Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / drivers / mmc / core / core.c
blob557856b6f95c971459d136547266839bd5435346
1 /*
2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
35 #include "core.h"
36 #include "bus.h"
37 #include "host.h"
38 #include "sdio_bus.h"
40 #include "mmc_ops.h"
41 #include "sd_ops.h"
42 #include "sdio_ops.h"
44 static struct workqueue_struct *workqueue;
47 * Enabling software CRCs on the data blocks can be a significant (30%)
48 * performance cost, and for other reasons may not always be desired.
49 * So we allow it it to be disabled.
51 int use_spi_crc = 1;
52 module_param(use_spi_crc, bool, 0);
55 * We normally treat cards as removed during suspend if they are not
56 * known to be on a non-removable bus, to avoid the risk of writing
57 * back data to a different card after resume. Allow this to be
58 * overridden if necessary.
60 #ifdef CONFIG_MMC_UNSAFE_RESUME
61 int mmc_assume_removable;
62 #else
63 int mmc_assume_removable = 1;
64 #endif
65 EXPORT_SYMBOL(mmc_assume_removable);
66 module_param_named(removable, mmc_assume_removable, bool, 0644);
67 MODULE_PARM_DESC(
68 removable,
69 "MMC/SD cards are removable and may be removed during suspend");
72 * Internal function. Schedule delayed work in the MMC work queue.
74 static int mmc_schedule_delayed_work(struct delayed_work *work,
75 unsigned long delay)
77 return queue_delayed_work(workqueue, work, delay);
81 * Internal function. Flush all scheduled work from the MMC work queue.
83 static void mmc_flush_scheduled_work(void)
85 flush_workqueue(workqueue);
88 #ifdef CONFIG_FAIL_MMC_REQUEST
91 * Internal function. Inject random data errors.
92 * If mmc_data is NULL no errors are injected.
94 static void mmc_should_fail_request(struct mmc_host *host,
95 struct mmc_request *mrq)
97 struct mmc_command *cmd = mrq->cmd;
98 struct mmc_data *data = mrq->data;
99 static const int data_errors[] = {
100 -ETIMEDOUT,
101 -EILSEQ,
102 -EIO,
105 if (!data)
106 return;
108 if (cmd->error || data->error ||
109 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
110 return;
112 data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
113 data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
116 #else /* CONFIG_FAIL_MMC_REQUEST */
118 static inline void mmc_should_fail_request(struct mmc_host *host,
119 struct mmc_request *mrq)
123 #endif /* CONFIG_FAIL_MMC_REQUEST */
126 * mmc_request_done - finish processing an MMC request
127 * @host: MMC host which completed request
128 * @mrq: MMC request which request
130 * MMC drivers should call this function when they have completed
131 * their processing of a request.
133 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
135 struct mmc_command *cmd = mrq->cmd;
136 int err = cmd->error;
138 if (err && cmd->retries && mmc_host_is_spi(host)) {
139 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
140 cmd->retries = 0;
143 if (err && cmd->retries) {
144 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
145 mmc_hostname(host), cmd->opcode, err);
147 cmd->retries--;
148 cmd->error = 0;
149 host->ops->request(host, mrq);
150 } else {
151 mmc_should_fail_request(host, mrq);
153 led_trigger_event(host->led, LED_OFF);
155 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
156 mmc_hostname(host), cmd->opcode, err,
157 cmd->resp[0], cmd->resp[1],
158 cmd->resp[2], cmd->resp[3]);
160 if (mrq->data) {
161 pr_debug("%s: %d bytes transferred: %d\n",
162 mmc_hostname(host),
163 mrq->data->bytes_xfered, mrq->data->error);
166 if (mrq->stop) {
167 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
168 mmc_hostname(host), mrq->stop->opcode,
169 mrq->stop->error,
170 mrq->stop->resp[0], mrq->stop->resp[1],
171 mrq->stop->resp[2], mrq->stop->resp[3]);
174 if (mrq->done)
175 mrq->done(mrq);
177 mmc_host_clk_release(host);
181 EXPORT_SYMBOL(mmc_request_done);
183 static void
184 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
186 #ifdef CONFIG_MMC_DEBUG
187 unsigned int i, sz;
188 struct scatterlist *sg;
189 #endif
191 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
192 mmc_hostname(host), mrq->cmd->opcode,
193 mrq->cmd->arg, mrq->cmd->flags);
195 if (mrq->data) {
196 pr_debug("%s: blksz %d blocks %d flags %08x "
197 "tsac %d ms nsac %d\n",
198 mmc_hostname(host), mrq->data->blksz,
199 mrq->data->blocks, mrq->data->flags,
200 mrq->data->timeout_ns / 1000000,
201 mrq->data->timeout_clks);
204 if (mrq->stop) {
205 pr_debug("%s: CMD%u arg %08x flags %08x\n",
206 mmc_hostname(host), mrq->stop->opcode,
207 mrq->stop->arg, mrq->stop->flags);
210 WARN_ON(!host->claimed);
212 mrq->cmd->error = 0;
213 mrq->cmd->mrq = mrq;
214 if (mrq->data) {
215 BUG_ON(mrq->data->blksz > host->max_blk_size);
216 BUG_ON(mrq->data->blocks > host->max_blk_count);
217 BUG_ON(mrq->data->blocks * mrq->data->blksz >
218 host->max_req_size);
220 #ifdef CONFIG_MMC_DEBUG
221 sz = 0;
222 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
223 sz += sg->length;
224 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
225 #endif
227 mrq->cmd->data = mrq->data;
228 mrq->data->error = 0;
229 mrq->data->mrq = mrq;
230 if (mrq->stop) {
231 mrq->data->stop = mrq->stop;
232 mrq->stop->error = 0;
233 mrq->stop->mrq = mrq;
236 mmc_host_clk_hold(host);
237 led_trigger_event(host->led, LED_FULL);
238 host->ops->request(host, mrq);
241 static void mmc_wait_done(struct mmc_request *mrq)
243 complete(&mrq->completion);
246 static void __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
248 init_completion(&mrq->completion);
249 mrq->done = mmc_wait_done;
250 mmc_start_request(host, mrq);
253 static void mmc_wait_for_req_done(struct mmc_host *host,
254 struct mmc_request *mrq)
256 wait_for_completion(&mrq->completion);
260 * mmc_pre_req - Prepare for a new request
261 * @host: MMC host to prepare command
262 * @mrq: MMC request to prepare for
263 * @is_first_req: true if there is no previous started request
264 * that may run in parellel to this call, otherwise false
266 * mmc_pre_req() is called in prior to mmc_start_req() to let
267 * host prepare for the new request. Preparation of a request may be
268 * performed while another request is running on the host.
270 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
271 bool is_first_req)
273 if (host->ops->pre_req)
274 host->ops->pre_req(host, mrq, is_first_req);
278 * mmc_post_req - Post process a completed request
279 * @host: MMC host to post process command
280 * @mrq: MMC request to post process for
281 * @err: Error, if non zero, clean up any resources made in pre_req
283 * Let the host post process a completed request. Post processing of
284 * a request may be performed while another reuqest is running.
286 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
287 int err)
289 if (host->ops->post_req)
290 host->ops->post_req(host, mrq, err);
294 * mmc_start_req - start a non-blocking request
295 * @host: MMC host to start command
296 * @areq: async request to start
297 * @error: out parameter returns 0 for success, otherwise non zero
299 * Start a new MMC custom command request for a host.
300 * If there is on ongoing async request wait for completion
301 * of that request and start the new one and return.
302 * Does not wait for the new request to complete.
304 * Returns the completed request, NULL in case of none completed.
305 * Wait for the an ongoing request (previoulsy started) to complete and
306 * return the completed request. If there is no ongoing request, NULL
307 * is returned without waiting. NULL is not an error condition.
309 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
310 struct mmc_async_req *areq, int *error)
312 int err = 0;
313 struct mmc_async_req *data = host->areq;
315 /* Prepare a new request */
316 if (areq)
317 mmc_pre_req(host, areq->mrq, !host->areq);
319 if (host->areq) {
320 mmc_wait_for_req_done(host, host->areq->mrq);
321 err = host->areq->err_check(host->card, host->areq);
322 if (err) {
323 mmc_post_req(host, host->areq->mrq, 0);
324 if (areq)
325 mmc_post_req(host, areq->mrq, -EINVAL);
327 host->areq = NULL;
328 goto out;
332 if (areq)
333 __mmc_start_req(host, areq->mrq);
335 if (host->areq)
336 mmc_post_req(host, host->areq->mrq, 0);
338 host->areq = areq;
339 out:
340 if (error)
341 *error = err;
342 return data;
344 EXPORT_SYMBOL(mmc_start_req);
347 * mmc_wait_for_req - start a request and wait for completion
348 * @host: MMC host to start command
349 * @mrq: MMC request to start
351 * Start a new MMC custom command request for a host, and wait
352 * for the command to complete. Does not attempt to parse the
353 * response.
355 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
357 __mmc_start_req(host, mrq);
358 mmc_wait_for_req_done(host, mrq);
360 EXPORT_SYMBOL(mmc_wait_for_req);
363 * mmc_wait_for_cmd - start a command and wait for completion
364 * @host: MMC host to start command
365 * @cmd: MMC command to start
366 * @retries: maximum number of retries
368 * Start a new MMC command for a host, and wait for the command
369 * to complete. Return any error that occurred while the command
370 * was executing. Do not attempt to parse the response.
372 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
374 struct mmc_request mrq = {NULL};
376 WARN_ON(!host->claimed);
378 memset(cmd->resp, 0, sizeof(cmd->resp));
379 cmd->retries = retries;
381 mrq.cmd = cmd;
382 cmd->data = NULL;
384 mmc_wait_for_req(host, &mrq);
386 return cmd->error;
389 EXPORT_SYMBOL(mmc_wait_for_cmd);
392 * mmc_set_data_timeout - set the timeout for a data command
393 * @data: data phase for command
394 * @card: the MMC card associated with the data transfer
396 * Computes the data timeout parameters according to the
397 * correct algorithm given the card type.
399 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
401 unsigned int mult;
404 * SDIO cards only define an upper 1 s limit on access.
406 if (mmc_card_sdio(card)) {
407 data->timeout_ns = 1000000000;
408 data->timeout_clks = 0;
409 return;
413 * SD cards use a 100 multiplier rather than 10
415 mult = mmc_card_sd(card) ? 100 : 10;
418 * Scale up the multiplier (and therefore the timeout) by
419 * the r2w factor for writes.
421 if (data->flags & MMC_DATA_WRITE)
422 mult <<= card->csd.r2w_factor;
424 data->timeout_ns = card->csd.tacc_ns * mult;
425 data->timeout_clks = card->csd.tacc_clks * mult;
428 * SD cards also have an upper limit on the timeout.
430 if (mmc_card_sd(card)) {
431 unsigned int timeout_us, limit_us;
433 timeout_us = data->timeout_ns / 1000;
434 if (mmc_host_clk_rate(card->host))
435 timeout_us += data->timeout_clks * 1000 /
436 (mmc_host_clk_rate(card->host) / 1000);
438 if (data->flags & MMC_DATA_WRITE)
440 * The limit is really 250 ms, but that is
441 * insufficient for some crappy cards.
443 limit_us = 300000;
444 else
445 limit_us = 100000;
448 * SDHC cards always use these fixed values.
450 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
451 data->timeout_ns = limit_us * 1000;
452 data->timeout_clks = 0;
456 * Some cards need very high timeouts if driven in SPI mode.
457 * The worst observed timeout was 900ms after writing a
458 * continuous stream of data until the internal logic
459 * overflowed.
461 if (mmc_host_is_spi(card->host)) {
462 if (data->flags & MMC_DATA_WRITE) {
463 if (data->timeout_ns < 1000000000)
464 data->timeout_ns = 1000000000; /* 1s */
465 } else {
466 if (data->timeout_ns < 100000000)
467 data->timeout_ns = 100000000; /* 100ms */
471 EXPORT_SYMBOL(mmc_set_data_timeout);
474 * mmc_align_data_size - pads a transfer size to a more optimal value
475 * @card: the MMC card associated with the data transfer
476 * @sz: original transfer size
478 * Pads the original data size with a number of extra bytes in
479 * order to avoid controller bugs and/or performance hits
480 * (e.g. some controllers revert to PIO for certain sizes).
482 * Returns the improved size, which might be unmodified.
484 * Note that this function is only relevant when issuing a
485 * single scatter gather entry.
487 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
490 * FIXME: We don't have a system for the controller to tell
491 * the core about its problems yet, so for now we just 32-bit
492 * align the size.
494 sz = ((sz + 3) / 4) * 4;
496 return sz;
498 EXPORT_SYMBOL(mmc_align_data_size);
501 * mmc_host_enable - enable a host.
502 * @host: mmc host to enable
504 * Hosts that support power saving can use the 'enable' and 'disable'
505 * methods to exit and enter power saving states. For more information
506 * see comments for struct mmc_host_ops.
508 int mmc_host_enable(struct mmc_host *host)
510 if (!(host->caps & MMC_CAP_DISABLE))
511 return 0;
513 if (host->en_dis_recurs)
514 return 0;
516 if (host->nesting_cnt++)
517 return 0;
519 cancel_delayed_work_sync(&host->disable);
521 if (host->enabled)
522 return 0;
524 if (host->ops->enable) {
525 int err;
527 host->en_dis_recurs = 1;
528 err = host->ops->enable(host);
529 host->en_dis_recurs = 0;
531 if (err) {
532 pr_debug("%s: enable error %d\n",
533 mmc_hostname(host), err);
534 return err;
537 host->enabled = 1;
538 return 0;
540 EXPORT_SYMBOL(mmc_host_enable);
542 static int mmc_host_do_disable(struct mmc_host *host, int lazy)
544 if (host->ops->disable) {
545 int err;
547 host->en_dis_recurs = 1;
548 err = host->ops->disable(host, lazy);
549 host->en_dis_recurs = 0;
551 if (err < 0) {
552 pr_debug("%s: disable error %d\n",
553 mmc_hostname(host), err);
554 return err;
556 if (err > 0) {
557 unsigned long delay = msecs_to_jiffies(err);
559 mmc_schedule_delayed_work(&host->disable, delay);
562 host->enabled = 0;
563 return 0;
567 * mmc_host_disable - disable a host.
568 * @host: mmc host to disable
570 * Hosts that support power saving can use the 'enable' and 'disable'
571 * methods to exit and enter power saving states. For more information
572 * see comments for struct mmc_host_ops.
574 int mmc_host_disable(struct mmc_host *host)
576 int err;
578 if (!(host->caps & MMC_CAP_DISABLE))
579 return 0;
581 if (host->en_dis_recurs)
582 return 0;
584 if (--host->nesting_cnt)
585 return 0;
587 if (!host->enabled)
588 return 0;
590 err = mmc_host_do_disable(host, 0);
591 return err;
593 EXPORT_SYMBOL(mmc_host_disable);
596 * __mmc_claim_host - exclusively claim a host
597 * @host: mmc host to claim
598 * @abort: whether or not the operation should be aborted
600 * Claim a host for a set of operations. If @abort is non null and
601 * dereference a non-zero value then this will return prematurely with
602 * that non-zero value without acquiring the lock. Returns zero
603 * with the lock held otherwise.
605 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
607 DECLARE_WAITQUEUE(wait, current);
608 unsigned long flags;
609 int stop;
611 might_sleep();
613 add_wait_queue(&host->wq, &wait);
614 spin_lock_irqsave(&host->lock, flags);
615 while (1) {
616 set_current_state(TASK_UNINTERRUPTIBLE);
617 stop = abort ? atomic_read(abort) : 0;
618 if (stop || !host->claimed || host->claimer == current)
619 break;
620 spin_unlock_irqrestore(&host->lock, flags);
621 schedule();
622 spin_lock_irqsave(&host->lock, flags);
624 set_current_state(TASK_RUNNING);
625 if (!stop) {
626 host->claimed = 1;
627 host->claimer = current;
628 host->claim_cnt += 1;
629 } else
630 wake_up(&host->wq);
631 spin_unlock_irqrestore(&host->lock, flags);
632 remove_wait_queue(&host->wq, &wait);
633 if (!stop)
634 mmc_host_enable(host);
635 return stop;
638 EXPORT_SYMBOL(__mmc_claim_host);
641 * mmc_try_claim_host - try exclusively to claim a host
642 * @host: mmc host to claim
644 * Returns %1 if the host is claimed, %0 otherwise.
646 int mmc_try_claim_host(struct mmc_host *host)
648 int claimed_host = 0;
649 unsigned long flags;
651 spin_lock_irqsave(&host->lock, flags);
652 if (!host->claimed || host->claimer == current) {
653 host->claimed = 1;
654 host->claimer = current;
655 host->claim_cnt += 1;
656 claimed_host = 1;
658 spin_unlock_irqrestore(&host->lock, flags);
659 return claimed_host;
661 EXPORT_SYMBOL(mmc_try_claim_host);
664 * mmc_do_release_host - release a claimed host
665 * @host: mmc host to release
667 * If you successfully claimed a host, this function will
668 * release it again.
670 void mmc_do_release_host(struct mmc_host *host)
672 unsigned long flags;
674 spin_lock_irqsave(&host->lock, flags);
675 if (--host->claim_cnt) {
676 /* Release for nested claim */
677 spin_unlock_irqrestore(&host->lock, flags);
678 } else {
679 host->claimed = 0;
680 host->claimer = NULL;
681 spin_unlock_irqrestore(&host->lock, flags);
682 wake_up(&host->wq);
685 EXPORT_SYMBOL(mmc_do_release_host);
687 void mmc_host_deeper_disable(struct work_struct *work)
689 struct mmc_host *host =
690 container_of(work, struct mmc_host, disable.work);
692 /* If the host is claimed then we do not want to disable it anymore */
693 if (!mmc_try_claim_host(host))
694 return;
695 mmc_host_do_disable(host, 1);
696 mmc_do_release_host(host);
700 * mmc_host_lazy_disable - lazily disable a host.
701 * @host: mmc host to disable
703 * Hosts that support power saving can use the 'enable' and 'disable'
704 * methods to exit and enter power saving states. For more information
705 * see comments for struct mmc_host_ops.
707 int mmc_host_lazy_disable(struct mmc_host *host)
709 if (!(host->caps & MMC_CAP_DISABLE))
710 return 0;
712 if (host->en_dis_recurs)
713 return 0;
715 if (--host->nesting_cnt)
716 return 0;
718 if (!host->enabled)
719 return 0;
721 if (host->disable_delay) {
722 mmc_schedule_delayed_work(&host->disable,
723 msecs_to_jiffies(host->disable_delay));
724 return 0;
725 } else
726 return mmc_host_do_disable(host, 1);
728 EXPORT_SYMBOL(mmc_host_lazy_disable);
731 * mmc_release_host - release a host
732 * @host: mmc host to release
734 * Release a MMC host, allowing others to claim the host
735 * for their operations.
737 void mmc_release_host(struct mmc_host *host)
739 WARN_ON(!host->claimed);
741 mmc_host_lazy_disable(host);
743 mmc_do_release_host(host);
746 EXPORT_SYMBOL(mmc_release_host);
749 * Internal function that does the actual ios call to the host driver,
750 * optionally printing some debug output.
752 static inline void mmc_set_ios(struct mmc_host *host)
754 struct mmc_ios *ios = &host->ios;
756 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
757 "width %u timing %u\n",
758 mmc_hostname(host), ios->clock, ios->bus_mode,
759 ios->power_mode, ios->chip_select, ios->vdd,
760 ios->bus_width, ios->timing);
762 if (ios->clock > 0)
763 mmc_set_ungated(host);
764 host->ops->set_ios(host, ios);
768 * Control chip select pin on a host.
770 void mmc_set_chip_select(struct mmc_host *host, int mode)
772 mmc_host_clk_hold(host);
773 host->ios.chip_select = mode;
774 mmc_set_ios(host);
775 mmc_host_clk_release(host);
779 * Sets the host clock to the highest possible frequency that
780 * is below "hz".
782 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
784 WARN_ON(hz < host->f_min);
786 if (hz > host->f_max)
787 hz = host->f_max;
789 host->ios.clock = hz;
790 mmc_set_ios(host);
793 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
795 mmc_host_clk_hold(host);
796 __mmc_set_clock(host, hz);
797 mmc_host_clk_release(host);
800 #ifdef CONFIG_MMC_CLKGATE
802 * This gates the clock by setting it to 0 Hz.
804 void mmc_gate_clock(struct mmc_host *host)
806 unsigned long flags;
808 spin_lock_irqsave(&host->clk_lock, flags);
809 host->clk_old = host->ios.clock;
810 host->ios.clock = 0;
811 host->clk_gated = true;
812 spin_unlock_irqrestore(&host->clk_lock, flags);
813 mmc_set_ios(host);
817 * This restores the clock from gating by using the cached
818 * clock value.
820 void mmc_ungate_clock(struct mmc_host *host)
823 * We should previously have gated the clock, so the clock shall
824 * be 0 here! The clock may however be 0 during initialization,
825 * when some request operations are performed before setting
826 * the frequency. When ungate is requested in that situation
827 * we just ignore the call.
829 if (host->clk_old) {
830 BUG_ON(host->ios.clock);
831 /* This call will also set host->clk_gated to false */
832 __mmc_set_clock(host, host->clk_old);
836 void mmc_set_ungated(struct mmc_host *host)
838 unsigned long flags;
841 * We've been given a new frequency while the clock is gated,
842 * so make sure we regard this as ungating it.
844 spin_lock_irqsave(&host->clk_lock, flags);
845 host->clk_gated = false;
846 spin_unlock_irqrestore(&host->clk_lock, flags);
849 #else
850 void mmc_set_ungated(struct mmc_host *host)
853 #endif
856 * Change the bus mode (open drain/push-pull) of a host.
858 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
860 mmc_host_clk_hold(host);
861 host->ios.bus_mode = mode;
862 mmc_set_ios(host);
863 mmc_host_clk_release(host);
867 * Change data bus width of a host.
869 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
871 mmc_host_clk_hold(host);
872 host->ios.bus_width = width;
873 mmc_set_ios(host);
874 mmc_host_clk_release(host);
878 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
879 * @vdd: voltage (mV)
880 * @low_bits: prefer low bits in boundary cases
882 * This function returns the OCR bit number according to the provided @vdd
883 * value. If conversion is not possible a negative errno value returned.
885 * Depending on the @low_bits flag the function prefers low or high OCR bits
886 * on boundary voltages. For example,
887 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
888 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
890 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
892 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
894 const int max_bit = ilog2(MMC_VDD_35_36);
895 int bit;
897 if (vdd < 1650 || vdd > 3600)
898 return -EINVAL;
900 if (vdd >= 1650 && vdd <= 1950)
901 return ilog2(MMC_VDD_165_195);
903 if (low_bits)
904 vdd -= 1;
906 /* Base 2000 mV, step 100 mV, bit's base 8. */
907 bit = (vdd - 2000) / 100 + 8;
908 if (bit > max_bit)
909 return max_bit;
910 return bit;
914 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
915 * @vdd_min: minimum voltage value (mV)
916 * @vdd_max: maximum voltage value (mV)
918 * This function returns the OCR mask bits according to the provided @vdd_min
919 * and @vdd_max values. If conversion is not possible the function returns 0.
921 * Notes wrt boundary cases:
922 * This function sets the OCR bits for all boundary voltages, for example
923 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
924 * MMC_VDD_34_35 mask.
926 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
928 u32 mask = 0;
930 if (vdd_max < vdd_min)
931 return 0;
933 /* Prefer high bits for the boundary vdd_max values. */
934 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
935 if (vdd_max < 0)
936 return 0;
938 /* Prefer low bits for the boundary vdd_min values. */
939 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
940 if (vdd_min < 0)
941 return 0;
943 /* Fill the mask, from max bit to min bit. */
944 while (vdd_max >= vdd_min)
945 mask |= 1 << vdd_max--;
947 return mask;
949 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
951 #ifdef CONFIG_REGULATOR
954 * mmc_regulator_get_ocrmask - return mask of supported voltages
955 * @supply: regulator to use
957 * This returns either a negative errno, or a mask of voltages that
958 * can be provided to MMC/SD/SDIO devices using the specified voltage
959 * regulator. This would normally be called before registering the
960 * MMC host adapter.
962 int mmc_regulator_get_ocrmask(struct regulator *supply)
964 int result = 0;
965 int count;
966 int i;
968 count = regulator_count_voltages(supply);
969 if (count < 0)
970 return count;
972 for (i = 0; i < count; i++) {
973 int vdd_uV;
974 int vdd_mV;
976 vdd_uV = regulator_list_voltage(supply, i);
977 if (vdd_uV <= 0)
978 continue;
980 vdd_mV = vdd_uV / 1000;
981 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
984 return result;
986 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
989 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
990 * @mmc: the host to regulate
991 * @supply: regulator to use
992 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
994 * Returns zero on success, else negative errno.
996 * MMC host drivers may use this to enable or disable a regulator using
997 * a particular supply voltage. This would normally be called from the
998 * set_ios() method.
1000 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1001 struct regulator *supply,
1002 unsigned short vdd_bit)
1004 int result = 0;
1005 int min_uV, max_uV;
1007 if (vdd_bit) {
1008 int tmp;
1009 int voltage;
1011 /* REVISIT mmc_vddrange_to_ocrmask() may have set some
1012 * bits this regulator doesn't quite support ... don't
1013 * be too picky, most cards and regulators are OK with
1014 * a 0.1V range goof (it's a small error percentage).
1016 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1017 if (tmp == 0) {
1018 min_uV = 1650 * 1000;
1019 max_uV = 1950 * 1000;
1020 } else {
1021 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1022 max_uV = min_uV + 100 * 1000;
1025 /* avoid needless changes to this voltage; the regulator
1026 * might not allow this operation
1028 voltage = regulator_get_voltage(supply);
1029 if (voltage < 0)
1030 result = voltage;
1031 else if (voltage < min_uV || voltage > max_uV)
1032 result = regulator_set_voltage(supply, min_uV, max_uV);
1033 else
1034 result = 0;
1036 if (result == 0 && !mmc->regulator_enabled) {
1037 result = regulator_enable(supply);
1038 if (!result)
1039 mmc->regulator_enabled = true;
1041 } else if (mmc->regulator_enabled) {
1042 result = regulator_disable(supply);
1043 if (result == 0)
1044 mmc->regulator_enabled = false;
1047 if (result)
1048 dev_err(mmc_dev(mmc),
1049 "could not set regulator OCR (%d)\n", result);
1050 return result;
1052 EXPORT_SYMBOL(mmc_regulator_set_ocr);
1054 #endif /* CONFIG_REGULATOR */
1057 * Mask off any voltages we don't support and select
1058 * the lowest voltage
1060 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1062 int bit;
1064 ocr &= host->ocr_avail;
1066 bit = ffs(ocr);
1067 if (bit) {
1068 bit -= 1;
1070 ocr &= 3 << bit;
1072 mmc_host_clk_hold(host);
1073 host->ios.vdd = bit;
1074 mmc_set_ios(host);
1075 mmc_host_clk_release(host);
1076 } else {
1077 pr_warning("%s: host doesn't support card's voltages\n",
1078 mmc_hostname(host));
1079 ocr = 0;
1082 return ocr;
1085 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1087 struct mmc_command cmd = {0};
1088 int err = 0;
1090 BUG_ON(!host);
1093 * Send CMD11 only if the request is to switch the card to
1094 * 1.8V signalling.
1096 if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1097 cmd.opcode = SD_SWITCH_VOLTAGE;
1098 cmd.arg = 0;
1099 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1101 err = mmc_wait_for_cmd(host, &cmd, 0);
1102 if (err)
1103 return err;
1105 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1106 return -EIO;
1109 host->ios.signal_voltage = signal_voltage;
1111 if (host->ops->start_signal_voltage_switch)
1112 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1114 return err;
1118 * Select timing parameters for host.
1120 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1122 mmc_host_clk_hold(host);
1123 host->ios.timing = timing;
1124 mmc_set_ios(host);
1125 mmc_host_clk_release(host);
1129 * Select appropriate driver type for host.
1131 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1133 mmc_host_clk_hold(host);
1134 host->ios.drv_type = drv_type;
1135 mmc_set_ios(host);
1136 mmc_host_clk_release(host);
1140 * Apply power to the MMC stack. This is a two-stage process.
1141 * First, we enable power to the card without the clock running.
1142 * We then wait a bit for the power to stabilise. Finally,
1143 * enable the bus drivers and clock to the card.
1145 * We must _NOT_ enable the clock prior to power stablising.
1147 * If a host does all the power sequencing itself, ignore the
1148 * initial MMC_POWER_UP stage.
1150 static void mmc_power_up(struct mmc_host *host)
1152 int bit;
1154 mmc_host_clk_hold(host);
1156 /* If ocr is set, we use it */
1157 if (host->ocr)
1158 bit = ffs(host->ocr) - 1;
1159 else
1160 bit = fls(host->ocr_avail) - 1;
1162 host->ios.vdd = bit;
1163 if (mmc_host_is_spi(host)) {
1164 host->ios.chip_select = MMC_CS_HIGH;
1165 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1166 } else {
1167 host->ios.chip_select = MMC_CS_DONTCARE;
1168 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1170 host->ios.power_mode = MMC_POWER_UP;
1171 host->ios.bus_width = MMC_BUS_WIDTH_1;
1172 host->ios.timing = MMC_TIMING_LEGACY;
1173 mmc_set_ios(host);
1176 * This delay should be sufficient to allow the power supply
1177 * to reach the minimum voltage.
1179 mmc_delay(10);
1181 host->ios.clock = host->f_init;
1183 host->ios.power_mode = MMC_POWER_ON;
1184 mmc_set_ios(host);
1187 * This delay must be at least 74 clock sizes, or 1 ms, or the
1188 * time required to reach a stable voltage.
1190 mmc_delay(10);
1192 mmc_host_clk_release(host);
1195 static void mmc_power_off(struct mmc_host *host)
1197 mmc_host_clk_hold(host);
1199 host->ios.clock = 0;
1200 host->ios.vdd = 0;
1203 * Reset ocr mask to be the highest possible voltage supported for
1204 * this mmc host. This value will be used at next power up.
1206 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1208 if (!mmc_host_is_spi(host)) {
1209 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1210 host->ios.chip_select = MMC_CS_DONTCARE;
1212 host->ios.power_mode = MMC_POWER_OFF;
1213 host->ios.bus_width = MMC_BUS_WIDTH_1;
1214 host->ios.timing = MMC_TIMING_LEGACY;
1215 mmc_set_ios(host);
1217 mmc_host_clk_release(host);
1221 * Cleanup when the last reference to the bus operator is dropped.
1223 static void __mmc_release_bus(struct mmc_host *host)
1225 BUG_ON(!host);
1226 BUG_ON(host->bus_refs);
1227 BUG_ON(!host->bus_dead);
1229 host->bus_ops = NULL;
1233 * Increase reference count of bus operator
1235 static inline void mmc_bus_get(struct mmc_host *host)
1237 unsigned long flags;
1239 spin_lock_irqsave(&host->lock, flags);
1240 host->bus_refs++;
1241 spin_unlock_irqrestore(&host->lock, flags);
1245 * Decrease reference count of bus operator and free it if
1246 * it is the last reference.
1248 static inline void mmc_bus_put(struct mmc_host *host)
1250 unsigned long flags;
1252 spin_lock_irqsave(&host->lock, flags);
1253 host->bus_refs--;
1254 if ((host->bus_refs == 0) && host->bus_ops)
1255 __mmc_release_bus(host);
1256 spin_unlock_irqrestore(&host->lock, flags);
1260 * Assign a mmc bus handler to a host. Only one bus handler may control a
1261 * host at any given time.
1263 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1265 unsigned long flags;
1267 BUG_ON(!host);
1268 BUG_ON(!ops);
1270 WARN_ON(!host->claimed);
1272 spin_lock_irqsave(&host->lock, flags);
1274 BUG_ON(host->bus_ops);
1275 BUG_ON(host->bus_refs);
1277 host->bus_ops = ops;
1278 host->bus_refs = 1;
1279 host->bus_dead = 0;
1281 spin_unlock_irqrestore(&host->lock, flags);
1285 * Remove the current bus handler from a host. Assumes that there are
1286 * no interesting cards left, so the bus is powered down.
1288 void mmc_detach_bus(struct mmc_host *host)
1290 unsigned long flags;
1292 BUG_ON(!host);
1294 WARN_ON(!host->claimed);
1295 WARN_ON(!host->bus_ops);
1297 spin_lock_irqsave(&host->lock, flags);
1299 host->bus_dead = 1;
1301 spin_unlock_irqrestore(&host->lock, flags);
1303 mmc_power_off(host);
1305 mmc_bus_put(host);
1309 * mmc_detect_change - process change of state on a MMC socket
1310 * @host: host which changed state.
1311 * @delay: optional delay to wait before detection (jiffies)
1313 * MMC drivers should call this when they detect a card has been
1314 * inserted or removed. The MMC layer will confirm that any
1315 * present card is still functional, and initialize any newly
1316 * inserted.
1318 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1320 #ifdef CONFIG_MMC_DEBUG
1321 unsigned long flags;
1322 spin_lock_irqsave(&host->lock, flags);
1323 WARN_ON(host->removed);
1324 spin_unlock_irqrestore(&host->lock, flags);
1325 #endif
1327 mmc_schedule_delayed_work(&host->detect, delay);
1330 EXPORT_SYMBOL(mmc_detect_change);
1332 void mmc_init_erase(struct mmc_card *card)
1334 unsigned int sz;
1336 if (is_power_of_2(card->erase_size))
1337 card->erase_shift = ffs(card->erase_size) - 1;
1338 else
1339 card->erase_shift = 0;
1342 * It is possible to erase an arbitrarily large area of an SD or MMC
1343 * card. That is not desirable because it can take a long time
1344 * (minutes) potentially delaying more important I/O, and also the
1345 * timeout calculations become increasingly hugely over-estimated.
1346 * Consequently, 'pref_erase' is defined as a guide to limit erases
1347 * to that size and alignment.
1349 * For SD cards that define Allocation Unit size, limit erases to one
1350 * Allocation Unit at a time. For MMC cards that define High Capacity
1351 * Erase Size, whether it is switched on or not, limit to that size.
1352 * Otherwise just have a stab at a good value. For modern cards it
1353 * will end up being 4MiB. Note that if the value is too small, it
1354 * can end up taking longer to erase.
1356 if (mmc_card_sd(card) && card->ssr.au) {
1357 card->pref_erase = card->ssr.au;
1358 card->erase_shift = ffs(card->ssr.au) - 1;
1359 } else if (card->ext_csd.hc_erase_size) {
1360 card->pref_erase = card->ext_csd.hc_erase_size;
1361 } else {
1362 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1363 if (sz < 128)
1364 card->pref_erase = 512 * 1024 / 512;
1365 else if (sz < 512)
1366 card->pref_erase = 1024 * 1024 / 512;
1367 else if (sz < 1024)
1368 card->pref_erase = 2 * 1024 * 1024 / 512;
1369 else
1370 card->pref_erase = 4 * 1024 * 1024 / 512;
1371 if (card->pref_erase < card->erase_size)
1372 card->pref_erase = card->erase_size;
1373 else {
1374 sz = card->pref_erase % card->erase_size;
1375 if (sz)
1376 card->pref_erase += card->erase_size - sz;
1381 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1382 unsigned int arg, unsigned int qty)
1384 unsigned int erase_timeout;
1386 if (card->ext_csd.erase_group_def & 1) {
1387 /* High Capacity Erase Group Size uses HC timeouts */
1388 if (arg == MMC_TRIM_ARG)
1389 erase_timeout = card->ext_csd.trim_timeout;
1390 else
1391 erase_timeout = card->ext_csd.hc_erase_timeout;
1392 } else {
1393 /* CSD Erase Group Size uses write timeout */
1394 unsigned int mult = (10 << card->csd.r2w_factor);
1395 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1396 unsigned int timeout_us;
1398 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1399 if (card->csd.tacc_ns < 1000000)
1400 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1401 else
1402 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1405 * ios.clock is only a target. The real clock rate might be
1406 * less but not that much less, so fudge it by multiplying by 2.
1408 timeout_clks <<= 1;
1409 timeout_us += (timeout_clks * 1000) /
1410 (mmc_host_clk_rate(card->host) / 1000);
1412 erase_timeout = timeout_us / 1000;
1415 * Theoretically, the calculation could underflow so round up
1416 * to 1ms in that case.
1418 if (!erase_timeout)
1419 erase_timeout = 1;
1422 /* Multiplier for secure operations */
1423 if (arg & MMC_SECURE_ARGS) {
1424 if (arg == MMC_SECURE_ERASE_ARG)
1425 erase_timeout *= card->ext_csd.sec_erase_mult;
1426 else
1427 erase_timeout *= card->ext_csd.sec_trim_mult;
1430 erase_timeout *= qty;
1433 * Ensure at least a 1 second timeout for SPI as per
1434 * 'mmc_set_data_timeout()'
1436 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1437 erase_timeout = 1000;
1439 return erase_timeout;
1442 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1443 unsigned int arg,
1444 unsigned int qty)
1446 unsigned int erase_timeout;
1448 if (card->ssr.erase_timeout) {
1449 /* Erase timeout specified in SD Status Register (SSR) */
1450 erase_timeout = card->ssr.erase_timeout * qty +
1451 card->ssr.erase_offset;
1452 } else {
1454 * Erase timeout not specified in SD Status Register (SSR) so
1455 * use 250ms per write block.
1457 erase_timeout = 250 * qty;
1460 /* Must not be less than 1 second */
1461 if (erase_timeout < 1000)
1462 erase_timeout = 1000;
1464 return erase_timeout;
1467 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1468 unsigned int arg,
1469 unsigned int qty)
1471 if (mmc_card_sd(card))
1472 return mmc_sd_erase_timeout(card, arg, qty);
1473 else
1474 return mmc_mmc_erase_timeout(card, arg, qty);
1477 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1478 unsigned int to, unsigned int arg)
1480 struct mmc_command cmd = {0};
1481 unsigned int qty = 0;
1482 int err;
1485 * qty is used to calculate the erase timeout which depends on how many
1486 * erase groups (or allocation units in SD terminology) are affected.
1487 * We count erasing part of an erase group as one erase group.
1488 * For SD, the allocation units are always a power of 2. For MMC, the
1489 * erase group size is almost certainly also power of 2, but it does not
1490 * seem to insist on that in the JEDEC standard, so we fall back to
1491 * division in that case. SD may not specify an allocation unit size,
1492 * in which case the timeout is based on the number of write blocks.
1494 * Note that the timeout for secure trim 2 will only be correct if the
1495 * number of erase groups specified is the same as the total of all
1496 * preceding secure trim 1 commands. Since the power may have been
1497 * lost since the secure trim 1 commands occurred, it is generally
1498 * impossible to calculate the secure trim 2 timeout correctly.
1500 if (card->erase_shift)
1501 qty += ((to >> card->erase_shift) -
1502 (from >> card->erase_shift)) + 1;
1503 else if (mmc_card_sd(card))
1504 qty += to - from + 1;
1505 else
1506 qty += ((to / card->erase_size) -
1507 (from / card->erase_size)) + 1;
1509 if (!mmc_card_blockaddr(card)) {
1510 from <<= 9;
1511 to <<= 9;
1514 if (mmc_card_sd(card))
1515 cmd.opcode = SD_ERASE_WR_BLK_START;
1516 else
1517 cmd.opcode = MMC_ERASE_GROUP_START;
1518 cmd.arg = from;
1519 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1520 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1521 if (err) {
1522 printk(KERN_ERR "mmc_erase: group start error %d, "
1523 "status %#x\n", err, cmd.resp[0]);
1524 err = -EINVAL;
1525 goto out;
1528 memset(&cmd, 0, sizeof(struct mmc_command));
1529 if (mmc_card_sd(card))
1530 cmd.opcode = SD_ERASE_WR_BLK_END;
1531 else
1532 cmd.opcode = MMC_ERASE_GROUP_END;
1533 cmd.arg = to;
1534 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1535 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1536 if (err) {
1537 printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1538 err, cmd.resp[0]);
1539 err = -EINVAL;
1540 goto out;
1543 memset(&cmd, 0, sizeof(struct mmc_command));
1544 cmd.opcode = MMC_ERASE;
1545 cmd.arg = arg;
1546 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1547 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1548 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1549 if (err) {
1550 printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1551 err, cmd.resp[0]);
1552 err = -EIO;
1553 goto out;
1556 if (mmc_host_is_spi(card->host))
1557 goto out;
1559 do {
1560 memset(&cmd, 0, sizeof(struct mmc_command));
1561 cmd.opcode = MMC_SEND_STATUS;
1562 cmd.arg = card->rca << 16;
1563 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1564 /* Do not retry else we can't see errors */
1565 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1566 if (err || (cmd.resp[0] & 0xFDF92000)) {
1567 printk(KERN_ERR "error %d requesting status %#x\n",
1568 err, cmd.resp[0]);
1569 err = -EIO;
1570 goto out;
1572 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1573 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1574 out:
1575 return err;
1579 * mmc_erase - erase sectors.
1580 * @card: card to erase
1581 * @from: first sector to erase
1582 * @nr: number of sectors to erase
1583 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1585 * Caller must claim host before calling this function.
1587 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1588 unsigned int arg)
1590 unsigned int rem, to = from + nr;
1592 if (!(card->host->caps & MMC_CAP_ERASE) ||
1593 !(card->csd.cmdclass & CCC_ERASE))
1594 return -EOPNOTSUPP;
1596 if (!card->erase_size)
1597 return -EOPNOTSUPP;
1599 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1600 return -EOPNOTSUPP;
1602 if ((arg & MMC_SECURE_ARGS) &&
1603 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1604 return -EOPNOTSUPP;
1606 if ((arg & MMC_TRIM_ARGS) &&
1607 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1608 return -EOPNOTSUPP;
1610 if (arg == MMC_SECURE_ERASE_ARG) {
1611 if (from % card->erase_size || nr % card->erase_size)
1612 return -EINVAL;
1615 if (arg == MMC_ERASE_ARG) {
1616 rem = from % card->erase_size;
1617 if (rem) {
1618 rem = card->erase_size - rem;
1619 from += rem;
1620 if (nr > rem)
1621 nr -= rem;
1622 else
1623 return 0;
1625 rem = nr % card->erase_size;
1626 if (rem)
1627 nr -= rem;
1630 if (nr == 0)
1631 return 0;
1633 to = from + nr;
1635 if (to <= from)
1636 return -EINVAL;
1638 /* 'from' and 'to' are inclusive */
1639 to -= 1;
1641 return mmc_do_erase(card, from, to, arg);
1643 EXPORT_SYMBOL(mmc_erase);
1645 int mmc_can_erase(struct mmc_card *card)
1647 if ((card->host->caps & MMC_CAP_ERASE) &&
1648 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1649 return 1;
1650 return 0;
1652 EXPORT_SYMBOL(mmc_can_erase);
1654 int mmc_can_trim(struct mmc_card *card)
1656 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1657 return 1;
1658 return 0;
1660 EXPORT_SYMBOL(mmc_can_trim);
1662 int mmc_can_secure_erase_trim(struct mmc_card *card)
1664 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1665 return 1;
1666 return 0;
1668 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1670 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1671 unsigned int nr)
1673 if (!card->erase_size)
1674 return 0;
1675 if (from % card->erase_size || nr % card->erase_size)
1676 return 0;
1677 return 1;
1679 EXPORT_SYMBOL(mmc_erase_group_aligned);
1681 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1682 unsigned int arg)
1684 struct mmc_host *host = card->host;
1685 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1686 unsigned int last_timeout = 0;
1688 if (card->erase_shift)
1689 max_qty = UINT_MAX >> card->erase_shift;
1690 else if (mmc_card_sd(card))
1691 max_qty = UINT_MAX;
1692 else
1693 max_qty = UINT_MAX / card->erase_size;
1695 /* Find the largest qty with an OK timeout */
1696 do {
1697 y = 0;
1698 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1699 timeout = mmc_erase_timeout(card, arg, qty + x);
1700 if (timeout > host->max_discard_to)
1701 break;
1702 if (timeout < last_timeout)
1703 break;
1704 last_timeout = timeout;
1705 y = x;
1707 qty += y;
1708 } while (y);
1710 if (!qty)
1711 return 0;
1713 if (qty == 1)
1714 return 1;
1716 /* Convert qty to sectors */
1717 if (card->erase_shift)
1718 max_discard = --qty << card->erase_shift;
1719 else if (mmc_card_sd(card))
1720 max_discard = qty;
1721 else
1722 max_discard = --qty * card->erase_size;
1724 return max_discard;
1727 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1729 struct mmc_host *host = card->host;
1730 unsigned int max_discard, max_trim;
1732 if (!host->max_discard_to)
1733 return UINT_MAX;
1736 * Without erase_group_def set, MMC erase timeout depends on clock
1737 * frequence which can change. In that case, the best choice is
1738 * just the preferred erase size.
1740 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1741 return card->pref_erase;
1743 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1744 if (mmc_can_trim(card)) {
1745 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1746 if (max_trim < max_discard)
1747 max_discard = max_trim;
1748 } else if (max_discard < card->erase_size) {
1749 max_discard = 0;
1751 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1752 mmc_hostname(host), max_discard, host->max_discard_to);
1753 return max_discard;
1755 EXPORT_SYMBOL(mmc_calc_max_discard);
1757 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1759 struct mmc_command cmd = {0};
1761 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1762 return 0;
1764 cmd.opcode = MMC_SET_BLOCKLEN;
1765 cmd.arg = blocklen;
1766 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1767 return mmc_wait_for_cmd(card->host, &cmd, 5);
1769 EXPORT_SYMBOL(mmc_set_blocklen);
1771 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1773 host->f_init = freq;
1775 #ifdef CONFIG_MMC_DEBUG
1776 pr_info("%s: %s: trying to init card at %u Hz\n",
1777 mmc_hostname(host), __func__, host->f_init);
1778 #endif
1779 mmc_power_up(host);
1782 * sdio_reset sends CMD52 to reset card. Since we do not know
1783 * if the card is being re-initialized, just send it. CMD52
1784 * should be ignored by SD/eMMC cards.
1786 sdio_reset(host);
1787 mmc_go_idle(host);
1789 mmc_send_if_cond(host, host->ocr_avail);
1791 /* Order's important: probe SDIO, then SD, then MMC */
1792 if (!mmc_attach_sdio(host))
1793 return 0;
1794 if (!mmc_attach_sd(host))
1795 return 0;
1796 if (!mmc_attach_mmc(host))
1797 return 0;
1799 mmc_power_off(host);
1800 return -EIO;
1803 void mmc_rescan(struct work_struct *work)
1805 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
1806 struct mmc_host *host =
1807 container_of(work, struct mmc_host, detect.work);
1808 int i;
1810 if (host->rescan_disable)
1811 return;
1813 mmc_bus_get(host);
1816 * if there is a _removable_ card registered, check whether it is
1817 * still present
1819 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
1820 && !(host->caps & MMC_CAP_NONREMOVABLE))
1821 host->bus_ops->detect(host);
1824 * Let mmc_bus_put() free the bus/bus_ops if we've found that
1825 * the card is no longer present.
1827 mmc_bus_put(host);
1828 mmc_bus_get(host);
1830 /* if there still is a card present, stop here */
1831 if (host->bus_ops != NULL) {
1832 mmc_bus_put(host);
1833 goto out;
1837 * Only we can add a new handler, so it's safe to
1838 * release the lock here.
1840 mmc_bus_put(host);
1842 if (host->ops->get_cd && host->ops->get_cd(host) == 0)
1843 goto out;
1845 mmc_claim_host(host);
1846 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
1847 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
1848 break;
1849 if (freqs[i] <= host->f_min)
1850 break;
1852 mmc_release_host(host);
1854 out:
1855 if (host->caps & MMC_CAP_NEEDS_POLL)
1856 mmc_schedule_delayed_work(&host->detect, HZ);
1859 void mmc_start_host(struct mmc_host *host)
1861 mmc_power_off(host);
1862 mmc_detect_change(host, 0);
1865 void mmc_stop_host(struct mmc_host *host)
1867 #ifdef CONFIG_MMC_DEBUG
1868 unsigned long flags;
1869 spin_lock_irqsave(&host->lock, flags);
1870 host->removed = 1;
1871 spin_unlock_irqrestore(&host->lock, flags);
1872 #endif
1874 if (host->caps & MMC_CAP_DISABLE)
1875 cancel_delayed_work(&host->disable);
1876 cancel_delayed_work_sync(&host->detect);
1877 mmc_flush_scheduled_work();
1879 /* clear pm flags now and let card drivers set them as needed */
1880 host->pm_flags = 0;
1882 mmc_bus_get(host);
1883 if (host->bus_ops && !host->bus_dead) {
1884 if (host->bus_ops->remove)
1885 host->bus_ops->remove(host);
1887 mmc_claim_host(host);
1888 mmc_detach_bus(host);
1889 mmc_release_host(host);
1890 mmc_bus_put(host);
1891 return;
1893 mmc_bus_put(host);
1895 BUG_ON(host->card);
1897 mmc_power_off(host);
1900 int mmc_power_save_host(struct mmc_host *host)
1902 int ret = 0;
1904 #ifdef CONFIG_MMC_DEBUG
1905 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
1906 #endif
1908 mmc_bus_get(host);
1910 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1911 mmc_bus_put(host);
1912 return -EINVAL;
1915 if (host->bus_ops->power_save)
1916 ret = host->bus_ops->power_save(host);
1918 mmc_bus_put(host);
1920 mmc_power_off(host);
1922 return ret;
1924 EXPORT_SYMBOL(mmc_power_save_host);
1926 int mmc_power_restore_host(struct mmc_host *host)
1928 int ret;
1930 #ifdef CONFIG_MMC_DEBUG
1931 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
1932 #endif
1934 mmc_bus_get(host);
1936 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1937 mmc_bus_put(host);
1938 return -EINVAL;
1941 mmc_power_up(host);
1942 ret = host->bus_ops->power_restore(host);
1944 mmc_bus_put(host);
1946 return ret;
1948 EXPORT_SYMBOL(mmc_power_restore_host);
1950 int mmc_card_awake(struct mmc_host *host)
1952 int err = -ENOSYS;
1954 mmc_bus_get(host);
1956 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1957 err = host->bus_ops->awake(host);
1959 mmc_bus_put(host);
1961 return err;
1963 EXPORT_SYMBOL(mmc_card_awake);
1965 int mmc_card_sleep(struct mmc_host *host)
1967 int err = -ENOSYS;
1969 mmc_bus_get(host);
1971 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1972 err = host->bus_ops->sleep(host);
1974 mmc_bus_put(host);
1976 return err;
1978 EXPORT_SYMBOL(mmc_card_sleep);
1980 int mmc_card_can_sleep(struct mmc_host *host)
1982 struct mmc_card *card = host->card;
1984 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
1985 return 1;
1986 return 0;
1988 EXPORT_SYMBOL(mmc_card_can_sleep);
1990 #ifdef CONFIG_PM
1993 * mmc_suspend_host - suspend a host
1994 * @host: mmc host
1996 int mmc_suspend_host(struct mmc_host *host)
1998 int err = 0;
2000 if (host->caps & MMC_CAP_DISABLE)
2001 cancel_delayed_work(&host->disable);
2002 cancel_delayed_work(&host->detect);
2003 mmc_flush_scheduled_work();
2005 mmc_bus_get(host);
2006 if (host->bus_ops && !host->bus_dead) {
2007 if (host->bus_ops->suspend)
2008 err = host->bus_ops->suspend(host);
2009 if (err == -ENOSYS || !host->bus_ops->resume) {
2011 * We simply "remove" the card in this case.
2012 * It will be redetected on resume.
2014 if (host->bus_ops->remove)
2015 host->bus_ops->remove(host);
2016 mmc_claim_host(host);
2017 mmc_detach_bus(host);
2018 mmc_release_host(host);
2019 host->pm_flags = 0;
2020 err = 0;
2023 mmc_bus_put(host);
2025 if (!err && !mmc_card_keep_power(host))
2026 mmc_power_off(host);
2028 return err;
2031 EXPORT_SYMBOL(mmc_suspend_host);
2034 * mmc_resume_host - resume a previously suspended host
2035 * @host: mmc host
2037 int mmc_resume_host(struct mmc_host *host)
2039 int err = 0;
2041 mmc_bus_get(host);
2042 if (host->bus_ops && !host->bus_dead) {
2043 if (!mmc_card_keep_power(host)) {
2044 mmc_power_up(host);
2045 mmc_select_voltage(host, host->ocr);
2047 * Tell runtime PM core we just powered up the card,
2048 * since it still believes the card is powered off.
2049 * Note that currently runtime PM is only enabled
2050 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2052 if (mmc_card_sdio(host->card) &&
2053 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2054 pm_runtime_disable(&host->card->dev);
2055 pm_runtime_set_active(&host->card->dev);
2056 pm_runtime_enable(&host->card->dev);
2059 BUG_ON(!host->bus_ops->resume);
2060 err = host->bus_ops->resume(host);
2061 if (err) {
2062 printk(KERN_WARNING "%s: error %d during resume "
2063 "(card was removed?)\n",
2064 mmc_hostname(host), err);
2065 err = 0;
2068 host->pm_flags &= ~MMC_PM_KEEP_POWER;
2069 mmc_bus_put(host);
2071 return err;
2073 EXPORT_SYMBOL(mmc_resume_host);
2075 /* Do the card removal on suspend if card is assumed removeable
2076 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2077 to sync the card.
2079 int mmc_pm_notify(struct notifier_block *notify_block,
2080 unsigned long mode, void *unused)
2082 struct mmc_host *host = container_of(
2083 notify_block, struct mmc_host, pm_notify);
2084 unsigned long flags;
2087 switch (mode) {
2088 case PM_HIBERNATION_PREPARE:
2089 case PM_SUSPEND_PREPARE:
2091 spin_lock_irqsave(&host->lock, flags);
2092 host->rescan_disable = 1;
2093 spin_unlock_irqrestore(&host->lock, flags);
2094 cancel_delayed_work_sync(&host->detect);
2096 if (!host->bus_ops || host->bus_ops->suspend)
2097 break;
2099 mmc_claim_host(host);
2101 if (host->bus_ops->remove)
2102 host->bus_ops->remove(host);
2104 mmc_detach_bus(host);
2105 mmc_release_host(host);
2106 host->pm_flags = 0;
2107 break;
2109 case PM_POST_SUSPEND:
2110 case PM_POST_HIBERNATION:
2111 case PM_POST_RESTORE:
2113 spin_lock_irqsave(&host->lock, flags);
2114 host->rescan_disable = 0;
2115 spin_unlock_irqrestore(&host->lock, flags);
2116 mmc_detect_change(host, 0);
2120 return 0;
2122 #endif
2124 static int __init mmc_init(void)
2126 int ret;
2128 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2129 if (!workqueue)
2130 return -ENOMEM;
2132 ret = mmc_register_bus();
2133 if (ret)
2134 goto destroy_workqueue;
2136 ret = mmc_register_host_class();
2137 if (ret)
2138 goto unregister_bus;
2140 ret = sdio_register_bus();
2141 if (ret)
2142 goto unregister_host_class;
2144 return 0;
2146 unregister_host_class:
2147 mmc_unregister_host_class();
2148 unregister_bus:
2149 mmc_unregister_bus();
2150 destroy_workqueue:
2151 destroy_workqueue(workqueue);
2153 return ret;
2156 static void __exit mmc_exit(void)
2158 sdio_unregister_bus();
2159 mmc_unregister_host_class();
2160 mmc_unregister_bus();
2161 destroy_workqueue(workqueue);
2164 subsys_initcall(mmc_init);
2165 module_exit(mmc_exit);
2167 MODULE_LICENSE("GPL");