Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / drivers / mtd / nand / au1550nd.c
blob60d58d3f1fcc518b1175eeba6c293b573ead9dbe
1 /*
2 * drivers/mtd/nand/au1550nd.c
4 * Copyright (C) 2004 Embedded Edge, LLC
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
12 #include <linux/slab.h>
13 #include <linux/gpio.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/nand.h>
19 #include <linux/mtd/partitions.h>
20 #include <asm/io.h>
22 #include <asm/mach-au1x00/au1xxx.h>
23 #include <asm/mach-db1x00/bcsr.h>
26 * MTD structure for NAND controller
28 static struct mtd_info *au1550_mtd = NULL;
29 static void __iomem *p_nand;
30 static int nand_width = 1; /* default x8 */
31 static void (*au1550_write_byte)(struct mtd_info *, u_char);
34 * Define partitions for flash device
36 static const struct mtd_partition partition_info[] = {
38 .name = "NAND FS 0",
39 .offset = 0,
40 .size = 8 * 1024 * 1024},
42 .name = "NAND FS 1",
43 .offset = MTDPART_OFS_APPEND,
44 .size = MTDPART_SIZ_FULL}
47 /**
48 * au_read_byte - read one byte from the chip
49 * @mtd: MTD device structure
51 * read function for 8bit buswidth
53 static u_char au_read_byte(struct mtd_info *mtd)
55 struct nand_chip *this = mtd->priv;
56 u_char ret = readb(this->IO_ADDR_R);
57 au_sync();
58 return ret;
61 /**
62 * au_write_byte - write one byte to the chip
63 * @mtd: MTD device structure
64 * @byte: pointer to data byte to write
66 * write function for 8it buswidth
68 static void au_write_byte(struct mtd_info *mtd, u_char byte)
70 struct nand_chip *this = mtd->priv;
71 writeb(byte, this->IO_ADDR_W);
72 au_sync();
75 /**
76 * au_read_byte16 - read one byte endianness aware from the chip
77 * @mtd: MTD device structure
79 * read function for 16bit buswidth with endianness conversion
81 static u_char au_read_byte16(struct mtd_info *mtd)
83 struct nand_chip *this = mtd->priv;
84 u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
85 au_sync();
86 return ret;
89 /**
90 * au_write_byte16 - write one byte endianness aware to the chip
91 * @mtd: MTD device structure
92 * @byte: pointer to data byte to write
94 * write function for 16bit buswidth with endianness conversion
96 static void au_write_byte16(struct mtd_info *mtd, u_char byte)
98 struct nand_chip *this = mtd->priv;
99 writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
100 au_sync();
104 * au_read_word - read one word from the chip
105 * @mtd: MTD device structure
107 * read function for 16bit buswidth without endianness conversion
109 static u16 au_read_word(struct mtd_info *mtd)
111 struct nand_chip *this = mtd->priv;
112 u16 ret = readw(this->IO_ADDR_R);
113 au_sync();
114 return ret;
118 * au_write_buf - write buffer to chip
119 * @mtd: MTD device structure
120 * @buf: data buffer
121 * @len: number of bytes to write
123 * write function for 8bit buswidth
125 static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
127 int i;
128 struct nand_chip *this = mtd->priv;
130 for (i = 0; i < len; i++) {
131 writeb(buf[i], this->IO_ADDR_W);
132 au_sync();
137 * au_read_buf - read chip data into buffer
138 * @mtd: MTD device structure
139 * @buf: buffer to store date
140 * @len: number of bytes to read
142 * read function for 8bit buswidth
144 static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len)
146 int i;
147 struct nand_chip *this = mtd->priv;
149 for (i = 0; i < len; i++) {
150 buf[i] = readb(this->IO_ADDR_R);
151 au_sync();
156 * au_verify_buf - Verify chip data against buffer
157 * @mtd: MTD device structure
158 * @buf: buffer containing the data to compare
159 * @len: number of bytes to compare
161 * verify function for 8bit buswidth
163 static int au_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
165 int i;
166 struct nand_chip *this = mtd->priv;
168 for (i = 0; i < len; i++) {
169 if (buf[i] != readb(this->IO_ADDR_R))
170 return -EFAULT;
171 au_sync();
174 return 0;
178 * au_write_buf16 - write buffer to chip
179 * @mtd: MTD device structure
180 * @buf: data buffer
181 * @len: number of bytes to write
183 * write function for 16bit buswidth
185 static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
187 int i;
188 struct nand_chip *this = mtd->priv;
189 u16 *p = (u16 *) buf;
190 len >>= 1;
192 for (i = 0; i < len; i++) {
193 writew(p[i], this->IO_ADDR_W);
194 au_sync();
200 * au_read_buf16 - read chip data into buffer
201 * @mtd: MTD device structure
202 * @buf: buffer to store date
203 * @len: number of bytes to read
205 * read function for 16bit buswidth
207 static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
209 int i;
210 struct nand_chip *this = mtd->priv;
211 u16 *p = (u16 *) buf;
212 len >>= 1;
214 for (i = 0; i < len; i++) {
215 p[i] = readw(this->IO_ADDR_R);
216 au_sync();
221 * au_verify_buf16 - Verify chip data against buffer
222 * @mtd: MTD device structure
223 * @buf: buffer containing the data to compare
224 * @len: number of bytes to compare
226 * verify function for 16bit buswidth
228 static int au_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
230 int i;
231 struct nand_chip *this = mtd->priv;
232 u16 *p = (u16 *) buf;
233 len >>= 1;
235 for (i = 0; i < len; i++) {
236 if (p[i] != readw(this->IO_ADDR_R))
237 return -EFAULT;
238 au_sync();
240 return 0;
243 /* Select the chip by setting nCE to low */
244 #define NAND_CTL_SETNCE 1
245 /* Deselect the chip by setting nCE to high */
246 #define NAND_CTL_CLRNCE 2
247 /* Select the command latch by setting CLE to high */
248 #define NAND_CTL_SETCLE 3
249 /* Deselect the command latch by setting CLE to low */
250 #define NAND_CTL_CLRCLE 4
251 /* Select the address latch by setting ALE to high */
252 #define NAND_CTL_SETALE 5
253 /* Deselect the address latch by setting ALE to low */
254 #define NAND_CTL_CLRALE 6
256 static void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
258 register struct nand_chip *this = mtd->priv;
260 switch (cmd) {
262 case NAND_CTL_SETCLE:
263 this->IO_ADDR_W = p_nand + MEM_STNAND_CMD;
264 break;
266 case NAND_CTL_CLRCLE:
267 this->IO_ADDR_W = p_nand + MEM_STNAND_DATA;
268 break;
270 case NAND_CTL_SETALE:
271 this->IO_ADDR_W = p_nand + MEM_STNAND_ADDR;
272 break;
274 case NAND_CTL_CLRALE:
275 this->IO_ADDR_W = p_nand + MEM_STNAND_DATA;
276 /* FIXME: Nobody knows why this is necessary,
277 * but it works only that way */
278 udelay(1);
279 break;
281 case NAND_CTL_SETNCE:
282 /* assert (force assert) chip enable */
283 au_writel((1 << (4 + NAND_CS)), MEM_STNDCTL);
284 break;
286 case NAND_CTL_CLRNCE:
287 /* deassert chip enable */
288 au_writel(0, MEM_STNDCTL);
289 break;
292 this->IO_ADDR_R = this->IO_ADDR_W;
294 /* Drain the writebuffer */
295 au_sync();
298 int au1550_device_ready(struct mtd_info *mtd)
300 int ret = (au_readl(MEM_STSTAT) & 0x1) ? 1 : 0;
301 au_sync();
302 return ret;
306 * au1550_select_chip - control -CE line
307 * Forbid driving -CE manually permitting the NAND controller to do this.
308 * Keeping -CE asserted during the whole sector reads interferes with the
309 * NOR flash and PCMCIA drivers as it causes contention on the static bus.
310 * We only have to hold -CE low for the NAND read commands since the flash
311 * chip needs it to be asserted during chip not ready time but the NAND
312 * controller keeps it released.
314 * @mtd: MTD device structure
315 * @chip: chipnumber to select, -1 for deselect
317 static void au1550_select_chip(struct mtd_info *mtd, int chip)
322 * au1550_command - Send command to NAND device
323 * @mtd: MTD device structure
324 * @command: the command to be sent
325 * @column: the column address for this command, -1 if none
326 * @page_addr: the page address for this command, -1 if none
328 static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
330 register struct nand_chip *this = mtd->priv;
331 int ce_override = 0, i;
332 ulong flags;
334 /* Begin command latch cycle */
335 au1550_hwcontrol(mtd, NAND_CTL_SETCLE);
337 * Write out the command to the device.
339 if (command == NAND_CMD_SEQIN) {
340 int readcmd;
342 if (column >= mtd->writesize) {
343 /* OOB area */
344 column -= mtd->writesize;
345 readcmd = NAND_CMD_READOOB;
346 } else if (column < 256) {
347 /* First 256 bytes --> READ0 */
348 readcmd = NAND_CMD_READ0;
349 } else {
350 column -= 256;
351 readcmd = NAND_CMD_READ1;
353 au1550_write_byte(mtd, readcmd);
355 au1550_write_byte(mtd, command);
357 /* Set ALE and clear CLE to start address cycle */
358 au1550_hwcontrol(mtd, NAND_CTL_CLRCLE);
360 if (column != -1 || page_addr != -1) {
361 au1550_hwcontrol(mtd, NAND_CTL_SETALE);
363 /* Serially input address */
364 if (column != -1) {
365 /* Adjust columns for 16 bit buswidth */
366 if (this->options & NAND_BUSWIDTH_16)
367 column >>= 1;
368 au1550_write_byte(mtd, column);
370 if (page_addr != -1) {
371 au1550_write_byte(mtd, (u8)(page_addr & 0xff));
373 if (command == NAND_CMD_READ0 ||
374 command == NAND_CMD_READ1 ||
375 command == NAND_CMD_READOOB) {
377 * NAND controller will release -CE after
378 * the last address byte is written, so we'll
379 * have to forcibly assert it. No interrupts
380 * are allowed while we do this as we don't
381 * want the NOR flash or PCMCIA drivers to
382 * steal our precious bytes of data...
384 ce_override = 1;
385 local_irq_save(flags);
386 au1550_hwcontrol(mtd, NAND_CTL_SETNCE);
389 au1550_write_byte(mtd, (u8)(page_addr >> 8));
391 /* One more address cycle for devices > 32MiB */
392 if (this->chipsize > (32 << 20))
393 au1550_write_byte(mtd, (u8)((page_addr >> 16) & 0x0f));
395 /* Latch in address */
396 au1550_hwcontrol(mtd, NAND_CTL_CLRALE);
400 * Program and erase have their own busy handlers.
401 * Status and sequential in need no delay.
403 switch (command) {
405 case NAND_CMD_PAGEPROG:
406 case NAND_CMD_ERASE1:
407 case NAND_CMD_ERASE2:
408 case NAND_CMD_SEQIN:
409 case NAND_CMD_STATUS:
410 return;
412 case NAND_CMD_RESET:
413 break;
415 case NAND_CMD_READ0:
416 case NAND_CMD_READ1:
417 case NAND_CMD_READOOB:
418 /* Check if we're really driving -CE low (just in case) */
419 if (unlikely(!ce_override))
420 break;
422 /* Apply a short delay always to ensure that we do wait tWB. */
423 ndelay(100);
424 /* Wait for a chip to become ready... */
425 for (i = this->chip_delay; !this->dev_ready(mtd) && i > 0; --i)
426 udelay(1);
428 /* Release -CE and re-enable interrupts. */
429 au1550_hwcontrol(mtd, NAND_CTL_CLRNCE);
430 local_irq_restore(flags);
431 return;
433 /* Apply this short delay always to ensure that we do wait tWB. */
434 ndelay(100);
436 while(!this->dev_ready(mtd));
441 * Main initialization routine
443 static int __init au1xxx_nand_init(void)
445 struct nand_chip *this;
446 u16 boot_swapboot = 0; /* default value */
447 int retval;
448 u32 mem_staddr;
449 u32 nand_phys;
451 /* Allocate memory for MTD device structure and private data */
452 au1550_mtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
453 if (!au1550_mtd) {
454 printk("Unable to allocate NAND MTD dev structure.\n");
455 return -ENOMEM;
458 /* Get pointer to private data */
459 this = (struct nand_chip *)(&au1550_mtd[1]);
461 /* Link the private data with the MTD structure */
462 au1550_mtd->priv = this;
463 au1550_mtd->owner = THIS_MODULE;
466 /* MEM_STNDCTL: disable ints, disable nand boot */
467 au_writel(0, MEM_STNDCTL);
469 #ifdef CONFIG_MIPS_PB1550
470 /* set gpio206 high */
471 gpio_direction_input(206);
473 boot_swapboot = (au_readl(MEM_STSTAT) & (0x7 << 1)) | ((bcsr_read(BCSR_STATUS) >> 6) & 0x1);
475 switch (boot_swapboot) {
476 case 0:
477 case 2:
478 case 8:
479 case 0xC:
480 case 0xD:
481 /* x16 NAND Flash */
482 nand_width = 0;
483 break;
484 case 1:
485 case 9:
486 case 3:
487 case 0xE:
488 case 0xF:
489 /* x8 NAND Flash */
490 nand_width = 1;
491 break;
492 default:
493 printk("Pb1550 NAND: bad boot:swap\n");
494 retval = -EINVAL;
495 goto outmem;
497 #endif
499 /* Configure chip-select; normally done by boot code, e.g. YAMON */
500 #ifdef NAND_STCFG
501 if (NAND_CS == 0) {
502 au_writel(NAND_STCFG, MEM_STCFG0);
503 au_writel(NAND_STTIME, MEM_STTIME0);
504 au_writel(NAND_STADDR, MEM_STADDR0);
506 if (NAND_CS == 1) {
507 au_writel(NAND_STCFG, MEM_STCFG1);
508 au_writel(NAND_STTIME, MEM_STTIME1);
509 au_writel(NAND_STADDR, MEM_STADDR1);
511 if (NAND_CS == 2) {
512 au_writel(NAND_STCFG, MEM_STCFG2);
513 au_writel(NAND_STTIME, MEM_STTIME2);
514 au_writel(NAND_STADDR, MEM_STADDR2);
516 if (NAND_CS == 3) {
517 au_writel(NAND_STCFG, MEM_STCFG3);
518 au_writel(NAND_STTIME, MEM_STTIME3);
519 au_writel(NAND_STADDR, MEM_STADDR3);
521 #endif
523 /* Locate NAND chip-select in order to determine NAND phys address */
524 mem_staddr = 0x00000000;
525 if (((au_readl(MEM_STCFG0) & 0x7) == 0x5) && (NAND_CS == 0))
526 mem_staddr = au_readl(MEM_STADDR0);
527 else if (((au_readl(MEM_STCFG1) & 0x7) == 0x5) && (NAND_CS == 1))
528 mem_staddr = au_readl(MEM_STADDR1);
529 else if (((au_readl(MEM_STCFG2) & 0x7) == 0x5) && (NAND_CS == 2))
530 mem_staddr = au_readl(MEM_STADDR2);
531 else if (((au_readl(MEM_STCFG3) & 0x7) == 0x5) && (NAND_CS == 3))
532 mem_staddr = au_readl(MEM_STADDR3);
534 if (mem_staddr == 0x00000000) {
535 printk("Au1xxx NAND: ERROR WITH NAND CHIP-SELECT\n");
536 kfree(au1550_mtd);
537 return 1;
539 nand_phys = (mem_staddr << 4) & 0xFFFC0000;
541 p_nand = ioremap(nand_phys, 0x1000);
543 /* make controller and MTD agree */
544 if (NAND_CS == 0)
545 nand_width = au_readl(MEM_STCFG0) & (1 << 22);
546 if (NAND_CS == 1)
547 nand_width = au_readl(MEM_STCFG1) & (1 << 22);
548 if (NAND_CS == 2)
549 nand_width = au_readl(MEM_STCFG2) & (1 << 22);
550 if (NAND_CS == 3)
551 nand_width = au_readl(MEM_STCFG3) & (1 << 22);
553 /* Set address of hardware control function */
554 this->dev_ready = au1550_device_ready;
555 this->select_chip = au1550_select_chip;
556 this->cmdfunc = au1550_command;
558 /* 30 us command delay time */
559 this->chip_delay = 30;
560 this->ecc.mode = NAND_ECC_SOFT;
562 this->options = NAND_NO_AUTOINCR;
564 if (!nand_width)
565 this->options |= NAND_BUSWIDTH_16;
567 this->read_byte = (!nand_width) ? au_read_byte16 : au_read_byte;
568 au1550_write_byte = (!nand_width) ? au_write_byte16 : au_write_byte;
569 this->read_word = au_read_word;
570 this->write_buf = (!nand_width) ? au_write_buf16 : au_write_buf;
571 this->read_buf = (!nand_width) ? au_read_buf16 : au_read_buf;
572 this->verify_buf = (!nand_width) ? au_verify_buf16 : au_verify_buf;
574 /* Scan to find existence of the device */
575 if (nand_scan(au1550_mtd, 1)) {
576 retval = -ENXIO;
577 goto outio;
580 /* Register the partitions */
581 mtd_device_register(au1550_mtd, partition_info,
582 ARRAY_SIZE(partition_info));
584 return 0;
586 outio:
587 iounmap(p_nand);
589 outmem:
590 kfree(au1550_mtd);
591 return retval;
594 module_init(au1xxx_nand_init);
597 * Clean up routine
599 static void __exit au1550_cleanup(void)
601 /* Release resources, unregister device */
602 nand_release(au1550_mtd);
604 /* Free the MTD device structure */
605 kfree(au1550_mtd);
607 /* Unmap */
608 iounmap(p_nand);
611 module_exit(au1550_cleanup);
613 MODULE_LICENSE("GPL");
614 MODULE_AUTHOR("Embedded Edge, LLC");
615 MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");