2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
44 static struct workqueue_struct
*workqueue
;
47 * Enabling software CRCs on the data blocks can be a significant (30%)
48 * performance cost, and for other reasons may not always be desired.
49 * So we allow it it to be disabled.
52 module_param(use_spi_crc
, bool, 0);
55 * We normally treat cards as removed during suspend if they are not
56 * known to be on a non-removable bus, to avoid the risk of writing
57 * back data to a different card after resume. Allow this to be
58 * overridden if necessary.
60 #ifdef CONFIG_MMC_UNSAFE_RESUME
61 int mmc_assume_removable
;
63 int mmc_assume_removable
= 1;
65 EXPORT_SYMBOL(mmc_assume_removable
);
66 module_param_named(removable
, mmc_assume_removable
, bool, 0644);
69 "MMC/SD cards are removable and may be removed during suspend");
72 * Internal function. Schedule delayed work in the MMC work queue.
74 static int mmc_schedule_delayed_work(struct delayed_work
*work
,
77 return queue_delayed_work(workqueue
, work
, delay
);
81 * Internal function. Flush all scheduled work from the MMC work queue.
83 static void mmc_flush_scheduled_work(void)
85 flush_workqueue(workqueue
);
88 #ifdef CONFIG_FAIL_MMC_REQUEST
91 * Internal function. Inject random data errors.
92 * If mmc_data is NULL no errors are injected.
94 static void mmc_should_fail_request(struct mmc_host
*host
,
95 struct mmc_request
*mrq
)
97 struct mmc_command
*cmd
= mrq
->cmd
;
98 struct mmc_data
*data
= mrq
->data
;
99 static const int data_errors
[] = {
108 if (cmd
->error
|| data
->error
||
109 !should_fail(&host
->fail_mmc_request
, data
->blksz
* data
->blocks
))
112 data
->error
= data_errors
[random32() % ARRAY_SIZE(data_errors
)];
113 data
->bytes_xfered
= (random32() % (data
->bytes_xfered
>> 9)) << 9;
116 #else /* CONFIG_FAIL_MMC_REQUEST */
118 static inline void mmc_should_fail_request(struct mmc_host
*host
,
119 struct mmc_request
*mrq
)
123 #endif /* CONFIG_FAIL_MMC_REQUEST */
126 * mmc_request_done - finish processing an MMC request
127 * @host: MMC host which completed request
128 * @mrq: MMC request which request
130 * MMC drivers should call this function when they have completed
131 * their processing of a request.
133 void mmc_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
135 struct mmc_command
*cmd
= mrq
->cmd
;
136 int err
= cmd
->error
;
138 if (err
&& cmd
->retries
&& mmc_host_is_spi(host
)) {
139 if (cmd
->resp
[0] & R1_SPI_ILLEGAL_COMMAND
)
143 if (err
&& cmd
->retries
) {
144 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
145 mmc_hostname(host
), cmd
->opcode
, err
);
149 host
->ops
->request(host
, mrq
);
151 mmc_should_fail_request(host
, mrq
);
153 led_trigger_event(host
->led
, LED_OFF
);
155 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
156 mmc_hostname(host
), cmd
->opcode
, err
,
157 cmd
->resp
[0], cmd
->resp
[1],
158 cmd
->resp
[2], cmd
->resp
[3]);
161 pr_debug("%s: %d bytes transferred: %d\n",
163 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
167 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
168 mmc_hostname(host
), mrq
->stop
->opcode
,
170 mrq
->stop
->resp
[0], mrq
->stop
->resp
[1],
171 mrq
->stop
->resp
[2], mrq
->stop
->resp
[3]);
177 mmc_host_clk_release(host
);
181 EXPORT_SYMBOL(mmc_request_done
);
184 mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
186 #ifdef CONFIG_MMC_DEBUG
188 struct scatterlist
*sg
;
191 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
192 mmc_hostname(host
), mrq
->cmd
->opcode
,
193 mrq
->cmd
->arg
, mrq
->cmd
->flags
);
196 pr_debug("%s: blksz %d blocks %d flags %08x "
197 "tsac %d ms nsac %d\n",
198 mmc_hostname(host
), mrq
->data
->blksz
,
199 mrq
->data
->blocks
, mrq
->data
->flags
,
200 mrq
->data
->timeout_ns
/ 1000000,
201 mrq
->data
->timeout_clks
);
205 pr_debug("%s: CMD%u arg %08x flags %08x\n",
206 mmc_hostname(host
), mrq
->stop
->opcode
,
207 mrq
->stop
->arg
, mrq
->stop
->flags
);
210 WARN_ON(!host
->claimed
);
215 BUG_ON(mrq
->data
->blksz
> host
->max_blk_size
);
216 BUG_ON(mrq
->data
->blocks
> host
->max_blk_count
);
217 BUG_ON(mrq
->data
->blocks
* mrq
->data
->blksz
>
220 #ifdef CONFIG_MMC_DEBUG
222 for_each_sg(mrq
->data
->sg
, sg
, mrq
->data
->sg_len
, i
)
224 BUG_ON(sz
!= mrq
->data
->blocks
* mrq
->data
->blksz
);
227 mrq
->cmd
->data
= mrq
->data
;
228 mrq
->data
->error
= 0;
229 mrq
->data
->mrq
= mrq
;
231 mrq
->data
->stop
= mrq
->stop
;
232 mrq
->stop
->error
= 0;
233 mrq
->stop
->mrq
= mrq
;
236 mmc_host_clk_hold(host
);
237 led_trigger_event(host
->led
, LED_FULL
);
238 host
->ops
->request(host
, mrq
);
241 static void mmc_wait_done(struct mmc_request
*mrq
)
243 complete(&mrq
->completion
);
246 static void __mmc_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
248 init_completion(&mrq
->completion
);
249 mrq
->done
= mmc_wait_done
;
250 mmc_start_request(host
, mrq
);
253 static void mmc_wait_for_req_done(struct mmc_host
*host
,
254 struct mmc_request
*mrq
)
256 wait_for_completion(&mrq
->completion
);
260 * mmc_pre_req - Prepare for a new request
261 * @host: MMC host to prepare command
262 * @mrq: MMC request to prepare for
263 * @is_first_req: true if there is no previous started request
264 * that may run in parellel to this call, otherwise false
266 * mmc_pre_req() is called in prior to mmc_start_req() to let
267 * host prepare for the new request. Preparation of a request may be
268 * performed while another request is running on the host.
270 static void mmc_pre_req(struct mmc_host
*host
, struct mmc_request
*mrq
,
273 if (host
->ops
->pre_req
)
274 host
->ops
->pre_req(host
, mrq
, is_first_req
);
278 * mmc_post_req - Post process a completed request
279 * @host: MMC host to post process command
280 * @mrq: MMC request to post process for
281 * @err: Error, if non zero, clean up any resources made in pre_req
283 * Let the host post process a completed request. Post processing of
284 * a request may be performed while another reuqest is running.
286 static void mmc_post_req(struct mmc_host
*host
, struct mmc_request
*mrq
,
289 if (host
->ops
->post_req
)
290 host
->ops
->post_req(host
, mrq
, err
);
294 * mmc_start_req - start a non-blocking request
295 * @host: MMC host to start command
296 * @areq: async request to start
297 * @error: out parameter returns 0 for success, otherwise non zero
299 * Start a new MMC custom command request for a host.
300 * If there is on ongoing async request wait for completion
301 * of that request and start the new one and return.
302 * Does not wait for the new request to complete.
304 * Returns the completed request, NULL in case of none completed.
305 * Wait for the an ongoing request (previoulsy started) to complete and
306 * return the completed request. If there is no ongoing request, NULL
307 * is returned without waiting. NULL is not an error condition.
309 struct mmc_async_req
*mmc_start_req(struct mmc_host
*host
,
310 struct mmc_async_req
*areq
, int *error
)
313 struct mmc_async_req
*data
= host
->areq
;
315 /* Prepare a new request */
317 mmc_pre_req(host
, areq
->mrq
, !host
->areq
);
320 mmc_wait_for_req_done(host
, host
->areq
->mrq
);
321 err
= host
->areq
->err_check(host
->card
, host
->areq
);
323 mmc_post_req(host
, host
->areq
->mrq
, 0);
325 mmc_post_req(host
, areq
->mrq
, -EINVAL
);
333 __mmc_start_req(host
, areq
->mrq
);
336 mmc_post_req(host
, host
->areq
->mrq
, 0);
344 EXPORT_SYMBOL(mmc_start_req
);
347 * mmc_wait_for_req - start a request and wait for completion
348 * @host: MMC host to start command
349 * @mrq: MMC request to start
351 * Start a new MMC custom command request for a host, and wait
352 * for the command to complete. Does not attempt to parse the
355 void mmc_wait_for_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
357 __mmc_start_req(host
, mrq
);
358 mmc_wait_for_req_done(host
, mrq
);
360 EXPORT_SYMBOL(mmc_wait_for_req
);
363 * mmc_wait_for_cmd - start a command and wait for completion
364 * @host: MMC host to start command
365 * @cmd: MMC command to start
366 * @retries: maximum number of retries
368 * Start a new MMC command for a host, and wait for the command
369 * to complete. Return any error that occurred while the command
370 * was executing. Do not attempt to parse the response.
372 int mmc_wait_for_cmd(struct mmc_host
*host
, struct mmc_command
*cmd
, int retries
)
374 struct mmc_request mrq
= {NULL
};
376 WARN_ON(!host
->claimed
);
378 memset(cmd
->resp
, 0, sizeof(cmd
->resp
));
379 cmd
->retries
= retries
;
384 mmc_wait_for_req(host
, &mrq
);
389 EXPORT_SYMBOL(mmc_wait_for_cmd
);
392 * mmc_set_data_timeout - set the timeout for a data command
393 * @data: data phase for command
394 * @card: the MMC card associated with the data transfer
396 * Computes the data timeout parameters according to the
397 * correct algorithm given the card type.
399 void mmc_set_data_timeout(struct mmc_data
*data
, const struct mmc_card
*card
)
404 * SDIO cards only define an upper 1 s limit on access.
406 if (mmc_card_sdio(card
)) {
407 data
->timeout_ns
= 1000000000;
408 data
->timeout_clks
= 0;
413 * SD cards use a 100 multiplier rather than 10
415 mult
= mmc_card_sd(card
) ? 100 : 10;
418 * Scale up the multiplier (and therefore the timeout) by
419 * the r2w factor for writes.
421 if (data
->flags
& MMC_DATA_WRITE
)
422 mult
<<= card
->csd
.r2w_factor
;
424 data
->timeout_ns
= card
->csd
.tacc_ns
* mult
;
425 data
->timeout_clks
= card
->csd
.tacc_clks
* mult
;
428 * SD cards also have an upper limit on the timeout.
430 if (mmc_card_sd(card
)) {
431 unsigned int timeout_us
, limit_us
;
433 timeout_us
= data
->timeout_ns
/ 1000;
434 if (mmc_host_clk_rate(card
->host
))
435 timeout_us
+= data
->timeout_clks
* 1000 /
436 (mmc_host_clk_rate(card
->host
) / 1000);
438 if (data
->flags
& MMC_DATA_WRITE
)
440 * The limit is really 250 ms, but that is
441 * insufficient for some crappy cards.
448 * SDHC cards always use these fixed values.
450 if (timeout_us
> limit_us
|| mmc_card_blockaddr(card
)) {
451 data
->timeout_ns
= limit_us
* 1000;
452 data
->timeout_clks
= 0;
456 * Some cards need very high timeouts if driven in SPI mode.
457 * The worst observed timeout was 900ms after writing a
458 * continuous stream of data until the internal logic
461 if (mmc_host_is_spi(card
->host
)) {
462 if (data
->flags
& MMC_DATA_WRITE
) {
463 if (data
->timeout_ns
< 1000000000)
464 data
->timeout_ns
= 1000000000; /* 1s */
466 if (data
->timeout_ns
< 100000000)
467 data
->timeout_ns
= 100000000; /* 100ms */
471 EXPORT_SYMBOL(mmc_set_data_timeout
);
474 * mmc_align_data_size - pads a transfer size to a more optimal value
475 * @card: the MMC card associated with the data transfer
476 * @sz: original transfer size
478 * Pads the original data size with a number of extra bytes in
479 * order to avoid controller bugs and/or performance hits
480 * (e.g. some controllers revert to PIO for certain sizes).
482 * Returns the improved size, which might be unmodified.
484 * Note that this function is only relevant when issuing a
485 * single scatter gather entry.
487 unsigned int mmc_align_data_size(struct mmc_card
*card
, unsigned int sz
)
490 * FIXME: We don't have a system for the controller to tell
491 * the core about its problems yet, so for now we just 32-bit
494 sz
= ((sz
+ 3) / 4) * 4;
498 EXPORT_SYMBOL(mmc_align_data_size
);
501 * mmc_host_enable - enable a host.
502 * @host: mmc host to enable
504 * Hosts that support power saving can use the 'enable' and 'disable'
505 * methods to exit and enter power saving states. For more information
506 * see comments for struct mmc_host_ops.
508 int mmc_host_enable(struct mmc_host
*host
)
510 if (!(host
->caps
& MMC_CAP_DISABLE
))
513 if (host
->en_dis_recurs
)
516 if (host
->nesting_cnt
++)
519 cancel_delayed_work_sync(&host
->disable
);
524 if (host
->ops
->enable
) {
527 host
->en_dis_recurs
= 1;
528 err
= host
->ops
->enable(host
);
529 host
->en_dis_recurs
= 0;
532 pr_debug("%s: enable error %d\n",
533 mmc_hostname(host
), err
);
540 EXPORT_SYMBOL(mmc_host_enable
);
542 static int mmc_host_do_disable(struct mmc_host
*host
, int lazy
)
544 if (host
->ops
->disable
) {
547 host
->en_dis_recurs
= 1;
548 err
= host
->ops
->disable(host
, lazy
);
549 host
->en_dis_recurs
= 0;
552 pr_debug("%s: disable error %d\n",
553 mmc_hostname(host
), err
);
557 unsigned long delay
= msecs_to_jiffies(err
);
559 mmc_schedule_delayed_work(&host
->disable
, delay
);
567 * mmc_host_disable - disable a host.
568 * @host: mmc host to disable
570 * Hosts that support power saving can use the 'enable' and 'disable'
571 * methods to exit and enter power saving states. For more information
572 * see comments for struct mmc_host_ops.
574 int mmc_host_disable(struct mmc_host
*host
)
578 if (!(host
->caps
& MMC_CAP_DISABLE
))
581 if (host
->en_dis_recurs
)
584 if (--host
->nesting_cnt
)
590 err
= mmc_host_do_disable(host
, 0);
593 EXPORT_SYMBOL(mmc_host_disable
);
596 * __mmc_claim_host - exclusively claim a host
597 * @host: mmc host to claim
598 * @abort: whether or not the operation should be aborted
600 * Claim a host for a set of operations. If @abort is non null and
601 * dereference a non-zero value then this will return prematurely with
602 * that non-zero value without acquiring the lock. Returns zero
603 * with the lock held otherwise.
605 int __mmc_claim_host(struct mmc_host
*host
, atomic_t
*abort
)
607 DECLARE_WAITQUEUE(wait
, current
);
613 add_wait_queue(&host
->wq
, &wait
);
614 spin_lock_irqsave(&host
->lock
, flags
);
616 set_current_state(TASK_UNINTERRUPTIBLE
);
617 stop
= abort
? atomic_read(abort
) : 0;
618 if (stop
|| !host
->claimed
|| host
->claimer
== current
)
620 spin_unlock_irqrestore(&host
->lock
, flags
);
622 spin_lock_irqsave(&host
->lock
, flags
);
624 set_current_state(TASK_RUNNING
);
627 host
->claimer
= current
;
628 host
->claim_cnt
+= 1;
631 spin_unlock_irqrestore(&host
->lock
, flags
);
632 remove_wait_queue(&host
->wq
, &wait
);
634 mmc_host_enable(host
);
638 EXPORT_SYMBOL(__mmc_claim_host
);
641 * mmc_try_claim_host - try exclusively to claim a host
642 * @host: mmc host to claim
644 * Returns %1 if the host is claimed, %0 otherwise.
646 int mmc_try_claim_host(struct mmc_host
*host
)
648 int claimed_host
= 0;
651 spin_lock_irqsave(&host
->lock
, flags
);
652 if (!host
->claimed
|| host
->claimer
== current
) {
654 host
->claimer
= current
;
655 host
->claim_cnt
+= 1;
658 spin_unlock_irqrestore(&host
->lock
, flags
);
661 EXPORT_SYMBOL(mmc_try_claim_host
);
664 * mmc_do_release_host - release a claimed host
665 * @host: mmc host to release
667 * If you successfully claimed a host, this function will
670 void mmc_do_release_host(struct mmc_host
*host
)
674 spin_lock_irqsave(&host
->lock
, flags
);
675 if (--host
->claim_cnt
) {
676 /* Release for nested claim */
677 spin_unlock_irqrestore(&host
->lock
, flags
);
680 host
->claimer
= NULL
;
681 spin_unlock_irqrestore(&host
->lock
, flags
);
685 EXPORT_SYMBOL(mmc_do_release_host
);
687 void mmc_host_deeper_disable(struct work_struct
*work
)
689 struct mmc_host
*host
=
690 container_of(work
, struct mmc_host
, disable
.work
);
692 /* If the host is claimed then we do not want to disable it anymore */
693 if (!mmc_try_claim_host(host
))
695 mmc_host_do_disable(host
, 1);
696 mmc_do_release_host(host
);
700 * mmc_host_lazy_disable - lazily disable a host.
701 * @host: mmc host to disable
703 * Hosts that support power saving can use the 'enable' and 'disable'
704 * methods to exit and enter power saving states. For more information
705 * see comments for struct mmc_host_ops.
707 int mmc_host_lazy_disable(struct mmc_host
*host
)
709 if (!(host
->caps
& MMC_CAP_DISABLE
))
712 if (host
->en_dis_recurs
)
715 if (--host
->nesting_cnt
)
721 if (host
->disable_delay
) {
722 mmc_schedule_delayed_work(&host
->disable
,
723 msecs_to_jiffies(host
->disable_delay
));
726 return mmc_host_do_disable(host
, 1);
728 EXPORT_SYMBOL(mmc_host_lazy_disable
);
731 * mmc_release_host - release a host
732 * @host: mmc host to release
734 * Release a MMC host, allowing others to claim the host
735 * for their operations.
737 void mmc_release_host(struct mmc_host
*host
)
739 WARN_ON(!host
->claimed
);
741 mmc_host_lazy_disable(host
);
743 mmc_do_release_host(host
);
746 EXPORT_SYMBOL(mmc_release_host
);
749 * Internal function that does the actual ios call to the host driver,
750 * optionally printing some debug output.
752 static inline void mmc_set_ios(struct mmc_host
*host
)
754 struct mmc_ios
*ios
= &host
->ios
;
756 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
757 "width %u timing %u\n",
758 mmc_hostname(host
), ios
->clock
, ios
->bus_mode
,
759 ios
->power_mode
, ios
->chip_select
, ios
->vdd
,
760 ios
->bus_width
, ios
->timing
);
763 mmc_set_ungated(host
);
764 host
->ops
->set_ios(host
, ios
);
768 * Control chip select pin on a host.
770 void mmc_set_chip_select(struct mmc_host
*host
, int mode
)
772 mmc_host_clk_hold(host
);
773 host
->ios
.chip_select
= mode
;
775 mmc_host_clk_release(host
);
779 * Sets the host clock to the highest possible frequency that
782 static void __mmc_set_clock(struct mmc_host
*host
, unsigned int hz
)
784 WARN_ON(hz
< host
->f_min
);
786 if (hz
> host
->f_max
)
789 host
->ios
.clock
= hz
;
793 void mmc_set_clock(struct mmc_host
*host
, unsigned int hz
)
795 mmc_host_clk_hold(host
);
796 __mmc_set_clock(host
, hz
);
797 mmc_host_clk_release(host
);
800 #ifdef CONFIG_MMC_CLKGATE
802 * This gates the clock by setting it to 0 Hz.
804 void mmc_gate_clock(struct mmc_host
*host
)
808 spin_lock_irqsave(&host
->clk_lock
, flags
);
809 host
->clk_old
= host
->ios
.clock
;
811 host
->clk_gated
= true;
812 spin_unlock_irqrestore(&host
->clk_lock
, flags
);
817 * This restores the clock from gating by using the cached
820 void mmc_ungate_clock(struct mmc_host
*host
)
823 * We should previously have gated the clock, so the clock shall
824 * be 0 here! The clock may however be 0 during initialization,
825 * when some request operations are performed before setting
826 * the frequency. When ungate is requested in that situation
827 * we just ignore the call.
830 BUG_ON(host
->ios
.clock
);
831 /* This call will also set host->clk_gated to false */
832 __mmc_set_clock(host
, host
->clk_old
);
836 void mmc_set_ungated(struct mmc_host
*host
)
841 * We've been given a new frequency while the clock is gated,
842 * so make sure we regard this as ungating it.
844 spin_lock_irqsave(&host
->clk_lock
, flags
);
845 host
->clk_gated
= false;
846 spin_unlock_irqrestore(&host
->clk_lock
, flags
);
850 void mmc_set_ungated(struct mmc_host
*host
)
856 * Change the bus mode (open drain/push-pull) of a host.
858 void mmc_set_bus_mode(struct mmc_host
*host
, unsigned int mode
)
860 mmc_host_clk_hold(host
);
861 host
->ios
.bus_mode
= mode
;
863 mmc_host_clk_release(host
);
867 * Change data bus width of a host.
869 void mmc_set_bus_width(struct mmc_host
*host
, unsigned int width
)
871 mmc_host_clk_hold(host
);
872 host
->ios
.bus_width
= width
;
874 mmc_host_clk_release(host
);
878 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
880 * @low_bits: prefer low bits in boundary cases
882 * This function returns the OCR bit number according to the provided @vdd
883 * value. If conversion is not possible a negative errno value returned.
885 * Depending on the @low_bits flag the function prefers low or high OCR bits
886 * on boundary voltages. For example,
887 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
888 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
890 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
892 static int mmc_vdd_to_ocrbitnum(int vdd
, bool low_bits
)
894 const int max_bit
= ilog2(MMC_VDD_35_36
);
897 if (vdd
< 1650 || vdd
> 3600)
900 if (vdd
>= 1650 && vdd
<= 1950)
901 return ilog2(MMC_VDD_165_195
);
906 /* Base 2000 mV, step 100 mV, bit's base 8. */
907 bit
= (vdd
- 2000) / 100 + 8;
914 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
915 * @vdd_min: minimum voltage value (mV)
916 * @vdd_max: maximum voltage value (mV)
918 * This function returns the OCR mask bits according to the provided @vdd_min
919 * and @vdd_max values. If conversion is not possible the function returns 0.
921 * Notes wrt boundary cases:
922 * This function sets the OCR bits for all boundary voltages, for example
923 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
924 * MMC_VDD_34_35 mask.
926 u32
mmc_vddrange_to_ocrmask(int vdd_min
, int vdd_max
)
930 if (vdd_max
< vdd_min
)
933 /* Prefer high bits for the boundary vdd_max values. */
934 vdd_max
= mmc_vdd_to_ocrbitnum(vdd_max
, false);
938 /* Prefer low bits for the boundary vdd_min values. */
939 vdd_min
= mmc_vdd_to_ocrbitnum(vdd_min
, true);
943 /* Fill the mask, from max bit to min bit. */
944 while (vdd_max
>= vdd_min
)
945 mask
|= 1 << vdd_max
--;
949 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask
);
951 #ifdef CONFIG_REGULATOR
954 * mmc_regulator_get_ocrmask - return mask of supported voltages
955 * @supply: regulator to use
957 * This returns either a negative errno, or a mask of voltages that
958 * can be provided to MMC/SD/SDIO devices using the specified voltage
959 * regulator. This would normally be called before registering the
962 int mmc_regulator_get_ocrmask(struct regulator
*supply
)
968 count
= regulator_count_voltages(supply
);
972 for (i
= 0; i
< count
; i
++) {
976 vdd_uV
= regulator_list_voltage(supply
, i
);
980 vdd_mV
= vdd_uV
/ 1000;
981 result
|= mmc_vddrange_to_ocrmask(vdd_mV
, vdd_mV
);
986 EXPORT_SYMBOL(mmc_regulator_get_ocrmask
);
989 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
990 * @mmc: the host to regulate
991 * @supply: regulator to use
992 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
994 * Returns zero on success, else negative errno.
996 * MMC host drivers may use this to enable or disable a regulator using
997 * a particular supply voltage. This would normally be called from the
1000 int mmc_regulator_set_ocr(struct mmc_host
*mmc
,
1001 struct regulator
*supply
,
1002 unsigned short vdd_bit
)
1011 /* REVISIT mmc_vddrange_to_ocrmask() may have set some
1012 * bits this regulator doesn't quite support ... don't
1013 * be too picky, most cards and regulators are OK with
1014 * a 0.1V range goof (it's a small error percentage).
1016 tmp
= vdd_bit
- ilog2(MMC_VDD_165_195
);
1018 min_uV
= 1650 * 1000;
1019 max_uV
= 1950 * 1000;
1021 min_uV
= 1900 * 1000 + tmp
* 100 * 1000;
1022 max_uV
= min_uV
+ 100 * 1000;
1025 /* avoid needless changes to this voltage; the regulator
1026 * might not allow this operation
1028 voltage
= regulator_get_voltage(supply
);
1031 else if (voltage
< min_uV
|| voltage
> max_uV
)
1032 result
= regulator_set_voltage(supply
, min_uV
, max_uV
);
1036 if (result
== 0 && !mmc
->regulator_enabled
) {
1037 result
= regulator_enable(supply
);
1039 mmc
->regulator_enabled
= true;
1041 } else if (mmc
->regulator_enabled
) {
1042 result
= regulator_disable(supply
);
1044 mmc
->regulator_enabled
= false;
1048 dev_err(mmc_dev(mmc
),
1049 "could not set regulator OCR (%d)\n", result
);
1052 EXPORT_SYMBOL(mmc_regulator_set_ocr
);
1054 #endif /* CONFIG_REGULATOR */
1057 * Mask off any voltages we don't support and select
1058 * the lowest voltage
1060 u32
mmc_select_voltage(struct mmc_host
*host
, u32 ocr
)
1064 ocr
&= host
->ocr_avail
;
1072 mmc_host_clk_hold(host
);
1073 host
->ios
.vdd
= bit
;
1075 mmc_host_clk_release(host
);
1077 pr_warning("%s: host doesn't support card's voltages\n",
1078 mmc_hostname(host
));
1085 int mmc_set_signal_voltage(struct mmc_host
*host
, int signal_voltage
, bool cmd11
)
1087 struct mmc_command cmd
= {0};
1093 * Send CMD11 only if the request is to switch the card to
1096 if ((signal_voltage
!= MMC_SIGNAL_VOLTAGE_330
) && cmd11
) {
1097 cmd
.opcode
= SD_SWITCH_VOLTAGE
;
1099 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1101 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
1105 if (!mmc_host_is_spi(host
) && (cmd
.resp
[0] & R1_ERROR
))
1109 host
->ios
.signal_voltage
= signal_voltage
;
1111 if (host
->ops
->start_signal_voltage_switch
)
1112 err
= host
->ops
->start_signal_voltage_switch(host
, &host
->ios
);
1118 * Select timing parameters for host.
1120 void mmc_set_timing(struct mmc_host
*host
, unsigned int timing
)
1122 mmc_host_clk_hold(host
);
1123 host
->ios
.timing
= timing
;
1125 mmc_host_clk_release(host
);
1129 * Select appropriate driver type for host.
1131 void mmc_set_driver_type(struct mmc_host
*host
, unsigned int drv_type
)
1133 mmc_host_clk_hold(host
);
1134 host
->ios
.drv_type
= drv_type
;
1136 mmc_host_clk_release(host
);
1140 * Apply power to the MMC stack. This is a two-stage process.
1141 * First, we enable power to the card without the clock running.
1142 * We then wait a bit for the power to stabilise. Finally,
1143 * enable the bus drivers and clock to the card.
1145 * We must _NOT_ enable the clock prior to power stablising.
1147 * If a host does all the power sequencing itself, ignore the
1148 * initial MMC_POWER_UP stage.
1150 static void mmc_power_up(struct mmc_host
*host
)
1154 mmc_host_clk_hold(host
);
1156 /* If ocr is set, we use it */
1158 bit
= ffs(host
->ocr
) - 1;
1160 bit
= fls(host
->ocr_avail
) - 1;
1162 host
->ios
.vdd
= bit
;
1163 if (mmc_host_is_spi(host
)) {
1164 host
->ios
.chip_select
= MMC_CS_HIGH
;
1165 host
->ios
.bus_mode
= MMC_BUSMODE_PUSHPULL
;
1167 host
->ios
.chip_select
= MMC_CS_DONTCARE
;
1168 host
->ios
.bus_mode
= MMC_BUSMODE_OPENDRAIN
;
1170 host
->ios
.power_mode
= MMC_POWER_UP
;
1171 host
->ios
.bus_width
= MMC_BUS_WIDTH_1
;
1172 host
->ios
.timing
= MMC_TIMING_LEGACY
;
1176 * This delay should be sufficient to allow the power supply
1177 * to reach the minimum voltage.
1181 host
->ios
.clock
= host
->f_init
;
1183 host
->ios
.power_mode
= MMC_POWER_ON
;
1187 * This delay must be at least 74 clock sizes, or 1 ms, or the
1188 * time required to reach a stable voltage.
1192 mmc_host_clk_release(host
);
1195 static void mmc_power_off(struct mmc_host
*host
)
1197 mmc_host_clk_hold(host
);
1199 host
->ios
.clock
= 0;
1203 * Reset ocr mask to be the highest possible voltage supported for
1204 * this mmc host. This value will be used at next power up.
1206 host
->ocr
= 1 << (fls(host
->ocr_avail
) - 1);
1208 if (!mmc_host_is_spi(host
)) {
1209 host
->ios
.bus_mode
= MMC_BUSMODE_OPENDRAIN
;
1210 host
->ios
.chip_select
= MMC_CS_DONTCARE
;
1212 host
->ios
.power_mode
= MMC_POWER_OFF
;
1213 host
->ios
.bus_width
= MMC_BUS_WIDTH_1
;
1214 host
->ios
.timing
= MMC_TIMING_LEGACY
;
1217 mmc_host_clk_release(host
);
1221 * Cleanup when the last reference to the bus operator is dropped.
1223 static void __mmc_release_bus(struct mmc_host
*host
)
1226 BUG_ON(host
->bus_refs
);
1227 BUG_ON(!host
->bus_dead
);
1229 host
->bus_ops
= NULL
;
1233 * Increase reference count of bus operator
1235 static inline void mmc_bus_get(struct mmc_host
*host
)
1237 unsigned long flags
;
1239 spin_lock_irqsave(&host
->lock
, flags
);
1241 spin_unlock_irqrestore(&host
->lock
, flags
);
1245 * Decrease reference count of bus operator and free it if
1246 * it is the last reference.
1248 static inline void mmc_bus_put(struct mmc_host
*host
)
1250 unsigned long flags
;
1252 spin_lock_irqsave(&host
->lock
, flags
);
1254 if ((host
->bus_refs
== 0) && host
->bus_ops
)
1255 __mmc_release_bus(host
);
1256 spin_unlock_irqrestore(&host
->lock
, flags
);
1260 * Assign a mmc bus handler to a host. Only one bus handler may control a
1261 * host at any given time.
1263 void mmc_attach_bus(struct mmc_host
*host
, const struct mmc_bus_ops
*ops
)
1265 unsigned long flags
;
1270 WARN_ON(!host
->claimed
);
1272 spin_lock_irqsave(&host
->lock
, flags
);
1274 BUG_ON(host
->bus_ops
);
1275 BUG_ON(host
->bus_refs
);
1277 host
->bus_ops
= ops
;
1281 spin_unlock_irqrestore(&host
->lock
, flags
);
1285 * Remove the current bus handler from a host. Assumes that there are
1286 * no interesting cards left, so the bus is powered down.
1288 void mmc_detach_bus(struct mmc_host
*host
)
1290 unsigned long flags
;
1294 WARN_ON(!host
->claimed
);
1295 WARN_ON(!host
->bus_ops
);
1297 spin_lock_irqsave(&host
->lock
, flags
);
1301 spin_unlock_irqrestore(&host
->lock
, flags
);
1303 mmc_power_off(host
);
1309 * mmc_detect_change - process change of state on a MMC socket
1310 * @host: host which changed state.
1311 * @delay: optional delay to wait before detection (jiffies)
1313 * MMC drivers should call this when they detect a card has been
1314 * inserted or removed. The MMC layer will confirm that any
1315 * present card is still functional, and initialize any newly
1318 void mmc_detect_change(struct mmc_host
*host
, unsigned long delay
)
1320 #ifdef CONFIG_MMC_DEBUG
1321 unsigned long flags
;
1322 spin_lock_irqsave(&host
->lock
, flags
);
1323 WARN_ON(host
->removed
);
1324 spin_unlock_irqrestore(&host
->lock
, flags
);
1327 mmc_schedule_delayed_work(&host
->detect
, delay
);
1330 EXPORT_SYMBOL(mmc_detect_change
);
1332 void mmc_init_erase(struct mmc_card
*card
)
1336 if (is_power_of_2(card
->erase_size
))
1337 card
->erase_shift
= ffs(card
->erase_size
) - 1;
1339 card
->erase_shift
= 0;
1342 * It is possible to erase an arbitrarily large area of an SD or MMC
1343 * card. That is not desirable because it can take a long time
1344 * (minutes) potentially delaying more important I/O, and also the
1345 * timeout calculations become increasingly hugely over-estimated.
1346 * Consequently, 'pref_erase' is defined as a guide to limit erases
1347 * to that size and alignment.
1349 * For SD cards that define Allocation Unit size, limit erases to one
1350 * Allocation Unit at a time. For MMC cards that define High Capacity
1351 * Erase Size, whether it is switched on or not, limit to that size.
1352 * Otherwise just have a stab at a good value. For modern cards it
1353 * will end up being 4MiB. Note that if the value is too small, it
1354 * can end up taking longer to erase.
1356 if (mmc_card_sd(card
) && card
->ssr
.au
) {
1357 card
->pref_erase
= card
->ssr
.au
;
1358 card
->erase_shift
= ffs(card
->ssr
.au
) - 1;
1359 } else if (card
->ext_csd
.hc_erase_size
) {
1360 card
->pref_erase
= card
->ext_csd
.hc_erase_size
;
1362 sz
= (card
->csd
.capacity
<< (card
->csd
.read_blkbits
- 9)) >> 11;
1364 card
->pref_erase
= 512 * 1024 / 512;
1366 card
->pref_erase
= 1024 * 1024 / 512;
1368 card
->pref_erase
= 2 * 1024 * 1024 / 512;
1370 card
->pref_erase
= 4 * 1024 * 1024 / 512;
1371 if (card
->pref_erase
< card
->erase_size
)
1372 card
->pref_erase
= card
->erase_size
;
1374 sz
= card
->pref_erase
% card
->erase_size
;
1376 card
->pref_erase
+= card
->erase_size
- sz
;
1381 static unsigned int mmc_mmc_erase_timeout(struct mmc_card
*card
,
1382 unsigned int arg
, unsigned int qty
)
1384 unsigned int erase_timeout
;
1386 if (card
->ext_csd
.erase_group_def
& 1) {
1387 /* High Capacity Erase Group Size uses HC timeouts */
1388 if (arg
== MMC_TRIM_ARG
)
1389 erase_timeout
= card
->ext_csd
.trim_timeout
;
1391 erase_timeout
= card
->ext_csd
.hc_erase_timeout
;
1393 /* CSD Erase Group Size uses write timeout */
1394 unsigned int mult
= (10 << card
->csd
.r2w_factor
);
1395 unsigned int timeout_clks
= card
->csd
.tacc_clks
* mult
;
1396 unsigned int timeout_us
;
1398 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1399 if (card
->csd
.tacc_ns
< 1000000)
1400 timeout_us
= (card
->csd
.tacc_ns
* mult
) / 1000;
1402 timeout_us
= (card
->csd
.tacc_ns
/ 1000) * mult
;
1405 * ios.clock is only a target. The real clock rate might be
1406 * less but not that much less, so fudge it by multiplying by 2.
1409 timeout_us
+= (timeout_clks
* 1000) /
1410 (mmc_host_clk_rate(card
->host
) / 1000);
1412 erase_timeout
= timeout_us
/ 1000;
1415 * Theoretically, the calculation could underflow so round up
1416 * to 1ms in that case.
1422 /* Multiplier for secure operations */
1423 if (arg
& MMC_SECURE_ARGS
) {
1424 if (arg
== MMC_SECURE_ERASE_ARG
)
1425 erase_timeout
*= card
->ext_csd
.sec_erase_mult
;
1427 erase_timeout
*= card
->ext_csd
.sec_trim_mult
;
1430 erase_timeout
*= qty
;
1433 * Ensure at least a 1 second timeout for SPI as per
1434 * 'mmc_set_data_timeout()'
1436 if (mmc_host_is_spi(card
->host
) && erase_timeout
< 1000)
1437 erase_timeout
= 1000;
1439 return erase_timeout
;
1442 static unsigned int mmc_sd_erase_timeout(struct mmc_card
*card
,
1446 unsigned int erase_timeout
;
1448 if (card
->ssr
.erase_timeout
) {
1449 /* Erase timeout specified in SD Status Register (SSR) */
1450 erase_timeout
= card
->ssr
.erase_timeout
* qty
+
1451 card
->ssr
.erase_offset
;
1454 * Erase timeout not specified in SD Status Register (SSR) so
1455 * use 250ms per write block.
1457 erase_timeout
= 250 * qty
;
1460 /* Must not be less than 1 second */
1461 if (erase_timeout
< 1000)
1462 erase_timeout
= 1000;
1464 return erase_timeout
;
1467 static unsigned int mmc_erase_timeout(struct mmc_card
*card
,
1471 if (mmc_card_sd(card
))
1472 return mmc_sd_erase_timeout(card
, arg
, qty
);
1474 return mmc_mmc_erase_timeout(card
, arg
, qty
);
1477 static int mmc_do_erase(struct mmc_card
*card
, unsigned int from
,
1478 unsigned int to
, unsigned int arg
)
1480 struct mmc_command cmd
= {0};
1481 unsigned int qty
= 0;
1485 * qty is used to calculate the erase timeout which depends on how many
1486 * erase groups (or allocation units in SD terminology) are affected.
1487 * We count erasing part of an erase group as one erase group.
1488 * For SD, the allocation units are always a power of 2. For MMC, the
1489 * erase group size is almost certainly also power of 2, but it does not
1490 * seem to insist on that in the JEDEC standard, so we fall back to
1491 * division in that case. SD may not specify an allocation unit size,
1492 * in which case the timeout is based on the number of write blocks.
1494 * Note that the timeout for secure trim 2 will only be correct if the
1495 * number of erase groups specified is the same as the total of all
1496 * preceding secure trim 1 commands. Since the power may have been
1497 * lost since the secure trim 1 commands occurred, it is generally
1498 * impossible to calculate the secure trim 2 timeout correctly.
1500 if (card
->erase_shift
)
1501 qty
+= ((to
>> card
->erase_shift
) -
1502 (from
>> card
->erase_shift
)) + 1;
1503 else if (mmc_card_sd(card
))
1504 qty
+= to
- from
+ 1;
1506 qty
+= ((to
/ card
->erase_size
) -
1507 (from
/ card
->erase_size
)) + 1;
1509 if (!mmc_card_blockaddr(card
)) {
1514 if (mmc_card_sd(card
))
1515 cmd
.opcode
= SD_ERASE_WR_BLK_START
;
1517 cmd
.opcode
= MMC_ERASE_GROUP_START
;
1519 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
1520 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1522 printk(KERN_ERR
"mmc_erase: group start error %d, "
1523 "status %#x\n", err
, cmd
.resp
[0]);
1528 memset(&cmd
, 0, sizeof(struct mmc_command
));
1529 if (mmc_card_sd(card
))
1530 cmd
.opcode
= SD_ERASE_WR_BLK_END
;
1532 cmd
.opcode
= MMC_ERASE_GROUP_END
;
1534 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
1535 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1537 printk(KERN_ERR
"mmc_erase: group end error %d, status %#x\n",
1543 memset(&cmd
, 0, sizeof(struct mmc_command
));
1544 cmd
.opcode
= MMC_ERASE
;
1546 cmd
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
1547 cmd
.cmd_timeout_ms
= mmc_erase_timeout(card
, arg
, qty
);
1548 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1550 printk(KERN_ERR
"mmc_erase: erase error %d, status %#x\n",
1556 if (mmc_host_is_spi(card
->host
))
1560 memset(&cmd
, 0, sizeof(struct mmc_command
));
1561 cmd
.opcode
= MMC_SEND_STATUS
;
1562 cmd
.arg
= card
->rca
<< 16;
1563 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1564 /* Do not retry else we can't see errors */
1565 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1566 if (err
|| (cmd
.resp
[0] & 0xFDF92000)) {
1567 printk(KERN_ERR
"error %d requesting status %#x\n",
1572 } while (!(cmd
.resp
[0] & R1_READY_FOR_DATA
) ||
1573 R1_CURRENT_STATE(cmd
.resp
[0]) == R1_STATE_PRG
);
1579 * mmc_erase - erase sectors.
1580 * @card: card to erase
1581 * @from: first sector to erase
1582 * @nr: number of sectors to erase
1583 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1585 * Caller must claim host before calling this function.
1587 int mmc_erase(struct mmc_card
*card
, unsigned int from
, unsigned int nr
,
1590 unsigned int rem
, to
= from
+ nr
;
1592 if (!(card
->host
->caps
& MMC_CAP_ERASE
) ||
1593 !(card
->csd
.cmdclass
& CCC_ERASE
))
1596 if (!card
->erase_size
)
1599 if (mmc_card_sd(card
) && arg
!= MMC_ERASE_ARG
)
1602 if ((arg
& MMC_SECURE_ARGS
) &&
1603 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
))
1606 if ((arg
& MMC_TRIM_ARGS
) &&
1607 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
))
1610 if (arg
== MMC_SECURE_ERASE_ARG
) {
1611 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
1615 if (arg
== MMC_ERASE_ARG
) {
1616 rem
= from
% card
->erase_size
;
1618 rem
= card
->erase_size
- rem
;
1625 rem
= nr
% card
->erase_size
;
1638 /* 'from' and 'to' are inclusive */
1641 return mmc_do_erase(card
, from
, to
, arg
);
1643 EXPORT_SYMBOL(mmc_erase
);
1645 int mmc_can_erase(struct mmc_card
*card
)
1647 if ((card
->host
->caps
& MMC_CAP_ERASE
) &&
1648 (card
->csd
.cmdclass
& CCC_ERASE
) && card
->erase_size
)
1652 EXPORT_SYMBOL(mmc_can_erase
);
1654 int mmc_can_trim(struct mmc_card
*card
)
1656 if (card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
)
1660 EXPORT_SYMBOL(mmc_can_trim
);
1662 int mmc_can_secure_erase_trim(struct mmc_card
*card
)
1664 if (card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
)
1668 EXPORT_SYMBOL(mmc_can_secure_erase_trim
);
1670 int mmc_erase_group_aligned(struct mmc_card
*card
, unsigned int from
,
1673 if (!card
->erase_size
)
1675 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
1679 EXPORT_SYMBOL(mmc_erase_group_aligned
);
1681 static unsigned int mmc_do_calc_max_discard(struct mmc_card
*card
,
1684 struct mmc_host
*host
= card
->host
;
1685 unsigned int max_discard
, x
, y
, qty
= 0, max_qty
, timeout
;
1686 unsigned int last_timeout
= 0;
1688 if (card
->erase_shift
)
1689 max_qty
= UINT_MAX
>> card
->erase_shift
;
1690 else if (mmc_card_sd(card
))
1693 max_qty
= UINT_MAX
/ card
->erase_size
;
1695 /* Find the largest qty with an OK timeout */
1698 for (x
= 1; x
&& x
<= max_qty
&& max_qty
- x
>= qty
; x
<<= 1) {
1699 timeout
= mmc_erase_timeout(card
, arg
, qty
+ x
);
1700 if (timeout
> host
->max_discard_to
)
1702 if (timeout
< last_timeout
)
1704 last_timeout
= timeout
;
1716 /* Convert qty to sectors */
1717 if (card
->erase_shift
)
1718 max_discard
= --qty
<< card
->erase_shift
;
1719 else if (mmc_card_sd(card
))
1722 max_discard
= --qty
* card
->erase_size
;
1727 unsigned int mmc_calc_max_discard(struct mmc_card
*card
)
1729 struct mmc_host
*host
= card
->host
;
1730 unsigned int max_discard
, max_trim
;
1732 if (!host
->max_discard_to
)
1736 * Without erase_group_def set, MMC erase timeout depends on clock
1737 * frequence which can change. In that case, the best choice is
1738 * just the preferred erase size.
1740 if (mmc_card_mmc(card
) && !(card
->ext_csd
.erase_group_def
& 1))
1741 return card
->pref_erase
;
1743 max_discard
= mmc_do_calc_max_discard(card
, MMC_ERASE_ARG
);
1744 if (mmc_can_trim(card
)) {
1745 max_trim
= mmc_do_calc_max_discard(card
, MMC_TRIM_ARG
);
1746 if (max_trim
< max_discard
)
1747 max_discard
= max_trim
;
1748 } else if (max_discard
< card
->erase_size
) {
1751 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1752 mmc_hostname(host
), max_discard
, host
->max_discard_to
);
1755 EXPORT_SYMBOL(mmc_calc_max_discard
);
1757 int mmc_set_blocklen(struct mmc_card
*card
, unsigned int blocklen
)
1759 struct mmc_command cmd
= {0};
1761 if (mmc_card_blockaddr(card
) || mmc_card_ddr_mode(card
))
1764 cmd
.opcode
= MMC_SET_BLOCKLEN
;
1766 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
1767 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
1769 EXPORT_SYMBOL(mmc_set_blocklen
);
1771 static int mmc_rescan_try_freq(struct mmc_host
*host
, unsigned freq
)
1773 host
->f_init
= freq
;
1775 #ifdef CONFIG_MMC_DEBUG
1776 pr_info("%s: %s: trying to init card at %u Hz\n",
1777 mmc_hostname(host
), __func__
, host
->f_init
);
1782 * sdio_reset sends CMD52 to reset card. Since we do not know
1783 * if the card is being re-initialized, just send it. CMD52
1784 * should be ignored by SD/eMMC cards.
1789 mmc_send_if_cond(host
, host
->ocr_avail
);
1791 /* Order's important: probe SDIO, then SD, then MMC */
1792 if (!mmc_attach_sdio(host
))
1794 if (!mmc_attach_sd(host
))
1796 if (!mmc_attach_mmc(host
))
1799 mmc_power_off(host
);
1803 void mmc_rescan(struct work_struct
*work
)
1805 static const unsigned freqs
[] = { 400000, 300000, 200000, 100000 };
1806 struct mmc_host
*host
=
1807 container_of(work
, struct mmc_host
, detect
.work
);
1810 if (host
->rescan_disable
)
1816 * if there is a _removable_ card registered, check whether it is
1819 if (host
->bus_ops
&& host
->bus_ops
->detect
&& !host
->bus_dead
1820 && !(host
->caps
& MMC_CAP_NONREMOVABLE
))
1821 host
->bus_ops
->detect(host
);
1824 * Let mmc_bus_put() free the bus/bus_ops if we've found that
1825 * the card is no longer present.
1830 /* if there still is a card present, stop here */
1831 if (host
->bus_ops
!= NULL
) {
1837 * Only we can add a new handler, so it's safe to
1838 * release the lock here.
1842 if (host
->ops
->get_cd
&& host
->ops
->get_cd(host
) == 0)
1845 mmc_claim_host(host
);
1846 for (i
= 0; i
< ARRAY_SIZE(freqs
); i
++) {
1847 if (!mmc_rescan_try_freq(host
, max(freqs
[i
], host
->f_min
)))
1849 if (freqs
[i
] <= host
->f_min
)
1852 mmc_release_host(host
);
1855 if (host
->caps
& MMC_CAP_NEEDS_POLL
)
1856 mmc_schedule_delayed_work(&host
->detect
, HZ
);
1859 void mmc_start_host(struct mmc_host
*host
)
1861 mmc_power_off(host
);
1862 mmc_detect_change(host
, 0);
1865 void mmc_stop_host(struct mmc_host
*host
)
1867 #ifdef CONFIG_MMC_DEBUG
1868 unsigned long flags
;
1869 spin_lock_irqsave(&host
->lock
, flags
);
1871 spin_unlock_irqrestore(&host
->lock
, flags
);
1874 if (host
->caps
& MMC_CAP_DISABLE
)
1875 cancel_delayed_work(&host
->disable
);
1876 cancel_delayed_work_sync(&host
->detect
);
1877 mmc_flush_scheduled_work();
1879 /* clear pm flags now and let card drivers set them as needed */
1883 if (host
->bus_ops
&& !host
->bus_dead
) {
1884 if (host
->bus_ops
->remove
)
1885 host
->bus_ops
->remove(host
);
1887 mmc_claim_host(host
);
1888 mmc_detach_bus(host
);
1889 mmc_release_host(host
);
1897 mmc_power_off(host
);
1900 int mmc_power_save_host(struct mmc_host
*host
)
1904 #ifdef CONFIG_MMC_DEBUG
1905 pr_info("%s: %s: powering down\n", mmc_hostname(host
), __func__
);
1910 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->power_restore
) {
1915 if (host
->bus_ops
->power_save
)
1916 ret
= host
->bus_ops
->power_save(host
);
1920 mmc_power_off(host
);
1924 EXPORT_SYMBOL(mmc_power_save_host
);
1926 int mmc_power_restore_host(struct mmc_host
*host
)
1930 #ifdef CONFIG_MMC_DEBUG
1931 pr_info("%s: %s: powering up\n", mmc_hostname(host
), __func__
);
1936 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->power_restore
) {
1942 ret
= host
->bus_ops
->power_restore(host
);
1948 EXPORT_SYMBOL(mmc_power_restore_host
);
1950 int mmc_card_awake(struct mmc_host
*host
)
1956 if (host
->bus_ops
&& !host
->bus_dead
&& host
->bus_ops
->awake
)
1957 err
= host
->bus_ops
->awake(host
);
1963 EXPORT_SYMBOL(mmc_card_awake
);
1965 int mmc_card_sleep(struct mmc_host
*host
)
1971 if (host
->bus_ops
&& !host
->bus_dead
&& host
->bus_ops
->awake
)
1972 err
= host
->bus_ops
->sleep(host
);
1978 EXPORT_SYMBOL(mmc_card_sleep
);
1980 int mmc_card_can_sleep(struct mmc_host
*host
)
1982 struct mmc_card
*card
= host
->card
;
1984 if (card
&& mmc_card_mmc(card
) && card
->ext_csd
.rev
>= 3)
1988 EXPORT_SYMBOL(mmc_card_can_sleep
);
1993 * mmc_suspend_host - suspend a host
1996 int mmc_suspend_host(struct mmc_host
*host
)
2000 if (host
->caps
& MMC_CAP_DISABLE
)
2001 cancel_delayed_work(&host
->disable
);
2002 cancel_delayed_work(&host
->detect
);
2003 mmc_flush_scheduled_work();
2006 if (host
->bus_ops
&& !host
->bus_dead
) {
2007 if (host
->bus_ops
->suspend
)
2008 err
= host
->bus_ops
->suspend(host
);
2009 if (err
== -ENOSYS
|| !host
->bus_ops
->resume
) {
2011 * We simply "remove" the card in this case.
2012 * It will be redetected on resume.
2014 if (host
->bus_ops
->remove
)
2015 host
->bus_ops
->remove(host
);
2016 mmc_claim_host(host
);
2017 mmc_detach_bus(host
);
2018 mmc_release_host(host
);
2025 if (!err
&& !mmc_card_keep_power(host
))
2026 mmc_power_off(host
);
2031 EXPORT_SYMBOL(mmc_suspend_host
);
2034 * mmc_resume_host - resume a previously suspended host
2037 int mmc_resume_host(struct mmc_host
*host
)
2042 if (host
->bus_ops
&& !host
->bus_dead
) {
2043 if (!mmc_card_keep_power(host
)) {
2045 mmc_select_voltage(host
, host
->ocr
);
2047 * Tell runtime PM core we just powered up the card,
2048 * since it still believes the card is powered off.
2049 * Note that currently runtime PM is only enabled
2050 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2052 if (mmc_card_sdio(host
->card
) &&
2053 (host
->caps
& MMC_CAP_POWER_OFF_CARD
)) {
2054 pm_runtime_disable(&host
->card
->dev
);
2055 pm_runtime_set_active(&host
->card
->dev
);
2056 pm_runtime_enable(&host
->card
->dev
);
2059 BUG_ON(!host
->bus_ops
->resume
);
2060 err
= host
->bus_ops
->resume(host
);
2062 printk(KERN_WARNING
"%s: error %d during resume "
2063 "(card was removed?)\n",
2064 mmc_hostname(host
), err
);
2068 host
->pm_flags
&= ~MMC_PM_KEEP_POWER
;
2073 EXPORT_SYMBOL(mmc_resume_host
);
2075 /* Do the card removal on suspend if card is assumed removeable
2076 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2079 int mmc_pm_notify(struct notifier_block
*notify_block
,
2080 unsigned long mode
, void *unused
)
2082 struct mmc_host
*host
= container_of(
2083 notify_block
, struct mmc_host
, pm_notify
);
2084 unsigned long flags
;
2088 case PM_HIBERNATION_PREPARE
:
2089 case PM_SUSPEND_PREPARE
:
2091 spin_lock_irqsave(&host
->lock
, flags
);
2092 host
->rescan_disable
= 1;
2093 spin_unlock_irqrestore(&host
->lock
, flags
);
2094 cancel_delayed_work_sync(&host
->detect
);
2096 if (!host
->bus_ops
|| host
->bus_ops
->suspend
)
2099 mmc_claim_host(host
);
2101 if (host
->bus_ops
->remove
)
2102 host
->bus_ops
->remove(host
);
2104 mmc_detach_bus(host
);
2105 mmc_release_host(host
);
2109 case PM_POST_SUSPEND
:
2110 case PM_POST_HIBERNATION
:
2111 case PM_POST_RESTORE
:
2113 spin_lock_irqsave(&host
->lock
, flags
);
2114 host
->rescan_disable
= 0;
2115 spin_unlock_irqrestore(&host
->lock
, flags
);
2116 mmc_detect_change(host
, 0);
2124 static int __init
mmc_init(void)
2128 workqueue
= alloc_ordered_workqueue("kmmcd", 0);
2132 ret
= mmc_register_bus();
2134 goto destroy_workqueue
;
2136 ret
= mmc_register_host_class();
2138 goto unregister_bus
;
2140 ret
= sdio_register_bus();
2142 goto unregister_host_class
;
2146 unregister_host_class
:
2147 mmc_unregister_host_class();
2149 mmc_unregister_bus();
2151 destroy_workqueue(workqueue
);
2156 static void __exit
mmc_exit(void)
2158 sdio_unregister_bus();
2159 mmc_unregister_host_class();
2160 mmc_unregister_bus();
2161 destroy_workqueue(workqueue
);
2164 subsys_initcall(mmc_init
);
2165 module_exit(mmc_exit
);
2167 MODULE_LICENSE("GPL");