2 * drivers/mtd/nand/diskonchip.c
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/rslib.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/mtd/doc2000.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/mtd/inftl.h>
34 #include <linux/module.h>
36 /* Where to look for the devices? */
37 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
38 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
41 static unsigned long __initdata doc_locations
[] = {
42 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
43 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
44 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
45 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
46 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
47 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
48 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
49 #else /* CONFIG_MTD_DOCPROBE_HIGH */
50 0xc8000, 0xca000, 0xcc000, 0xce000,
51 0xd0000, 0xd2000, 0xd4000, 0xd6000,
52 0xd8000, 0xda000, 0xdc000, 0xde000,
53 0xe0000, 0xe2000, 0xe4000, 0xe6000,
54 0xe8000, 0xea000, 0xec000, 0xee000,
55 #endif /* CONFIG_MTD_DOCPROBE_HIGH */
57 #warning Unknown architecture for DiskOnChip. No default probe locations defined
61 static struct mtd_info
*doclist
= NULL
;
64 void __iomem
*virtadr
;
65 unsigned long physadr
;
68 int chips_per_floor
; /* The number of chips detected on each floor */
73 struct mtd_info
*nextdoc
;
76 /* This is the syndrome computed by the HW ecc generator upon reading an empty
77 page, one with all 0xff for data and stored ecc code. */
78 static u_char empty_read_syndrome
[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
80 /* This is the ecc value computed by the HW ecc generator upon writing an empty
81 page, one with all 0xff for data. */
82 static u_char empty_write_ecc
[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
84 #define INFTL_BBT_RESERVED_BLOCKS 4
86 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
87 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
88 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
90 static void doc200x_hwcontrol(struct mtd_info
*mtd
, int cmd
,
91 unsigned int bitmask
);
92 static void doc200x_select_chip(struct mtd_info
*mtd
, int chip
);
95 module_param(debug
, int, 0);
97 static int try_dword
= 1;
98 module_param(try_dword
, int, 0);
100 static int no_ecc_failures
= 0;
101 module_param(no_ecc_failures
, int, 0);
103 static int no_autopart
= 0;
104 module_param(no_autopart
, int, 0);
106 static int show_firmware_partition
= 0;
107 module_param(show_firmware_partition
, int, 0);
109 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
110 static int inftl_bbt_write
= 1;
112 static int inftl_bbt_write
= 0;
114 module_param(inftl_bbt_write
, int, 0);
116 static unsigned long doc_config_location
= CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
;
117 module_param(doc_config_location
, ulong
, 0);
118 MODULE_PARM_DESC(doc_config_location
, "Physical memory address at which to probe for DiskOnChip");
120 /* Sector size for HW ECC */
121 #define SECTOR_SIZE 512
122 /* The sector bytes are packed into NB_DATA 10 bit words */
123 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
124 /* Number of roots */
126 /* First consective root */
128 /* Number of symbols */
131 /* the Reed Solomon control structure */
132 static struct rs_control
*rs_decoder
;
135 * The HW decoder in the DoC ASIC's provides us a error syndrome,
136 * which we must convert to a standard syndrome usable by the generic
137 * Reed-Solomon library code.
139 * Fabrice Bellard figured this out in the old docecc code. I added
140 * some comments, improved a minor bit and converted it to make use
141 * of the generic Reed-Solomon library. tglx
143 static int doc_ecc_decode(struct rs_control
*rs
, uint8_t *data
, uint8_t *ecc
)
145 int i
, j
, nerr
, errpos
[8];
147 uint16_t ds
[4], s
[5], tmp
, errval
[8], syn
[4];
149 memset(syn
, 0, sizeof(syn
));
150 /* Convert the ecc bytes into words */
151 ds
[0] = ((ecc
[4] & 0xff) >> 0) | ((ecc
[5] & 0x03) << 8);
152 ds
[1] = ((ecc
[5] & 0xfc) >> 2) | ((ecc
[2] & 0x0f) << 6);
153 ds
[2] = ((ecc
[2] & 0xf0) >> 4) | ((ecc
[3] & 0x3f) << 4);
154 ds
[3] = ((ecc
[3] & 0xc0) >> 6) | ((ecc
[0] & 0xff) << 2);
157 /* Initialize the syndrome buffer */
158 for (i
= 0; i
< NROOTS
; i
++)
162 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
163 * where x = alpha^(FCR + i)
165 for (j
= 1; j
< NROOTS
; j
++) {
168 tmp
= rs
->index_of
[ds
[j
]];
169 for (i
= 0; i
< NROOTS
; i
++)
170 s
[i
] ^= rs
->alpha_to
[rs_modnn(rs
, tmp
+ (FCR
+ i
) * j
)];
173 /* Calc syn[i] = s[i] / alpha^(v + i) */
174 for (i
= 0; i
< NROOTS
; i
++) {
176 syn
[i
] = rs_modnn(rs
, rs
->index_of
[s
[i
]] + (NN
- FCR
- i
));
178 /* Call the decoder library */
179 nerr
= decode_rs16(rs
, NULL
, NULL
, 1019, syn
, 0, errpos
, 0, errval
);
181 /* Incorrectable errors ? */
186 * Correct the errors. The bitpositions are a bit of magic,
187 * but they are given by the design of the de/encoder circuit
190 for (i
= 0; i
< nerr
; i
++) {
191 int index
, bitpos
, pos
= 1015 - errpos
[i
];
193 if (pos
>= NB_DATA
&& pos
< 1019)
196 /* extract bit position (MSB first) */
197 pos
= 10 * (NB_DATA
- 1 - pos
) - 6;
198 /* now correct the following 10 bits. At most two bytes
199 can be modified since pos is even */
200 index
= (pos
>> 3) ^ 1;
202 if ((index
>= 0 && index
< SECTOR_SIZE
) || index
== (SECTOR_SIZE
+ 1)) {
203 val
= (uint8_t) (errval
[i
] >> (2 + bitpos
));
205 if (index
< SECTOR_SIZE
)
208 index
= ((pos
>> 3) + 1) ^ 1;
209 bitpos
= (bitpos
+ 10) & 7;
212 if ((index
>= 0 && index
< SECTOR_SIZE
) || index
== (SECTOR_SIZE
+ 1)) {
213 val
= (uint8_t) (errval
[i
] << (8 - bitpos
));
215 if (index
< SECTOR_SIZE
)
220 /* If the parity is wrong, no rescue possible */
221 return parity
? -EBADMSG
: nerr
;
224 static void DoC_Delay(struct doc_priv
*doc
, unsigned short cycles
)
229 for (i
= 0; i
< cycles
; i
++) {
230 if (DoC_is_Millennium(doc
))
231 dummy
= ReadDOC(doc
->virtadr
, NOP
);
232 else if (DoC_is_MillenniumPlus(doc
))
233 dummy
= ReadDOC(doc
->virtadr
, Mplus_NOP
);
235 dummy
= ReadDOC(doc
->virtadr
, DOCStatus
);
240 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
242 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
243 static int _DoC_WaitReady(struct doc_priv
*doc
)
245 void __iomem
*docptr
= doc
->virtadr
;
246 unsigned long timeo
= jiffies
+ (HZ
* 10);
249 printk("_DoC_WaitReady...\n");
250 /* Out-of-line routine to wait for chip response */
251 if (DoC_is_MillenniumPlus(doc
)) {
252 while ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
) {
253 if (time_after(jiffies
, timeo
)) {
254 printk("_DoC_WaitReady timed out.\n");
261 while (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
)) {
262 if (time_after(jiffies
, timeo
)) {
263 printk("_DoC_WaitReady timed out.\n");
274 static inline int DoC_WaitReady(struct doc_priv
*doc
)
276 void __iomem
*docptr
= doc
->virtadr
;
279 if (DoC_is_MillenniumPlus(doc
)) {
282 if ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
)
283 /* Call the out-of-line routine to wait */
284 ret
= _DoC_WaitReady(doc
);
288 if (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
))
289 /* Call the out-of-line routine to wait */
290 ret
= _DoC_WaitReady(doc
);
295 printk("DoC_WaitReady OK\n");
299 static void doc2000_write_byte(struct mtd_info
*mtd
, u_char datum
)
301 struct nand_chip
*this = mtd
->priv
;
302 struct doc_priv
*doc
= this->priv
;
303 void __iomem
*docptr
= doc
->virtadr
;
306 printk("write_byte %02x\n", datum
);
307 WriteDOC(datum
, docptr
, CDSNSlowIO
);
308 WriteDOC(datum
, docptr
, 2k_CDSN_IO
);
311 static u_char
doc2000_read_byte(struct mtd_info
*mtd
)
313 struct nand_chip
*this = mtd
->priv
;
314 struct doc_priv
*doc
= this->priv
;
315 void __iomem
*docptr
= doc
->virtadr
;
318 ReadDOC(docptr
, CDSNSlowIO
);
320 ret
= ReadDOC(docptr
, 2k_CDSN_IO
);
322 printk("read_byte returns %02x\n", ret
);
326 static void doc2000_writebuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
328 struct nand_chip
*this = mtd
->priv
;
329 struct doc_priv
*doc
= this->priv
;
330 void __iomem
*docptr
= doc
->virtadr
;
333 printk("writebuf of %d bytes: ", len
);
334 for (i
= 0; i
< len
; i
++) {
335 WriteDOC_(buf
[i
], docptr
, DoC_2k_CDSN_IO
+ i
);
337 printk("%02x ", buf
[i
]);
343 static void doc2000_readbuf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
345 struct nand_chip
*this = mtd
->priv
;
346 struct doc_priv
*doc
= this->priv
;
347 void __iomem
*docptr
= doc
->virtadr
;
351 printk("readbuf of %d bytes: ", len
);
353 for (i
= 0; i
< len
; i
++) {
354 buf
[i
] = ReadDOC(docptr
, 2k_CDSN_IO
+ i
);
358 static void doc2000_readbuf_dword(struct mtd_info
*mtd
, u_char
*buf
, int len
)
360 struct nand_chip
*this = mtd
->priv
;
361 struct doc_priv
*doc
= this->priv
;
362 void __iomem
*docptr
= doc
->virtadr
;
366 printk("readbuf_dword of %d bytes: ", len
);
368 if (unlikely((((unsigned long)buf
) | len
) & 3)) {
369 for (i
= 0; i
< len
; i
++) {
370 *(uint8_t *) (&buf
[i
]) = ReadDOC(docptr
, 2k_CDSN_IO
+ i
);
373 for (i
= 0; i
< len
; i
+= 4) {
374 *(uint32_t *) (&buf
[i
]) = readl(docptr
+ DoC_2k_CDSN_IO
+ i
);
379 static int doc2000_verifybuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
381 struct nand_chip
*this = mtd
->priv
;
382 struct doc_priv
*doc
= this->priv
;
383 void __iomem
*docptr
= doc
->virtadr
;
386 for (i
= 0; i
< len
; i
++)
387 if (buf
[i
] != ReadDOC(docptr
, 2k_CDSN_IO
))
392 static uint16_t __init
doc200x_ident_chip(struct mtd_info
*mtd
, int nr
)
394 struct nand_chip
*this = mtd
->priv
;
395 struct doc_priv
*doc
= this->priv
;
398 doc200x_select_chip(mtd
, nr
);
399 doc200x_hwcontrol(mtd
, NAND_CMD_READID
,
400 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
401 doc200x_hwcontrol(mtd
, 0, NAND_CTRL_ALE
| NAND_CTRL_CHANGE
);
402 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
404 /* We can't use dev_ready here, but at least we wait for the
405 * command to complete
409 ret
= this->read_byte(mtd
) << 8;
410 ret
|= this->read_byte(mtd
);
412 if (doc
->ChipID
== DOC_ChipID_Doc2k
&& try_dword
&& !nr
) {
413 /* First chip probe. See if we get same results by 32-bit access */
418 void __iomem
*docptr
= doc
->virtadr
;
420 doc200x_hwcontrol(mtd
, NAND_CMD_READID
,
421 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
422 doc200x_hwcontrol(mtd
, 0, NAND_CTRL_ALE
| NAND_CTRL_CHANGE
);
423 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
,
424 NAND_NCE
| NAND_CTRL_CHANGE
);
428 ident
.dword
= readl(docptr
+ DoC_2k_CDSN_IO
);
429 if (((ident
.byte
[0] << 8) | ident
.byte
[1]) == ret
) {
430 printk(KERN_INFO
"DiskOnChip 2000 responds to DWORD access\n");
431 this->read_buf
= &doc2000_readbuf_dword
;
438 static void __init
doc2000_count_chips(struct mtd_info
*mtd
)
440 struct nand_chip
*this = mtd
->priv
;
441 struct doc_priv
*doc
= this->priv
;
445 /* Max 4 chips per floor on DiskOnChip 2000 */
446 doc
->chips_per_floor
= 4;
448 /* Find out what the first chip is */
449 mfrid
= doc200x_ident_chip(mtd
, 0);
451 /* Find how many chips in each floor. */
452 for (i
= 1; i
< 4; i
++) {
453 if (doc200x_ident_chip(mtd
, i
) != mfrid
)
456 doc
->chips_per_floor
= i
;
457 printk(KERN_DEBUG
"Detected %d chips per floor.\n", i
);
460 static int doc200x_wait(struct mtd_info
*mtd
, struct nand_chip
*this)
462 struct doc_priv
*doc
= this->priv
;
467 this->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
469 status
= (int)this->read_byte(mtd
);
474 static void doc2001_write_byte(struct mtd_info
*mtd
, u_char datum
)
476 struct nand_chip
*this = mtd
->priv
;
477 struct doc_priv
*doc
= this->priv
;
478 void __iomem
*docptr
= doc
->virtadr
;
480 WriteDOC(datum
, docptr
, CDSNSlowIO
);
481 WriteDOC(datum
, docptr
, Mil_CDSN_IO
);
482 WriteDOC(datum
, docptr
, WritePipeTerm
);
485 static u_char
doc2001_read_byte(struct mtd_info
*mtd
)
487 struct nand_chip
*this = mtd
->priv
;
488 struct doc_priv
*doc
= this->priv
;
489 void __iomem
*docptr
= doc
->virtadr
;
491 //ReadDOC(docptr, CDSNSlowIO);
492 /* 11.4.5 -- delay twice to allow extended length cycle */
494 ReadDOC(docptr
, ReadPipeInit
);
495 //return ReadDOC(docptr, Mil_CDSN_IO);
496 return ReadDOC(docptr
, LastDataRead
);
499 static void doc2001_writebuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
501 struct nand_chip
*this = mtd
->priv
;
502 struct doc_priv
*doc
= this->priv
;
503 void __iomem
*docptr
= doc
->virtadr
;
506 for (i
= 0; i
< len
; i
++)
507 WriteDOC_(buf
[i
], docptr
, DoC_Mil_CDSN_IO
+ i
);
508 /* Terminate write pipeline */
509 WriteDOC(0x00, docptr
, WritePipeTerm
);
512 static void doc2001_readbuf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
514 struct nand_chip
*this = mtd
->priv
;
515 struct doc_priv
*doc
= this->priv
;
516 void __iomem
*docptr
= doc
->virtadr
;
519 /* Start read pipeline */
520 ReadDOC(docptr
, ReadPipeInit
);
522 for (i
= 0; i
< len
- 1; i
++)
523 buf
[i
] = ReadDOC(docptr
, Mil_CDSN_IO
+ (i
& 0xff));
525 /* Terminate read pipeline */
526 buf
[i
] = ReadDOC(docptr
, LastDataRead
);
529 static int doc2001_verifybuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
531 struct nand_chip
*this = mtd
->priv
;
532 struct doc_priv
*doc
= this->priv
;
533 void __iomem
*docptr
= doc
->virtadr
;
536 /* Start read pipeline */
537 ReadDOC(docptr
, ReadPipeInit
);
539 for (i
= 0; i
< len
- 1; i
++)
540 if (buf
[i
] != ReadDOC(docptr
, Mil_CDSN_IO
)) {
541 ReadDOC(docptr
, LastDataRead
);
544 if (buf
[i
] != ReadDOC(docptr
, LastDataRead
))
549 static u_char
doc2001plus_read_byte(struct mtd_info
*mtd
)
551 struct nand_chip
*this = mtd
->priv
;
552 struct doc_priv
*doc
= this->priv
;
553 void __iomem
*docptr
= doc
->virtadr
;
556 ReadDOC(docptr
, Mplus_ReadPipeInit
);
557 ReadDOC(docptr
, Mplus_ReadPipeInit
);
558 ret
= ReadDOC(docptr
, Mplus_LastDataRead
);
560 printk("read_byte returns %02x\n", ret
);
564 static void doc2001plus_writebuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
566 struct nand_chip
*this = mtd
->priv
;
567 struct doc_priv
*doc
= this->priv
;
568 void __iomem
*docptr
= doc
->virtadr
;
572 printk("writebuf of %d bytes: ", len
);
573 for (i
= 0; i
< len
; i
++) {
574 WriteDOC_(buf
[i
], docptr
, DoC_Mil_CDSN_IO
+ i
);
576 printk("%02x ", buf
[i
]);
582 static void doc2001plus_readbuf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
584 struct nand_chip
*this = mtd
->priv
;
585 struct doc_priv
*doc
= this->priv
;
586 void __iomem
*docptr
= doc
->virtadr
;
590 printk("readbuf of %d bytes: ", len
);
592 /* Start read pipeline */
593 ReadDOC(docptr
, Mplus_ReadPipeInit
);
594 ReadDOC(docptr
, Mplus_ReadPipeInit
);
596 for (i
= 0; i
< len
- 2; i
++) {
597 buf
[i
] = ReadDOC(docptr
, Mil_CDSN_IO
);
599 printk("%02x ", buf
[i
]);
602 /* Terminate read pipeline */
603 buf
[len
- 2] = ReadDOC(docptr
, Mplus_LastDataRead
);
605 printk("%02x ", buf
[len
- 2]);
606 buf
[len
- 1] = ReadDOC(docptr
, Mplus_LastDataRead
);
608 printk("%02x ", buf
[len
- 1]);
613 static int doc2001plus_verifybuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
615 struct nand_chip
*this = mtd
->priv
;
616 struct doc_priv
*doc
= this->priv
;
617 void __iomem
*docptr
= doc
->virtadr
;
621 printk("verifybuf of %d bytes: ", len
);
623 /* Start read pipeline */
624 ReadDOC(docptr
, Mplus_ReadPipeInit
);
625 ReadDOC(docptr
, Mplus_ReadPipeInit
);
627 for (i
= 0; i
< len
- 2; i
++)
628 if (buf
[i
] != ReadDOC(docptr
, Mil_CDSN_IO
)) {
629 ReadDOC(docptr
, Mplus_LastDataRead
);
630 ReadDOC(docptr
, Mplus_LastDataRead
);
633 if (buf
[len
- 2] != ReadDOC(docptr
, Mplus_LastDataRead
))
635 if (buf
[len
- 1] != ReadDOC(docptr
, Mplus_LastDataRead
))
640 static void doc2001plus_select_chip(struct mtd_info
*mtd
, int chip
)
642 struct nand_chip
*this = mtd
->priv
;
643 struct doc_priv
*doc
= this->priv
;
644 void __iomem
*docptr
= doc
->virtadr
;
648 printk("select chip (%d)\n", chip
);
651 /* Disable flash internally */
652 WriteDOC(0, docptr
, Mplus_FlashSelect
);
656 floor
= chip
/ doc
->chips_per_floor
;
657 chip
-= (floor
* doc
->chips_per_floor
);
659 /* Assert ChipEnable and deassert WriteProtect */
660 WriteDOC((DOC_FLASH_CE
), docptr
, Mplus_FlashSelect
);
661 this->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
664 doc
->curfloor
= floor
;
667 static void doc200x_select_chip(struct mtd_info
*mtd
, int chip
)
669 struct nand_chip
*this = mtd
->priv
;
670 struct doc_priv
*doc
= this->priv
;
671 void __iomem
*docptr
= doc
->virtadr
;
675 printk("select chip (%d)\n", chip
);
680 floor
= chip
/ doc
->chips_per_floor
;
681 chip
-= (floor
* doc
->chips_per_floor
);
683 /* 11.4.4 -- deassert CE before changing chip */
684 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
686 WriteDOC(floor
, docptr
, FloorSelect
);
687 WriteDOC(chip
, docptr
, CDSNDeviceSelect
);
689 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
692 doc
->curfloor
= floor
;
695 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
697 static void doc200x_hwcontrol(struct mtd_info
*mtd
, int cmd
,
700 struct nand_chip
*this = mtd
->priv
;
701 struct doc_priv
*doc
= this->priv
;
702 void __iomem
*docptr
= doc
->virtadr
;
704 if (ctrl
& NAND_CTRL_CHANGE
) {
705 doc
->CDSNControl
&= ~CDSN_CTRL_MSK
;
706 doc
->CDSNControl
|= ctrl
& CDSN_CTRL_MSK
;
708 printk("hwcontrol(%d): %02x\n", cmd
, doc
->CDSNControl
);
709 WriteDOC(doc
->CDSNControl
, docptr
, CDSNControl
);
710 /* 11.4.3 -- 4 NOPs after CSDNControl write */
713 if (cmd
!= NAND_CMD_NONE
) {
714 if (DoC_is_2000(doc
))
715 doc2000_write_byte(mtd
, cmd
);
717 doc2001_write_byte(mtd
, cmd
);
721 static void doc2001plus_command(struct mtd_info
*mtd
, unsigned command
, int column
, int page_addr
)
723 struct nand_chip
*this = mtd
->priv
;
724 struct doc_priv
*doc
= this->priv
;
725 void __iomem
*docptr
= doc
->virtadr
;
728 * Must terminate write pipeline before sending any commands
731 if (command
== NAND_CMD_PAGEPROG
) {
732 WriteDOC(0x00, docptr
, Mplus_WritePipeTerm
);
733 WriteDOC(0x00, docptr
, Mplus_WritePipeTerm
);
737 * Write out the command to the device.
739 if (command
== NAND_CMD_SEQIN
) {
742 if (column
>= mtd
->writesize
) {
744 column
-= mtd
->writesize
;
745 readcmd
= NAND_CMD_READOOB
;
746 } else if (column
< 256) {
747 /* First 256 bytes --> READ0 */
748 readcmd
= NAND_CMD_READ0
;
751 readcmd
= NAND_CMD_READ1
;
753 WriteDOC(readcmd
, docptr
, Mplus_FlashCmd
);
755 WriteDOC(command
, docptr
, Mplus_FlashCmd
);
756 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
757 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
759 if (column
!= -1 || page_addr
!= -1) {
760 /* Serially input address */
762 /* Adjust columns for 16 bit buswidth */
763 if (this->options
& NAND_BUSWIDTH_16
)
765 WriteDOC(column
, docptr
, Mplus_FlashAddress
);
767 if (page_addr
!= -1) {
768 WriteDOC((unsigned char)(page_addr
& 0xff), docptr
, Mplus_FlashAddress
);
769 WriteDOC((unsigned char)((page_addr
>> 8) & 0xff), docptr
, Mplus_FlashAddress
);
770 /* One more address cycle for higher density devices */
771 if (this->chipsize
& 0x0c000000) {
772 WriteDOC((unsigned char)((page_addr
>> 16) & 0x0f), docptr
, Mplus_FlashAddress
);
773 printk("high density\n");
776 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
777 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
779 if (command
== NAND_CMD_READ0
|| command
== NAND_CMD_READ1
||
780 command
== NAND_CMD_READOOB
|| command
== NAND_CMD_READID
)
781 WriteDOC(0, docptr
, Mplus_FlashControl
);
785 * program and erase have their own busy handlers
786 * status and sequential in needs no delay
790 case NAND_CMD_PAGEPROG
:
791 case NAND_CMD_ERASE1
:
792 case NAND_CMD_ERASE2
:
794 case NAND_CMD_STATUS
:
800 udelay(this->chip_delay
);
801 WriteDOC(NAND_CMD_STATUS
, docptr
, Mplus_FlashCmd
);
802 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
803 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
804 while (!(this->read_byte(mtd
) & 0x40)) ;
807 /* This applies to read commands */
810 * If we don't have access to the busy pin, we apply the given
813 if (!this->dev_ready
) {
814 udelay(this->chip_delay
);
819 /* Apply this short delay always to ensure that we do wait tWB in
820 * any case on any machine. */
822 /* wait until command is processed */
823 while (!this->dev_ready(mtd
)) ;
826 static int doc200x_dev_ready(struct mtd_info
*mtd
)
828 struct nand_chip
*this = mtd
->priv
;
829 struct doc_priv
*doc
= this->priv
;
830 void __iomem
*docptr
= doc
->virtadr
;
832 if (DoC_is_MillenniumPlus(doc
)) {
833 /* 11.4.2 -- must NOP four times before checking FR/B# */
835 if ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
) {
837 printk("not ready\n");
841 printk("was ready\n");
844 /* 11.4.2 -- must NOP four times before checking FR/B# */
846 if (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
)) {
848 printk("not ready\n");
851 /* 11.4.2 -- Must NOP twice if it's ready */
854 printk("was ready\n");
859 static int doc200x_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
861 /* This is our last resort if we couldn't find or create a BBT. Just
862 pretend all blocks are good. */
866 static void doc200x_enable_hwecc(struct mtd_info
*mtd
, int mode
)
868 struct nand_chip
*this = mtd
->priv
;
869 struct doc_priv
*doc
= this->priv
;
870 void __iomem
*docptr
= doc
->virtadr
;
872 /* Prime the ECC engine */
875 WriteDOC(DOC_ECC_RESET
, docptr
, ECCConf
);
876 WriteDOC(DOC_ECC_EN
, docptr
, ECCConf
);
879 WriteDOC(DOC_ECC_RESET
, docptr
, ECCConf
);
880 WriteDOC(DOC_ECC_EN
| DOC_ECC_RW
, docptr
, ECCConf
);
885 static void doc2001plus_enable_hwecc(struct mtd_info
*mtd
, int mode
)
887 struct nand_chip
*this = mtd
->priv
;
888 struct doc_priv
*doc
= this->priv
;
889 void __iomem
*docptr
= doc
->virtadr
;
891 /* Prime the ECC engine */
894 WriteDOC(DOC_ECC_RESET
, docptr
, Mplus_ECCConf
);
895 WriteDOC(DOC_ECC_EN
, docptr
, Mplus_ECCConf
);
898 WriteDOC(DOC_ECC_RESET
, docptr
, Mplus_ECCConf
);
899 WriteDOC(DOC_ECC_EN
| DOC_ECC_RW
, docptr
, Mplus_ECCConf
);
904 /* This code is only called on write */
905 static int doc200x_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
, unsigned char *ecc_code
)
907 struct nand_chip
*this = mtd
->priv
;
908 struct doc_priv
*doc
= this->priv
;
909 void __iomem
*docptr
= doc
->virtadr
;
913 /* flush the pipeline */
914 if (DoC_is_2000(doc
)) {
915 WriteDOC(doc
->CDSNControl
& ~CDSN_CTRL_FLASH_IO
, docptr
, CDSNControl
);
916 WriteDOC(0, docptr
, 2k_CDSN_IO
);
917 WriteDOC(0, docptr
, 2k_CDSN_IO
);
918 WriteDOC(0, docptr
, 2k_CDSN_IO
);
919 WriteDOC(doc
->CDSNControl
, docptr
, CDSNControl
);
920 } else if (DoC_is_MillenniumPlus(doc
)) {
921 WriteDOC(0, docptr
, Mplus_NOP
);
922 WriteDOC(0, docptr
, Mplus_NOP
);
923 WriteDOC(0, docptr
, Mplus_NOP
);
925 WriteDOC(0, docptr
, NOP
);
926 WriteDOC(0, docptr
, NOP
);
927 WriteDOC(0, docptr
, NOP
);
930 for (i
= 0; i
< 6; i
++) {
931 if (DoC_is_MillenniumPlus(doc
))
932 ecc_code
[i
] = ReadDOC_(docptr
, DoC_Mplus_ECCSyndrome0
+ i
);
934 ecc_code
[i
] = ReadDOC_(docptr
, DoC_ECCSyndrome0
+ i
);
935 if (ecc_code
[i
] != empty_write_ecc
[i
])
938 if (DoC_is_MillenniumPlus(doc
))
939 WriteDOC(DOC_ECC_DIS
, docptr
, Mplus_ECCConf
);
941 WriteDOC(DOC_ECC_DIS
, docptr
, ECCConf
);
943 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
945 /* Note: this somewhat expensive test should not be triggered
946 often. It could be optimized away by examining the data in
947 the writebuf routine, and remembering the result. */
948 for (i
= 0; i
< 512; i
++) {
955 /* If emptymatch still =1, we do have an all-0xff data buffer.
956 Return all-0xff ecc value instead of the computed one, so
957 it'll look just like a freshly-erased page. */
959 memset(ecc_code
, 0xff, 6);
964 static int doc200x_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
965 u_char
*read_ecc
, u_char
*isnull
)
968 struct nand_chip
*this = mtd
->priv
;
969 struct doc_priv
*doc
= this->priv
;
970 void __iomem
*docptr
= doc
->virtadr
;
972 volatile u_char dummy
;
975 /* flush the pipeline */
976 if (DoC_is_2000(doc
)) {
977 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
978 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
979 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
980 } else if (DoC_is_MillenniumPlus(doc
)) {
981 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
982 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
983 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
985 dummy
= ReadDOC(docptr
, ECCConf
);
986 dummy
= ReadDOC(docptr
, ECCConf
);
987 dummy
= ReadDOC(docptr
, ECCConf
);
990 /* Error occurred ? */
992 for (i
= 0; i
< 6; i
++) {
993 if (DoC_is_MillenniumPlus(doc
))
994 calc_ecc
[i
] = ReadDOC_(docptr
, DoC_Mplus_ECCSyndrome0
+ i
);
996 calc_ecc
[i
] = ReadDOC_(docptr
, DoC_ECCSyndrome0
+ i
);
997 if (calc_ecc
[i
] != empty_read_syndrome
[i
])
1000 /* If emptymatch=1, the read syndrome is consistent with an
1001 all-0xff data and stored ecc block. Check the stored ecc. */
1003 for (i
= 0; i
< 6; i
++) {
1004 if (read_ecc
[i
] == 0xff)
1010 /* If emptymatch still =1, check the data block. */
1012 /* Note: this somewhat expensive test should not be triggered
1013 often. It could be optimized away by examining the data in
1014 the readbuf routine, and remembering the result. */
1015 for (i
= 0; i
< 512; i
++) {
1022 /* If emptymatch still =1, this is almost certainly a freshly-
1023 erased block, in which case the ECC will not come out right.
1024 We'll suppress the error and tell the caller everything's
1025 OK. Because it is. */
1027 ret
= doc_ecc_decode(rs_decoder
, dat
, calc_ecc
);
1029 printk(KERN_ERR
"doc200x_correct_data corrected %d errors\n", ret
);
1031 if (DoC_is_MillenniumPlus(doc
))
1032 WriteDOC(DOC_ECC_DIS
, docptr
, Mplus_ECCConf
);
1034 WriteDOC(DOC_ECC_DIS
, docptr
, ECCConf
);
1035 if (no_ecc_failures
&& (ret
== -EBADMSG
)) {
1036 printk(KERN_ERR
"suppressing ECC failure\n");
1042 //u_char mydatabuf[528];
1044 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
1045 * attempt to retain compatibility. It used to read:
1046 * .oobfree = { {8, 8} }
1047 * Since that leaves two bytes unusable, it was changed. But the following
1048 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1049 * .oobfree = { {6, 10} }
1050 * jffs2 seems to handle the above gracefully, but the current scheme seems
1051 * safer. The only problem with it is that any code that parses oobfree must
1052 * be able to handle out-of-order segments.
1054 static struct nand_ecclayout doc200x_oobinfo
= {
1056 .eccpos
= {0, 1, 2, 3, 4, 5},
1057 .oobfree
= {{8, 8}, {6, 2}}
1060 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1061 On successful return, buf will contain a copy of the media header for
1062 further processing. id is the string to scan for, and will presumably be
1063 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1064 header. The page #s of the found media headers are placed in mh0_page and
1065 mh1_page in the DOC private structure. */
1066 static int __init
find_media_headers(struct mtd_info
*mtd
, u_char
*buf
, const char *id
, int findmirror
)
1068 struct nand_chip
*this = mtd
->priv
;
1069 struct doc_priv
*doc
= this->priv
;
1074 for (offs
= 0; offs
< mtd
->size
; offs
+= mtd
->erasesize
) {
1075 ret
= mtd
->read(mtd
, offs
, mtd
->writesize
, &retlen
, buf
);
1076 if (retlen
!= mtd
->writesize
)
1079 printk(KERN_WARNING
"ECC error scanning DOC at 0x%x\n", offs
);
1081 if (memcmp(buf
, id
, 6))
1083 printk(KERN_INFO
"Found DiskOnChip %s Media Header at 0x%x\n", id
, offs
);
1084 if (doc
->mh0_page
== -1) {
1085 doc
->mh0_page
= offs
>> this->page_shift
;
1090 doc
->mh1_page
= offs
>> this->page_shift
;
1093 if (doc
->mh0_page
== -1) {
1094 printk(KERN_WARNING
"DiskOnChip %s Media Header not found.\n", id
);
1097 /* Only one mediaheader was found. We want buf to contain a
1098 mediaheader on return, so we'll have to re-read the one we found. */
1099 offs
= doc
->mh0_page
<< this->page_shift
;
1100 ret
= mtd
->read(mtd
, offs
, mtd
->writesize
, &retlen
, buf
);
1101 if (retlen
!= mtd
->writesize
) {
1102 /* Insanity. Give up. */
1103 printk(KERN_ERR
"Read DiskOnChip Media Header once, but can't reread it???\n");
1109 static inline int __init
nftl_partscan(struct mtd_info
*mtd
, struct mtd_partition
*parts
)
1111 struct nand_chip
*this = mtd
->priv
;
1112 struct doc_priv
*doc
= this->priv
;
1115 struct NFTLMediaHeader
*mh
;
1116 const unsigned psize
= 1 << this->page_shift
;
1118 unsigned blocks
, maxblocks
;
1119 int offs
, numheaders
;
1121 buf
= kmalloc(mtd
->writesize
, GFP_KERNEL
);
1123 printk(KERN_ERR
"DiskOnChip mediaheader kmalloc failed!\n");
1126 if (!(numheaders
= find_media_headers(mtd
, buf
, "ANAND", 1)))
1128 mh
= (struct NFTLMediaHeader
*)buf
;
1130 le16_to_cpus(&mh
->NumEraseUnits
);
1131 le16_to_cpus(&mh
->FirstPhysicalEUN
);
1132 le32_to_cpus(&mh
->FormattedSize
);
1134 printk(KERN_INFO
" DataOrgID = %s\n"
1135 " NumEraseUnits = %d\n"
1136 " FirstPhysicalEUN = %d\n"
1137 " FormattedSize = %d\n"
1138 " UnitSizeFactor = %d\n",
1139 mh
->DataOrgID
, mh
->NumEraseUnits
,
1140 mh
->FirstPhysicalEUN
, mh
->FormattedSize
,
1141 mh
->UnitSizeFactor
);
1143 blocks
= mtd
->size
>> this->phys_erase_shift
;
1144 maxblocks
= min(32768U, mtd
->erasesize
- psize
);
1146 if (mh
->UnitSizeFactor
== 0x00) {
1147 /* Auto-determine UnitSizeFactor. The constraints are:
1148 - There can be at most 32768 virtual blocks.
1149 - There can be at most (virtual block size - page size)
1150 virtual blocks (because MediaHeader+BBT must fit in 1).
1152 mh
->UnitSizeFactor
= 0xff;
1153 while (blocks
> maxblocks
) {
1155 maxblocks
= min(32768U, (maxblocks
<< 1) + psize
);
1156 mh
->UnitSizeFactor
--;
1158 printk(KERN_WARNING
"UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh
->UnitSizeFactor
);
1161 /* NOTE: The lines below modify internal variables of the NAND and MTD
1162 layers; variables with have already been configured by nand_scan.
1163 Unfortunately, we didn't know before this point what these values
1164 should be. Thus, this code is somewhat dependent on the exact
1165 implementation of the NAND layer. */
1166 if (mh
->UnitSizeFactor
!= 0xff) {
1167 this->bbt_erase_shift
+= (0xff - mh
->UnitSizeFactor
);
1168 mtd
->erasesize
<<= (0xff - mh
->UnitSizeFactor
);
1169 printk(KERN_INFO
"Setting virtual erase size to %d\n", mtd
->erasesize
);
1170 blocks
= mtd
->size
>> this->bbt_erase_shift
;
1171 maxblocks
= min(32768U, mtd
->erasesize
- psize
);
1174 if (blocks
> maxblocks
) {
1175 printk(KERN_ERR
"UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh
->UnitSizeFactor
);
1179 /* Skip past the media headers. */
1180 offs
= max(doc
->mh0_page
, doc
->mh1_page
);
1181 offs
<<= this->page_shift
;
1182 offs
+= mtd
->erasesize
;
1184 if (show_firmware_partition
== 1) {
1185 parts
[0].name
= " DiskOnChip Firmware / Media Header partition";
1186 parts
[0].offset
= 0;
1187 parts
[0].size
= offs
;
1191 parts
[numparts
].name
= " DiskOnChip BDTL partition";
1192 parts
[numparts
].offset
= offs
;
1193 parts
[numparts
].size
= (mh
->NumEraseUnits
- numheaders
) << this->bbt_erase_shift
;
1195 offs
+= parts
[numparts
].size
;
1198 if (offs
< mtd
->size
) {
1199 parts
[numparts
].name
= " DiskOnChip Remainder partition";
1200 parts
[numparts
].offset
= offs
;
1201 parts
[numparts
].size
= mtd
->size
- offs
;
1211 /* This is a stripped-down copy of the code in inftlmount.c */
1212 static inline int __init
inftl_partscan(struct mtd_info
*mtd
, struct mtd_partition
*parts
)
1214 struct nand_chip
*this = mtd
->priv
;
1215 struct doc_priv
*doc
= this->priv
;
1218 struct INFTLMediaHeader
*mh
;
1219 struct INFTLPartition
*ip
;
1222 int vshift
, lastvunit
= 0;
1224 int end
= mtd
->size
;
1226 if (inftl_bbt_write
)
1227 end
-= (INFTL_BBT_RESERVED_BLOCKS
<< this->phys_erase_shift
);
1229 buf
= kmalloc(mtd
->writesize
, GFP_KERNEL
);
1231 printk(KERN_ERR
"DiskOnChip mediaheader kmalloc failed!\n");
1235 if (!find_media_headers(mtd
, buf
, "BNAND", 0))
1237 doc
->mh1_page
= doc
->mh0_page
+ (4096 >> this->page_shift
);
1238 mh
= (struct INFTLMediaHeader
*)buf
;
1240 le32_to_cpus(&mh
->NoOfBootImageBlocks
);
1241 le32_to_cpus(&mh
->NoOfBinaryPartitions
);
1242 le32_to_cpus(&mh
->NoOfBDTLPartitions
);
1243 le32_to_cpus(&mh
->BlockMultiplierBits
);
1244 le32_to_cpus(&mh
->FormatFlags
);
1245 le32_to_cpus(&mh
->PercentUsed
);
1247 printk(KERN_INFO
" bootRecordID = %s\n"
1248 " NoOfBootImageBlocks = %d\n"
1249 " NoOfBinaryPartitions = %d\n"
1250 " NoOfBDTLPartitions = %d\n"
1251 " BlockMultiplerBits = %d\n"
1252 " FormatFlgs = %d\n"
1253 " OsakVersion = %d.%d.%d.%d\n"
1254 " PercentUsed = %d\n",
1255 mh
->bootRecordID
, mh
->NoOfBootImageBlocks
,
1256 mh
->NoOfBinaryPartitions
,
1257 mh
->NoOfBDTLPartitions
,
1258 mh
->BlockMultiplierBits
, mh
->FormatFlags
,
1259 ((unsigned char *) &mh
->OsakVersion
)[0] & 0xf,
1260 ((unsigned char *) &mh
->OsakVersion
)[1] & 0xf,
1261 ((unsigned char *) &mh
->OsakVersion
)[2] & 0xf,
1262 ((unsigned char *) &mh
->OsakVersion
)[3] & 0xf,
1265 vshift
= this->phys_erase_shift
+ mh
->BlockMultiplierBits
;
1267 blocks
= mtd
->size
>> vshift
;
1268 if (blocks
> 32768) {
1269 printk(KERN_ERR
"BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh
->BlockMultiplierBits
);
1273 blocks
= doc
->chips_per_floor
<< (this->chip_shift
- this->phys_erase_shift
);
1274 if (inftl_bbt_write
&& (blocks
> mtd
->erasesize
)) {
1275 printk(KERN_ERR
"Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1279 /* Scan the partitions */
1280 for (i
= 0; (i
< 4); i
++) {
1281 ip
= &(mh
->Partitions
[i
]);
1282 le32_to_cpus(&ip
->virtualUnits
);
1283 le32_to_cpus(&ip
->firstUnit
);
1284 le32_to_cpus(&ip
->lastUnit
);
1285 le32_to_cpus(&ip
->flags
);
1286 le32_to_cpus(&ip
->spareUnits
);
1287 le32_to_cpus(&ip
->Reserved0
);
1289 printk(KERN_INFO
" PARTITION[%d] ->\n"
1290 " virtualUnits = %d\n"
1294 " spareUnits = %d\n",
1295 i
, ip
->virtualUnits
, ip
->firstUnit
,
1296 ip
->lastUnit
, ip
->flags
,
1299 if ((show_firmware_partition
== 1) &&
1300 (i
== 0) && (ip
->firstUnit
> 0)) {
1301 parts
[0].name
= " DiskOnChip IPL / Media Header partition";
1302 parts
[0].offset
= 0;
1303 parts
[0].size
= mtd
->erasesize
* ip
->firstUnit
;
1307 if (ip
->flags
& INFTL_BINARY
)
1308 parts
[numparts
].name
= " DiskOnChip BDK partition";
1310 parts
[numparts
].name
= " DiskOnChip BDTL partition";
1311 parts
[numparts
].offset
= ip
->firstUnit
<< vshift
;
1312 parts
[numparts
].size
= (1 + ip
->lastUnit
- ip
->firstUnit
) << vshift
;
1314 if (ip
->lastUnit
> lastvunit
)
1315 lastvunit
= ip
->lastUnit
;
1316 if (ip
->flags
& INFTL_LAST
)
1320 if ((lastvunit
<< vshift
) < end
) {
1321 parts
[numparts
].name
= " DiskOnChip Remainder partition";
1322 parts
[numparts
].offset
= lastvunit
<< vshift
;
1323 parts
[numparts
].size
= end
- parts
[numparts
].offset
;
1332 static int __init
nftl_scan_bbt(struct mtd_info
*mtd
)
1335 struct nand_chip
*this = mtd
->priv
;
1336 struct doc_priv
*doc
= this->priv
;
1337 struct mtd_partition parts
[2];
1339 memset((char *)parts
, 0, sizeof(parts
));
1340 /* On NFTL, we have to find the media headers before we can read the
1341 BBTs, since they're stored in the media header eraseblocks. */
1342 numparts
= nftl_partscan(mtd
, parts
);
1345 this->bbt_td
->options
= NAND_BBT_ABSPAGE
| NAND_BBT_8BIT
|
1346 NAND_BBT_SAVECONTENT
| NAND_BBT_WRITE
|
1348 this->bbt_td
->veroffs
= 7;
1349 this->bbt_td
->pages
[0] = doc
->mh0_page
+ 1;
1350 if (doc
->mh1_page
!= -1) {
1351 this->bbt_md
->options
= NAND_BBT_ABSPAGE
| NAND_BBT_8BIT
|
1352 NAND_BBT_SAVECONTENT
| NAND_BBT_WRITE
|
1354 this->bbt_md
->veroffs
= 7;
1355 this->bbt_md
->pages
[0] = doc
->mh1_page
+ 1;
1357 this->bbt_md
= NULL
;
1360 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1361 At least as nand_bbt.c is currently written. */
1362 if ((ret
= nand_scan_bbt(mtd
, NULL
)))
1364 mtd_device_register(mtd
, NULL
, 0);
1366 mtd_device_register(mtd
, parts
, numparts
);
1370 static int __init
inftl_scan_bbt(struct mtd_info
*mtd
)
1373 struct nand_chip
*this = mtd
->priv
;
1374 struct doc_priv
*doc
= this->priv
;
1375 struct mtd_partition parts
[5];
1377 if (this->numchips
> doc
->chips_per_floor
) {
1378 printk(KERN_ERR
"Multi-floor INFTL devices not yet supported.\n");
1382 if (DoC_is_MillenniumPlus(doc
)) {
1383 this->bbt_td
->options
= NAND_BBT_2BIT
| NAND_BBT_ABSPAGE
;
1384 if (inftl_bbt_write
)
1385 this->bbt_td
->options
|= NAND_BBT_WRITE
;
1386 this->bbt_td
->pages
[0] = 2;
1387 this->bbt_md
= NULL
;
1389 this->bbt_td
->options
= NAND_BBT_LASTBLOCK
| NAND_BBT_8BIT
| NAND_BBT_VERSION
;
1390 if (inftl_bbt_write
)
1391 this->bbt_td
->options
|= NAND_BBT_WRITE
;
1392 this->bbt_td
->offs
= 8;
1393 this->bbt_td
->len
= 8;
1394 this->bbt_td
->veroffs
= 7;
1395 this->bbt_td
->maxblocks
= INFTL_BBT_RESERVED_BLOCKS
;
1396 this->bbt_td
->reserved_block_code
= 0x01;
1397 this->bbt_td
->pattern
= "MSYS_BBT";
1399 this->bbt_md
->options
= NAND_BBT_LASTBLOCK
| NAND_BBT_8BIT
| NAND_BBT_VERSION
;
1400 if (inftl_bbt_write
)
1401 this->bbt_md
->options
|= NAND_BBT_WRITE
;
1402 this->bbt_md
->offs
= 8;
1403 this->bbt_md
->len
= 8;
1404 this->bbt_md
->veroffs
= 7;
1405 this->bbt_md
->maxblocks
= INFTL_BBT_RESERVED_BLOCKS
;
1406 this->bbt_md
->reserved_block_code
= 0x01;
1407 this->bbt_md
->pattern
= "TBB_SYSM";
1410 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1411 At least as nand_bbt.c is currently written. */
1412 if ((ret
= nand_scan_bbt(mtd
, NULL
)))
1414 memset((char *)parts
, 0, sizeof(parts
));
1415 numparts
= inftl_partscan(mtd
, parts
);
1416 /* At least for now, require the INFTL Media Header. We could probably
1417 do without it for non-INFTL use, since all it gives us is
1418 autopartitioning, but I want to give it more thought. */
1421 mtd_device_register(mtd
, NULL
, 0);
1423 mtd_device_register(mtd
, parts
, numparts
);
1427 static inline int __init
doc2000_init(struct mtd_info
*mtd
)
1429 struct nand_chip
*this = mtd
->priv
;
1430 struct doc_priv
*doc
= this->priv
;
1432 this->read_byte
= doc2000_read_byte
;
1433 this->write_buf
= doc2000_writebuf
;
1434 this->read_buf
= doc2000_readbuf
;
1435 this->verify_buf
= doc2000_verifybuf
;
1436 this->scan_bbt
= nftl_scan_bbt
;
1438 doc
->CDSNControl
= CDSN_CTRL_FLASH_IO
| CDSN_CTRL_ECC_IO
;
1439 doc2000_count_chips(mtd
);
1440 mtd
->name
= "DiskOnChip 2000 (NFTL Model)";
1441 return (4 * doc
->chips_per_floor
);
1444 static inline int __init
doc2001_init(struct mtd_info
*mtd
)
1446 struct nand_chip
*this = mtd
->priv
;
1447 struct doc_priv
*doc
= this->priv
;
1449 this->read_byte
= doc2001_read_byte
;
1450 this->write_buf
= doc2001_writebuf
;
1451 this->read_buf
= doc2001_readbuf
;
1452 this->verify_buf
= doc2001_verifybuf
;
1454 ReadDOC(doc
->virtadr
, ChipID
);
1455 ReadDOC(doc
->virtadr
, ChipID
);
1456 ReadDOC(doc
->virtadr
, ChipID
);
1457 if (ReadDOC(doc
->virtadr
, ChipID
) != DOC_ChipID_DocMil
) {
1458 /* It's not a Millennium; it's one of the newer
1459 DiskOnChip 2000 units with a similar ASIC.
1460 Treat it like a Millennium, except that it
1461 can have multiple chips. */
1462 doc2000_count_chips(mtd
);
1463 mtd
->name
= "DiskOnChip 2000 (INFTL Model)";
1464 this->scan_bbt
= inftl_scan_bbt
;
1465 return (4 * doc
->chips_per_floor
);
1467 /* Bog-standard Millennium */
1468 doc
->chips_per_floor
= 1;
1469 mtd
->name
= "DiskOnChip Millennium";
1470 this->scan_bbt
= nftl_scan_bbt
;
1475 static inline int __init
doc2001plus_init(struct mtd_info
*mtd
)
1477 struct nand_chip
*this = mtd
->priv
;
1478 struct doc_priv
*doc
= this->priv
;
1480 this->read_byte
= doc2001plus_read_byte
;
1481 this->write_buf
= doc2001plus_writebuf
;
1482 this->read_buf
= doc2001plus_readbuf
;
1483 this->verify_buf
= doc2001plus_verifybuf
;
1484 this->scan_bbt
= inftl_scan_bbt
;
1485 this->cmd_ctrl
= NULL
;
1486 this->select_chip
= doc2001plus_select_chip
;
1487 this->cmdfunc
= doc2001plus_command
;
1488 this->ecc
.hwctl
= doc2001plus_enable_hwecc
;
1490 doc
->chips_per_floor
= 1;
1491 mtd
->name
= "DiskOnChip Millennium Plus";
1496 static int __init
doc_probe(unsigned long physadr
)
1498 unsigned char ChipID
;
1499 struct mtd_info
*mtd
;
1500 struct nand_chip
*nand
;
1501 struct doc_priv
*doc
;
1502 void __iomem
*virtadr
;
1503 unsigned char save_control
;
1504 unsigned char tmp
, tmpb
, tmpc
;
1505 int reg
, len
, numchips
;
1508 virtadr
= ioremap(physadr
, DOC_IOREMAP_LEN
);
1510 printk(KERN_ERR
"Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN
, physadr
);
1514 /* It's not possible to cleanly detect the DiskOnChip - the
1515 * bootup procedure will put the device into reset mode, and
1516 * it's not possible to talk to it without actually writing
1517 * to the DOCControl register. So we store the current contents
1518 * of the DOCControl register's location, in case we later decide
1519 * that it's not a DiskOnChip, and want to put it back how we
1522 save_control
= ReadDOC(virtadr
, DOCControl
);
1524 /* Reset the DiskOnChip ASIC */
1525 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_RESET
, virtadr
, DOCControl
);
1526 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_RESET
, virtadr
, DOCControl
);
1528 /* Enable the DiskOnChip ASIC */
1529 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_NORMAL
, virtadr
, DOCControl
);
1530 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_NORMAL
, virtadr
, DOCControl
);
1532 ChipID
= ReadDOC(virtadr
, ChipID
);
1535 case DOC_ChipID_Doc2k
:
1536 reg
= DoC_2k_ECCStatus
;
1538 case DOC_ChipID_DocMil
:
1541 case DOC_ChipID_DocMilPlus16
:
1542 case DOC_ChipID_DocMilPlus32
:
1544 /* Possible Millennium Plus, need to do more checks */
1545 /* Possibly release from power down mode */
1546 for (tmp
= 0; (tmp
< 4); tmp
++)
1547 ReadDOC(virtadr
, Mplus_Power
);
1549 /* Reset the Millennium Plus ASIC */
1550 tmp
= DOC_MODE_RESET
| DOC_MODE_MDWREN
| DOC_MODE_RST_LAT
| DOC_MODE_BDECT
;
1551 WriteDOC(tmp
, virtadr
, Mplus_DOCControl
);
1552 WriteDOC(~tmp
, virtadr
, Mplus_CtrlConfirm
);
1555 /* Enable the Millennium Plus ASIC */
1556 tmp
= DOC_MODE_NORMAL
| DOC_MODE_MDWREN
| DOC_MODE_RST_LAT
| DOC_MODE_BDECT
;
1557 WriteDOC(tmp
, virtadr
, Mplus_DOCControl
);
1558 WriteDOC(~tmp
, virtadr
, Mplus_CtrlConfirm
);
1561 ChipID
= ReadDOC(virtadr
, ChipID
);
1564 case DOC_ChipID_DocMilPlus16
:
1565 reg
= DoC_Mplus_Toggle
;
1567 case DOC_ChipID_DocMilPlus32
:
1568 printk(KERN_ERR
"DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1579 /* Check the TOGGLE bit in the ECC register */
1580 tmp
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1581 tmpb
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1582 tmpc
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1583 if ((tmp
== tmpb
) || (tmp
!= tmpc
)) {
1584 printk(KERN_WARNING
"Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr
);
1589 for (mtd
= doclist
; mtd
; mtd
= doc
->nextdoc
) {
1590 unsigned char oldval
;
1591 unsigned char newval
;
1594 /* Use the alias resolution register to determine if this is
1595 in fact the same DOC aliased to a new address. If writes
1596 to one chip's alias resolution register change the value on
1597 the other chip, they're the same chip. */
1598 if (ChipID
== DOC_ChipID_DocMilPlus16
) {
1599 oldval
= ReadDOC(doc
->virtadr
, Mplus_AliasResolution
);
1600 newval
= ReadDOC(virtadr
, Mplus_AliasResolution
);
1602 oldval
= ReadDOC(doc
->virtadr
, AliasResolution
);
1603 newval
= ReadDOC(virtadr
, AliasResolution
);
1605 if (oldval
!= newval
)
1607 if (ChipID
== DOC_ChipID_DocMilPlus16
) {
1608 WriteDOC(~newval
, virtadr
, Mplus_AliasResolution
);
1609 oldval
= ReadDOC(doc
->virtadr
, Mplus_AliasResolution
);
1610 WriteDOC(newval
, virtadr
, Mplus_AliasResolution
); // restore it
1612 WriteDOC(~newval
, virtadr
, AliasResolution
);
1613 oldval
= ReadDOC(doc
->virtadr
, AliasResolution
);
1614 WriteDOC(newval
, virtadr
, AliasResolution
); // restore it
1617 if (oldval
== newval
) {
1618 printk(KERN_DEBUG
"Found alias of DOC at 0x%lx to 0x%lx\n", doc
->physadr
, physadr
);
1623 printk(KERN_NOTICE
"DiskOnChip found at 0x%lx\n", physadr
);
1625 len
= sizeof(struct mtd_info
) +
1626 sizeof(struct nand_chip
) + sizeof(struct doc_priv
) + (2 * sizeof(struct nand_bbt_descr
));
1627 mtd
= kzalloc(len
, GFP_KERNEL
);
1629 printk(KERN_ERR
"DiskOnChip kmalloc (%d bytes) failed!\n", len
);
1634 nand
= (struct nand_chip
*) (mtd
+ 1);
1635 doc
= (struct doc_priv
*) (nand
+ 1);
1636 nand
->bbt_td
= (struct nand_bbt_descr
*) (doc
+ 1);
1637 nand
->bbt_md
= nand
->bbt_td
+ 1;
1640 mtd
->owner
= THIS_MODULE
;
1643 nand
->select_chip
= doc200x_select_chip
;
1644 nand
->cmd_ctrl
= doc200x_hwcontrol
;
1645 nand
->dev_ready
= doc200x_dev_ready
;
1646 nand
->waitfunc
= doc200x_wait
;
1647 nand
->block_bad
= doc200x_block_bad
;
1648 nand
->ecc
.hwctl
= doc200x_enable_hwecc
;
1649 nand
->ecc
.calculate
= doc200x_calculate_ecc
;
1650 nand
->ecc
.correct
= doc200x_correct_data
;
1652 nand
->ecc
.layout
= &doc200x_oobinfo
;
1653 nand
->ecc
.mode
= NAND_ECC_HW_SYNDROME
;
1654 nand
->ecc
.size
= 512;
1655 nand
->ecc
.bytes
= 6;
1656 nand
->bbt_options
= NAND_BBT_USE_FLASH
;
1658 doc
->physadr
= physadr
;
1659 doc
->virtadr
= virtadr
;
1660 doc
->ChipID
= ChipID
;
1665 doc
->nextdoc
= doclist
;
1667 if (ChipID
== DOC_ChipID_Doc2k
)
1668 numchips
= doc2000_init(mtd
);
1669 else if (ChipID
== DOC_ChipID_DocMilPlus16
)
1670 numchips
= doc2001plus_init(mtd
);
1672 numchips
= doc2001_init(mtd
);
1674 if ((ret
= nand_scan(mtd
, numchips
))) {
1675 /* DBB note: i believe nand_release is necessary here, as
1676 buffers may have been allocated in nand_base. Check with
1678 /* nand_release will call mtd_device_unregister, but we
1679 haven't yet added it. This is handled without incident by
1680 mtd_device_unregister, as far as I can tell. */
1691 /* Put back the contents of the DOCControl register, in case it's not
1692 actually a DiskOnChip. */
1693 WriteDOC(save_control
, virtadr
, DOCControl
);
1699 static void release_nanddoc(void)
1701 struct mtd_info
*mtd
, *nextmtd
;
1702 struct nand_chip
*nand
;
1703 struct doc_priv
*doc
;
1705 for (mtd
= doclist
; mtd
; mtd
= nextmtd
) {
1709 nextmtd
= doc
->nextdoc
;
1711 iounmap(doc
->virtadr
);
1716 static int __init
init_nanddoc(void)
1720 /* We could create the decoder on demand, if memory is a concern.
1721 * This way we have it handy, if an error happens
1723 * Symbolsize is 10 (bits)
1724 * Primitve polynomial is x^10+x^3+1
1725 * first consecutive root is 510
1726 * primitve element to generate roots = 1
1727 * generator polinomial degree = 4
1729 rs_decoder
= init_rs(10, 0x409, FCR
, 1, NROOTS
);
1731 printk(KERN_ERR
"DiskOnChip: Could not create a RS decoder\n");
1735 if (doc_config_location
) {
1736 printk(KERN_INFO
"Using configured DiskOnChip probe address 0x%lx\n", doc_config_location
);
1737 ret
= doc_probe(doc_config_location
);
1741 for (i
= 0; (doc_locations
[i
] != 0xffffffff); i
++) {
1742 doc_probe(doc_locations
[i
]);
1745 /* No banner message any more. Print a message if no DiskOnChip
1746 found, so the user knows we at least tried. */
1748 printk(KERN_INFO
"No valid DiskOnChip devices found\n");
1754 free_rs(rs_decoder
);
1758 static void __exit
cleanup_nanddoc(void)
1760 /* Cleanup the nand/DoC resources */
1763 /* Free the reed solomon resources */
1765 free_rs(rs_decoder
);
1769 module_init(init_nanddoc
);
1770 module_exit(cleanup_nanddoc
);
1772 MODULE_LICENSE("GPL");
1773 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1774 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");