965 else
966 mtr = pvt->b1_mtr[csrow >> 1];
968 return mtr;
973 static void decode_mtr(int slot_row, u16 mtr)
975 int ans;
977 ans = MTR_DIMMS_PRESENT(mtr);
979 debugf2("\tMTR%d=0x%x: DIMMs are %s\n", slot_row, mtr,
980 ans ? "Present" : "NOT Present");
981 if (!ans)
982 return;
984 debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
985 debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
986 debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single");
987 debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
988 debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
991 static void handle_channel(struct i5000_pvt *pvt, int csrow, int channel,
992 struct i5000_dimm_info *dinfo)
994 int mtr;
995 int amb_present_reg;
996 int addrBits;
998 mtr = determine_mtr(pvt, csrow, channel);
999 if (MTR_DIMMS_PRESENT(mtr)) {
1000 amb_present_reg = determine_amb_present_reg(pvt, channel);
1002 /* Determine if there is a DIMM present in this DIMM slot */
1003 if (amb_present_reg & (1 << (csrow >> 1))) {
1004 dinfo->dual_rank = MTR_DIMM_RANK(mtr);
1006 if (!((dinfo->dual_rank == 0) &&
1007 ((csrow & 0x1) == 0x1))) {
1008 /* Start with the number of bits for a Bank
1009 * on the DRAM */
1010 addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
1011 /* Add thenumber of ROW bits */
1012 addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
1013 /* add the number of COLUMN bits */
1014 addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
1016 addrBits += 6; /* add 64 bits per DIMM */
1017 addrBits -= 20; /* divide by 2^^20 */
1018 addrBits -= 3; /* 8 bits per bytes */
1020 dinfo->megabytes = 1 << addrBits;
1027 * calculate_dimm_size
1029 * also will output a DIMM matrix map, if debug is enabled, for viewing
1030 * how the DIMMs are populated
1032 static void calculate_dimm_size(struct i5000_pvt *pvt)
1034 struct i5000_dimm_info *dinfo;
1035 int csrow, max_csrows;
1036 char *p, *mem_buffer;
1037 int space, n;
1038 int channel;
1040 /* ================= Generate some debug output ================= */
1041 space = PAGE_SIZE;
1042 mem_buffer = p = kmalloc(space, GFP_KERNEL);
1043 if (p == NULL) {
1044 i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
1045 __FILE__, __func__);
1046 return;
1049 n = snprintf(p, space, "\n");
1050 p += n;
1051 space -= n;
1053 /* Scan all the actual CSROWS (which is # of DIMMS * 2)
1054 * and calculate the information for each DIMM
1055 * Start with the highest csrow first, to display it first
1056 * and work toward the 0th csrow
1058 max_csrows = pvt->maxdimmperch * 2;
1059 for (csrow = max_csrows - 1; csrow >= 0; csrow--) {
1061 /* on an odd csrow, first output a 'boundary' marker,
1062 * then reset the message buffer */
1063 if (csrow & 0x1) {
1064 n = snprintf(p, space, "---------------------------"
1065 "--------------------------------");
1066 p += n;
1067 space -= n;
1068 debugf2("%s\n", mem_buffer);
1069 p = mem_buffer;
1070 space = PAGE_SIZE;
1072 n = snprintf(p, space, "csrow %2d ", csrow);
1073 p += n;
1074 space -= n;
1076 for (channel = 0; channel < pvt->maxch; channel++) {
1077 dinfo = &pvt->dimm_info[csrow][channel];
1078 handle_channel(pvt, csrow, channel, dinfo);
1079 n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
1080 p += n;
1081 space -= n;
1083 n = snprintf(p, space, "\n");
1084 p += n;
1085 space -= n;
1088 /* Output the last bottom 'boundary' marker */
1089 n = snprintf(p, space, "---------------------------"
1090 "--------------------------------\n");
1091 p += n;
1092 space -= n;
1094 /* now output the 'channel' labels */
1095 n = snprintf(p, space, " ");
1096 p += n;
1097 space -= n;
1098 for (channel = 0; channel < pvt->maxch; channel++) {
1099 n = snprintf(p, space, "channel %d | ", channel);
1100 p += n;
1101 space -= n;
1103 n = snprintf(p, space, "\n");
1104 p += n;
1105 space -= n;
1107 /* output the last message and free buffer */
1108 debugf2("%s\n", mem_buffer);
1109 kfree(mem_buffer);
1113 * i5000_get_mc_regs read in the necessary registers and
1114 * cache locally
1116 * Fills in the private data members
1118 static void i5000_get_mc_regs(struct mem_ctl_info *mci)
1120 struct i5000_pvt *pvt;
1121 u32 actual_tolm;
1122 u16 limit;
1123 int slot_row;
1124 int maxch;
1125 int maxdimmperch;
1126 int way0, way1;
1128 pvt = mci->pvt_info;
1130 pci_read_config_dword(pvt->system_address, AMBASE,
1131 (u32 *) & pvt->ambase);
1132 pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1133 ((u32 *) & pvt->ambase) + sizeof(u32));
1135 maxdimmperch = pvt->maxdimmperch;
1136 maxch = pvt->maxch;
1138 debugf2("AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n",
1139 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1141 /* Get the Branch Map regs */
1142 pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1143 pvt->tolm >>= 12;
1144 debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
1145 pvt->tolm);
1147 actual_tolm = pvt->tolm << 28;
1148 debugf2("Actual TOLM byte addr=%u (0x%x)\n", actual_tolm, actual_tolm);
1150 pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1151 pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1152 pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
1154 /* Get the MIR[0-2] regs */
1155 limit = (pvt->mir0 >> 4) & 0x0FFF;
1156 way0 = pvt->mir0 & 0x1;
1157 way1 = pvt->mir0 & 0x2;
1158 debugf2("MIR0: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0);
1159 limit = (pvt->mir1 >> 4) & 0x0FFF;
1160 way0 = pvt->mir1 & 0x1;
1161 way1 = pvt->mir1 & 0x2;
1162 debugf2("MIR1: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0);
1163 limit = (pvt->mir2 >> 4) & 0x0FFF;
1164 way0 = pvt->mir2 & 0x1;
1165 way1 = pvt->mir2 & 0x2;
1166 debugf2("MIR2: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0);
1168 /* Get the MTR[0-3] regs */
1169 for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1170 int where = MTR0 + (slot_row * sizeof(u32));
1172 pci_read_config_word(pvt->branch_0, where,
1173 &pvt->b0_mtr[slot_row]);
1175 debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row, where,
1176 pvt->b0_mtr[slot_row]);
1178 if (pvt->maxch >= CHANNELS_PER_BRANCH) {
1179 pci_read_config_word(pvt->branch_1, where,
1180 &pvt->b1_mtr[slot_row]);
1181 debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row,
1182 where, pvt->b1_mtr[slot_row]);
1183 } else {
1184 pvt->b1_mtr[slot_row] = 0;
1188 /* Read and dump branch 0's MTRs */
1189 debugf2("\nMemory Technology Registers:\n");
1190 debugf2(" Branch 0:\n");
1191 for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1192 decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1194 pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
1195 &pvt->b0_ambpresent0);
1196 debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1197 pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
1198 &pvt->b0_ambpresent1);
1199 debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1201 /* Only if we have 2 branchs (4 channels) */
1202 if (pvt->maxch < CHANNELS_PER_BRANCH) {
1203 pvt->b1_ambpresent0 = 0;
1204 pvt->b1_ambpresent1 = 0;
1205 } else {
1206 /* Read and dump branch 1's MTRs */
1207 debugf2(" Branch 1:\n");
1208 for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1209 decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1211 pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
1212 &pvt->b1_ambpresent0);
1213 debugf2("\t\tAMB-Branch 1-present0 0x%x:\n",
1214 pvt->b1_ambpresent0);
1215 pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
1216 &pvt->b1_ambpresent1);
1217 debugf2("\t\tAMB-Branch 1-present1 0x%x:\n",
1218 pvt->b1_ambpresent1);
1221 /* Go and determine the size of each DIMM and place in an
1222 * orderly matrix */
1223 calculate_dimm_size(pvt);
1227 * i5000_init_csrows Initialize the 'csrows' table within
1228 * the mci control structure with the
1229 * addressing of memory.
1231 * return:
1232 * 0 success
1233 * 1 no actual memory found on this MC
1235 static int i5000_init_csrows(struct mem_ctl_info *mci)
1237 struct i5000_pvt *pvt;
1238 struct csrow_info *p_csrow;
1239 int empty, channel_count;
1240 int max_csrows;
1241 int mtr, mtr1;
1242 int csrow_megs;
1243 int channel;
1244 int csrow;
1246 pvt = mci->pvt_info;
1248 channel_count = pvt->maxch;
1249 max_csrows = pvt->maxdimmperch * 2;
1251 empty = 1; /* Assume NO memory */
1253 for (csrow = 0; csrow < max_csrows; csrow++) {
1254 p_csrow = &mci->csrows[csrow];
1256 p_csrow->csrow_idx = csrow;
1258 /* use branch 0 for the basis */
1259 mtr = pvt->b0_mtr[csrow >> 1];
1260 mtr1 = pvt->b1_mtr[csrow >> 1];
1262 /* if no DIMMS on this row, continue */
1263 if (!MTR_DIMMS_PRESENT(mtr) && !MTR_DIMMS_PRESENT(mtr1))
1264 continue;
1266 /* FAKE OUT VALUES, FIXME */
1267 p_csrow->first_page = 0 + csrow * 20;
1268 p_csrow->last_page = 9 + csrow * 20;
1269 p_csrow->page_mask = 0xFFF;
1271 p_csrow->grain = 8;
1273 csrow_megs = 0;
1274 for (channel = 0; channel < pvt->maxch; channel++) {
1275 csrow_megs += pvt->dimm_info[csrow][channel].megabytes;
1278 p_csrow->nr_pages = csrow_megs << 8;
1280 /* Assume DDR2 for now */
1281 p_csrow->mtype = MEM_FB_DDR2;
1283 /* ask what device type on this row */
1284 if (MTR_DRAM_WIDTH(mtr))
1285 p_csrow->dtype = DEV_X8;
1286 else
1287 p_csrow->dtype = DEV_X4;
1289 p_csrow->edac_mode = EDAC_S8ECD8ED;
1291 empty = 0;
1294 return empty;
1298 * i5000_enable_error_reporting
1299 * Turn on the memory reporting features of the hardware
1301 static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
1303 struct i5000_pvt *pvt;
1304 u32 fbd_error_mask;
1306 pvt = mci->pvt_info;
1308 /* Read the FBD Error Mask Register */
1309 pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1310 &fbd_error_mask);
1312 /* Enable with a '0' */
1313 fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1315 pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1316 fbd_error_mask);
1320 * i5000_get_dimm_and_channel_counts(pdev, &num_csrows, &num_channels)
1322 * ask the device how many channels are present and how many CSROWS
1323 * as well
1325 static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
1326 int *num_dimms_per_channel,
1327 int *num_channels)
1329 u8 value;
1331 /* Need to retrieve just how many channels and dimms per channel are
1332 * supported on this memory controller
1334 pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
1335 *num_dimms_per_channel = (int)value *2;
1337 pci_read_config_byte(pdev, MAXCH, &value);
1338 *num_channels = (int)value;
1342 * i5000_probe1 Probe for ONE instance of device to see if it is
1343 * present.
1344 * return:
1345 * 0 for FOUND a device
1346 * < 0 for error code
1348 static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
1350 struct mem_ctl_info *mci;
1351 struct i5000_pvt *pvt;
1352 int num_channels;
1353 int num_dimms_per_channel;
1354 int num_csrows;
1356 debugf0("MC: %s: %s(), pdev bus %u dev=0x%x fn=0x%x\n",
1357 __FILE__, __func__,
1358 pdev->bus->number,
1359 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1361 /* We only are looking for func 0 of the set */
1362 if (PCI_FUNC(pdev->devfn) != 0)
1363 return -ENODEV;
1365 /* Ask the devices for the number of CSROWS and CHANNELS so
1366 * that we can calculate the memory resources, etc
1368 * The Chipset will report what it can handle which will be greater
1369 * or equal to what the motherboard manufacturer will implement.
1371 * As we don't have a motherboard identification routine to determine
1372 * actual number of slots/dimms per channel, we thus utilize the
1373 * resource as specified by the chipset. Thus, we might have
1374 * have more DIMMs per channel than actually on the mobo, but this
1375 * allows the driver to support up to the chipset max, without
1376 * some fancy mobo determination.
1378 i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
1379 &num_channels);
1380 num_csrows = num_dimms_per_channel * 2;
1382 debugf0("MC: %s(): Number of - Channels= %d DIMMS= %d CSROWS= %d\n",
1383 __func__, num_channels, num_dimms_per_channel, num_csrows);
1385 /* allocate a new MC control structure */
1386 mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
1388 if (mci == NULL)
1389 return -ENOMEM;
1391 kobject_get(&mci->edac_mci_kobj);
1392 debugf0("MC: %s: %s(): mci = %p\n", __FILE__, __func__, mci);
1394 mci->dev = &pdev->dev; /* record ptr to the generic device */
1396 pvt = mci->pvt_info;
1397 pvt->system_address = pdev; /* Record this device in our private */
1398 pvt->maxch = num_channels;
1399 pvt->maxdimmperch = num_dimms_per_channel;
1401 /* 'get' the pci devices we want to reserve for our use */
1402 if (i5000_get_devices(mci, dev_idx))
1403 goto fail0;
1405 /* Time to get serious */
1406 i5000_get_mc_regs(mci); /* retrieve the hardware registers */
1408 mci->mc_idx = 0;
1409 mci->mtype_cap = MEM_FLAG_FB_DDR2;
1410 mci->edac_ctl_cap = EDAC_FLAG_NONE;
1411 mci->edac_cap = EDAC_FLAG_NONE;
1412 mci->mod_name = "i5000_edac.c";
1413 mci->mod_ver = I5000_REVISION;
1414 mci->ctl_name = i5000_devs[dev_idx].ctl_name;
1415 mci->dev_name = pci_name(pdev);
1416 mci->ctl_page_to_phys = NULL;
1418 /* Set the function pointer to an actual operation function */
1419 mci->edac_check = i5000_check_error;
1421 /* initialize the MC control structure 'csrows' table
1422 * with the mapping and control information */
1423 if (i5000_init_csrows(mci)) {
1424 debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
1425 " because i5000_init_csrows() returned nonzero "
1426 "value\n");
1427 mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
1428 } else {
1429 debugf1("MC: Enable error reporting now\n");
1430 i5000_enable_error_reporting(mci);
1433 /* add this new MC control structure to EDAC's list of MCs */
1434 if (edac_mc_add_mc(mci)) {
1435 debugf0("MC: %s: %s(): failed edac_mc_add_mc()\n",
1436 __FILE__, __func__);
1437 /* FIXME: perhaps some code should go here that disables error
1438 * reporting if we just enabled it
1440 goto fail1;
1443 i5000_clear_error(mci);
1445 /* allocating generic PCI control info */
1446 i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1447 if (!i5000_pci) {
1448 printk(KERN_WARNING
1449 "%s(): Unable to create PCI control\n",
1450 __func__);
1451 printk(KERN_WARNING
1452 "%s(): PCI error report via EDAC not setup\n",
1453 __func__);
1456 return 0;
1458 /* Error exit unwinding stack */
1459 fail1:
1461 i5000_put_devices(mci);
1463 fail0:
1464 kobject_put(&mci->edac_mci_kobj);
1465 edac_mc_free(mci);
1466 return -ENODEV;
1470 * i5000_init_one constructor for one instance of device
1472 * returns:
1473 * negative on error
1474 * count (>= 0)
1476 static int __devinit i5000_init_one(struct pci_dev *pdev,
1477 const struct pci_device_id *id)
1479 int rc;
1481 debugf0("MC: %s: %s()\n", __FILE__, __func__);
1483 /* wake up device */
1484 rc = pci_enable_device(pdev);
1485 if (rc)
1486 return rc;
1488 /* now probe and enable the device */
1489 return i5000_probe1(pdev, id->driver_data);
1493 * i5000_remove_one destructor for one instance of device
1496 static void __devexit i5000_remove_one(struct pci_dev *pdev)
1498 struct mem_ctl_info *mci;
1500 debugf0("%s: %s()\n", __FILE__, __func__);
1502 if (i5000_pci)
1503 edac_pci_release_generic_ctl(i5000_pci);
1505 if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
1506 return;
1508 /* retrieve references to resources, and free those resources */
1509 i5000_put_devices(mci);
1510 kobject_put(&mci->edac_mci_kobj);
1511 edac_mc_free(mci);
1515 * pci_device_id table for which devices we are looking for
1517 * The "E500P" device is the first device supported.
1519 static const struct pci_device_id i5000_pci_tbl[] __devinitdata = {
1520 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
1521 .driver_data = I5000P},
1523 {0,} /* 0 terminated list. */
1526 MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
1529 * i5000_driver pci_driver structure for this module
1532 static struct pci_driver i5000_driver = {
1533 .name = KBUILD_BASENAME,
1534 .probe = i5000_init_one,
1535 .remove = __devexit_p(i5000_remove_one),
1536 .id_table = i5000_pci_tbl,
1540 * i5000_init Module entry function
1541 * Try to initialize this module for its devices
1543 static int __init i5000_init(void)
1545 int pci_rc;
1547 debugf2("MC: %s: %s()\n", __FILE__, __func__);
1549 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1550 opstate_init();
1552 pci_rc = pci_register_driver(&i5000_driver);
1554 return (pci_rc < 0) ? pci_rc : 0;
1558 * i5000_exit() Module exit function
1559 * Unregister the driver
1561 static void __exit i5000_exit(void)
1563 debugf2("MC: %s: %s()\n", __FILE__, __func__);
1564 pci_unregister_driver(&i5000_driver);
1567 module_init(i5000_init);
1568 module_exit(i5000_exit);
1570 MODULE_LICENSE("GPL");
1571 MODULE_AUTHOR
1572 ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
1573 MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
1574 I5000_REVISION);
1576 module_param(edac_op_state, int, 0444);
1577 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1578 module_param(misc_messages, int, 0444);
1579 MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");