Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / drivers / media / common / tuners / xc5000.c
blobaa1b2e844d3206b8c2bcc96ddaab3f583f7e2739
1 /*
2 * Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
4 * Copyright (c) 2007 Xceive Corporation
5 * Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
6 * Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/videodev2.h>
27 #include <linux/delay.h>
28 #include <linux/dvb/frontend.h>
29 #include <linux/i2c.h>
31 #include "dvb_frontend.h"
33 #include "xc5000.h"
34 #include "tuner-i2c.h"
36 static int debug;
37 module_param(debug, int, 0644);
38 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
40 static int no_poweroff;
41 module_param(no_poweroff, int, 0644);
42 MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n"
43 "\t\t1 keep device energized and with tuner ready all the times.\n"
44 "\t\tFaster, but consumes more power and keeps the device hotter");
46 static DEFINE_MUTEX(xc5000_list_mutex);
47 static LIST_HEAD(hybrid_tuner_instance_list);
49 #define dprintk(level, fmt, arg...) if (debug >= level) \
50 printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)
52 #define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.6.114.fw"
53 #define XC5000_DEFAULT_FIRMWARE_SIZE 12401
55 struct xc5000_priv {
56 struct tuner_i2c_props i2c_props;
57 struct list_head hybrid_tuner_instance_list;
59 u32 if_khz;
60 u32 freq_hz;
61 u32 bandwidth;
62 u8 video_standard;
63 u8 rf_mode;
64 u8 radio_input;
67 /* Misc Defines */
68 #define MAX_TV_STANDARD 24
69 #define XC_MAX_I2C_WRITE_LENGTH 64
71 /* Signal Types */
72 #define XC_RF_MODE_AIR 0
73 #define XC_RF_MODE_CABLE 1
75 /* Result codes */
76 #define XC_RESULT_SUCCESS 0
77 #define XC_RESULT_RESET_FAILURE 1
78 #define XC_RESULT_I2C_WRITE_FAILURE 2
79 #define XC_RESULT_I2C_READ_FAILURE 3
80 #define XC_RESULT_OUT_OF_RANGE 5
82 /* Product id */
83 #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000
84 #define XC_PRODUCT_ID_FW_LOADED 0x1388
86 /* Registers */
87 #define XREG_INIT 0x00
88 #define XREG_VIDEO_MODE 0x01
89 #define XREG_AUDIO_MODE 0x02
90 #define XREG_RF_FREQ 0x03
91 #define XREG_D_CODE 0x04
92 #define XREG_IF_OUT 0x05
93 #define XREG_SEEK_MODE 0x07
94 #define XREG_POWER_DOWN 0x0A /* Obsolete */
95 /* Set the output amplitude - SIF for analog, DTVP/DTVN for digital */
96 #define XREG_OUTPUT_AMP 0x0B
97 #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
98 #define XREG_SMOOTHEDCVBS 0x0E
99 #define XREG_XTALFREQ 0x0F
100 #define XREG_FINERFREQ 0x10
101 #define XREG_DDIMODE 0x11
103 #define XREG_ADC_ENV 0x00
104 #define XREG_QUALITY 0x01
105 #define XREG_FRAME_LINES 0x02
106 #define XREG_HSYNC_FREQ 0x03
107 #define XREG_LOCK 0x04
108 #define XREG_FREQ_ERROR 0x05
109 #define XREG_SNR 0x06
110 #define XREG_VERSION 0x07
111 #define XREG_PRODUCT_ID 0x08
112 #define XREG_BUSY 0x09
113 #define XREG_BUILD 0x0D
116 Basic firmware description. This will remain with
117 the driver for documentation purposes.
119 This represents an I2C firmware file encoded as a
120 string of unsigned char. Format is as follows:
122 char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB
123 char[1 ]=len0_LSB -> length of first write transaction
124 char[2 ]=data0 -> first byte to be sent
125 char[3 ]=data1
126 char[4 ]=data2
127 char[ ]=...
128 char[M ]=dataN -> last byte to be sent
129 char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB
130 char[M+2]=len1_LSB -> length of second write transaction
131 char[M+3]=data0
132 char[M+4]=data1
134 etc.
136 The [len] value should be interpreted as follows:
138 len= len_MSB _ len_LSB
139 len=1111_1111_1111_1111 : End of I2C_SEQUENCE
140 len=0000_0000_0000_0000 : Reset command: Do hardware reset
141 len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767)
142 len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms
144 For the RESET and WAIT commands, the two following bytes will contain
145 immediately the length of the following transaction.
148 struct XC_TV_STANDARD {
149 char *Name;
150 u16 AudioMode;
151 u16 VideoMode;
154 /* Tuner standards */
155 #define MN_NTSC_PAL_BTSC 0
156 #define MN_NTSC_PAL_A2 1
157 #define MN_NTSC_PAL_EIAJ 2
158 #define MN_NTSC_PAL_Mono 3
159 #define BG_PAL_A2 4
160 #define BG_PAL_NICAM 5
161 #define BG_PAL_MONO 6
162 #define I_PAL_NICAM 7
163 #define I_PAL_NICAM_MONO 8
164 #define DK_PAL_A2 9
165 #define DK_PAL_NICAM 10
166 #define DK_PAL_MONO 11
167 #define DK_SECAM_A2DK1 12
168 #define DK_SECAM_A2LDK3 13
169 #define DK_SECAM_A2MONO 14
170 #define L_SECAM_NICAM 15
171 #define LC_SECAM_NICAM 16
172 #define DTV6 17
173 #define DTV8 18
174 #define DTV7_8 19
175 #define DTV7 20
176 #define FM_Radio_INPUT2 21
177 #define FM_Radio_INPUT1 22
178 #define FM_Radio_INPUT1_MONO 23
180 static struct XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
181 {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
182 {"M/N-NTSC/PAL-A2", 0x0600, 0x8020},
183 {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
184 {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
185 {"B/G-PAL-A2", 0x0A00, 0x8049},
186 {"B/G-PAL-NICAM", 0x0C04, 0x8049},
187 {"B/G-PAL-MONO", 0x0878, 0x8059},
188 {"I-PAL-NICAM", 0x1080, 0x8009},
189 {"I-PAL-NICAM-MONO", 0x0E78, 0x8009},
190 {"D/K-PAL-A2", 0x1600, 0x8009},
191 {"D/K-PAL-NICAM", 0x0E80, 0x8009},
192 {"D/K-PAL-MONO", 0x1478, 0x8009},
193 {"D/K-SECAM-A2 DK1", 0x1200, 0x8009},
194 {"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
195 {"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
196 {"L-SECAM-NICAM", 0x8E82, 0x0009},
197 {"L'-SECAM-NICAM", 0x8E82, 0x4009},
198 {"DTV6", 0x00C0, 0x8002},
199 {"DTV8", 0x00C0, 0x800B},
200 {"DTV7/8", 0x00C0, 0x801B},
201 {"DTV7", 0x00C0, 0x8007},
202 {"FM Radio-INPUT2", 0x9802, 0x9002},
203 {"FM Radio-INPUT1", 0x0208, 0x9002},
204 {"FM Radio-INPUT1_MONO", 0x0278, 0x9002}
207 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);
208 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
209 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val);
210 static int xc5000_TunerReset(struct dvb_frontend *fe);
212 static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
214 struct i2c_msg msg = { .addr = priv->i2c_props.addr,
215 .flags = 0, .buf = buf, .len = len };
217 if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
218 printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len);
219 return XC_RESULT_I2C_WRITE_FAILURE;
221 return XC_RESULT_SUCCESS;
224 #if 0
225 /* This routine is never used because the only time we read data from the
226 i2c bus is when we read registers, and we want that to be an atomic i2c
227 transaction in case we are on a multi-master bus */
228 static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
230 struct i2c_msg msg = { .addr = priv->i2c_props.addr,
231 .flags = I2C_M_RD, .buf = buf, .len = len };
233 if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
234 printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len);
235 return -EREMOTEIO;
237 return 0;
239 #endif
241 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
243 u8 buf[2] = { reg >> 8, reg & 0xff };
244 u8 bval[2] = { 0, 0 };
245 struct i2c_msg msg[2] = {
246 { .addr = priv->i2c_props.addr,
247 .flags = 0, .buf = &buf[0], .len = 2 },
248 { .addr = priv->i2c_props.addr,
249 .flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
252 if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
253 printk(KERN_WARNING "xc5000: I2C read failed\n");
254 return -EREMOTEIO;
257 *val = (bval[0] << 8) | bval[1];
258 return XC_RESULT_SUCCESS;
261 static void xc_wait(int wait_ms)
263 msleep(wait_ms);
266 static int xc5000_TunerReset(struct dvb_frontend *fe)
268 struct xc5000_priv *priv = fe->tuner_priv;
269 int ret;
271 dprintk(1, "%s()\n", __func__);
273 if (fe->callback) {
274 ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
275 fe->dvb->priv :
276 priv->i2c_props.adap->algo_data,
277 DVB_FRONTEND_COMPONENT_TUNER,
278 XC5000_TUNER_RESET, 0);
279 if (ret) {
280 printk(KERN_ERR "xc5000: reset failed\n");
281 return XC_RESULT_RESET_FAILURE;
283 } else {
284 printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
285 return XC_RESULT_RESET_FAILURE;
287 return XC_RESULT_SUCCESS;
290 static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
292 u8 buf[4];
293 int WatchDogTimer = 100;
294 int result;
296 buf[0] = (regAddr >> 8) & 0xFF;
297 buf[1] = regAddr & 0xFF;
298 buf[2] = (i2cData >> 8) & 0xFF;
299 buf[3] = i2cData & 0xFF;
300 result = xc_send_i2c_data(priv, buf, 4);
301 if (result == XC_RESULT_SUCCESS) {
302 /* wait for busy flag to clear */
303 while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
304 result = xc5000_readreg(priv, XREG_BUSY, (u16 *)buf);
305 if (result == XC_RESULT_SUCCESS) {
306 if ((buf[0] == 0) && (buf[1] == 0)) {
307 /* busy flag cleared */
308 break;
309 } else {
310 xc_wait(5); /* wait 5 ms */
311 WatchDogTimer--;
316 if (WatchDogTimer < 0)
317 result = XC_RESULT_I2C_WRITE_FAILURE;
319 return result;
322 static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
324 struct xc5000_priv *priv = fe->tuner_priv;
326 int i, nbytes_to_send, result;
327 unsigned int len, pos, index;
328 u8 buf[XC_MAX_I2C_WRITE_LENGTH];
330 index = 0;
331 while ((i2c_sequence[index] != 0xFF) ||
332 (i2c_sequence[index + 1] != 0xFF)) {
333 len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
334 if (len == 0x0000) {
335 /* RESET command */
336 result = xc5000_TunerReset(fe);
337 index += 2;
338 if (result != XC_RESULT_SUCCESS)
339 return result;
340 } else if (len & 0x8000) {
341 /* WAIT command */
342 xc_wait(len & 0x7FFF);
343 index += 2;
344 } else {
345 /* Send i2c data whilst ensuring individual transactions
346 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
348 index += 2;
349 buf[0] = i2c_sequence[index];
350 buf[1] = i2c_sequence[index + 1];
351 pos = 2;
352 while (pos < len) {
353 if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
354 nbytes_to_send =
355 XC_MAX_I2C_WRITE_LENGTH;
356 else
357 nbytes_to_send = (len - pos + 2);
358 for (i = 2; i < nbytes_to_send; i++) {
359 buf[i] = i2c_sequence[index + pos +
360 i - 2];
362 result = xc_send_i2c_data(priv, buf,
363 nbytes_to_send);
365 if (result != XC_RESULT_SUCCESS)
366 return result;
368 pos += nbytes_to_send - 2;
370 index += len;
373 return XC_RESULT_SUCCESS;
376 static int xc_initialize(struct xc5000_priv *priv)
378 dprintk(1, "%s()\n", __func__);
379 return xc_write_reg(priv, XREG_INIT, 0);
382 static int xc_SetTVStandard(struct xc5000_priv *priv,
383 u16 VideoMode, u16 AudioMode)
385 int ret;
386 dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
387 dprintk(1, "%s() Standard = %s\n",
388 __func__,
389 XC5000_Standard[priv->video_standard].Name);
391 ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
392 if (ret == XC_RESULT_SUCCESS)
393 ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);
395 return ret;
398 static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
400 dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
401 rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
403 if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
404 rf_mode = XC_RF_MODE_CABLE;
405 printk(KERN_ERR
406 "%s(), Invalid mode, defaulting to CABLE",
407 __func__);
409 return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
412 static const struct dvb_tuner_ops xc5000_tuner_ops;
414 static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
416 u16 freq_code;
418 dprintk(1, "%s(%u)\n", __func__, freq_hz);
420 if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
421 (freq_hz < xc5000_tuner_ops.info.frequency_min))
422 return XC_RESULT_OUT_OF_RANGE;
424 freq_code = (u16)(freq_hz / 15625);
426 /* Starting in firmware version 1.1.44, Xceive recommends using the
427 FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
428 only be used for fast scanning for channel lock) */
429 return xc_write_reg(priv, XREG_FINERFREQ, freq_code);
433 static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
435 u32 freq_code = (freq_khz * 1024)/1000;
436 dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
437 __func__, freq_khz, freq_code);
439 return xc_write_reg(priv, XREG_IF_OUT, freq_code);
443 static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
445 return xc5000_readreg(priv, XREG_ADC_ENV, adc_envelope);
448 static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
450 int result;
451 u16 regData;
452 u32 tmp;
454 result = xc5000_readreg(priv, XREG_FREQ_ERROR, &regData);
455 if (result != XC_RESULT_SUCCESS)
456 return result;
458 tmp = (u32)regData;
459 (*freq_error_hz) = (tmp * 15625) / 1000;
460 return result;
463 static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
465 return xc5000_readreg(priv, XREG_LOCK, lock_status);
468 static int xc_get_version(struct xc5000_priv *priv,
469 u8 *hw_majorversion, u8 *hw_minorversion,
470 u8 *fw_majorversion, u8 *fw_minorversion)
472 u16 data;
473 int result;
475 result = xc5000_readreg(priv, XREG_VERSION, &data);
476 if (result != XC_RESULT_SUCCESS)
477 return result;
479 (*hw_majorversion) = (data >> 12) & 0x0F;
480 (*hw_minorversion) = (data >> 8) & 0x0F;
481 (*fw_majorversion) = (data >> 4) & 0x0F;
482 (*fw_minorversion) = data & 0x0F;
484 return 0;
487 static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev)
489 return xc5000_readreg(priv, XREG_BUILD, buildrev);
492 static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
494 u16 regData;
495 int result;
497 result = xc5000_readreg(priv, XREG_HSYNC_FREQ, &regData);
498 if (result != XC_RESULT_SUCCESS)
499 return result;
501 (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
502 return result;
505 static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
507 return xc5000_readreg(priv, XREG_FRAME_LINES, frame_lines);
510 static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
512 return xc5000_readreg(priv, XREG_QUALITY, quality);
515 static u16 WaitForLock(struct xc5000_priv *priv)
517 u16 lockState = 0;
518 int watchDogCount = 40;
520 while ((lockState == 0) && (watchDogCount > 0)) {
521 xc_get_lock_status(priv, &lockState);
522 if (lockState != 1) {
523 xc_wait(5);
524 watchDogCount--;
527 return lockState;
530 #define XC_TUNE_ANALOG 0
531 #define XC_TUNE_DIGITAL 1
532 static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode)
534 int found = 0;
536 dprintk(1, "%s(%u)\n", __func__, freq_hz);
538 if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
539 return 0;
541 if (mode == XC_TUNE_ANALOG) {
542 if (WaitForLock(priv) == 1)
543 found = 1;
546 return found;
550 static int xc5000_fwupload(struct dvb_frontend *fe)
552 struct xc5000_priv *priv = fe->tuner_priv;
553 const struct firmware *fw;
554 int ret;
556 /* request the firmware, this will block and timeout */
557 printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
558 XC5000_DEFAULT_FIRMWARE);
560 ret = request_firmware(&fw, XC5000_DEFAULT_FIRMWARE,
561 priv->i2c_props.adap->dev.parent);
562 if (ret) {
563 printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
564 ret = XC_RESULT_RESET_FAILURE;
565 goto out;
566 } else {
567 printk(KERN_DEBUG "xc5000: firmware read %Zu bytes.\n",
568 fw->size);
569 ret = XC_RESULT_SUCCESS;
572 if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) {
573 printk(KERN_ERR "xc5000: firmware incorrect size\n");
574 ret = XC_RESULT_RESET_FAILURE;
575 } else {
576 printk(KERN_INFO "xc5000: firmware uploading...\n");
577 ret = xc_load_i2c_sequence(fe, fw->data);
578 printk(KERN_INFO "xc5000: firmware upload complete...\n");
581 out:
582 release_firmware(fw);
583 return ret;
586 static void xc_debug_dump(struct xc5000_priv *priv)
588 u16 adc_envelope;
589 u32 freq_error_hz = 0;
590 u16 lock_status;
591 u32 hsync_freq_hz = 0;
592 u16 frame_lines;
593 u16 quality;
594 u8 hw_majorversion = 0, hw_minorversion = 0;
595 u8 fw_majorversion = 0, fw_minorversion = 0;
596 u16 fw_buildversion = 0;
598 /* Wait for stats to stabilize.
599 * Frame Lines needs two frame times after initial lock
600 * before it is valid.
602 xc_wait(100);
604 xc_get_ADC_Envelope(priv, &adc_envelope);
605 dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
607 xc_get_frequency_error(priv, &freq_error_hz);
608 dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
610 xc_get_lock_status(priv, &lock_status);
611 dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
612 lock_status);
614 xc_get_version(priv, &hw_majorversion, &hw_minorversion,
615 &fw_majorversion, &fw_minorversion);
616 xc_get_buildversion(priv, &fw_buildversion);
617 dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x.%04x\n",
618 hw_majorversion, hw_minorversion,
619 fw_majorversion, fw_minorversion, fw_buildversion);
621 xc_get_hsync_freq(priv, &hsync_freq_hz);
622 dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
624 xc_get_frame_lines(priv, &frame_lines);
625 dprintk(1, "*** Frame lines = %d\n", frame_lines);
627 xc_get_quality(priv, &quality);
628 dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
632 * As defined on EN 300 429, the DVB-C roll-off factor is 0.15.
633 * So, the amount of the needed bandwith is given by:
634 * Bw = Symbol_rate * (1 + 0.15)
635 * As such, the maximum symbol rate supported by 6 MHz is given by:
636 * max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds
638 #define MAX_SYMBOL_RATE_6MHz 5217391
640 static int xc5000_set_params(struct dvb_frontend *fe,
641 struct dvb_frontend_parameters *params)
643 struct xc5000_priv *priv = fe->tuner_priv;
644 int ret;
646 if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
647 if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
648 dprintk(1, "Unable to load firmware and init tuner\n");
649 return -EINVAL;
653 dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency);
655 if (fe->ops.info.type == FE_ATSC) {
656 dprintk(1, "%s() ATSC\n", __func__);
657 switch (params->u.vsb.modulation) {
658 case VSB_8:
659 case VSB_16:
660 dprintk(1, "%s() VSB modulation\n", __func__);
661 priv->rf_mode = XC_RF_MODE_AIR;
662 priv->freq_hz = params->frequency - 1750000;
663 priv->bandwidth = BANDWIDTH_6_MHZ;
664 priv->video_standard = DTV6;
665 break;
666 case QAM_64:
667 case QAM_256:
668 case QAM_AUTO:
669 dprintk(1, "%s() QAM modulation\n", __func__);
670 priv->rf_mode = XC_RF_MODE_CABLE;
671 priv->freq_hz = params->frequency - 1750000;
672 priv->bandwidth = BANDWIDTH_6_MHZ;
673 priv->video_standard = DTV6;
674 break;
675 default:
676 return -EINVAL;
678 } else if (fe->ops.info.type == FE_OFDM) {
679 dprintk(1, "%s() OFDM\n", __func__);
680 switch (params->u.ofdm.bandwidth) {
681 case BANDWIDTH_6_MHZ:
682 priv->bandwidth = BANDWIDTH_6_MHZ;
683 priv->video_standard = DTV6;
684 priv->freq_hz = params->frequency - 1750000;
685 break;
686 case BANDWIDTH_7_MHZ:
687 printk(KERN_ERR "xc5000 bandwidth 7MHz not supported\n");
688 return -EINVAL;
689 case BANDWIDTH_8_MHZ:
690 priv->bandwidth = BANDWIDTH_8_MHZ;
691 priv->video_standard = DTV8;
692 priv->freq_hz = params->frequency - 2750000;
693 break;
694 default:
695 printk(KERN_ERR "xc5000 bandwidth not set!\n");
696 return -EINVAL;
698 priv->rf_mode = XC_RF_MODE_AIR;
699 } else if (fe->ops.info.type == FE_QAM) {
700 switch (params->u.qam.modulation) {
701 case QAM_256:
702 case QAM_AUTO:
703 case QAM_16:
704 case QAM_32:
705 case QAM_64:
706 case QAM_128:
707 dprintk(1, "%s() QAM modulation\n", __func__);
708 priv->rf_mode = XC_RF_MODE_CABLE;
710 * Using a 8MHz bandwidth sometimes fail
711 * with 6MHz-spaced channels, due to inter-carrier
712 * interference. So, use DTV6 firmware
714 if (params->u.qam.symbol_rate <= MAX_SYMBOL_RATE_6MHz) {
715 priv->bandwidth = BANDWIDTH_6_MHZ;
716 priv->video_standard = DTV6;
717 priv->freq_hz = params->frequency - 1750000;
718 } else {
719 priv->bandwidth = BANDWIDTH_8_MHZ;
720 priv->video_standard = DTV7_8;
721 priv->freq_hz = params->frequency - 2750000;
723 break;
724 default:
725 dprintk(1, "%s() Unsupported QAM type\n", __func__);
726 return -EINVAL;
728 } else {
729 printk(KERN_ERR "xc5000 modulation type not supported!\n");
730 return -EINVAL;
733 dprintk(1, "%s() frequency=%d (compensated)\n",
734 __func__, priv->freq_hz);
736 ret = xc_SetSignalSource(priv, priv->rf_mode);
737 if (ret != XC_RESULT_SUCCESS) {
738 printk(KERN_ERR
739 "xc5000: xc_SetSignalSource(%d) failed\n",
740 priv->rf_mode);
741 return -EREMOTEIO;
744 ret = xc_SetTVStandard(priv,
745 XC5000_Standard[priv->video_standard].VideoMode,
746 XC5000_Standard[priv->video_standard].AudioMode);
747 if (ret != XC_RESULT_SUCCESS) {
748 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
749 return -EREMOTEIO;
752 ret = xc_set_IF_frequency(priv, priv->if_khz);
753 if (ret != XC_RESULT_SUCCESS) {
754 printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
755 priv->if_khz);
756 return -EIO;
759 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x8a);
761 xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL);
763 if (debug)
764 xc_debug_dump(priv);
766 return 0;
769 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
771 struct xc5000_priv *priv = fe->tuner_priv;
772 int ret;
773 u16 id;
775 ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
776 if (ret == XC_RESULT_SUCCESS) {
777 if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
778 ret = XC_RESULT_RESET_FAILURE;
779 else
780 ret = XC_RESULT_SUCCESS;
783 dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
784 ret == XC_RESULT_SUCCESS ? "True" : "False", id);
785 return ret;
788 static int xc5000_set_tv_freq(struct dvb_frontend *fe,
789 struct analog_parameters *params)
791 struct xc5000_priv *priv = fe->tuner_priv;
792 int ret;
794 dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
795 __func__, params->frequency);
797 /* Fix me: it could be air. */
798 priv->rf_mode = params->mode;
799 if (params->mode > XC_RF_MODE_CABLE)
800 priv->rf_mode = XC_RF_MODE_CABLE;
802 /* params->frequency is in units of 62.5khz */
803 priv->freq_hz = params->frequency * 62500;
805 /* FIX ME: Some video standards may have several possible audio
806 standards. We simply default to one of them here.
808 if (params->std & V4L2_STD_MN) {
809 /* default to BTSC audio standard */
810 priv->video_standard = MN_NTSC_PAL_BTSC;
811 goto tune_channel;
814 if (params->std & V4L2_STD_PAL_BG) {
815 /* default to NICAM audio standard */
816 priv->video_standard = BG_PAL_NICAM;
817 goto tune_channel;
820 if (params->std & V4L2_STD_PAL_I) {
821 /* default to NICAM audio standard */
822 priv->video_standard = I_PAL_NICAM;
823 goto tune_channel;
826 if (params->std & V4L2_STD_PAL_DK) {
827 /* default to NICAM audio standard */
828 priv->video_standard = DK_PAL_NICAM;
829 goto tune_channel;
832 if (params->std & V4L2_STD_SECAM_DK) {
833 /* default to A2 DK1 audio standard */
834 priv->video_standard = DK_SECAM_A2DK1;
835 goto tune_channel;
838 if (params->std & V4L2_STD_SECAM_L) {
839 priv->video_standard = L_SECAM_NICAM;
840 goto tune_channel;
843 if (params->std & V4L2_STD_SECAM_LC) {
844 priv->video_standard = LC_SECAM_NICAM;
845 goto tune_channel;
848 tune_channel:
849 ret = xc_SetSignalSource(priv, priv->rf_mode);
850 if (ret != XC_RESULT_SUCCESS) {
851 printk(KERN_ERR
852 "xc5000: xc_SetSignalSource(%d) failed\n",
853 priv->rf_mode);
854 return -EREMOTEIO;
857 ret = xc_SetTVStandard(priv,
858 XC5000_Standard[priv->video_standard].VideoMode,
859 XC5000_Standard[priv->video_standard].AudioMode);
860 if (ret != XC_RESULT_SUCCESS) {
861 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
862 return -EREMOTEIO;
865 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
867 xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
869 if (debug)
870 xc_debug_dump(priv);
872 return 0;
875 static int xc5000_set_radio_freq(struct dvb_frontend *fe,
876 struct analog_parameters *params)
878 struct xc5000_priv *priv = fe->tuner_priv;
879 int ret = -EINVAL;
880 u8 radio_input;
882 dprintk(1, "%s() frequency=%d (in units of khz)\n",
883 __func__, params->frequency);
885 if (priv->radio_input == XC5000_RADIO_NOT_CONFIGURED) {
886 dprintk(1, "%s() radio input not configured\n", __func__);
887 return -EINVAL;
890 if (priv->radio_input == XC5000_RADIO_FM1)
891 radio_input = FM_Radio_INPUT1;
892 else if (priv->radio_input == XC5000_RADIO_FM2)
893 radio_input = FM_Radio_INPUT2;
894 else if (priv->radio_input == XC5000_RADIO_FM1_MONO)
895 radio_input = FM_Radio_INPUT1_MONO;
896 else {
897 dprintk(1, "%s() unknown radio input %d\n", __func__,
898 priv->radio_input);
899 return -EINVAL;
902 priv->freq_hz = params->frequency * 125 / 2;
904 priv->rf_mode = XC_RF_MODE_AIR;
906 ret = xc_SetTVStandard(priv, XC5000_Standard[radio_input].VideoMode,
907 XC5000_Standard[radio_input].AudioMode);
909 if (ret != XC_RESULT_SUCCESS) {
910 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
911 return -EREMOTEIO;
914 ret = xc_SetSignalSource(priv, priv->rf_mode);
915 if (ret != XC_RESULT_SUCCESS) {
916 printk(KERN_ERR
917 "xc5000: xc_SetSignalSource(%d) failed\n",
918 priv->rf_mode);
919 return -EREMOTEIO;
922 if ((priv->radio_input == XC5000_RADIO_FM1) ||
923 (priv->radio_input == XC5000_RADIO_FM2))
924 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
925 else if (priv->radio_input == XC5000_RADIO_FM1_MONO)
926 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x06);
928 xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
930 return 0;
933 static int xc5000_set_analog_params(struct dvb_frontend *fe,
934 struct analog_parameters *params)
936 struct xc5000_priv *priv = fe->tuner_priv;
937 int ret = -EINVAL;
939 if (priv->i2c_props.adap == NULL)
940 return -EINVAL;
942 if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
943 if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
944 dprintk(1, "Unable to load firmware and init tuner\n");
945 return -EINVAL;
949 switch (params->mode) {
950 case V4L2_TUNER_RADIO:
951 ret = xc5000_set_radio_freq(fe, params);
952 break;
953 case V4L2_TUNER_ANALOG_TV:
954 case V4L2_TUNER_DIGITAL_TV:
955 ret = xc5000_set_tv_freq(fe, params);
956 break;
959 return ret;
963 static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
965 struct xc5000_priv *priv = fe->tuner_priv;
966 dprintk(1, "%s()\n", __func__);
967 *freq = priv->freq_hz;
968 return 0;
971 static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
973 struct xc5000_priv *priv = fe->tuner_priv;
974 dprintk(1, "%s()\n", __func__);
976 *bw = priv->bandwidth;
977 return 0;
980 static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
982 struct xc5000_priv *priv = fe->tuner_priv;
983 u16 lock_status = 0;
985 xc_get_lock_status(priv, &lock_status);
987 dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
989 *status = lock_status;
991 return 0;
994 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
996 struct xc5000_priv *priv = fe->tuner_priv;
997 int ret = 0;
999 if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
1000 ret = xc5000_fwupload(fe);
1001 if (ret != XC_RESULT_SUCCESS)
1002 return ret;
1005 /* Start the tuner self-calibration process */
1006 ret |= xc_initialize(priv);
1008 /* Wait for calibration to complete.
1009 * We could continue but XC5000 will clock stretch subsequent
1010 * I2C transactions until calibration is complete. This way we
1011 * don't have to rely on clock stretching working.
1013 xc_wait(100);
1015 /* Default to "CABLE" mode */
1016 ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
1018 return ret;
1021 static int xc5000_sleep(struct dvb_frontend *fe)
1023 int ret;
1025 dprintk(1, "%s()\n", __func__);
1027 /* Avoid firmware reload on slow devices */
1028 if (no_poweroff)
1029 return 0;
1031 /* According to Xceive technical support, the "powerdown" register
1032 was removed in newer versions of the firmware. The "supported"
1033 way to sleep the tuner is to pull the reset pin low for 10ms */
1034 ret = xc5000_TunerReset(fe);
1035 if (ret != XC_RESULT_SUCCESS) {
1036 printk(KERN_ERR
1037 "xc5000: %s() unable to shutdown tuner\n",
1038 __func__);
1039 return -EREMOTEIO;
1040 } else
1041 return XC_RESULT_SUCCESS;
1044 static int xc5000_init(struct dvb_frontend *fe)
1046 struct xc5000_priv *priv = fe->tuner_priv;
1047 dprintk(1, "%s()\n", __func__);
1049 if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
1050 printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
1051 return -EREMOTEIO;
1054 if (debug)
1055 xc_debug_dump(priv);
1057 return 0;
1060 static int xc5000_release(struct dvb_frontend *fe)
1062 struct xc5000_priv *priv = fe->tuner_priv;
1064 dprintk(1, "%s()\n", __func__);
1066 mutex_lock(&xc5000_list_mutex);
1068 if (priv)
1069 hybrid_tuner_release_state(priv);
1071 mutex_unlock(&xc5000_list_mutex);
1073 fe->tuner_priv = NULL;
1075 return 0;
1078 static int xc5000_set_config(struct dvb_frontend *fe, void *priv_cfg)
1080 struct xc5000_priv *priv = fe->tuner_priv;
1081 struct xc5000_config *p = priv_cfg;
1083 dprintk(1, "%s()\n", __func__);
1085 if (p->if_khz)
1086 priv->if_khz = p->if_khz;
1088 if (p->radio_input)
1089 priv->radio_input = p->radio_input;
1091 return 0;
1095 static const struct dvb_tuner_ops xc5000_tuner_ops = {
1096 .info = {
1097 .name = "Xceive XC5000",
1098 .frequency_min = 1000000,
1099 .frequency_max = 1023000000,
1100 .frequency_step = 50000,
1103 .release = xc5000_release,
1104 .init = xc5000_init,
1105 .sleep = xc5000_sleep,
1107 .set_config = xc5000_set_config,
1108 .set_params = xc5000_set_params,
1109 .set_analog_params = xc5000_set_analog_params,
1110 .get_frequency = xc5000_get_frequency,
1111 .get_bandwidth = xc5000_get_bandwidth,
1112 .get_status = xc5000_get_status
1115 struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
1116 struct i2c_adapter *i2c,
1117 const struct xc5000_config *cfg)
1119 struct xc5000_priv *priv = NULL;
1120 int instance;
1121 u16 id = 0;
1123 dprintk(1, "%s(%d-%04x)\n", __func__,
1124 i2c ? i2c_adapter_id(i2c) : -1,
1125 cfg ? cfg->i2c_address : -1);
1127 mutex_lock(&xc5000_list_mutex);
1129 instance = hybrid_tuner_request_state(struct xc5000_priv, priv,
1130 hybrid_tuner_instance_list,
1131 i2c, cfg->i2c_address, "xc5000");
1132 switch (instance) {
1133 case 0:
1134 goto fail;
1135 break;
1136 case 1:
1137 /* new tuner instance */
1138 priv->bandwidth = BANDWIDTH_6_MHZ;
1139 fe->tuner_priv = priv;
1140 break;
1141 default:
1142 /* existing tuner instance */
1143 fe->tuner_priv = priv;
1144 break;
1147 if (priv->if_khz == 0) {
1148 /* If the IF hasn't been set yet, use the value provided by
1149 the caller (occurs in hybrid devices where the analog
1150 call to xc5000_attach occurs before the digital side) */
1151 priv->if_khz = cfg->if_khz;
1154 if (priv->radio_input == 0)
1155 priv->radio_input = cfg->radio_input;
1157 /* Check if firmware has been loaded. It is possible that another
1158 instance of the driver has loaded the firmware.
1160 if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS)
1161 goto fail;
1163 switch (id) {
1164 case XC_PRODUCT_ID_FW_LOADED:
1165 printk(KERN_INFO
1166 "xc5000: Successfully identified at address 0x%02x\n",
1167 cfg->i2c_address);
1168 printk(KERN_INFO
1169 "xc5000: Firmware has been loaded previously\n");
1170 break;
1171 case XC_PRODUCT_ID_FW_NOT_LOADED:
1172 printk(KERN_INFO
1173 "xc5000: Successfully identified at address 0x%02x\n",
1174 cfg->i2c_address);
1175 printk(KERN_INFO
1176 "xc5000: Firmware has not been loaded previously\n");
1177 break;
1178 default:
1179 printk(KERN_ERR
1180 "xc5000: Device not found at addr 0x%02x (0x%x)\n",
1181 cfg->i2c_address, id);
1182 goto fail;
1185 mutex_unlock(&xc5000_list_mutex);
1187 memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
1188 sizeof(struct dvb_tuner_ops));
1190 return fe;
1191 fail:
1192 mutex_unlock(&xc5000_list_mutex);
1194 xc5000_release(fe);
1195 return NULL;
1197 EXPORT_SYMBOL(xc5000_attach);
1199 MODULE_AUTHOR("Steven Toth");
1200 MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
1201 MODULE_LICENSE("GPL");