Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / drivers / iommu / dmar.c
blob3dc9befa5aec06343691474420ad203963119bdb
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
26 * These routines are used by both DMA-remapping and Interrupt-remapping
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
38 #include <linux/slab.h>
39 #include <asm/iommu_table.h>
41 #define PREFIX "DMAR: "
43 /* No locks are needed as DMA remapping hardware unit
44 * list is constructed at boot time and hotplug of
45 * these units are not supported by the architecture.
47 LIST_HEAD(dmar_drhd_units);
49 static struct acpi_table_header * __initdata dmar_tbl;
50 static acpi_size dmar_tbl_size;
52 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
55 * add INCLUDE_ALL at the tail, so scan the list will find it at
56 * the very end.
58 if (drhd->include_all)
59 list_add_tail(&drhd->list, &dmar_drhd_units);
60 else
61 list_add(&drhd->list, &dmar_drhd_units);
64 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
65 struct pci_dev **dev, u16 segment)
67 struct pci_bus *bus;
68 struct pci_dev *pdev = NULL;
69 struct acpi_dmar_pci_path *path;
70 int count;
72 bus = pci_find_bus(segment, scope->bus);
73 path = (struct acpi_dmar_pci_path *)(scope + 1);
74 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
75 / sizeof(struct acpi_dmar_pci_path);
77 while (count) {
78 if (pdev)
79 pci_dev_put(pdev);
81 * Some BIOSes list non-exist devices in DMAR table, just
82 * ignore it
84 if (!bus) {
85 printk(KERN_WARNING
86 PREFIX "Device scope bus [%d] not found\n",
87 scope->bus);
88 break;
90 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
91 if (!pdev) {
92 printk(KERN_WARNING PREFIX
93 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
94 segment, bus->number, path->dev, path->fn);
95 break;
97 path ++;
98 count --;
99 bus = pdev->subordinate;
101 if (!pdev) {
102 printk(KERN_WARNING PREFIX
103 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
104 segment, scope->bus, path->dev, path->fn);
105 *dev = NULL;
106 return 0;
108 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
109 pdev->subordinate) || (scope->entry_type == \
110 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
111 pci_dev_put(pdev);
112 printk(KERN_WARNING PREFIX
113 "Device scope type does not match for %s\n",
114 pci_name(pdev));
115 return -EINVAL;
117 *dev = pdev;
118 return 0;
121 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
122 struct pci_dev ***devices, u16 segment)
124 struct acpi_dmar_device_scope *scope;
125 void * tmp = start;
126 int index;
127 int ret;
129 *cnt = 0;
130 while (start < end) {
131 scope = start;
132 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
133 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
134 (*cnt)++;
135 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
136 printk(KERN_WARNING PREFIX
137 "Unsupported device scope\n");
139 start += scope->length;
141 if (*cnt == 0)
142 return 0;
144 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
145 if (!*devices)
146 return -ENOMEM;
148 start = tmp;
149 index = 0;
150 while (start < end) {
151 scope = start;
152 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
153 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
154 ret = dmar_parse_one_dev_scope(scope,
155 &(*devices)[index], segment);
156 if (ret) {
157 kfree(*devices);
158 return ret;
160 index ++;
162 start += scope->length;
165 return 0;
169 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
170 * structure which uniquely represent one DMA remapping hardware unit
171 * present in the platform
173 static int __init
174 dmar_parse_one_drhd(struct acpi_dmar_header *header)
176 struct acpi_dmar_hardware_unit *drhd;
177 struct dmar_drhd_unit *dmaru;
178 int ret = 0;
180 drhd = (struct acpi_dmar_hardware_unit *)header;
181 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
182 if (!dmaru)
183 return -ENOMEM;
185 dmaru->hdr = header;
186 dmaru->reg_base_addr = drhd->address;
187 dmaru->segment = drhd->segment;
188 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
190 ret = alloc_iommu(dmaru);
191 if (ret) {
192 kfree(dmaru);
193 return ret;
195 dmar_register_drhd_unit(dmaru);
196 return 0;
199 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
201 struct acpi_dmar_hardware_unit *drhd;
202 int ret = 0;
204 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
206 if (dmaru->include_all)
207 return 0;
209 ret = dmar_parse_dev_scope((void *)(drhd + 1),
210 ((void *)drhd) + drhd->header.length,
211 &dmaru->devices_cnt, &dmaru->devices,
212 drhd->segment);
213 if (ret) {
214 list_del(&dmaru->list);
215 kfree(dmaru);
217 return ret;
220 #ifdef CONFIG_DMAR
221 LIST_HEAD(dmar_rmrr_units);
223 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
225 list_add(&rmrr->list, &dmar_rmrr_units);
229 static int __init
230 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
232 struct acpi_dmar_reserved_memory *rmrr;
233 struct dmar_rmrr_unit *rmrru;
235 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
236 if (!rmrru)
237 return -ENOMEM;
239 rmrru->hdr = header;
240 rmrr = (struct acpi_dmar_reserved_memory *)header;
241 rmrru->base_address = rmrr->base_address;
242 rmrru->end_address = rmrr->end_address;
244 dmar_register_rmrr_unit(rmrru);
245 return 0;
248 static int __init
249 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
251 struct acpi_dmar_reserved_memory *rmrr;
252 int ret;
254 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
255 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
256 ((void *)rmrr) + rmrr->header.length,
257 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
259 if (ret || (rmrru->devices_cnt == 0)) {
260 list_del(&rmrru->list);
261 kfree(rmrru);
263 return ret;
266 static LIST_HEAD(dmar_atsr_units);
268 static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
270 struct acpi_dmar_atsr *atsr;
271 struct dmar_atsr_unit *atsru;
273 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
274 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
275 if (!atsru)
276 return -ENOMEM;
278 atsru->hdr = hdr;
279 atsru->include_all = atsr->flags & 0x1;
281 list_add(&atsru->list, &dmar_atsr_units);
283 return 0;
286 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
288 int rc;
289 struct acpi_dmar_atsr *atsr;
291 if (atsru->include_all)
292 return 0;
294 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
295 rc = dmar_parse_dev_scope((void *)(atsr + 1),
296 (void *)atsr + atsr->header.length,
297 &atsru->devices_cnt, &atsru->devices,
298 atsr->segment);
299 if (rc || !atsru->devices_cnt) {
300 list_del(&atsru->list);
301 kfree(atsru);
304 return rc;
307 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
309 int i;
310 struct pci_bus *bus;
311 struct acpi_dmar_atsr *atsr;
312 struct dmar_atsr_unit *atsru;
314 dev = pci_physfn(dev);
316 list_for_each_entry(atsru, &dmar_atsr_units, list) {
317 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
318 if (atsr->segment == pci_domain_nr(dev->bus))
319 goto found;
322 return 0;
324 found:
325 for (bus = dev->bus; bus; bus = bus->parent) {
326 struct pci_dev *bridge = bus->self;
328 if (!bridge || !pci_is_pcie(bridge) ||
329 bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
330 return 0;
332 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
333 for (i = 0; i < atsru->devices_cnt; i++)
334 if (atsru->devices[i] == bridge)
335 return 1;
336 break;
340 if (atsru->include_all)
341 return 1;
343 return 0;
345 #endif
347 #ifdef CONFIG_ACPI_NUMA
348 static int __init
349 dmar_parse_one_rhsa(struct acpi_dmar_header *header)
351 struct acpi_dmar_rhsa *rhsa;
352 struct dmar_drhd_unit *drhd;
354 rhsa = (struct acpi_dmar_rhsa *)header;
355 for_each_drhd_unit(drhd) {
356 if (drhd->reg_base_addr == rhsa->base_address) {
357 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
359 if (!node_online(node))
360 node = -1;
361 drhd->iommu->node = node;
362 return 0;
365 WARN_TAINT(
366 1, TAINT_FIRMWARE_WORKAROUND,
367 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
368 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
369 drhd->reg_base_addr,
370 dmi_get_system_info(DMI_BIOS_VENDOR),
371 dmi_get_system_info(DMI_BIOS_VERSION),
372 dmi_get_system_info(DMI_PRODUCT_VERSION));
374 return 0;
376 #endif
378 static void __init
379 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
381 struct acpi_dmar_hardware_unit *drhd;
382 struct acpi_dmar_reserved_memory *rmrr;
383 struct acpi_dmar_atsr *atsr;
384 struct acpi_dmar_rhsa *rhsa;
386 switch (header->type) {
387 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
388 drhd = container_of(header, struct acpi_dmar_hardware_unit,
389 header);
390 printk (KERN_INFO PREFIX
391 "DRHD base: %#016Lx flags: %#x\n",
392 (unsigned long long)drhd->address, drhd->flags);
393 break;
394 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
395 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
396 header);
397 printk (KERN_INFO PREFIX
398 "RMRR base: %#016Lx end: %#016Lx\n",
399 (unsigned long long)rmrr->base_address,
400 (unsigned long long)rmrr->end_address);
401 break;
402 case ACPI_DMAR_TYPE_ATSR:
403 atsr = container_of(header, struct acpi_dmar_atsr, header);
404 printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
405 break;
406 case ACPI_DMAR_HARDWARE_AFFINITY:
407 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
408 printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n",
409 (unsigned long long)rhsa->base_address,
410 rhsa->proximity_domain);
411 break;
416 * dmar_table_detect - checks to see if the platform supports DMAR devices
418 static int __init dmar_table_detect(void)
420 acpi_status status = AE_OK;
422 /* if we could find DMAR table, then there are DMAR devices */
423 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
424 (struct acpi_table_header **)&dmar_tbl,
425 &dmar_tbl_size);
427 if (ACPI_SUCCESS(status) && !dmar_tbl) {
428 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
429 status = AE_NOT_FOUND;
432 return (ACPI_SUCCESS(status) ? 1 : 0);
436 * parse_dmar_table - parses the DMA reporting table
438 static int __init
439 parse_dmar_table(void)
441 struct acpi_table_dmar *dmar;
442 struct acpi_dmar_header *entry_header;
443 int ret = 0;
446 * Do it again, earlier dmar_tbl mapping could be mapped with
447 * fixed map.
449 dmar_table_detect();
452 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
453 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
455 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
457 dmar = (struct acpi_table_dmar *)dmar_tbl;
458 if (!dmar)
459 return -ENODEV;
461 if (dmar->width < PAGE_SHIFT - 1) {
462 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
463 return -EINVAL;
466 printk (KERN_INFO PREFIX "Host address width %d\n",
467 dmar->width + 1);
469 entry_header = (struct acpi_dmar_header *)(dmar + 1);
470 while (((unsigned long)entry_header) <
471 (((unsigned long)dmar) + dmar_tbl->length)) {
472 /* Avoid looping forever on bad ACPI tables */
473 if (entry_header->length == 0) {
474 printk(KERN_WARNING PREFIX
475 "Invalid 0-length structure\n");
476 ret = -EINVAL;
477 break;
480 dmar_table_print_dmar_entry(entry_header);
482 switch (entry_header->type) {
483 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
484 ret = dmar_parse_one_drhd(entry_header);
485 break;
486 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
487 #ifdef CONFIG_DMAR
488 ret = dmar_parse_one_rmrr(entry_header);
489 #endif
490 break;
491 case ACPI_DMAR_TYPE_ATSR:
492 #ifdef CONFIG_DMAR
493 ret = dmar_parse_one_atsr(entry_header);
494 #endif
495 break;
496 case ACPI_DMAR_HARDWARE_AFFINITY:
497 #ifdef CONFIG_ACPI_NUMA
498 ret = dmar_parse_one_rhsa(entry_header);
499 #endif
500 break;
501 default:
502 printk(KERN_WARNING PREFIX
503 "Unknown DMAR structure type %d\n",
504 entry_header->type);
505 ret = 0; /* for forward compatibility */
506 break;
508 if (ret)
509 break;
511 entry_header = ((void *)entry_header + entry_header->length);
513 return ret;
516 static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
517 struct pci_dev *dev)
519 int index;
521 while (dev) {
522 for (index = 0; index < cnt; index++)
523 if (dev == devices[index])
524 return 1;
526 /* Check our parent */
527 dev = dev->bus->self;
530 return 0;
533 struct dmar_drhd_unit *
534 dmar_find_matched_drhd_unit(struct pci_dev *dev)
536 struct dmar_drhd_unit *dmaru = NULL;
537 struct acpi_dmar_hardware_unit *drhd;
539 dev = pci_physfn(dev);
541 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
542 drhd = container_of(dmaru->hdr,
543 struct acpi_dmar_hardware_unit,
544 header);
546 if (dmaru->include_all &&
547 drhd->segment == pci_domain_nr(dev->bus))
548 return dmaru;
550 if (dmar_pci_device_match(dmaru->devices,
551 dmaru->devices_cnt, dev))
552 return dmaru;
555 return NULL;
558 int __init dmar_dev_scope_init(void)
560 struct dmar_drhd_unit *drhd, *drhd_n;
561 int ret = -ENODEV;
563 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
564 ret = dmar_parse_dev(drhd);
565 if (ret)
566 return ret;
569 #ifdef CONFIG_DMAR
571 struct dmar_rmrr_unit *rmrr, *rmrr_n;
572 struct dmar_atsr_unit *atsr, *atsr_n;
574 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
575 ret = rmrr_parse_dev(rmrr);
576 if (ret)
577 return ret;
580 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
581 ret = atsr_parse_dev(atsr);
582 if (ret)
583 return ret;
586 #endif
588 return ret;
592 int __init dmar_table_init(void)
594 static int dmar_table_initialized;
595 int ret;
597 if (dmar_table_initialized)
598 return 0;
600 dmar_table_initialized = 1;
602 ret = parse_dmar_table();
603 if (ret) {
604 if (ret != -ENODEV)
605 printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
606 return ret;
609 if (list_empty(&dmar_drhd_units)) {
610 printk(KERN_INFO PREFIX "No DMAR devices found\n");
611 return -ENODEV;
614 #ifdef CONFIG_DMAR
615 if (list_empty(&dmar_rmrr_units))
616 printk(KERN_INFO PREFIX "No RMRR found\n");
618 if (list_empty(&dmar_atsr_units))
619 printk(KERN_INFO PREFIX "No ATSR found\n");
620 #endif
622 return 0;
625 static void warn_invalid_dmar(u64 addr, const char *message)
627 WARN_TAINT_ONCE(
628 1, TAINT_FIRMWARE_WORKAROUND,
629 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
630 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
631 addr, message,
632 dmi_get_system_info(DMI_BIOS_VENDOR),
633 dmi_get_system_info(DMI_BIOS_VERSION),
634 dmi_get_system_info(DMI_PRODUCT_VERSION));
637 int __init check_zero_address(void)
639 struct acpi_table_dmar *dmar;
640 struct acpi_dmar_header *entry_header;
641 struct acpi_dmar_hardware_unit *drhd;
643 dmar = (struct acpi_table_dmar *)dmar_tbl;
644 entry_header = (struct acpi_dmar_header *)(dmar + 1);
646 while (((unsigned long)entry_header) <
647 (((unsigned long)dmar) + dmar_tbl->length)) {
648 /* Avoid looping forever on bad ACPI tables */
649 if (entry_header->length == 0) {
650 printk(KERN_WARNING PREFIX
651 "Invalid 0-length structure\n");
652 return 0;
655 if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
656 void __iomem *addr;
657 u64 cap, ecap;
659 drhd = (void *)entry_header;
660 if (!drhd->address) {
661 warn_invalid_dmar(0, "");
662 goto failed;
665 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
666 if (!addr ) {
667 printk("IOMMU: can't validate: %llx\n", drhd->address);
668 goto failed;
670 cap = dmar_readq(addr + DMAR_CAP_REG);
671 ecap = dmar_readq(addr + DMAR_ECAP_REG);
672 early_iounmap(addr, VTD_PAGE_SIZE);
673 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
674 warn_invalid_dmar(drhd->address,
675 " returns all ones");
676 goto failed;
680 entry_header = ((void *)entry_header + entry_header->length);
682 return 1;
684 failed:
685 #ifdef CONFIG_DMAR
686 dmar_disabled = 1;
687 #endif
688 return 0;
691 int __init detect_intel_iommu(void)
693 int ret;
695 ret = dmar_table_detect();
696 if (ret)
697 ret = check_zero_address();
699 #ifdef CONFIG_INTR_REMAP
700 struct acpi_table_dmar *dmar;
702 dmar = (struct acpi_table_dmar *) dmar_tbl;
703 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
704 printk(KERN_INFO
705 "Queued invalidation will be enabled to support "
706 "x2apic and Intr-remapping.\n");
707 #endif
708 #ifdef CONFIG_DMAR
709 if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
710 iommu_detected = 1;
711 /* Make sure ACS will be enabled */
712 pci_request_acs();
714 #endif
715 #ifdef CONFIG_X86
716 if (ret)
717 x86_init.iommu.iommu_init = intel_iommu_init;
718 #endif
720 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
721 dmar_tbl = NULL;
723 return ret ? 1 : -ENODEV;
727 int alloc_iommu(struct dmar_drhd_unit *drhd)
729 struct intel_iommu *iommu;
730 int map_size;
731 u32 ver;
732 static int iommu_allocated = 0;
733 int agaw = 0;
734 int msagaw = 0;
736 if (!drhd->reg_base_addr) {
737 warn_invalid_dmar(0, "");
738 return -EINVAL;
741 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
742 if (!iommu)
743 return -ENOMEM;
745 iommu->seq_id = iommu_allocated++;
746 sprintf (iommu->name, "dmar%d", iommu->seq_id);
748 iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
749 if (!iommu->reg) {
750 printk(KERN_ERR "IOMMU: can't map the region\n");
751 goto error;
753 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
754 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
756 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
757 warn_invalid_dmar(drhd->reg_base_addr, " returns all ones");
758 goto err_unmap;
761 #ifdef CONFIG_DMAR
762 agaw = iommu_calculate_agaw(iommu);
763 if (agaw < 0) {
764 printk(KERN_ERR
765 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
766 iommu->seq_id);
767 goto err_unmap;
769 msagaw = iommu_calculate_max_sagaw(iommu);
770 if (msagaw < 0) {
771 printk(KERN_ERR
772 "Cannot get a valid max agaw for iommu (seq_id = %d)\n",
773 iommu->seq_id);
774 goto err_unmap;
776 #endif
777 iommu->agaw = agaw;
778 iommu->msagaw = msagaw;
780 iommu->node = -1;
782 /* the registers might be more than one page */
783 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
784 cap_max_fault_reg_offset(iommu->cap));
785 map_size = VTD_PAGE_ALIGN(map_size);
786 if (map_size > VTD_PAGE_SIZE) {
787 iounmap(iommu->reg);
788 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
789 if (!iommu->reg) {
790 printk(KERN_ERR "IOMMU: can't map the region\n");
791 goto error;
795 ver = readl(iommu->reg + DMAR_VER_REG);
796 pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
797 iommu->seq_id,
798 (unsigned long long)drhd->reg_base_addr,
799 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
800 (unsigned long long)iommu->cap,
801 (unsigned long long)iommu->ecap);
803 spin_lock_init(&iommu->register_lock);
805 drhd->iommu = iommu;
806 return 0;
808 err_unmap:
809 iounmap(iommu->reg);
810 error:
811 kfree(iommu);
812 return -1;
815 void free_iommu(struct intel_iommu *iommu)
817 if (!iommu)
818 return;
820 #ifdef CONFIG_DMAR
821 free_dmar_iommu(iommu);
822 #endif
824 if (iommu->reg)
825 iounmap(iommu->reg);
826 kfree(iommu);
830 * Reclaim all the submitted descriptors which have completed its work.
832 static inline void reclaim_free_desc(struct q_inval *qi)
834 while (qi->desc_status[qi->free_tail] == QI_DONE ||
835 qi->desc_status[qi->free_tail] == QI_ABORT) {
836 qi->desc_status[qi->free_tail] = QI_FREE;
837 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
838 qi->free_cnt++;
842 static int qi_check_fault(struct intel_iommu *iommu, int index)
844 u32 fault;
845 int head, tail;
846 struct q_inval *qi = iommu->qi;
847 int wait_index = (index + 1) % QI_LENGTH;
849 if (qi->desc_status[wait_index] == QI_ABORT)
850 return -EAGAIN;
852 fault = readl(iommu->reg + DMAR_FSTS_REG);
855 * If IQE happens, the head points to the descriptor associated
856 * with the error. No new descriptors are fetched until the IQE
857 * is cleared.
859 if (fault & DMA_FSTS_IQE) {
860 head = readl(iommu->reg + DMAR_IQH_REG);
861 if ((head >> DMAR_IQ_SHIFT) == index) {
862 printk(KERN_ERR "VT-d detected invalid descriptor: "
863 "low=%llx, high=%llx\n",
864 (unsigned long long)qi->desc[index].low,
865 (unsigned long long)qi->desc[index].high);
866 memcpy(&qi->desc[index], &qi->desc[wait_index],
867 sizeof(struct qi_desc));
868 __iommu_flush_cache(iommu, &qi->desc[index],
869 sizeof(struct qi_desc));
870 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
871 return -EINVAL;
876 * If ITE happens, all pending wait_desc commands are aborted.
877 * No new descriptors are fetched until the ITE is cleared.
879 if (fault & DMA_FSTS_ITE) {
880 head = readl(iommu->reg + DMAR_IQH_REG);
881 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
882 head |= 1;
883 tail = readl(iommu->reg + DMAR_IQT_REG);
884 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
886 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
888 do {
889 if (qi->desc_status[head] == QI_IN_USE)
890 qi->desc_status[head] = QI_ABORT;
891 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
892 } while (head != tail);
894 if (qi->desc_status[wait_index] == QI_ABORT)
895 return -EAGAIN;
898 if (fault & DMA_FSTS_ICE)
899 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
901 return 0;
905 * Submit the queued invalidation descriptor to the remapping
906 * hardware unit and wait for its completion.
908 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
910 int rc;
911 struct q_inval *qi = iommu->qi;
912 struct qi_desc *hw, wait_desc;
913 int wait_index, index;
914 unsigned long flags;
916 if (!qi)
917 return 0;
919 hw = qi->desc;
921 restart:
922 rc = 0;
924 spin_lock_irqsave(&qi->q_lock, flags);
925 while (qi->free_cnt < 3) {
926 spin_unlock_irqrestore(&qi->q_lock, flags);
927 cpu_relax();
928 spin_lock_irqsave(&qi->q_lock, flags);
931 index = qi->free_head;
932 wait_index = (index + 1) % QI_LENGTH;
934 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
936 hw[index] = *desc;
938 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
939 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
940 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
942 hw[wait_index] = wait_desc;
944 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
945 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
947 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
948 qi->free_cnt -= 2;
951 * update the HW tail register indicating the presence of
952 * new descriptors.
954 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
956 while (qi->desc_status[wait_index] != QI_DONE) {
958 * We will leave the interrupts disabled, to prevent interrupt
959 * context to queue another cmd while a cmd is already submitted
960 * and waiting for completion on this cpu. This is to avoid
961 * a deadlock where the interrupt context can wait indefinitely
962 * for free slots in the queue.
964 rc = qi_check_fault(iommu, index);
965 if (rc)
966 break;
968 spin_unlock(&qi->q_lock);
969 cpu_relax();
970 spin_lock(&qi->q_lock);
973 qi->desc_status[index] = QI_DONE;
975 reclaim_free_desc(qi);
976 spin_unlock_irqrestore(&qi->q_lock, flags);
978 if (rc == -EAGAIN)
979 goto restart;
981 return rc;
985 * Flush the global interrupt entry cache.
987 void qi_global_iec(struct intel_iommu *iommu)
989 struct qi_desc desc;
991 desc.low = QI_IEC_TYPE;
992 desc.high = 0;
994 /* should never fail */
995 qi_submit_sync(&desc, iommu);
998 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
999 u64 type)
1001 struct qi_desc desc;
1003 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1004 | QI_CC_GRAN(type) | QI_CC_TYPE;
1005 desc.high = 0;
1007 qi_submit_sync(&desc, iommu);
1010 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1011 unsigned int size_order, u64 type)
1013 u8 dw = 0, dr = 0;
1015 struct qi_desc desc;
1016 int ih = 0;
1018 if (cap_write_drain(iommu->cap))
1019 dw = 1;
1021 if (cap_read_drain(iommu->cap))
1022 dr = 1;
1024 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1025 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1026 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1027 | QI_IOTLB_AM(size_order);
1029 qi_submit_sync(&desc, iommu);
1032 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
1033 u64 addr, unsigned mask)
1035 struct qi_desc desc;
1037 if (mask) {
1038 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
1039 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1040 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1041 } else
1042 desc.high = QI_DEV_IOTLB_ADDR(addr);
1044 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1045 qdep = 0;
1047 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1048 QI_DIOTLB_TYPE;
1050 qi_submit_sync(&desc, iommu);
1054 * Disable Queued Invalidation interface.
1056 void dmar_disable_qi(struct intel_iommu *iommu)
1058 unsigned long flags;
1059 u32 sts;
1060 cycles_t start_time = get_cycles();
1062 if (!ecap_qis(iommu->ecap))
1063 return;
1065 spin_lock_irqsave(&iommu->register_lock, flags);
1067 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
1068 if (!(sts & DMA_GSTS_QIES))
1069 goto end;
1072 * Give a chance to HW to complete the pending invalidation requests.
1074 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1075 readl(iommu->reg + DMAR_IQH_REG)) &&
1076 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1077 cpu_relax();
1079 iommu->gcmd &= ~DMA_GCMD_QIE;
1080 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1082 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1083 !(sts & DMA_GSTS_QIES), sts);
1084 end:
1085 spin_unlock_irqrestore(&iommu->register_lock, flags);
1089 * Enable queued invalidation.
1091 static void __dmar_enable_qi(struct intel_iommu *iommu)
1093 u32 sts;
1094 unsigned long flags;
1095 struct q_inval *qi = iommu->qi;
1097 qi->free_head = qi->free_tail = 0;
1098 qi->free_cnt = QI_LENGTH;
1100 spin_lock_irqsave(&iommu->register_lock, flags);
1102 /* write zero to the tail reg */
1103 writel(0, iommu->reg + DMAR_IQT_REG);
1105 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1107 iommu->gcmd |= DMA_GCMD_QIE;
1108 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1110 /* Make sure hardware complete it */
1111 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1113 spin_unlock_irqrestore(&iommu->register_lock, flags);
1117 * Enable Queued Invalidation interface. This is a must to support
1118 * interrupt-remapping. Also used by DMA-remapping, which replaces
1119 * register based IOTLB invalidation.
1121 int dmar_enable_qi(struct intel_iommu *iommu)
1123 struct q_inval *qi;
1124 struct page *desc_page;
1126 if (!ecap_qis(iommu->ecap))
1127 return -ENOENT;
1130 * queued invalidation is already setup and enabled.
1132 if (iommu->qi)
1133 return 0;
1135 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1136 if (!iommu->qi)
1137 return -ENOMEM;
1139 qi = iommu->qi;
1142 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1143 if (!desc_page) {
1144 kfree(qi);
1145 iommu->qi = 0;
1146 return -ENOMEM;
1149 qi->desc = page_address(desc_page);
1151 qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1152 if (!qi->desc_status) {
1153 free_page((unsigned long) qi->desc);
1154 kfree(qi);
1155 iommu->qi = 0;
1156 return -ENOMEM;
1159 qi->free_head = qi->free_tail = 0;
1160 qi->free_cnt = QI_LENGTH;
1162 spin_lock_init(&qi->q_lock);
1164 __dmar_enable_qi(iommu);
1166 return 0;
1169 /* iommu interrupt handling. Most stuff are MSI-like. */
1171 enum faulttype {
1172 DMA_REMAP,
1173 INTR_REMAP,
1174 UNKNOWN,
1177 static const char *dma_remap_fault_reasons[] =
1179 "Software",
1180 "Present bit in root entry is clear",
1181 "Present bit in context entry is clear",
1182 "Invalid context entry",
1183 "Access beyond MGAW",
1184 "PTE Write access is not set",
1185 "PTE Read access is not set",
1186 "Next page table ptr is invalid",
1187 "Root table address invalid",
1188 "Context table ptr is invalid",
1189 "non-zero reserved fields in RTP",
1190 "non-zero reserved fields in CTP",
1191 "non-zero reserved fields in PTE",
1194 static const char *intr_remap_fault_reasons[] =
1196 "Detected reserved fields in the decoded interrupt-remapped request",
1197 "Interrupt index exceeded the interrupt-remapping table size",
1198 "Present field in the IRTE entry is clear",
1199 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1200 "Detected reserved fields in the IRTE entry",
1201 "Blocked a compatibility format interrupt request",
1202 "Blocked an interrupt request due to source-id verification failure",
1205 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
1207 const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1209 if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
1210 ARRAY_SIZE(intr_remap_fault_reasons))) {
1211 *fault_type = INTR_REMAP;
1212 return intr_remap_fault_reasons[fault_reason - 0x20];
1213 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1214 *fault_type = DMA_REMAP;
1215 return dma_remap_fault_reasons[fault_reason];
1216 } else {
1217 *fault_type = UNKNOWN;
1218 return "Unknown";
1222 void dmar_msi_unmask(struct irq_data *data)
1224 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1225 unsigned long flag;
1227 /* unmask it */
1228 spin_lock_irqsave(&iommu->register_lock, flag);
1229 writel(0, iommu->reg + DMAR_FECTL_REG);
1230 /* Read a reg to force flush the post write */
1231 readl(iommu->reg + DMAR_FECTL_REG);
1232 spin_unlock_irqrestore(&iommu->register_lock, flag);
1235 void dmar_msi_mask(struct irq_data *data)
1237 unsigned long flag;
1238 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1240 /* mask it */
1241 spin_lock_irqsave(&iommu->register_lock, flag);
1242 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1243 /* Read a reg to force flush the post write */
1244 readl(iommu->reg + DMAR_FECTL_REG);
1245 spin_unlock_irqrestore(&iommu->register_lock, flag);
1248 void dmar_msi_write(int irq, struct msi_msg *msg)
1250 struct intel_iommu *iommu = irq_get_handler_data(irq);
1251 unsigned long flag;
1253 spin_lock_irqsave(&iommu->register_lock, flag);
1254 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1255 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1256 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1257 spin_unlock_irqrestore(&iommu->register_lock, flag);
1260 void dmar_msi_read(int irq, struct msi_msg *msg)
1262 struct intel_iommu *iommu = irq_get_handler_data(irq);
1263 unsigned long flag;
1265 spin_lock_irqsave(&iommu->register_lock, flag);
1266 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1267 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1268 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1269 spin_unlock_irqrestore(&iommu->register_lock, flag);
1272 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1273 u8 fault_reason, u16 source_id, unsigned long long addr)
1275 const char *reason;
1276 int fault_type;
1278 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1280 if (fault_type == INTR_REMAP)
1281 printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
1282 "fault index %llx\n"
1283 "INTR-REMAP:[fault reason %02d] %s\n",
1284 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1285 PCI_FUNC(source_id & 0xFF), addr >> 48,
1286 fault_reason, reason);
1287 else
1288 printk(KERN_ERR
1289 "DMAR:[%s] Request device [%02x:%02x.%d] "
1290 "fault addr %llx \n"
1291 "DMAR:[fault reason %02d] %s\n",
1292 (type ? "DMA Read" : "DMA Write"),
1293 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1294 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1295 return 0;
1298 #define PRIMARY_FAULT_REG_LEN (16)
1299 irqreturn_t dmar_fault(int irq, void *dev_id)
1301 struct intel_iommu *iommu = dev_id;
1302 int reg, fault_index;
1303 u32 fault_status;
1304 unsigned long flag;
1306 spin_lock_irqsave(&iommu->register_lock, flag);
1307 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1308 if (fault_status)
1309 printk(KERN_ERR "DRHD: handling fault status reg %x\n",
1310 fault_status);
1312 /* TBD: ignore advanced fault log currently */
1313 if (!(fault_status & DMA_FSTS_PPF))
1314 goto clear_rest;
1316 fault_index = dma_fsts_fault_record_index(fault_status);
1317 reg = cap_fault_reg_offset(iommu->cap);
1318 while (1) {
1319 u8 fault_reason;
1320 u16 source_id;
1321 u64 guest_addr;
1322 int type;
1323 u32 data;
1325 /* highest 32 bits */
1326 data = readl(iommu->reg + reg +
1327 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1328 if (!(data & DMA_FRCD_F))
1329 break;
1331 fault_reason = dma_frcd_fault_reason(data);
1332 type = dma_frcd_type(data);
1334 data = readl(iommu->reg + reg +
1335 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1336 source_id = dma_frcd_source_id(data);
1338 guest_addr = dmar_readq(iommu->reg + reg +
1339 fault_index * PRIMARY_FAULT_REG_LEN);
1340 guest_addr = dma_frcd_page_addr(guest_addr);
1341 /* clear the fault */
1342 writel(DMA_FRCD_F, iommu->reg + reg +
1343 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1345 spin_unlock_irqrestore(&iommu->register_lock, flag);
1347 dmar_fault_do_one(iommu, type, fault_reason,
1348 source_id, guest_addr);
1350 fault_index++;
1351 if (fault_index >= cap_num_fault_regs(iommu->cap))
1352 fault_index = 0;
1353 spin_lock_irqsave(&iommu->register_lock, flag);
1355 clear_rest:
1356 /* clear all the other faults */
1357 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1358 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1360 spin_unlock_irqrestore(&iommu->register_lock, flag);
1361 return IRQ_HANDLED;
1364 int dmar_set_interrupt(struct intel_iommu *iommu)
1366 int irq, ret;
1369 * Check if the fault interrupt is already initialized.
1371 if (iommu->irq)
1372 return 0;
1374 irq = create_irq();
1375 if (!irq) {
1376 printk(KERN_ERR "IOMMU: no free vectors\n");
1377 return -EINVAL;
1380 irq_set_handler_data(irq, iommu);
1381 iommu->irq = irq;
1383 ret = arch_setup_dmar_msi(irq);
1384 if (ret) {
1385 irq_set_handler_data(irq, NULL);
1386 iommu->irq = 0;
1387 destroy_irq(irq);
1388 return ret;
1391 ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
1392 if (ret)
1393 printk(KERN_ERR "IOMMU: can't request irq\n");
1394 return ret;
1397 int __init enable_drhd_fault_handling(void)
1399 struct dmar_drhd_unit *drhd;
1402 * Enable fault control interrupt.
1404 for_each_drhd_unit(drhd) {
1405 int ret;
1406 struct intel_iommu *iommu = drhd->iommu;
1407 ret = dmar_set_interrupt(iommu);
1409 if (ret) {
1410 printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1411 " interrupt, ret %d\n",
1412 (unsigned long long)drhd->reg_base_addr, ret);
1413 return -1;
1417 * Clear any previous faults.
1419 dmar_fault(iommu->irq, iommu);
1422 return 0;
1426 * Re-enable Queued Invalidation interface.
1428 int dmar_reenable_qi(struct intel_iommu *iommu)
1430 if (!ecap_qis(iommu->ecap))
1431 return -ENOENT;
1433 if (!iommu->qi)
1434 return -ENOENT;
1437 * First disable queued invalidation.
1439 dmar_disable_qi(iommu);
1441 * Then enable queued invalidation again. Since there is no pending
1442 * invalidation requests now, it's safe to re-enable queued
1443 * invalidation.
1445 __dmar_enable_qi(iommu);
1447 return 0;
1451 * Check interrupt remapping support in DMAR table description.
1453 int __init dmar_ir_support(void)
1455 struct acpi_table_dmar *dmar;
1456 dmar = (struct acpi_table_dmar *)dmar_tbl;
1457 if (!dmar)
1458 return 0;
1459 return dmar->flags & 0x1;
1461 IOMMU_INIT_POST(detect_intel_iommu);