Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / drivers / mtd / nand / gpmi-nand / gpmi-lib.c
blobbbec9469d53e6714bc13a58bf64b4bc2b5687422
1 /*
2 * Freescale GPMI NAND Flash Driver
4 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 #include <linux/mtd/gpmi-nand.h>
22 #include <linux/delay.h>
23 #include <linux/clk.h>
24 #include <mach/mxs.h>
26 #include "gpmi-nand.h"
27 #include "gpmi-regs.h"
28 #include "bch-regs.h"
30 struct timing_threshod timing_default_threshold = {
31 .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >>
32 BP_GPMI_TIMING0_DATA_SETUP),
33 .internal_data_setup_in_ns = 0,
34 .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >>
35 BP_GPMI_CTRL1_RDN_DELAY),
36 .max_dll_clock_period_in_ns = 32,
37 .max_dll_delay_in_ns = 16,
41 * Clear the bit and poll it cleared. This is usually called with
42 * a reset address and mask being either SFTRST(bit 31) or CLKGATE
43 * (bit 30).
45 static int clear_poll_bit(void __iomem *addr, u32 mask)
47 int timeout = 0x400;
49 /* clear the bit */
50 __mxs_clrl(mask, addr);
53 * SFTRST needs 3 GPMI clocks to settle, the reference manual
54 * recommends to wait 1us.
56 udelay(1);
58 /* poll the bit becoming clear */
59 while ((readl(addr) & mask) && --timeout)
60 /* nothing */;
62 return !timeout;
65 #define MODULE_CLKGATE (1 << 30)
66 #define MODULE_SFTRST (1 << 31)
68 * The current mxs_reset_block() will do two things:
69 * [1] enable the module.
70 * [2] reset the module.
72 * In most of the cases, it's ok. But there is a hardware bug in the BCH block.
73 * If you try to soft reset the BCH block, it becomes unusable until
74 * the next hard reset. This case occurs in the NAND boot mode. When the board
75 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
76 * So If the driver tries to reset the BCH again, the BCH will not work anymore.
77 * You will see a DMA timeout in this case.
79 * To avoid this bug, just add a new parameter `just_enable` for
80 * the mxs_reset_block(), and rewrite it here.
82 int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
84 int ret;
85 int timeout = 0x400;
87 /* clear and poll SFTRST */
88 ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
89 if (unlikely(ret))
90 goto error;
92 /* clear CLKGATE */
93 __mxs_clrl(MODULE_CLKGATE, reset_addr);
95 if (!just_enable) {
96 /* set SFTRST to reset the block */
97 __mxs_setl(MODULE_SFTRST, reset_addr);
98 udelay(1);
100 /* poll CLKGATE becoming set */
101 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
102 /* nothing */;
103 if (unlikely(!timeout))
104 goto error;
107 /* clear and poll SFTRST */
108 ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
109 if (unlikely(ret))
110 goto error;
112 /* clear and poll CLKGATE */
113 ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
114 if (unlikely(ret))
115 goto error;
117 return 0;
119 error:
120 pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
121 return -ETIMEDOUT;
124 int gpmi_init(struct gpmi_nand_data *this)
126 struct resources *r = &this->resources;
127 int ret;
129 ret = clk_enable(r->clock);
130 if (ret)
131 goto err_out;
132 ret = gpmi_reset_block(r->gpmi_regs, false);
133 if (ret)
134 goto err_out;
136 /* Choose NAND mode. */
137 writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
139 /* Set the IRQ polarity. */
140 writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
141 r->gpmi_regs + HW_GPMI_CTRL1_SET);
143 /* Disable Write-Protection. */
144 writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
146 /* Select BCH ECC. */
147 writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
149 clk_disable(r->clock);
150 return 0;
151 err_out:
152 return ret;
155 /* This function is very useful. It is called only when the bug occur. */
156 void gpmi_dump_info(struct gpmi_nand_data *this)
158 struct resources *r = &this->resources;
159 struct bch_geometry *geo = &this->bch_geometry;
160 u32 reg;
161 int i;
163 pr_err("Show GPMI registers :\n");
164 for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
165 reg = readl(r->gpmi_regs + i * 0x10);
166 pr_err("offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
169 /* start to print out the BCH info */
170 pr_err("BCH Geometry :\n");
171 pr_err("ECC Algorithm : %s\n", geo->ecc_algorithm);
172 pr_err("ECC Strength : %u\n", geo->ecc_strength);
173 pr_err("Page Size in Bytes : %u\n", geo->page_size_in_bytes);
174 pr_err("Metadata Size in Bytes : %u\n", geo->metadata_size_in_bytes);
175 pr_err("ECC Chunk Size in Bytes: %u\n", geo->ecc_chunk_size_in_bytes);
176 pr_err("ECC Chunk Count : %u\n", geo->ecc_chunk_count);
177 pr_err("Payload Size in Bytes : %u\n", geo->payload_size_in_bytes);
178 pr_err("Auxiliary Size in Bytes: %u\n", geo->auxiliary_size_in_bytes);
179 pr_err("Auxiliary Status Offset: %u\n", geo->auxiliary_status_offset);
180 pr_err("Block Mark Byte Offset : %u\n", geo->block_mark_byte_offset);
181 pr_err("Block Mark Bit Offset : %u\n", geo->block_mark_bit_offset);
184 /* Configures the geometry for BCH. */
185 int bch_set_geometry(struct gpmi_nand_data *this)
187 struct resources *r = &this->resources;
188 struct bch_geometry *bch_geo = &this->bch_geometry;
189 unsigned int block_count;
190 unsigned int block_size;
191 unsigned int metadata_size;
192 unsigned int ecc_strength;
193 unsigned int page_size;
194 int ret;
196 if (common_nfc_set_geometry(this))
197 return !0;
199 block_count = bch_geo->ecc_chunk_count - 1;
200 block_size = bch_geo->ecc_chunk_size_in_bytes;
201 metadata_size = bch_geo->metadata_size_in_bytes;
202 ecc_strength = bch_geo->ecc_strength >> 1;
203 page_size = bch_geo->page_size_in_bytes;
205 ret = clk_enable(r->clock);
206 if (ret)
207 goto err_out;
209 ret = gpmi_reset_block(r->bch_regs, true);
210 if (ret)
211 goto err_out;
213 /* Configure layout 0. */
214 writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
215 | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
216 | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength)
217 | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size),
218 r->bch_regs + HW_BCH_FLASH0LAYOUT0);
220 writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
221 | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength)
222 | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size),
223 r->bch_regs + HW_BCH_FLASH0LAYOUT1);
225 /* Set *all* chip selects to use layout 0. */
226 writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
228 /* Enable interrupts. */
229 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
230 r->bch_regs + HW_BCH_CTRL_SET);
232 clk_disable(r->clock);
233 return 0;
234 err_out:
235 return ret;
238 /* Converts time in nanoseconds to cycles. */
239 static unsigned int ns_to_cycles(unsigned int time,
240 unsigned int period, unsigned int min)
242 unsigned int k;
244 k = (time + period - 1) / period;
245 return max(k, min);
248 /* Apply timing to current hardware conditions. */
249 static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this,
250 struct gpmi_nfc_hardware_timing *hw)
252 struct gpmi_nand_platform_data *pdata = this->pdata;
253 struct timing_threshod *nfc = &timing_default_threshold;
254 struct nand_chip *nand = &this->nand;
255 struct nand_timing target = this->timing;
256 bool improved_timing_is_available;
257 unsigned long clock_frequency_in_hz;
258 unsigned int clock_period_in_ns;
259 bool dll_use_half_periods;
260 unsigned int dll_delay_shift;
261 unsigned int max_sample_delay_in_ns;
262 unsigned int address_setup_in_cycles;
263 unsigned int data_setup_in_ns;
264 unsigned int data_setup_in_cycles;
265 unsigned int data_hold_in_cycles;
266 int ideal_sample_delay_in_ns;
267 unsigned int sample_delay_factor;
268 int tEYE;
269 unsigned int min_prop_delay_in_ns = pdata->min_prop_delay_in_ns;
270 unsigned int max_prop_delay_in_ns = pdata->max_prop_delay_in_ns;
273 * If there are multiple chips, we need to relax the timings to allow
274 * for signal distortion due to higher capacitance.
276 if (nand->numchips > 2) {
277 target.data_setup_in_ns += 10;
278 target.data_hold_in_ns += 10;
279 target.address_setup_in_ns += 10;
280 } else if (nand->numchips > 1) {
281 target.data_setup_in_ns += 5;
282 target.data_hold_in_ns += 5;
283 target.address_setup_in_ns += 5;
286 /* Check if improved timing information is available. */
287 improved_timing_is_available =
288 (target.tREA_in_ns >= 0) &&
289 (target.tRLOH_in_ns >= 0) &&
290 (target.tRHOH_in_ns >= 0) ;
292 /* Inspect the clock. */
293 clock_frequency_in_hz = nfc->clock_frequency_in_hz;
294 clock_period_in_ns = 1000000000 / clock_frequency_in_hz;
297 * The NFC quantizes setup and hold parameters in terms of clock cycles.
298 * Here, we quantize the setup and hold timing parameters to the
299 * next-highest clock period to make sure we apply at least the
300 * specified times.
302 * For data setup and data hold, the hardware interprets a value of zero
303 * as the largest possible delay. This is not what's intended by a zero
304 * in the input parameter, so we impose a minimum of one cycle.
306 data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns,
307 clock_period_in_ns, 1);
308 data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns,
309 clock_period_in_ns, 1);
310 address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
311 clock_period_in_ns, 0);
314 * The clock's period affects the sample delay in a number of ways:
316 * (1) The NFC HAL tells us the maximum clock period the sample delay
317 * DLL can tolerate. If the clock period is greater than half that
318 * maximum, we must configure the DLL to be driven by half periods.
320 * (2) We need to convert from an ideal sample delay, in ns, to a
321 * "sample delay factor," which the NFC uses. This factor depends on
322 * whether we're driving the DLL with full or half periods.
323 * Paraphrasing the reference manual:
325 * AD = SDF x 0.125 x RP
327 * where:
329 * AD is the applied delay, in ns.
330 * SDF is the sample delay factor, which is dimensionless.
331 * RP is the reference period, in ns, which is a full clock period
332 * if the DLL is being driven by full periods, or half that if
333 * the DLL is being driven by half periods.
335 * Let's re-arrange this in a way that's more useful to us:
338 * SDF = AD x ----
339 * RP
341 * The reference period is either the clock period or half that, so this
342 * is:
344 * 8 AD x DDF
345 * SDF = AD x ----- = --------
346 * f x P P
348 * where:
350 * f is 1 or 1/2, depending on how we're driving the DLL.
351 * P is the clock period.
352 * DDF is the DLL Delay Factor, a dimensionless value that
353 * incorporates all the constants in the conversion.
355 * DDF will be either 8 or 16, both of which are powers of two. We can
356 * reduce the cost of this conversion by using bit shifts instead of
357 * multiplication or division. Thus:
359 * AD << DDS
360 * SDF = ---------
363 * or
365 * AD = (SDF >> DDS) x P
367 * where:
369 * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF.
371 if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
372 dll_use_half_periods = true;
373 dll_delay_shift = 3 + 1;
374 } else {
375 dll_use_half_periods = false;
376 dll_delay_shift = 3;
380 * Compute the maximum sample delay the NFC allows, under current
381 * conditions. If the clock is running too slowly, no sample delay is
382 * possible.
384 if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
385 max_sample_delay_in_ns = 0;
386 else {
388 * Compute the delay implied by the largest sample delay factor
389 * the NFC allows.
391 max_sample_delay_in_ns =
392 (nfc->max_sample_delay_factor * clock_period_in_ns) >>
393 dll_delay_shift;
396 * Check if the implied sample delay larger than the NFC
397 * actually allows.
399 if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
400 max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
404 * Check if improved timing information is available. If not, we have to
405 * use a less-sophisticated algorithm.
407 if (!improved_timing_is_available) {
409 * Fold the read setup time required by the NFC into the ideal
410 * sample delay.
412 ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
413 nfc->internal_data_setup_in_ns;
416 * The ideal sample delay may be greater than the maximum
417 * allowed by the NFC. If so, we can trade off sample delay time
418 * for more data setup time.
420 * In each iteration of the following loop, we add a cycle to
421 * the data setup time and subtract a corresponding amount from
422 * the sample delay until we've satisified the constraints or
423 * can't do any better.
425 while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
426 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
428 data_setup_in_cycles++;
429 ideal_sample_delay_in_ns -= clock_period_in_ns;
431 if (ideal_sample_delay_in_ns < 0)
432 ideal_sample_delay_in_ns = 0;
437 * Compute the sample delay factor that corresponds most closely
438 * to the ideal sample delay. If the result is too large for the
439 * NFC, use the maximum value.
441 * Notice that we use the ns_to_cycles function to compute the
442 * sample delay factor. We do this because the form of the
443 * computation is the same as that for calculating cycles.
445 sample_delay_factor =
446 ns_to_cycles(
447 ideal_sample_delay_in_ns << dll_delay_shift,
448 clock_period_in_ns, 0);
450 if (sample_delay_factor > nfc->max_sample_delay_factor)
451 sample_delay_factor = nfc->max_sample_delay_factor;
453 /* Skip to the part where we return our results. */
454 goto return_results;
458 * If control arrives here, we have more detailed timing information,
459 * so we can use a better algorithm.
463 * Fold the read setup time required by the NFC into the maximum
464 * propagation delay.
466 max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
469 * Earlier, we computed the number of clock cycles required to satisfy
470 * the data setup time. Now, we need to know the actual nanoseconds.
472 data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
475 * Compute tEYE, the width of the data eye when reading from the NAND
476 * Flash. The eye width is fundamentally determined by the data setup
477 * time, perturbed by propagation delays and some characteristics of the
478 * NAND Flash device.
480 * start of the eye = max_prop_delay + tREA
481 * end of the eye = min_prop_delay + tRHOH + data_setup
483 tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
484 (int)data_setup_in_ns;
486 tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;
489 * The eye must be open. If it's not, we can try to open it by
490 * increasing its main forcer, the data setup time.
492 * In each iteration of the following loop, we increase the data setup
493 * time by a single clock cycle. We do this until either the eye is
494 * open or we run into NFC limits.
496 while ((tEYE <= 0) &&
497 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
498 /* Give a cycle to data setup. */
499 data_setup_in_cycles++;
500 /* Synchronize the data setup time with the cycles. */
501 data_setup_in_ns += clock_period_in_ns;
502 /* Adjust tEYE accordingly. */
503 tEYE += clock_period_in_ns;
507 * When control arrives here, the eye is open. The ideal time to sample
508 * the data is in the center of the eye:
510 * end of the eye + start of the eye
511 * --------------------------------- - data_setup
514 * After some algebra, this simplifies to the code immediately below.
516 ideal_sample_delay_in_ns =
517 ((int)max_prop_delay_in_ns +
518 (int)target.tREA_in_ns +
519 (int)min_prop_delay_in_ns +
520 (int)target.tRHOH_in_ns -
521 (int)data_setup_in_ns) >> 1;
524 * The following figure illustrates some aspects of a NAND Flash read:
527 * __ _____________________________________
528 * RDN \_________________/
530 * <---- tEYE ----->
531 * /-----------------\
532 * Read Data ----------------------------< >---------
533 * \-----------------/
534 * ^ ^ ^ ^
535 * | | | |
536 * |<--Data Setup -->|<--Delay Time -->| |
537 * | | | |
538 * | | |
539 * | |<-- Quantized Delay Time -->|
540 * | | |
543 * We have some issues we must now address:
545 * (1) The *ideal* sample delay time must not be negative. If it is, we
546 * jam it to zero.
548 * (2) The *ideal* sample delay time must not be greater than that
549 * allowed by the NFC. If it is, we can increase the data setup
550 * time, which will reduce the delay between the end of the data
551 * setup and the center of the eye. It will also make the eye
552 * larger, which might help with the next issue...
554 * (3) The *quantized* sample delay time must not fall either before the
555 * eye opens or after it closes (the latter is the problem
556 * illustrated in the above figure).
559 /* Jam a negative ideal sample delay to zero. */
560 if (ideal_sample_delay_in_ns < 0)
561 ideal_sample_delay_in_ns = 0;
564 * Extend the data setup as needed to reduce the ideal sample delay
565 * below the maximum permitted by the NFC.
567 while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
568 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
570 /* Give a cycle to data setup. */
571 data_setup_in_cycles++;
572 /* Synchronize the data setup time with the cycles. */
573 data_setup_in_ns += clock_period_in_ns;
574 /* Adjust tEYE accordingly. */
575 tEYE += clock_period_in_ns;
578 * Decrease the ideal sample delay by one half cycle, to keep it
579 * in the middle of the eye.
581 ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
583 /* Jam a negative ideal sample delay to zero. */
584 if (ideal_sample_delay_in_ns < 0)
585 ideal_sample_delay_in_ns = 0;
589 * Compute the sample delay factor that corresponds to the ideal sample
590 * delay. If the result is too large, then use the maximum allowed
591 * value.
593 * Notice that we use the ns_to_cycles function to compute the sample
594 * delay factor. We do this because the form of the computation is the
595 * same as that for calculating cycles.
597 sample_delay_factor =
598 ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
599 clock_period_in_ns, 0);
601 if (sample_delay_factor > nfc->max_sample_delay_factor)
602 sample_delay_factor = nfc->max_sample_delay_factor;
605 * These macros conveniently encapsulate a computation we'll use to
606 * continuously evaluate whether or not the data sample delay is inside
607 * the eye.
609 #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns)
611 #define QUANTIZED_DELAY \
612 ((int) ((sample_delay_factor * clock_period_in_ns) >> \
613 dll_delay_shift))
615 #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY))
617 #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1))
620 * While the quantized sample time falls outside the eye, reduce the
621 * sample delay or extend the data setup to move the sampling point back
622 * toward the eye. Do not allow the number of data setup cycles to
623 * exceed the maximum allowed by the NFC.
625 while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
626 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
628 * If control arrives here, the quantized sample delay falls
629 * outside the eye. Check if it's before the eye opens, or after
630 * the eye closes.
632 if (QUANTIZED_DELAY > IDEAL_DELAY) {
634 * If control arrives here, the quantized sample delay
635 * falls after the eye closes. Decrease the quantized
636 * delay time and then go back to re-evaluate.
638 if (sample_delay_factor != 0)
639 sample_delay_factor--;
640 continue;
644 * If control arrives here, the quantized sample delay falls
645 * before the eye opens. Shift the sample point by increasing
646 * data setup time. This will also make the eye larger.
649 /* Give a cycle to data setup. */
650 data_setup_in_cycles++;
651 /* Synchronize the data setup time with the cycles. */
652 data_setup_in_ns += clock_period_in_ns;
653 /* Adjust tEYE accordingly. */
654 tEYE += clock_period_in_ns;
657 * Decrease the ideal sample delay by one half cycle, to keep it
658 * in the middle of the eye.
660 ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
662 /* ...and one less period for the delay time. */
663 ideal_sample_delay_in_ns -= clock_period_in_ns;
665 /* Jam a negative ideal sample delay to zero. */
666 if (ideal_sample_delay_in_ns < 0)
667 ideal_sample_delay_in_ns = 0;
670 * We have a new ideal sample delay, so re-compute the quantized
671 * delay.
673 sample_delay_factor =
674 ns_to_cycles(
675 ideal_sample_delay_in_ns << dll_delay_shift,
676 clock_period_in_ns, 0);
678 if (sample_delay_factor > nfc->max_sample_delay_factor)
679 sample_delay_factor = nfc->max_sample_delay_factor;
682 /* Control arrives here when we're ready to return our results. */
683 return_results:
684 hw->data_setup_in_cycles = data_setup_in_cycles;
685 hw->data_hold_in_cycles = data_hold_in_cycles;
686 hw->address_setup_in_cycles = address_setup_in_cycles;
687 hw->use_half_periods = dll_use_half_periods;
688 hw->sample_delay_factor = sample_delay_factor;
690 /* Return success. */
691 return 0;
694 /* Begin the I/O */
695 void gpmi_begin(struct gpmi_nand_data *this)
697 struct resources *r = &this->resources;
698 struct timing_threshod *nfc = &timing_default_threshold;
699 unsigned char *gpmi_regs = r->gpmi_regs;
700 unsigned int clock_period_in_ns;
701 uint32_t reg;
702 unsigned int dll_wait_time_in_us;
703 struct gpmi_nfc_hardware_timing hw;
704 int ret;
706 /* Enable the clock. */
707 ret = clk_enable(r->clock);
708 if (ret) {
709 pr_err("We failed in enable the clk\n");
710 goto err_out;
713 /* set ready/busy timeout */
714 writel(0x500 << 16, gpmi_regs + HW_GPMI_TIMING1);
716 /* Get the timing information we need. */
717 nfc->clock_frequency_in_hz = clk_get_rate(r->clock);
718 clock_period_in_ns = 1000000000 / nfc->clock_frequency_in_hz;
720 gpmi_nfc_compute_hardware_timing(this, &hw);
722 /* Set up all the simple timing parameters. */
723 reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) |
724 BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) |
725 BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles) ;
727 writel(reg, gpmi_regs + HW_GPMI_TIMING0);
730 * DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD.
732 writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR);
734 /* Clear out the DLL control fields. */
735 writel(BM_GPMI_CTRL1_RDN_DELAY, gpmi_regs + HW_GPMI_CTRL1_CLR);
736 writel(BM_GPMI_CTRL1_HALF_PERIOD, gpmi_regs + HW_GPMI_CTRL1_CLR);
738 /* If no sample delay is called for, return immediately. */
739 if (!hw.sample_delay_factor)
740 return;
742 /* Configure the HALF_PERIOD flag. */
743 if (hw.use_half_periods)
744 writel(BM_GPMI_CTRL1_HALF_PERIOD,
745 gpmi_regs + HW_GPMI_CTRL1_SET);
747 /* Set the delay factor. */
748 writel(BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor),
749 gpmi_regs + HW_GPMI_CTRL1_SET);
751 /* Enable the DLL. */
752 writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET);
755 * After we enable the GPMI DLL, we have to wait 64 clock cycles before
756 * we can use the GPMI.
758 * Calculate the amount of time we need to wait, in microseconds.
760 dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;
762 if (!dll_wait_time_in_us)
763 dll_wait_time_in_us = 1;
765 /* Wait for the DLL to settle. */
766 udelay(dll_wait_time_in_us);
768 err_out:
769 return;
772 void gpmi_end(struct gpmi_nand_data *this)
774 struct resources *r = &this->resources;
775 clk_disable(r->clock);
778 /* Clears a BCH interrupt. */
779 void gpmi_clear_bch(struct gpmi_nand_data *this)
781 struct resources *r = &this->resources;
782 writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
785 /* Returns the Ready/Busy status of the given chip. */
786 int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
788 struct resources *r = &this->resources;
789 uint32_t mask;
790 uint32_t reg;
792 if (GPMI_IS_MX23(this)) {
793 mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
794 reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
795 } else if (GPMI_IS_MX28(this)) {
796 mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
797 reg = readl(r->gpmi_regs + HW_GPMI_STAT);
798 } else
799 BUG();
800 return !!(reg & mask);
803 static inline void set_dma_type(struct gpmi_nand_data *this,
804 enum dma_ops_type type)
806 this->last_dma_type = this->dma_type;
807 this->dma_type = type;
810 int gpmi_send_command(struct gpmi_nand_data *this)
812 struct dma_chan *channel = get_dma_chan(this);
813 struct dma_async_tx_descriptor *desc;
814 struct scatterlist *sgl;
815 int chip = this->current_chip;
816 u32 pio[3];
818 /* [1] send out the PIO words */
819 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
820 | BM_GPMI_CTRL0_WORD_LENGTH
821 | BF_GPMI_CTRL0_CS(chip, this)
822 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
823 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
824 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
825 | BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
826 pio[1] = pio[2] = 0;
827 desc = channel->device->device_prep_slave_sg(channel,
828 (struct scatterlist *)pio,
829 ARRAY_SIZE(pio), DMA_NONE, 0);
830 if (!desc) {
831 pr_err("step 1 error\n");
832 return -1;
835 /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
836 sgl = &this->cmd_sgl;
838 sg_init_one(sgl, this->cmd_buffer, this->command_length);
839 dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
840 desc = channel->device->device_prep_slave_sg(channel,
841 sgl, 1, DMA_TO_DEVICE, 1);
842 if (!desc) {
843 pr_err("step 2 error\n");
844 return -1;
847 /* [3] submit the DMA */
848 set_dma_type(this, DMA_FOR_COMMAND);
849 return start_dma_without_bch_irq(this, desc);
852 int gpmi_send_data(struct gpmi_nand_data *this)
854 struct dma_async_tx_descriptor *desc;
855 struct dma_chan *channel = get_dma_chan(this);
856 int chip = this->current_chip;
857 uint32_t command_mode;
858 uint32_t address;
859 u32 pio[2];
861 /* [1] PIO */
862 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
863 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
865 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
866 | BM_GPMI_CTRL0_WORD_LENGTH
867 | BF_GPMI_CTRL0_CS(chip, this)
868 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
869 | BF_GPMI_CTRL0_ADDRESS(address)
870 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
871 pio[1] = 0;
872 desc = channel->device->device_prep_slave_sg(channel,
873 (struct scatterlist *)pio,
874 ARRAY_SIZE(pio), DMA_NONE, 0);
875 if (!desc) {
876 pr_err("step 1 error\n");
877 return -1;
880 /* [2] send DMA request */
881 prepare_data_dma(this, DMA_TO_DEVICE);
882 desc = channel->device->device_prep_slave_sg(channel, &this->data_sgl,
883 1, DMA_TO_DEVICE, 1);
884 if (!desc) {
885 pr_err("step 2 error\n");
886 return -1;
888 /* [3] submit the DMA */
889 set_dma_type(this, DMA_FOR_WRITE_DATA);
890 return start_dma_without_bch_irq(this, desc);
893 int gpmi_read_data(struct gpmi_nand_data *this)
895 struct dma_async_tx_descriptor *desc;
896 struct dma_chan *channel = get_dma_chan(this);
897 int chip = this->current_chip;
898 u32 pio[2];
900 /* [1] : send PIO */
901 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
902 | BM_GPMI_CTRL0_WORD_LENGTH
903 | BF_GPMI_CTRL0_CS(chip, this)
904 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
905 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
906 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
907 pio[1] = 0;
908 desc = channel->device->device_prep_slave_sg(channel,
909 (struct scatterlist *)pio,
910 ARRAY_SIZE(pio), DMA_NONE, 0);
911 if (!desc) {
912 pr_err("step 1 error\n");
913 return -1;
916 /* [2] : send DMA request */
917 prepare_data_dma(this, DMA_FROM_DEVICE);
918 desc = channel->device->device_prep_slave_sg(channel, &this->data_sgl,
919 1, DMA_FROM_DEVICE, 1);
920 if (!desc) {
921 pr_err("step 2 error\n");
922 return -1;
925 /* [3] : submit the DMA */
926 set_dma_type(this, DMA_FOR_READ_DATA);
927 return start_dma_without_bch_irq(this, desc);
930 int gpmi_send_page(struct gpmi_nand_data *this,
931 dma_addr_t payload, dma_addr_t auxiliary)
933 struct bch_geometry *geo = &this->bch_geometry;
934 uint32_t command_mode;
935 uint32_t address;
936 uint32_t ecc_command;
937 uint32_t buffer_mask;
938 struct dma_async_tx_descriptor *desc;
939 struct dma_chan *channel = get_dma_chan(this);
940 int chip = this->current_chip;
941 u32 pio[6];
943 /* A DMA descriptor that does an ECC page read. */
944 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
945 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
946 ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
947 buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
948 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
950 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
951 | BM_GPMI_CTRL0_WORD_LENGTH
952 | BF_GPMI_CTRL0_CS(chip, this)
953 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
954 | BF_GPMI_CTRL0_ADDRESS(address)
955 | BF_GPMI_CTRL0_XFER_COUNT(0);
956 pio[1] = 0;
957 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
958 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
959 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
960 pio[3] = geo->page_size_in_bytes;
961 pio[4] = payload;
962 pio[5] = auxiliary;
964 desc = channel->device->device_prep_slave_sg(channel,
965 (struct scatterlist *)pio,
966 ARRAY_SIZE(pio), DMA_NONE, 0);
967 if (!desc) {
968 pr_err("step 2 error\n");
969 return -1;
971 set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE);
972 return start_dma_with_bch_irq(this, desc);
975 int gpmi_read_page(struct gpmi_nand_data *this,
976 dma_addr_t payload, dma_addr_t auxiliary)
978 struct bch_geometry *geo = &this->bch_geometry;
979 uint32_t command_mode;
980 uint32_t address;
981 uint32_t ecc_command;
982 uint32_t buffer_mask;
983 struct dma_async_tx_descriptor *desc;
984 struct dma_chan *channel = get_dma_chan(this);
985 int chip = this->current_chip;
986 u32 pio[6];
988 /* [1] Wait for the chip to report ready. */
989 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
990 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
992 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
993 | BM_GPMI_CTRL0_WORD_LENGTH
994 | BF_GPMI_CTRL0_CS(chip, this)
995 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
996 | BF_GPMI_CTRL0_ADDRESS(address)
997 | BF_GPMI_CTRL0_XFER_COUNT(0);
998 pio[1] = 0;
999 desc = channel->device->device_prep_slave_sg(channel,
1000 (struct scatterlist *)pio, 2, DMA_NONE, 0);
1001 if (!desc) {
1002 pr_err("step 1 error\n");
1003 return -1;
1006 /* [2] Enable the BCH block and read. */
1007 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
1008 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1009 ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
1010 buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
1011 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1013 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1014 | BM_GPMI_CTRL0_WORD_LENGTH
1015 | BF_GPMI_CTRL0_CS(chip, this)
1016 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1017 | BF_GPMI_CTRL0_ADDRESS(address)
1018 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size_in_bytes);
1020 pio[1] = 0;
1021 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1022 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1023 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1024 pio[3] = geo->page_size_in_bytes;
1025 pio[4] = payload;
1026 pio[5] = auxiliary;
1027 desc = channel->device->device_prep_slave_sg(channel,
1028 (struct scatterlist *)pio,
1029 ARRAY_SIZE(pio), DMA_NONE, 1);
1030 if (!desc) {
1031 pr_err("step 2 error\n");
1032 return -1;
1035 /* [3] Disable the BCH block */
1036 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1037 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1039 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1040 | BM_GPMI_CTRL0_WORD_LENGTH
1041 | BF_GPMI_CTRL0_CS(chip, this)
1042 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1043 | BF_GPMI_CTRL0_ADDRESS(address)
1044 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size_in_bytes);
1045 pio[1] = 0;
1046 desc = channel->device->device_prep_slave_sg(channel,
1047 (struct scatterlist *)pio, 2, DMA_NONE, 1);
1048 if (!desc) {
1049 pr_err("step 3 error\n");
1050 return -1;
1053 /* [4] submit the DMA */
1054 set_dma_type(this, DMA_FOR_READ_ECC_PAGE);
1055 return start_dma_with_bch_irq(this, desc);