5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
16 * David Woodhouse for adding multichip support
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ECC support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
50 #include <linux/mtd/partitions.h>
52 /* Define default oob placement schemes for large and small page devices */
53 static struct nand_ecclayout nand_oob_8
= {
63 static struct nand_ecclayout nand_oob_16
= {
65 .eccpos
= {0, 1, 2, 3, 6, 7},
71 static struct nand_ecclayout nand_oob_64
= {
74 40, 41, 42, 43, 44, 45, 46, 47,
75 48, 49, 50, 51, 52, 53, 54, 55,
76 56, 57, 58, 59, 60, 61, 62, 63},
82 static struct nand_ecclayout nand_oob_128
= {
85 80, 81, 82, 83, 84, 85, 86, 87,
86 88, 89, 90, 91, 92, 93, 94, 95,
87 96, 97, 98, 99, 100, 101, 102, 103,
88 104, 105, 106, 107, 108, 109, 110, 111,
89 112, 113, 114, 115, 116, 117, 118, 119,
90 120, 121, 122, 123, 124, 125, 126, 127},
96 static int nand_get_device(struct nand_chip
*chip
, struct mtd_info
*mtd
,
99 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
100 struct mtd_oob_ops
*ops
);
103 * For devices which display every fart in the system on a separate LED. Is
104 * compiled away when LED support is disabled.
106 DEFINE_LED_TRIGGER(nand_led_trigger
);
108 static int check_offs_len(struct mtd_info
*mtd
,
109 loff_t ofs
, uint64_t len
)
111 struct nand_chip
*chip
= mtd
->priv
;
114 /* Start address must align on block boundary */
115 if (ofs
& ((1 << chip
->phys_erase_shift
) - 1)) {
116 pr_debug("%s: unaligned address\n", __func__
);
120 /* Length must align on block boundary */
121 if (len
& ((1 << chip
->phys_erase_shift
) - 1)) {
122 pr_debug("%s: length not block aligned\n", __func__
);
126 /* Do not allow past end of device */
127 if (ofs
+ len
> mtd
->size
) {
128 pr_debug("%s: past end of device\n", __func__
);
136 * nand_release_device - [GENERIC] release chip
137 * @mtd: MTD device structure
139 * Deselect, release chip lock and wake up anyone waiting on the device.
141 static void nand_release_device(struct mtd_info
*mtd
)
143 struct nand_chip
*chip
= mtd
->priv
;
145 /* De-select the NAND device */
146 chip
->select_chip(mtd
, -1);
148 /* Release the controller and the chip */
149 spin_lock(&chip
->controller
->lock
);
150 chip
->controller
->active
= NULL
;
151 chip
->state
= FL_READY
;
152 wake_up(&chip
->controller
->wq
);
153 spin_unlock(&chip
->controller
->lock
);
157 * nand_read_byte - [DEFAULT] read one byte from the chip
158 * @mtd: MTD device structure
160 * Default read function for 8bit buswidth
162 static uint8_t nand_read_byte(struct mtd_info
*mtd
)
164 struct nand_chip
*chip
= mtd
->priv
;
165 return readb(chip
->IO_ADDR_R
);
169 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
170 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
171 * @mtd: MTD device structure
173 * Default read function for 16bit buswidth with endianness conversion.
176 static uint8_t nand_read_byte16(struct mtd_info
*mtd
)
178 struct nand_chip
*chip
= mtd
->priv
;
179 return (uint8_t) cpu_to_le16(readw(chip
->IO_ADDR_R
));
183 * nand_read_word - [DEFAULT] read one word from the chip
184 * @mtd: MTD device structure
186 * Default read function for 16bit buswidth without endianness conversion.
188 static u16
nand_read_word(struct mtd_info
*mtd
)
190 struct nand_chip
*chip
= mtd
->priv
;
191 return readw(chip
->IO_ADDR_R
);
195 * nand_select_chip - [DEFAULT] control CE line
196 * @mtd: MTD device structure
197 * @chipnr: chipnumber to select, -1 for deselect
199 * Default select function for 1 chip devices.
201 static void nand_select_chip(struct mtd_info
*mtd
, int chipnr
)
203 struct nand_chip
*chip
= mtd
->priv
;
207 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
218 * nand_write_buf - [DEFAULT] write buffer to chip
219 * @mtd: MTD device structure
221 * @len: number of bytes to write
223 * Default write function for 8bit buswidth.
225 static void nand_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
228 struct nand_chip
*chip
= mtd
->priv
;
230 for (i
= 0; i
< len
; i
++)
231 writeb(buf
[i
], chip
->IO_ADDR_W
);
235 * nand_read_buf - [DEFAULT] read chip data into buffer
236 * @mtd: MTD device structure
237 * @buf: buffer to store date
238 * @len: number of bytes to read
240 * Default read function for 8bit buswidth.
242 static void nand_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
245 struct nand_chip
*chip
= mtd
->priv
;
247 for (i
= 0; i
< len
; i
++)
248 buf
[i
] = readb(chip
->IO_ADDR_R
);
252 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
253 * @mtd: MTD device structure
254 * @buf: buffer containing the data to compare
255 * @len: number of bytes to compare
257 * Default verify function for 8bit buswidth.
259 static int nand_verify_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
262 struct nand_chip
*chip
= mtd
->priv
;
264 for (i
= 0; i
< len
; i
++)
265 if (buf
[i
] != readb(chip
->IO_ADDR_R
))
271 * nand_write_buf16 - [DEFAULT] write buffer to chip
272 * @mtd: MTD device structure
274 * @len: number of bytes to write
276 * Default write function for 16bit buswidth.
278 static void nand_write_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
281 struct nand_chip
*chip
= mtd
->priv
;
282 u16
*p
= (u16
*) buf
;
285 for (i
= 0; i
< len
; i
++)
286 writew(p
[i
], chip
->IO_ADDR_W
);
291 * nand_read_buf16 - [DEFAULT] read chip data into buffer
292 * @mtd: MTD device structure
293 * @buf: buffer to store date
294 * @len: number of bytes to read
296 * Default read function for 16bit buswidth.
298 static void nand_read_buf16(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
301 struct nand_chip
*chip
= mtd
->priv
;
302 u16
*p
= (u16
*) buf
;
305 for (i
= 0; i
< len
; i
++)
306 p
[i
] = readw(chip
->IO_ADDR_R
);
310 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
311 * @mtd: MTD device structure
312 * @buf: buffer containing the data to compare
313 * @len: number of bytes to compare
315 * Default verify function for 16bit buswidth.
317 static int nand_verify_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
320 struct nand_chip
*chip
= mtd
->priv
;
321 u16
*p
= (u16
*) buf
;
324 for (i
= 0; i
< len
; i
++)
325 if (p
[i
] != readw(chip
->IO_ADDR_R
))
332 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
333 * @mtd: MTD device structure
334 * @ofs: offset from device start
335 * @getchip: 0, if the chip is already selected
337 * Check, if the block is bad.
339 static int nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
341 int page
, chipnr
, res
= 0;
342 struct nand_chip
*chip
= mtd
->priv
;
345 if (chip
->bbt_options
& NAND_BBT_SCANLASTPAGE
)
346 ofs
+= mtd
->erasesize
- mtd
->writesize
;
348 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
351 chipnr
= (int)(ofs
>> chip
->chip_shift
);
353 nand_get_device(chip
, mtd
, FL_READING
);
355 /* Select the NAND device */
356 chip
->select_chip(mtd
, chipnr
);
359 if (chip
->options
& NAND_BUSWIDTH_16
) {
360 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
& 0xFE,
362 bad
= cpu_to_le16(chip
->read_word(mtd
));
363 if (chip
->badblockpos
& 0x1)
368 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
, page
);
369 bad
= chip
->read_byte(mtd
);
372 if (likely(chip
->badblockbits
== 8))
375 res
= hweight8(bad
) < chip
->badblockbits
;
378 nand_release_device(mtd
);
384 * nand_default_block_markbad - [DEFAULT] mark a block bad
385 * @mtd: MTD device structure
386 * @ofs: offset from device start
388 * This is the default implementation, which can be overridden by a hardware
391 static int nand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
393 struct nand_chip
*chip
= mtd
->priv
;
394 uint8_t buf
[2] = { 0, 0 };
395 int block
, ret
, i
= 0;
397 if (chip
->bbt_options
& NAND_BBT_SCANLASTPAGE
)
398 ofs
+= mtd
->erasesize
- mtd
->writesize
;
400 /* Get block number */
401 block
= (int)(ofs
>> chip
->bbt_erase_shift
);
403 chip
->bbt
[block
>> 2] |= 0x01 << ((block
& 0x03) << 1);
405 /* Do we have a flash based bad block table? */
406 if (chip
->bbt_options
& NAND_BBT_USE_FLASH
)
407 ret
= nand_update_bbt(mtd
, ofs
);
409 nand_get_device(chip
, mtd
, FL_WRITING
);
412 * Write to first two pages if necessary. If we write to more
413 * than one location, the first error encountered quits the
414 * procedure. We write two bytes per location, so we dont have
415 * to mess with 16 bit access.
418 chip
->ops
.len
= chip
->ops
.ooblen
= 2;
419 chip
->ops
.datbuf
= NULL
;
420 chip
->ops
.oobbuf
= buf
;
421 chip
->ops
.ooboffs
= chip
->badblockpos
& ~0x01;
423 ret
= nand_do_write_oob(mtd
, ofs
, &chip
->ops
);
426 ofs
+= mtd
->writesize
;
427 } while (!ret
&& (chip
->bbt_options
& NAND_BBT_SCAN2NDPAGE
) &&
430 nand_release_device(mtd
);
433 mtd
->ecc_stats
.badblocks
++;
439 * nand_check_wp - [GENERIC] check if the chip is write protected
440 * @mtd: MTD device structure
442 * Check, if the device is write protected. The function expects, that the
443 * device is already selected.
445 static int nand_check_wp(struct mtd_info
*mtd
)
447 struct nand_chip
*chip
= mtd
->priv
;
449 /* Broken xD cards report WP despite being writable */
450 if (chip
->options
& NAND_BROKEN_XD
)
453 /* Check the WP bit */
454 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
455 return (chip
->read_byte(mtd
) & NAND_STATUS_WP
) ? 0 : 1;
459 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
460 * @mtd: MTD device structure
461 * @ofs: offset from device start
462 * @getchip: 0, if the chip is already selected
463 * @allowbbt: 1, if its allowed to access the bbt area
465 * Check, if the block is bad. Either by reading the bad block table or
466 * calling of the scan function.
468 static int nand_block_checkbad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
,
471 struct nand_chip
*chip
= mtd
->priv
;
474 return chip
->block_bad(mtd
, ofs
, getchip
);
476 /* Return info from the table */
477 return nand_isbad_bbt(mtd
, ofs
, allowbbt
);
481 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
482 * @mtd: MTD device structure
485 * Helper function for nand_wait_ready used when needing to wait in interrupt
488 static void panic_nand_wait_ready(struct mtd_info
*mtd
, unsigned long timeo
)
490 struct nand_chip
*chip
= mtd
->priv
;
493 /* Wait for the device to get ready */
494 for (i
= 0; i
< timeo
; i
++) {
495 if (chip
->dev_ready(mtd
))
497 touch_softlockup_watchdog();
502 /* Wait for the ready pin, after a command. The timeout is caught later. */
503 void nand_wait_ready(struct mtd_info
*mtd
)
505 struct nand_chip
*chip
= mtd
->priv
;
506 unsigned long timeo
= jiffies
+ 2;
509 if (in_interrupt() || oops_in_progress
)
510 return panic_nand_wait_ready(mtd
, 400);
512 led_trigger_event(nand_led_trigger
, LED_FULL
);
513 /* Wait until command is processed or timeout occurs */
515 if (chip
->dev_ready(mtd
))
517 touch_softlockup_watchdog();
518 } while (time_before(jiffies
, timeo
));
519 led_trigger_event(nand_led_trigger
, LED_OFF
);
521 EXPORT_SYMBOL_GPL(nand_wait_ready
);
524 * nand_command - [DEFAULT] Send command to NAND device
525 * @mtd: MTD device structure
526 * @command: the command to be sent
527 * @column: the column address for this command, -1 if none
528 * @page_addr: the page address for this command, -1 if none
530 * Send command to NAND device. This function is used for small page devices
531 * (256/512 Bytes per page).
533 static void nand_command(struct mtd_info
*mtd
, unsigned int command
,
534 int column
, int page_addr
)
536 register struct nand_chip
*chip
= mtd
->priv
;
537 int ctrl
= NAND_CTRL_CLE
| NAND_CTRL_CHANGE
;
539 /* Write out the command to the device */
540 if (command
== NAND_CMD_SEQIN
) {
543 if (column
>= mtd
->writesize
) {
545 column
-= mtd
->writesize
;
546 readcmd
= NAND_CMD_READOOB
;
547 } else if (column
< 256) {
548 /* First 256 bytes --> READ0 */
549 readcmd
= NAND_CMD_READ0
;
552 readcmd
= NAND_CMD_READ1
;
554 chip
->cmd_ctrl(mtd
, readcmd
, ctrl
);
555 ctrl
&= ~NAND_CTRL_CHANGE
;
557 chip
->cmd_ctrl(mtd
, command
, ctrl
);
559 /* Address cycle, when necessary */
560 ctrl
= NAND_CTRL_ALE
| NAND_CTRL_CHANGE
;
561 /* Serially input address */
563 /* Adjust columns for 16 bit buswidth */
564 if (chip
->options
& NAND_BUSWIDTH_16
)
566 chip
->cmd_ctrl(mtd
, column
, ctrl
);
567 ctrl
&= ~NAND_CTRL_CHANGE
;
569 if (page_addr
!= -1) {
570 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
571 ctrl
&= ~NAND_CTRL_CHANGE
;
572 chip
->cmd_ctrl(mtd
, page_addr
>> 8, ctrl
);
573 /* One more address cycle for devices > 32MiB */
574 if (chip
->chipsize
> (32 << 20))
575 chip
->cmd_ctrl(mtd
, page_addr
>> 16, ctrl
);
577 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
580 * Program and erase have their own busy handlers status and sequential
585 case NAND_CMD_PAGEPROG
:
586 case NAND_CMD_ERASE1
:
587 case NAND_CMD_ERASE2
:
589 case NAND_CMD_STATUS
:
595 udelay(chip
->chip_delay
);
596 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
597 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
599 NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
600 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
))
604 /* This applies to read commands */
607 * If we don't have access to the busy pin, we apply the given
610 if (!chip
->dev_ready
) {
611 udelay(chip
->chip_delay
);
616 * Apply this short delay always to ensure that we do wait tWB in
617 * any case on any machine.
621 nand_wait_ready(mtd
);
625 * nand_command_lp - [DEFAULT] Send command to NAND large page device
626 * @mtd: MTD device structure
627 * @command: the command to be sent
628 * @column: the column address for this command, -1 if none
629 * @page_addr: the page address for this command, -1 if none
631 * Send command to NAND device. This is the version for the new large page
632 * devices. We don't have the separate regions as we have in the small page
633 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
635 static void nand_command_lp(struct mtd_info
*mtd
, unsigned int command
,
636 int column
, int page_addr
)
638 register struct nand_chip
*chip
= mtd
->priv
;
640 /* Emulate NAND_CMD_READOOB */
641 if (command
== NAND_CMD_READOOB
) {
642 column
+= mtd
->writesize
;
643 command
= NAND_CMD_READ0
;
646 /* Command latch cycle */
647 chip
->cmd_ctrl(mtd
, command
& 0xff,
648 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
650 if (column
!= -1 || page_addr
!= -1) {
651 int ctrl
= NAND_CTRL_CHANGE
| NAND_NCE
| NAND_ALE
;
653 /* Serially input address */
655 /* Adjust columns for 16 bit buswidth */
656 if (chip
->options
& NAND_BUSWIDTH_16
)
658 chip
->cmd_ctrl(mtd
, column
, ctrl
);
659 ctrl
&= ~NAND_CTRL_CHANGE
;
660 chip
->cmd_ctrl(mtd
, column
>> 8, ctrl
);
662 if (page_addr
!= -1) {
663 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
664 chip
->cmd_ctrl(mtd
, page_addr
>> 8,
665 NAND_NCE
| NAND_ALE
);
666 /* One more address cycle for devices > 128MiB */
667 if (chip
->chipsize
> (128 << 20))
668 chip
->cmd_ctrl(mtd
, page_addr
>> 16,
669 NAND_NCE
| NAND_ALE
);
672 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
675 * Program and erase have their own busy handlers status, sequential
676 * in, and deplete1 need no delay.
680 case NAND_CMD_CACHEDPROG
:
681 case NAND_CMD_PAGEPROG
:
682 case NAND_CMD_ERASE1
:
683 case NAND_CMD_ERASE2
:
686 case NAND_CMD_STATUS
:
687 case NAND_CMD_DEPLETE1
:
690 case NAND_CMD_STATUS_ERROR
:
691 case NAND_CMD_STATUS_ERROR0
:
692 case NAND_CMD_STATUS_ERROR1
:
693 case NAND_CMD_STATUS_ERROR2
:
694 case NAND_CMD_STATUS_ERROR3
:
695 /* Read error status commands require only a short delay */
696 udelay(chip
->chip_delay
);
702 udelay(chip
->chip_delay
);
703 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
704 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
705 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
706 NAND_NCE
| NAND_CTRL_CHANGE
);
707 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
))
711 case NAND_CMD_RNDOUT
:
712 /* No ready / busy check necessary */
713 chip
->cmd_ctrl(mtd
, NAND_CMD_RNDOUTSTART
,
714 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
715 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
716 NAND_NCE
| NAND_CTRL_CHANGE
);
720 chip
->cmd_ctrl(mtd
, NAND_CMD_READSTART
,
721 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
722 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
723 NAND_NCE
| NAND_CTRL_CHANGE
);
725 /* This applies to read commands */
728 * If we don't have access to the busy pin, we apply the given
731 if (!chip
->dev_ready
) {
732 udelay(chip
->chip_delay
);
738 * Apply this short delay always to ensure that we do wait tWB in
739 * any case on any machine.
743 nand_wait_ready(mtd
);
747 * panic_nand_get_device - [GENERIC] Get chip for selected access
748 * @chip: the nand chip descriptor
749 * @mtd: MTD device structure
750 * @new_state: the state which is requested
752 * Used when in panic, no locks are taken.
754 static void panic_nand_get_device(struct nand_chip
*chip
,
755 struct mtd_info
*mtd
, int new_state
)
757 /* Hardware controller shared among independent devices */
758 chip
->controller
->active
= chip
;
759 chip
->state
= new_state
;
763 * nand_get_device - [GENERIC] Get chip for selected access
764 * @chip: the nand chip descriptor
765 * @mtd: MTD device structure
766 * @new_state: the state which is requested
768 * Get the device and lock it for exclusive access
771 nand_get_device(struct nand_chip
*chip
, struct mtd_info
*mtd
, int new_state
)
773 spinlock_t
*lock
= &chip
->controller
->lock
;
774 wait_queue_head_t
*wq
= &chip
->controller
->wq
;
775 DECLARE_WAITQUEUE(wait
, current
);
779 /* Hardware controller shared among independent devices */
780 if (!chip
->controller
->active
)
781 chip
->controller
->active
= chip
;
783 if (chip
->controller
->active
== chip
&& chip
->state
== FL_READY
) {
784 chip
->state
= new_state
;
788 if (new_state
== FL_PM_SUSPENDED
) {
789 if (chip
->controller
->active
->state
== FL_PM_SUSPENDED
) {
790 chip
->state
= FL_PM_SUSPENDED
;
795 set_current_state(TASK_UNINTERRUPTIBLE
);
796 add_wait_queue(wq
, &wait
);
799 remove_wait_queue(wq
, &wait
);
804 * panic_nand_wait - [GENERIC] wait until the command is done
805 * @mtd: MTD device structure
806 * @chip: NAND chip structure
809 * Wait for command done. This is a helper function for nand_wait used when
810 * we are in interrupt context. May happen when in panic and trying to write
811 * an oops through mtdoops.
813 static void panic_nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
,
817 for (i
= 0; i
< timeo
; i
++) {
818 if (chip
->dev_ready
) {
819 if (chip
->dev_ready(mtd
))
822 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
830 * nand_wait - [DEFAULT] wait until the command is done
831 * @mtd: MTD device structure
832 * @chip: NAND chip structure
834 * Wait for command done. This applies to erase and program only. Erase can
835 * take up to 400ms and program up to 20ms according to general NAND and
838 static int nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
841 unsigned long timeo
= jiffies
;
842 int status
, state
= chip
->state
;
844 if (state
== FL_ERASING
)
845 timeo
+= (HZ
* 400) / 1000;
847 timeo
+= (HZ
* 20) / 1000;
849 led_trigger_event(nand_led_trigger
, LED_FULL
);
852 * Apply this short delay always to ensure that we do wait tWB in any
853 * case on any machine.
857 if ((state
== FL_ERASING
) && (chip
->options
& NAND_IS_AND
))
858 chip
->cmdfunc(mtd
, NAND_CMD_STATUS_MULTI
, -1, -1);
860 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
862 if (in_interrupt() || oops_in_progress
)
863 panic_nand_wait(mtd
, chip
, timeo
);
865 while (time_before(jiffies
, timeo
)) {
866 if (chip
->dev_ready
) {
867 if (chip
->dev_ready(mtd
))
870 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
876 led_trigger_event(nand_led_trigger
, LED_OFF
);
878 status
= (int)chip
->read_byte(mtd
);
883 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
885 * @ofs: offset to start unlock from
886 * @len: length to unlock
887 * @invert: when = 0, unlock the range of blocks within the lower and
888 * upper boundary address
889 * when = 1, unlock the range of blocks outside the boundaries
890 * of the lower and upper boundary address
892 * Returs unlock status.
894 static int __nand_unlock(struct mtd_info
*mtd
, loff_t ofs
,
895 uint64_t len
, int invert
)
899 struct nand_chip
*chip
= mtd
->priv
;
901 /* Submit address of first page to unlock */
902 page
= ofs
>> chip
->page_shift
;
903 chip
->cmdfunc(mtd
, NAND_CMD_UNLOCK1
, -1, page
& chip
->pagemask
);
905 /* Submit address of last page to unlock */
906 page
= (ofs
+ len
) >> chip
->page_shift
;
907 chip
->cmdfunc(mtd
, NAND_CMD_UNLOCK2
, -1,
908 (page
| invert
) & chip
->pagemask
);
910 /* Call wait ready function */
911 status
= chip
->waitfunc(mtd
, chip
);
912 /* See if device thinks it succeeded */
914 pr_debug("%s: error status = 0x%08x\n",
923 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
925 * @ofs: offset to start unlock from
926 * @len: length to unlock
928 * Returns unlock status.
930 int nand_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
934 struct nand_chip
*chip
= mtd
->priv
;
936 pr_debug("%s: start = 0x%012llx, len = %llu\n",
937 __func__
, (unsigned long long)ofs
, len
);
939 if (check_offs_len(mtd
, ofs
, len
))
942 /* Align to last block address if size addresses end of the device */
943 if (ofs
+ len
== mtd
->size
)
944 len
-= mtd
->erasesize
;
946 nand_get_device(chip
, mtd
, FL_UNLOCKING
);
948 /* Shift to get chip number */
949 chipnr
= ofs
>> chip
->chip_shift
;
951 chip
->select_chip(mtd
, chipnr
);
953 /* Check, if it is write protected */
954 if (nand_check_wp(mtd
)) {
955 pr_debug("%s: device is write protected!\n",
961 ret
= __nand_unlock(mtd
, ofs
, len
, 0);
964 nand_release_device(mtd
);
968 EXPORT_SYMBOL(nand_unlock
);
971 * nand_lock - [REPLACEABLE] locks all blocks present in the device
973 * @ofs: offset to start unlock from
974 * @len: length to unlock
976 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
977 * have this feature, but it allows only to lock all blocks, not for specified
978 * range for block. Implementing 'lock' feature by making use of 'unlock', for
981 * Returns lock status.
983 int nand_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
986 int chipnr
, status
, page
;
987 struct nand_chip
*chip
= mtd
->priv
;
989 pr_debug("%s: start = 0x%012llx, len = %llu\n",
990 __func__
, (unsigned long long)ofs
, len
);
992 if (check_offs_len(mtd
, ofs
, len
))
995 nand_get_device(chip
, mtd
, FL_LOCKING
);
997 /* Shift to get chip number */
998 chipnr
= ofs
>> chip
->chip_shift
;
1000 chip
->select_chip(mtd
, chipnr
);
1002 /* Check, if it is write protected */
1003 if (nand_check_wp(mtd
)) {
1004 pr_debug("%s: device is write protected!\n",
1006 status
= MTD_ERASE_FAILED
;
1011 /* Submit address of first page to lock */
1012 page
= ofs
>> chip
->page_shift
;
1013 chip
->cmdfunc(mtd
, NAND_CMD_LOCK
, -1, page
& chip
->pagemask
);
1015 /* Call wait ready function */
1016 status
= chip
->waitfunc(mtd
, chip
);
1017 /* See if device thinks it succeeded */
1018 if (status
& 0x01) {
1019 pr_debug("%s: error status = 0x%08x\n",
1025 ret
= __nand_unlock(mtd
, ofs
, len
, 0x1);
1028 nand_release_device(mtd
);
1032 EXPORT_SYMBOL(nand_lock
);
1035 * nand_read_page_raw - [INTERN] read raw page data without ecc
1036 * @mtd: mtd info structure
1037 * @chip: nand chip info structure
1038 * @buf: buffer to store read data
1039 * @page: page number to read
1041 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1043 static int nand_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1044 uint8_t *buf
, int page
)
1046 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
1047 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1052 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1053 * @mtd: mtd info structure
1054 * @chip: nand chip info structure
1055 * @buf: buffer to store read data
1056 * @page: page number to read
1058 * We need a special oob layout and handling even when OOB isn't used.
1060 static int nand_read_page_raw_syndrome(struct mtd_info
*mtd
,
1061 struct nand_chip
*chip
,
1062 uint8_t *buf
, int page
)
1064 int eccsize
= chip
->ecc
.size
;
1065 int eccbytes
= chip
->ecc
.bytes
;
1066 uint8_t *oob
= chip
->oob_poi
;
1069 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
1070 chip
->read_buf(mtd
, buf
, eccsize
);
1073 if (chip
->ecc
.prepad
) {
1074 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1075 oob
+= chip
->ecc
.prepad
;
1078 chip
->read_buf(mtd
, oob
, eccbytes
);
1081 if (chip
->ecc
.postpad
) {
1082 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1083 oob
+= chip
->ecc
.postpad
;
1087 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1089 chip
->read_buf(mtd
, oob
, size
);
1095 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1096 * @mtd: mtd info structure
1097 * @chip: nand chip info structure
1098 * @buf: buffer to store read data
1099 * @page: page number to read
1101 static int nand_read_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1102 uint8_t *buf
, int page
)
1104 int i
, eccsize
= chip
->ecc
.size
;
1105 int eccbytes
= chip
->ecc
.bytes
;
1106 int eccsteps
= chip
->ecc
.steps
;
1108 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1109 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1110 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1112 chip
->ecc
.read_page_raw(mtd
, chip
, buf
, page
);
1114 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
1115 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1117 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1118 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1120 eccsteps
= chip
->ecc
.steps
;
1123 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1126 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
1128 mtd
->ecc_stats
.failed
++;
1130 mtd
->ecc_stats
.corrected
+= stat
;
1136 * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function
1137 * @mtd: mtd info structure
1138 * @chip: nand chip info structure
1139 * @data_offs: offset of requested data within the page
1140 * @readlen: data length
1141 * @bufpoi: buffer to store read data
1143 static int nand_read_subpage(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1144 uint32_t data_offs
, uint32_t readlen
, uint8_t *bufpoi
)
1146 int start_step
, end_step
, num_steps
;
1147 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1149 int data_col_addr
, i
, gaps
= 0;
1150 int datafrag_len
, eccfrag_len
, aligned_len
, aligned_pos
;
1151 int busw
= (chip
->options
& NAND_BUSWIDTH_16
) ? 2 : 1;
1154 /* Column address within the page aligned to ECC size (256bytes) */
1155 start_step
= data_offs
/ chip
->ecc
.size
;
1156 end_step
= (data_offs
+ readlen
- 1) / chip
->ecc
.size
;
1157 num_steps
= end_step
- start_step
+ 1;
1159 /* Data size aligned to ECC ecc.size */
1160 datafrag_len
= num_steps
* chip
->ecc
.size
;
1161 eccfrag_len
= num_steps
* chip
->ecc
.bytes
;
1163 data_col_addr
= start_step
* chip
->ecc
.size
;
1164 /* If we read not a page aligned data */
1165 if (data_col_addr
!= 0)
1166 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, data_col_addr
, -1);
1168 p
= bufpoi
+ data_col_addr
;
1169 chip
->read_buf(mtd
, p
, datafrag_len
);
1172 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
)
1173 chip
->ecc
.calculate(mtd
, p
, &chip
->buffers
->ecccalc
[i
]);
1176 * The performance is faster if we position offsets according to
1177 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1179 for (i
= 0; i
< eccfrag_len
- 1; i
++) {
1180 if (eccpos
[i
+ start_step
* chip
->ecc
.bytes
] + 1 !=
1181 eccpos
[i
+ start_step
* chip
->ecc
.bytes
+ 1]) {
1187 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
, -1);
1188 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1191 * Send the command to read the particular ECC bytes take care
1192 * about buswidth alignment in read_buf.
1194 index
= start_step
* chip
->ecc
.bytes
;
1196 aligned_pos
= eccpos
[index
] & ~(busw
- 1);
1197 aligned_len
= eccfrag_len
;
1198 if (eccpos
[index
] & (busw
- 1))
1200 if (eccpos
[index
+ (num_steps
* chip
->ecc
.bytes
)] & (busw
- 1))
1203 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
,
1204 mtd
->writesize
+ aligned_pos
, -1);
1205 chip
->read_buf(mtd
, &chip
->oob_poi
[aligned_pos
], aligned_len
);
1208 for (i
= 0; i
< eccfrag_len
; i
++)
1209 chip
->buffers
->ecccode
[i
] = chip
->oob_poi
[eccpos
[i
+ index
]];
1211 p
= bufpoi
+ data_col_addr
;
1212 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
) {
1215 stat
= chip
->ecc
.correct(mtd
, p
,
1216 &chip
->buffers
->ecccode
[i
], &chip
->buffers
->ecccalc
[i
]);
1218 mtd
->ecc_stats
.failed
++;
1220 mtd
->ecc_stats
.corrected
+= stat
;
1226 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1227 * @mtd: mtd info structure
1228 * @chip: nand chip info structure
1229 * @buf: buffer to store read data
1230 * @page: page number to read
1232 * Not for syndrome calculating ECC controllers which need a special oob layout.
1234 static int nand_read_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1235 uint8_t *buf
, int page
)
1237 int i
, eccsize
= chip
->ecc
.size
;
1238 int eccbytes
= chip
->ecc
.bytes
;
1239 int eccsteps
= chip
->ecc
.steps
;
1241 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1242 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1243 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1245 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1246 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1247 chip
->read_buf(mtd
, p
, eccsize
);
1248 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1250 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1252 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1253 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1255 eccsteps
= chip
->ecc
.steps
;
1258 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1261 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
1263 mtd
->ecc_stats
.failed
++;
1265 mtd
->ecc_stats
.corrected
+= stat
;
1271 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1272 * @mtd: mtd info structure
1273 * @chip: nand chip info structure
1274 * @buf: buffer to store read data
1275 * @page: page number to read
1277 * Hardware ECC for large page chips, require OOB to be read first. For this
1278 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1279 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1280 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1281 * the data area, by overwriting the NAND manufacturer bad block markings.
1283 static int nand_read_page_hwecc_oob_first(struct mtd_info
*mtd
,
1284 struct nand_chip
*chip
, uint8_t *buf
, int page
)
1286 int i
, eccsize
= chip
->ecc
.size
;
1287 int eccbytes
= chip
->ecc
.bytes
;
1288 int eccsteps
= chip
->ecc
.steps
;
1290 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1291 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1292 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1294 /* Read the OOB area first */
1295 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1296 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1297 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1299 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1300 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1302 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1305 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1306 chip
->read_buf(mtd
, p
, eccsize
);
1307 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1309 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], NULL
);
1311 mtd
->ecc_stats
.failed
++;
1313 mtd
->ecc_stats
.corrected
+= stat
;
1319 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1320 * @mtd: mtd info structure
1321 * @chip: nand chip info structure
1322 * @buf: buffer to store read data
1323 * @page: page number to read
1325 * The hw generator calculates the error syndrome automatically. Therefore we
1326 * need a special oob layout and handling.
1328 static int nand_read_page_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1329 uint8_t *buf
, int page
)
1331 int i
, eccsize
= chip
->ecc
.size
;
1332 int eccbytes
= chip
->ecc
.bytes
;
1333 int eccsteps
= chip
->ecc
.steps
;
1335 uint8_t *oob
= chip
->oob_poi
;
1337 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1340 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1341 chip
->read_buf(mtd
, p
, eccsize
);
1343 if (chip
->ecc
.prepad
) {
1344 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1345 oob
+= chip
->ecc
.prepad
;
1348 chip
->ecc
.hwctl(mtd
, NAND_ECC_READSYN
);
1349 chip
->read_buf(mtd
, oob
, eccbytes
);
1350 stat
= chip
->ecc
.correct(mtd
, p
, oob
, NULL
);
1353 mtd
->ecc_stats
.failed
++;
1355 mtd
->ecc_stats
.corrected
+= stat
;
1359 if (chip
->ecc
.postpad
) {
1360 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1361 oob
+= chip
->ecc
.postpad
;
1365 /* Calculate remaining oob bytes */
1366 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1368 chip
->read_buf(mtd
, oob
, i
);
1374 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1375 * @chip: nand chip structure
1376 * @oob: oob destination address
1377 * @ops: oob ops structure
1378 * @len: size of oob to transfer
1380 static uint8_t *nand_transfer_oob(struct nand_chip
*chip
, uint8_t *oob
,
1381 struct mtd_oob_ops
*ops
, size_t len
)
1383 switch (ops
->mode
) {
1387 memcpy(oob
, chip
->oob_poi
+ ops
->ooboffs
, len
);
1390 case MTD_OOB_AUTO
: {
1391 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
1392 uint32_t boffs
= 0, roffs
= ops
->ooboffs
;
1395 for (; free
->length
&& len
; free
++, len
-= bytes
) {
1396 /* Read request not from offset 0? */
1397 if (unlikely(roffs
)) {
1398 if (roffs
>= free
->length
) {
1399 roffs
-= free
->length
;
1402 boffs
= free
->offset
+ roffs
;
1403 bytes
= min_t(size_t, len
,
1404 (free
->length
- roffs
));
1407 bytes
= min_t(size_t, len
, free
->length
);
1408 boffs
= free
->offset
;
1410 memcpy(oob
, chip
->oob_poi
+ boffs
, bytes
);
1422 * nand_do_read_ops - [INTERN] Read data with ECC
1423 * @mtd: MTD device structure
1424 * @from: offset to read from
1425 * @ops: oob ops structure
1427 * Internal function. Called with chip held.
1429 static int nand_do_read_ops(struct mtd_info
*mtd
, loff_t from
,
1430 struct mtd_oob_ops
*ops
)
1432 int chipnr
, page
, realpage
, col
, bytes
, aligned
;
1433 struct nand_chip
*chip
= mtd
->priv
;
1434 struct mtd_ecc_stats stats
;
1435 int blkcheck
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1438 uint32_t readlen
= ops
->len
;
1439 uint32_t oobreadlen
= ops
->ooblen
;
1440 uint32_t max_oobsize
= ops
->mode
== MTD_OOB_AUTO
?
1441 mtd
->oobavail
: mtd
->oobsize
;
1443 uint8_t *bufpoi
, *oob
, *buf
;
1445 stats
= mtd
->ecc_stats
;
1447 chipnr
= (int)(from
>> chip
->chip_shift
);
1448 chip
->select_chip(mtd
, chipnr
);
1450 realpage
= (int)(from
>> chip
->page_shift
);
1451 page
= realpage
& chip
->pagemask
;
1453 col
= (int)(from
& (mtd
->writesize
- 1));
1459 bytes
= min(mtd
->writesize
- col
, readlen
);
1460 aligned
= (bytes
== mtd
->writesize
);
1462 /* Is the current page in the buffer? */
1463 if (realpage
!= chip
->pagebuf
|| oob
) {
1464 bufpoi
= aligned
? buf
: chip
->buffers
->databuf
;
1466 if (likely(sndcmd
)) {
1467 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0x00, page
);
1471 /* Now read the page into the buffer */
1472 if (unlikely(ops
->mode
== MTD_OOB_RAW
))
1473 ret
= chip
->ecc
.read_page_raw(mtd
, chip
,
1475 else if (!aligned
&& NAND_SUBPAGE_READ(chip
) && !oob
)
1476 ret
= chip
->ecc
.read_subpage(mtd
, chip
,
1477 col
, bytes
, bufpoi
);
1479 ret
= chip
->ecc
.read_page(mtd
, chip
, bufpoi
,
1484 /* Transfer not aligned data */
1486 if (!NAND_SUBPAGE_READ(chip
) && !oob
&&
1487 !(mtd
->ecc_stats
.failed
- stats
.failed
))
1488 chip
->pagebuf
= realpage
;
1489 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1494 if (unlikely(oob
)) {
1496 int toread
= min(oobreadlen
, max_oobsize
);
1499 oob
= nand_transfer_oob(chip
,
1501 oobreadlen
-= toread
;
1505 if (!(chip
->options
& NAND_NO_READRDY
)) {
1507 * Apply delay or wait for ready/busy pin. Do
1508 * this before the AUTOINCR check, so no
1509 * problems arise if a chip which does auto
1510 * increment is marked as NOAUTOINCR by the
1513 if (!chip
->dev_ready
)
1514 udelay(chip
->chip_delay
);
1516 nand_wait_ready(mtd
);
1519 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1528 /* For subsequent reads align to page boundary */
1530 /* Increment page address */
1533 page
= realpage
& chip
->pagemask
;
1534 /* Check, if we cross a chip boundary */
1537 chip
->select_chip(mtd
, -1);
1538 chip
->select_chip(mtd
, chipnr
);
1542 * Check, if the chip supports auto page increment or if we
1543 * have hit a block boundary.
1545 if (!NAND_CANAUTOINCR(chip
) || !(page
& blkcheck
))
1549 ops
->retlen
= ops
->len
- (size_t) readlen
;
1551 ops
->oobretlen
= ops
->ooblen
- oobreadlen
;
1556 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1559 return mtd
->ecc_stats
.corrected
- stats
.corrected
? -EUCLEAN
: 0;
1563 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1564 * @mtd: MTD device structure
1565 * @from: offset to read from
1566 * @len: number of bytes to read
1567 * @retlen: pointer to variable to store the number of read bytes
1568 * @buf: the databuffer to put data
1570 * Get hold of the chip and call nand_do_read.
1572 static int nand_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1573 size_t *retlen
, uint8_t *buf
)
1575 struct nand_chip
*chip
= mtd
->priv
;
1578 /* Do not allow reads past end of device */
1579 if ((from
+ len
) > mtd
->size
)
1584 nand_get_device(chip
, mtd
, FL_READING
);
1586 chip
->ops
.len
= len
;
1587 chip
->ops
.datbuf
= buf
;
1588 chip
->ops
.oobbuf
= NULL
;
1590 ret
= nand_do_read_ops(mtd
, from
, &chip
->ops
);
1592 *retlen
= chip
->ops
.retlen
;
1594 nand_release_device(mtd
);
1600 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1601 * @mtd: mtd info structure
1602 * @chip: nand chip info structure
1603 * @page: page number to read
1604 * @sndcmd: flag whether to issue read command or not
1606 static int nand_read_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1607 int page
, int sndcmd
)
1610 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1613 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1618 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1620 * @mtd: mtd info structure
1621 * @chip: nand chip info structure
1622 * @page: page number to read
1623 * @sndcmd: flag whether to issue read command or not
1625 static int nand_read_oob_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1626 int page
, int sndcmd
)
1628 uint8_t *buf
= chip
->oob_poi
;
1629 int length
= mtd
->oobsize
;
1630 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1631 int eccsize
= chip
->ecc
.size
;
1632 uint8_t *bufpoi
= buf
;
1633 int i
, toread
, sndrnd
= 0, pos
;
1635 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, chip
->ecc
.size
, page
);
1636 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
1638 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1639 if (mtd
->writesize
> 512)
1640 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, pos
, -1);
1642 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, pos
, page
);
1645 toread
= min_t(int, length
, chunk
);
1646 chip
->read_buf(mtd
, bufpoi
, toread
);
1651 chip
->read_buf(mtd
, bufpoi
, length
);
1657 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1658 * @mtd: mtd info structure
1659 * @chip: nand chip info structure
1660 * @page: page number to write
1662 static int nand_write_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1666 const uint8_t *buf
= chip
->oob_poi
;
1667 int length
= mtd
->oobsize
;
1669 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
1670 chip
->write_buf(mtd
, buf
, length
);
1671 /* Send command to program the OOB data */
1672 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1674 status
= chip
->waitfunc(mtd
, chip
);
1676 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1680 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1681 * with syndrome - only for large page flash
1682 * @mtd: mtd info structure
1683 * @chip: nand chip info structure
1684 * @page: page number to write
1686 static int nand_write_oob_syndrome(struct mtd_info
*mtd
,
1687 struct nand_chip
*chip
, int page
)
1689 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1690 int eccsize
= chip
->ecc
.size
, length
= mtd
->oobsize
;
1691 int i
, len
, pos
, status
= 0, sndcmd
= 0, steps
= chip
->ecc
.steps
;
1692 const uint8_t *bufpoi
= chip
->oob_poi
;
1695 * data-ecc-data-ecc ... ecc-oob
1697 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1699 if (!chip
->ecc
.prepad
&& !chip
->ecc
.postpad
) {
1700 pos
= steps
* (eccsize
+ chunk
);
1705 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, pos
, page
);
1706 for (i
= 0; i
< steps
; i
++) {
1708 if (mtd
->writesize
<= 512) {
1709 uint32_t fill
= 0xFFFFFFFF;
1713 int num
= min_t(int, len
, 4);
1714 chip
->write_buf(mtd
, (uint8_t *)&fill
,
1719 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1720 chip
->cmdfunc(mtd
, NAND_CMD_RNDIN
, pos
, -1);
1724 len
= min_t(int, length
, chunk
);
1725 chip
->write_buf(mtd
, bufpoi
, len
);
1730 chip
->write_buf(mtd
, bufpoi
, length
);
1732 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1733 status
= chip
->waitfunc(mtd
, chip
);
1735 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1739 * nand_do_read_oob - [INTERN] NAND read out-of-band
1740 * @mtd: MTD device structure
1741 * @from: offset to read from
1742 * @ops: oob operations description structure
1744 * NAND read out-of-band data from the spare area.
1746 static int nand_do_read_oob(struct mtd_info
*mtd
, loff_t from
,
1747 struct mtd_oob_ops
*ops
)
1749 int page
, realpage
, chipnr
, sndcmd
= 1;
1750 struct nand_chip
*chip
= mtd
->priv
;
1751 struct mtd_ecc_stats stats
;
1752 int blkcheck
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1753 int readlen
= ops
->ooblen
;
1755 uint8_t *buf
= ops
->oobbuf
;
1757 pr_debug("%s: from = 0x%08Lx, len = %i\n",
1758 __func__
, (unsigned long long)from
, readlen
);
1760 stats
= mtd
->ecc_stats
;
1762 if (ops
->mode
== MTD_OOB_AUTO
)
1763 len
= chip
->ecc
.layout
->oobavail
;
1767 if (unlikely(ops
->ooboffs
>= len
)) {
1768 pr_debug("%s: attempt to start read outside oob\n",
1773 /* Do not allow reads past end of device */
1774 if (unlikely(from
>= mtd
->size
||
1775 ops
->ooboffs
+ readlen
> ((mtd
->size
>> chip
->page_shift
) -
1776 (from
>> chip
->page_shift
)) * len
)) {
1777 pr_debug("%s: attempt to read beyond end of device\n",
1782 chipnr
= (int)(from
>> chip
->chip_shift
);
1783 chip
->select_chip(mtd
, chipnr
);
1785 /* Shift to get page */
1786 realpage
= (int)(from
>> chip
->page_shift
);
1787 page
= realpage
& chip
->pagemask
;
1790 sndcmd
= chip
->ecc
.read_oob(mtd
, chip
, page
, sndcmd
);
1792 len
= min(len
, readlen
);
1793 buf
= nand_transfer_oob(chip
, buf
, ops
, len
);
1795 if (!(chip
->options
& NAND_NO_READRDY
)) {
1797 * Apply delay or wait for ready/busy pin. Do this
1798 * before the AUTOINCR check, so no problems arise if a
1799 * chip which does auto increment is marked as
1800 * NOAUTOINCR by the board driver.
1802 if (!chip
->dev_ready
)
1803 udelay(chip
->chip_delay
);
1805 nand_wait_ready(mtd
);
1812 /* Increment page address */
1815 page
= realpage
& chip
->pagemask
;
1816 /* Check, if we cross a chip boundary */
1819 chip
->select_chip(mtd
, -1);
1820 chip
->select_chip(mtd
, chipnr
);
1824 * Check, if the chip supports auto page increment or if we
1825 * have hit a block boundary.
1827 if (!NAND_CANAUTOINCR(chip
) || !(page
& blkcheck
))
1831 ops
->oobretlen
= ops
->ooblen
;
1833 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1836 return mtd
->ecc_stats
.corrected
- stats
.corrected
? -EUCLEAN
: 0;
1840 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1841 * @mtd: MTD device structure
1842 * @from: offset to read from
1843 * @ops: oob operation description structure
1845 * NAND read data and/or out-of-band data.
1847 static int nand_read_oob(struct mtd_info
*mtd
, loff_t from
,
1848 struct mtd_oob_ops
*ops
)
1850 struct nand_chip
*chip
= mtd
->priv
;
1851 int ret
= -ENOTSUPP
;
1855 /* Do not allow reads past end of device */
1856 if (ops
->datbuf
&& (from
+ ops
->len
) > mtd
->size
) {
1857 pr_debug("%s: attempt to read beyond end of device\n",
1862 nand_get_device(chip
, mtd
, FL_READING
);
1864 switch (ops
->mode
) {
1875 ret
= nand_do_read_oob(mtd
, from
, ops
);
1877 ret
= nand_do_read_ops(mtd
, from
, ops
);
1880 nand_release_device(mtd
);
1886 * nand_write_page_raw - [INTERN] raw page write function
1887 * @mtd: mtd info structure
1888 * @chip: nand chip info structure
1891 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1893 static void nand_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1896 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1897 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1901 * nand_write_page_raw_syndrome - [INTERN] raw page write function
1902 * @mtd: mtd info structure
1903 * @chip: nand chip info structure
1906 * We need a special oob layout and handling even when ECC isn't checked.
1908 static void nand_write_page_raw_syndrome(struct mtd_info
*mtd
,
1909 struct nand_chip
*chip
,
1912 int eccsize
= chip
->ecc
.size
;
1913 int eccbytes
= chip
->ecc
.bytes
;
1914 uint8_t *oob
= chip
->oob_poi
;
1917 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
1918 chip
->write_buf(mtd
, buf
, eccsize
);
1921 if (chip
->ecc
.prepad
) {
1922 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
1923 oob
+= chip
->ecc
.prepad
;
1926 chip
->read_buf(mtd
, oob
, eccbytes
);
1929 if (chip
->ecc
.postpad
) {
1930 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
1931 oob
+= chip
->ecc
.postpad
;
1935 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1937 chip
->write_buf(mtd
, oob
, size
);
1940 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
1941 * @mtd: mtd info structure
1942 * @chip: nand chip info structure
1945 static void nand_write_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1948 int i
, eccsize
= chip
->ecc
.size
;
1949 int eccbytes
= chip
->ecc
.bytes
;
1950 int eccsteps
= chip
->ecc
.steps
;
1951 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1952 const uint8_t *p
= buf
;
1953 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1955 /* Software ECC calculation */
1956 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
1957 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1959 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1960 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1962 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
1966 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
1967 * @mtd: mtd info structure
1968 * @chip: nand chip info structure
1971 static void nand_write_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1974 int i
, eccsize
= chip
->ecc
.size
;
1975 int eccbytes
= chip
->ecc
.bytes
;
1976 int eccsteps
= chip
->ecc
.steps
;
1977 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1978 const uint8_t *p
= buf
;
1979 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1981 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1982 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1983 chip
->write_buf(mtd
, p
, eccsize
);
1984 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1987 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1988 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1990 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1994 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
1995 * @mtd: mtd info structure
1996 * @chip: nand chip info structure
1999 * The hw generator calculates the error syndrome automatically. Therefore we
2000 * need a special oob layout and handling.
2002 static void nand_write_page_syndrome(struct mtd_info
*mtd
,
2003 struct nand_chip
*chip
, const uint8_t *buf
)
2005 int i
, eccsize
= chip
->ecc
.size
;
2006 int eccbytes
= chip
->ecc
.bytes
;
2007 int eccsteps
= chip
->ecc
.steps
;
2008 const uint8_t *p
= buf
;
2009 uint8_t *oob
= chip
->oob_poi
;
2011 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
2013 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
2014 chip
->write_buf(mtd
, p
, eccsize
);
2016 if (chip
->ecc
.prepad
) {
2017 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
2018 oob
+= chip
->ecc
.prepad
;
2021 chip
->ecc
.calculate(mtd
, p
, oob
);
2022 chip
->write_buf(mtd
, oob
, eccbytes
);
2025 if (chip
->ecc
.postpad
) {
2026 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
2027 oob
+= chip
->ecc
.postpad
;
2031 /* Calculate remaining oob bytes */
2032 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
2034 chip
->write_buf(mtd
, oob
, i
);
2038 * nand_write_page - [REPLACEABLE] write one page
2039 * @mtd: MTD device structure
2040 * @chip: NAND chip descriptor
2041 * @buf: the data to write
2042 * @page: page number to write
2043 * @cached: cached programming
2044 * @raw: use _raw version of write_page
2046 static int nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2047 const uint8_t *buf
, int page
, int cached
, int raw
)
2051 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
2054 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
2056 chip
->ecc
.write_page(mtd
, chip
, buf
);
2059 * Cached progamming disabled for now. Not sure if it's worth the
2060 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2064 if (!cached
|| !(chip
->options
& NAND_CACHEPRG
)) {
2066 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
2067 status
= chip
->waitfunc(mtd
, chip
);
2069 * See if operation failed and additional status checks are
2072 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2073 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
,
2076 if (status
& NAND_STATUS_FAIL
)
2079 chip
->cmdfunc(mtd
, NAND_CMD_CACHEDPROG
, -1, -1);
2080 status
= chip
->waitfunc(mtd
, chip
);
2083 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2084 /* Send command to read back the data */
2085 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
2087 if (chip
->verify_buf(mtd
, buf
, mtd
->writesize
))
2094 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2095 * @mtd: MTD device structure
2096 * @oob: oob data buffer
2097 * @len: oob data write length
2098 * @ops: oob ops structure
2100 static uint8_t *nand_fill_oob(struct mtd_info
*mtd
, uint8_t *oob
, size_t len
,
2101 struct mtd_oob_ops
*ops
)
2103 struct nand_chip
*chip
= mtd
->priv
;
2106 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2107 * data from a previous OOB read.
2109 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2111 switch (ops
->mode
) {
2115 memcpy(chip
->oob_poi
+ ops
->ooboffs
, oob
, len
);
2118 case MTD_OOB_AUTO
: {
2119 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
2120 uint32_t boffs
= 0, woffs
= ops
->ooboffs
;
2123 for (; free
->length
&& len
; free
++, len
-= bytes
) {
2124 /* Write request not from offset 0? */
2125 if (unlikely(woffs
)) {
2126 if (woffs
>= free
->length
) {
2127 woffs
-= free
->length
;
2130 boffs
= free
->offset
+ woffs
;
2131 bytes
= min_t(size_t, len
,
2132 (free
->length
- woffs
));
2135 bytes
= min_t(size_t, len
, free
->length
);
2136 boffs
= free
->offset
;
2138 memcpy(chip
->oob_poi
+ boffs
, oob
, bytes
);
2149 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2152 * nand_do_write_ops - [INTERN] NAND write with ECC
2153 * @mtd: MTD device structure
2154 * @to: offset to write to
2155 * @ops: oob operations description structure
2157 * NAND write with ECC.
2159 static int nand_do_write_ops(struct mtd_info
*mtd
, loff_t to
,
2160 struct mtd_oob_ops
*ops
)
2162 int chipnr
, realpage
, page
, blockmask
, column
;
2163 struct nand_chip
*chip
= mtd
->priv
;
2164 uint32_t writelen
= ops
->len
;
2166 uint32_t oobwritelen
= ops
->ooblen
;
2167 uint32_t oobmaxlen
= ops
->mode
== MTD_OOB_AUTO
?
2168 mtd
->oobavail
: mtd
->oobsize
;
2170 uint8_t *oob
= ops
->oobbuf
;
2171 uint8_t *buf
= ops
->datbuf
;
2178 /* Reject writes, which are not page aligned */
2179 if (NOTALIGNED(to
) || NOTALIGNED(ops
->len
)) {
2180 pr_notice("%s: attempt to write non page aligned data\n",
2185 column
= to
& (mtd
->writesize
- 1);
2186 subpage
= column
|| (writelen
& (mtd
->writesize
- 1));
2191 chipnr
= (int)(to
>> chip
->chip_shift
);
2192 chip
->select_chip(mtd
, chipnr
);
2194 /* Check, if it is write protected */
2195 if (nand_check_wp(mtd
))
2198 realpage
= (int)(to
>> chip
->page_shift
);
2199 page
= realpage
& chip
->pagemask
;
2200 blockmask
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
2202 /* Invalidate the page cache, when we write to the cached page */
2203 if (to
<= (chip
->pagebuf
<< chip
->page_shift
) &&
2204 (chip
->pagebuf
<< chip
->page_shift
) < (to
+ ops
->len
))
2207 /* Don't allow multipage oob writes with offset */
2208 if (oob
&& ops
->ooboffs
&& (ops
->ooboffs
+ ops
->ooblen
> oobmaxlen
))
2212 int bytes
= mtd
->writesize
;
2213 int cached
= writelen
> bytes
&& page
!= blockmask
;
2214 uint8_t *wbuf
= buf
;
2216 /* Partial page write? */
2217 if (unlikely(column
|| writelen
< (mtd
->writesize
- 1))) {
2219 bytes
= min_t(int, bytes
- column
, (int) writelen
);
2221 memset(chip
->buffers
->databuf
, 0xff, mtd
->writesize
);
2222 memcpy(&chip
->buffers
->databuf
[column
], buf
, bytes
);
2223 wbuf
= chip
->buffers
->databuf
;
2226 if (unlikely(oob
)) {
2227 size_t len
= min(oobwritelen
, oobmaxlen
);
2228 oob
= nand_fill_oob(mtd
, oob
, len
, ops
);
2232 ret
= chip
->write_page(mtd
, chip
, wbuf
, page
, cached
,
2233 (ops
->mode
== MTD_OOB_RAW
));
2245 page
= realpage
& chip
->pagemask
;
2246 /* Check, if we cross a chip boundary */
2249 chip
->select_chip(mtd
, -1);
2250 chip
->select_chip(mtd
, chipnr
);
2254 ops
->retlen
= ops
->len
- writelen
;
2256 ops
->oobretlen
= ops
->ooblen
;
2261 * panic_nand_write - [MTD Interface] NAND write with ECC
2262 * @mtd: MTD device structure
2263 * @to: offset to write to
2264 * @len: number of bytes to write
2265 * @retlen: pointer to variable to store the number of written bytes
2266 * @buf: the data to write
2268 * NAND write with ECC. Used when performing writes in interrupt context, this
2269 * may for example be called by mtdoops when writing an oops while in panic.
2271 static int panic_nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2272 size_t *retlen
, const uint8_t *buf
)
2274 struct nand_chip
*chip
= mtd
->priv
;
2277 /* Do not allow reads past end of device */
2278 if ((to
+ len
) > mtd
->size
)
2283 /* Wait for the device to get ready */
2284 panic_nand_wait(mtd
, chip
, 400);
2286 /* Grab the device */
2287 panic_nand_get_device(chip
, mtd
, FL_WRITING
);
2289 chip
->ops
.len
= len
;
2290 chip
->ops
.datbuf
= (uint8_t *)buf
;
2291 chip
->ops
.oobbuf
= NULL
;
2293 ret
= nand_do_write_ops(mtd
, to
, &chip
->ops
);
2295 *retlen
= chip
->ops
.retlen
;
2300 * nand_write - [MTD Interface] NAND write with ECC
2301 * @mtd: MTD device structure
2302 * @to: offset to write to
2303 * @len: number of bytes to write
2304 * @retlen: pointer to variable to store the number of written bytes
2305 * @buf: the data to write
2307 * NAND write with ECC.
2309 static int nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2310 size_t *retlen
, const uint8_t *buf
)
2312 struct nand_chip
*chip
= mtd
->priv
;
2315 /* Do not allow reads past end of device */
2316 if ((to
+ len
) > mtd
->size
)
2321 nand_get_device(chip
, mtd
, FL_WRITING
);
2323 chip
->ops
.len
= len
;
2324 chip
->ops
.datbuf
= (uint8_t *)buf
;
2325 chip
->ops
.oobbuf
= NULL
;
2327 ret
= nand_do_write_ops(mtd
, to
, &chip
->ops
);
2329 *retlen
= chip
->ops
.retlen
;
2331 nand_release_device(mtd
);
2337 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2338 * @mtd: MTD device structure
2339 * @to: offset to write to
2340 * @ops: oob operation description structure
2342 * NAND write out-of-band.
2344 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
2345 struct mtd_oob_ops
*ops
)
2347 int chipnr
, page
, status
, len
;
2348 struct nand_chip
*chip
= mtd
->priv
;
2350 pr_debug("%s: to = 0x%08x, len = %i\n",
2351 __func__
, (unsigned int)to
, (int)ops
->ooblen
);
2353 if (ops
->mode
== MTD_OOB_AUTO
)
2354 len
= chip
->ecc
.layout
->oobavail
;
2358 /* Do not allow write past end of page */
2359 if ((ops
->ooboffs
+ ops
->ooblen
) > len
) {
2360 pr_debug("%s: attempt to write past end of page\n",
2365 if (unlikely(ops
->ooboffs
>= len
)) {
2366 pr_debug("%s: attempt to start write outside oob\n",
2371 /* Do not allow write past end of device */
2372 if (unlikely(to
>= mtd
->size
||
2373 ops
->ooboffs
+ ops
->ooblen
>
2374 ((mtd
->size
>> chip
->page_shift
) -
2375 (to
>> chip
->page_shift
)) * len
)) {
2376 pr_debug("%s: attempt to write beyond end of device\n",
2381 chipnr
= (int)(to
>> chip
->chip_shift
);
2382 chip
->select_chip(mtd
, chipnr
);
2384 /* Shift to get page */
2385 page
= (int)(to
>> chip
->page_shift
);
2388 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2389 * of my DiskOnChip 2000 test units) will clear the whole data page too
2390 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2391 * it in the doc2000 driver in August 1999. dwmw2.
2393 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2395 /* Check, if it is write protected */
2396 if (nand_check_wp(mtd
))
2399 /* Invalidate the page cache, if we write to the cached page */
2400 if (page
== chip
->pagebuf
)
2403 nand_fill_oob(mtd
, ops
->oobbuf
, ops
->ooblen
, ops
);
2404 status
= chip
->ecc
.write_oob(mtd
, chip
, page
& chip
->pagemask
);
2409 ops
->oobretlen
= ops
->ooblen
;
2415 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2416 * @mtd: MTD device structure
2417 * @to: offset to write to
2418 * @ops: oob operation description structure
2420 static int nand_write_oob(struct mtd_info
*mtd
, loff_t to
,
2421 struct mtd_oob_ops
*ops
)
2423 struct nand_chip
*chip
= mtd
->priv
;
2424 int ret
= -ENOTSUPP
;
2428 /* Do not allow writes past end of device */
2429 if (ops
->datbuf
&& (to
+ ops
->len
) > mtd
->size
) {
2430 pr_debug("%s: attempt to write beyond end of device\n",
2435 nand_get_device(chip
, mtd
, FL_WRITING
);
2437 switch (ops
->mode
) {
2448 ret
= nand_do_write_oob(mtd
, to
, ops
);
2450 ret
= nand_do_write_ops(mtd
, to
, ops
);
2453 nand_release_device(mtd
);
2458 * single_erase_cmd - [GENERIC] NAND standard block erase command function
2459 * @mtd: MTD device structure
2460 * @page: the page address of the block which will be erased
2462 * Standard erase command for NAND chips.
2464 static void single_erase_cmd(struct mtd_info
*mtd
, int page
)
2466 struct nand_chip
*chip
= mtd
->priv
;
2467 /* Send commands to erase a block */
2468 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2469 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2473 * multi_erase_cmd - [GENERIC] AND specific block erase command function
2474 * @mtd: MTD device structure
2475 * @page: the page address of the block which will be erased
2477 * AND multi block erase command function. Erase 4 consecutive blocks.
2479 static void multi_erase_cmd(struct mtd_info
*mtd
, int page
)
2481 struct nand_chip
*chip
= mtd
->priv
;
2482 /* Send commands to erase a block */
2483 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2484 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2485 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2486 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2487 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2491 * nand_erase - [MTD Interface] erase block(s)
2492 * @mtd: MTD device structure
2493 * @instr: erase instruction
2495 * Erase one ore more blocks.
2497 static int nand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2499 return nand_erase_nand(mtd
, instr
, 0);
2502 #define BBT_PAGE_MASK 0xffffff3f
2504 * nand_erase_nand - [INTERN] erase block(s)
2505 * @mtd: MTD device structure
2506 * @instr: erase instruction
2507 * @allowbbt: allow erasing the bbt area
2509 * Erase one ore more blocks.
2511 int nand_erase_nand(struct mtd_info
*mtd
, struct erase_info
*instr
,
2514 int page
, status
, pages_per_block
, ret
, chipnr
;
2515 struct nand_chip
*chip
= mtd
->priv
;
2516 loff_t rewrite_bbt
[NAND_MAX_CHIPS
] = {0};
2517 unsigned int bbt_masked_page
= 0xffffffff;
2520 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2521 __func__
, (unsigned long long)instr
->addr
,
2522 (unsigned long long)instr
->len
);
2524 if (check_offs_len(mtd
, instr
->addr
, instr
->len
))
2527 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2529 /* Grab the lock and see if the device is available */
2530 nand_get_device(chip
, mtd
, FL_ERASING
);
2532 /* Shift to get first page */
2533 page
= (int)(instr
->addr
>> chip
->page_shift
);
2534 chipnr
= (int)(instr
->addr
>> chip
->chip_shift
);
2536 /* Calculate pages in each block */
2537 pages_per_block
= 1 << (chip
->phys_erase_shift
- chip
->page_shift
);
2539 /* Select the NAND device */
2540 chip
->select_chip(mtd
, chipnr
);
2542 /* Check, if it is write protected */
2543 if (nand_check_wp(mtd
)) {
2544 pr_debug("%s: device is write protected!\n",
2546 instr
->state
= MTD_ERASE_FAILED
;
2551 * If BBT requires refresh, set the BBT page mask to see if the BBT
2552 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2553 * can not be matched. This is also done when the bbt is actually
2554 * erased to avoid recursive updates.
2556 if (chip
->options
& BBT_AUTO_REFRESH
&& !allowbbt
)
2557 bbt_masked_page
= chip
->bbt_td
->pages
[chipnr
] & BBT_PAGE_MASK
;
2559 /* Loop through the pages */
2562 instr
->state
= MTD_ERASING
;
2565 /* Heck if we have a bad block, we do not erase bad blocks! */
2566 if (nand_block_checkbad(mtd
, ((loff_t
) page
) <<
2567 chip
->page_shift
, 0, allowbbt
)) {
2568 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2570 instr
->state
= MTD_ERASE_FAILED
;
2575 * Invalidate the page cache, if we erase the block which
2576 * contains the current cached page.
2578 if (page
<= chip
->pagebuf
&& chip
->pagebuf
<
2579 (page
+ pages_per_block
))
2582 chip
->erase_cmd(mtd
, page
& chip
->pagemask
);
2584 status
= chip
->waitfunc(mtd
, chip
);
2587 * See if operation failed and additional status checks are
2590 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2591 status
= chip
->errstat(mtd
, chip
, FL_ERASING
,
2594 /* See if block erase succeeded */
2595 if (status
& NAND_STATUS_FAIL
) {
2596 pr_debug("%s: failed erase, page 0x%08x\n",
2598 instr
->state
= MTD_ERASE_FAILED
;
2600 ((loff_t
)page
<< chip
->page_shift
);
2605 * If BBT requires refresh, set the BBT rewrite flag to the
2606 * page being erased.
2608 if (bbt_masked_page
!= 0xffffffff &&
2609 (page
& BBT_PAGE_MASK
) == bbt_masked_page
)
2610 rewrite_bbt
[chipnr
] =
2611 ((loff_t
)page
<< chip
->page_shift
);
2613 /* Increment page address and decrement length */
2614 len
-= (1 << chip
->phys_erase_shift
);
2615 page
+= pages_per_block
;
2617 /* Check, if we cross a chip boundary */
2618 if (len
&& !(page
& chip
->pagemask
)) {
2620 chip
->select_chip(mtd
, -1);
2621 chip
->select_chip(mtd
, chipnr
);
2624 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2625 * page mask to see if this BBT should be rewritten.
2627 if (bbt_masked_page
!= 0xffffffff &&
2628 (chip
->bbt_td
->options
& NAND_BBT_PERCHIP
))
2629 bbt_masked_page
= chip
->bbt_td
->pages
[chipnr
] &
2633 instr
->state
= MTD_ERASE_DONE
;
2637 ret
= instr
->state
== MTD_ERASE_DONE
? 0 : -EIO
;
2639 /* Deselect and wake up anyone waiting on the device */
2640 nand_release_device(mtd
);
2642 /* Do call back function */
2644 mtd_erase_callback(instr
);
2647 * If BBT requires refresh and erase was successful, rewrite any
2648 * selected bad block tables.
2650 if (bbt_masked_page
== 0xffffffff || ret
)
2653 for (chipnr
= 0; chipnr
< chip
->numchips
; chipnr
++) {
2654 if (!rewrite_bbt
[chipnr
])
2656 /* Update the BBT for chip */
2657 pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n",
2658 __func__
, chipnr
, rewrite_bbt
[chipnr
],
2659 chip
->bbt_td
->pages
[chipnr
]);
2660 nand_update_bbt(mtd
, rewrite_bbt
[chipnr
]);
2663 /* Return more or less happy */
2668 * nand_sync - [MTD Interface] sync
2669 * @mtd: MTD device structure
2671 * Sync is actually a wait for chip ready function.
2673 static void nand_sync(struct mtd_info
*mtd
)
2675 struct nand_chip
*chip
= mtd
->priv
;
2677 pr_debug("%s: called\n", __func__
);
2679 /* Grab the lock and see if the device is available */
2680 nand_get_device(chip
, mtd
, FL_SYNCING
);
2681 /* Release it and go back */
2682 nand_release_device(mtd
);
2686 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2687 * @mtd: MTD device structure
2688 * @offs: offset relative to mtd start
2690 static int nand_block_isbad(struct mtd_info
*mtd
, loff_t offs
)
2692 /* Check for invalid offset */
2693 if (offs
> mtd
->size
)
2696 return nand_block_checkbad(mtd
, offs
, 1, 0);
2700 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2701 * @mtd: MTD device structure
2702 * @ofs: offset relative to mtd start
2704 static int nand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2706 struct nand_chip
*chip
= mtd
->priv
;
2709 ret
= nand_block_isbad(mtd
, ofs
);
2711 /* If it was bad already, return success and do nothing */
2717 return chip
->block_markbad(mtd
, ofs
);
2721 * nand_suspend - [MTD Interface] Suspend the NAND flash
2722 * @mtd: MTD device structure
2724 static int nand_suspend(struct mtd_info
*mtd
)
2726 struct nand_chip
*chip
= mtd
->priv
;
2728 return nand_get_device(chip
, mtd
, FL_PM_SUSPENDED
);
2732 * nand_resume - [MTD Interface] Resume the NAND flash
2733 * @mtd: MTD device structure
2735 static void nand_resume(struct mtd_info
*mtd
)
2737 struct nand_chip
*chip
= mtd
->priv
;
2739 if (chip
->state
== FL_PM_SUSPENDED
)
2740 nand_release_device(mtd
);
2742 pr_err("%s called for a chip which is not in suspended state\n",
2746 /* Set default functions */
2747 static void nand_set_defaults(struct nand_chip
*chip
, int busw
)
2749 /* check for proper chip_delay setup, set 20us if not */
2750 if (!chip
->chip_delay
)
2751 chip
->chip_delay
= 20;
2753 /* check, if a user supplied command function given */
2754 if (chip
->cmdfunc
== NULL
)
2755 chip
->cmdfunc
= nand_command
;
2757 /* check, if a user supplied wait function given */
2758 if (chip
->waitfunc
== NULL
)
2759 chip
->waitfunc
= nand_wait
;
2761 if (!chip
->select_chip
)
2762 chip
->select_chip
= nand_select_chip
;
2763 if (!chip
->read_byte
)
2764 chip
->read_byte
= busw
? nand_read_byte16
: nand_read_byte
;
2765 if (!chip
->read_word
)
2766 chip
->read_word
= nand_read_word
;
2767 if (!chip
->block_bad
)
2768 chip
->block_bad
= nand_block_bad
;
2769 if (!chip
->block_markbad
)
2770 chip
->block_markbad
= nand_default_block_markbad
;
2771 if (!chip
->write_buf
)
2772 chip
->write_buf
= busw
? nand_write_buf16
: nand_write_buf
;
2773 if (!chip
->read_buf
)
2774 chip
->read_buf
= busw
? nand_read_buf16
: nand_read_buf
;
2775 if (!chip
->verify_buf
)
2776 chip
->verify_buf
= busw
? nand_verify_buf16
: nand_verify_buf
;
2777 if (!chip
->scan_bbt
)
2778 chip
->scan_bbt
= nand_default_bbt
;
2780 if (!chip
->controller
) {
2781 chip
->controller
= &chip
->hwcontrol
;
2782 spin_lock_init(&chip
->controller
->lock
);
2783 init_waitqueue_head(&chip
->controller
->wq
);
2788 /* Sanitize ONFI strings so we can safely print them */
2789 static void sanitize_string(uint8_t *s
, size_t len
)
2793 /* Null terminate */
2796 /* Remove non printable chars */
2797 for (i
= 0; i
< len
- 1; i
++) {
2798 if (s
[i
] < ' ' || s
[i
] > 127)
2802 /* Remove trailing spaces */
2806 static u16
onfi_crc16(u16 crc
, u8
const *p
, size_t len
)
2811 for (i
= 0; i
< 8; i
++)
2812 crc
= (crc
<< 1) ^ ((crc
& 0x8000) ? 0x8005 : 0);
2819 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
2821 static int nand_flash_detect_onfi(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2824 struct nand_onfi_params
*p
= &chip
->onfi_params
;
2828 /* Try ONFI for unknown chip or LP */
2829 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x20, -1);
2830 if (chip
->read_byte(mtd
) != 'O' || chip
->read_byte(mtd
) != 'N' ||
2831 chip
->read_byte(mtd
) != 'F' || chip
->read_byte(mtd
) != 'I')
2834 pr_info("ONFI flash detected\n");
2835 chip
->cmdfunc(mtd
, NAND_CMD_PARAM
, 0, -1);
2836 for (i
= 0; i
< 3; i
++) {
2837 chip
->read_buf(mtd
, (uint8_t *)p
, sizeof(*p
));
2838 if (onfi_crc16(ONFI_CRC_BASE
, (uint8_t *)p
, 254) ==
2839 le16_to_cpu(p
->crc
)) {
2840 pr_info("ONFI param page %d valid\n", i
);
2849 val
= le16_to_cpu(p
->revision
);
2851 chip
->onfi_version
= 23;
2852 else if (val
& (1 << 4))
2853 chip
->onfi_version
= 22;
2854 else if (val
& (1 << 3))
2855 chip
->onfi_version
= 21;
2856 else if (val
& (1 << 2))
2857 chip
->onfi_version
= 20;
2858 else if (val
& (1 << 1))
2859 chip
->onfi_version
= 10;
2861 chip
->onfi_version
= 0;
2863 if (!chip
->onfi_version
) {
2864 pr_info("%s: unsupported ONFI version: %d\n", __func__
, val
);
2868 sanitize_string(p
->manufacturer
, sizeof(p
->manufacturer
));
2869 sanitize_string(p
->model
, sizeof(p
->model
));
2871 mtd
->name
= p
->model
;
2872 mtd
->writesize
= le32_to_cpu(p
->byte_per_page
);
2873 mtd
->erasesize
= le32_to_cpu(p
->pages_per_block
) * mtd
->writesize
;
2874 mtd
->oobsize
= le16_to_cpu(p
->spare_bytes_per_page
);
2875 chip
->chipsize
= (uint64_t)le32_to_cpu(p
->blocks_per_lun
) * mtd
->erasesize
;
2877 if (le16_to_cpu(p
->features
) & 1)
2878 *busw
= NAND_BUSWIDTH_16
;
2880 chip
->options
&= ~NAND_CHIPOPTIONS_MSK
;
2881 chip
->options
|= (NAND_NO_READRDY
|
2882 NAND_NO_AUTOINCR
) & NAND_CHIPOPTIONS_MSK
;
2888 * Get the flash and manufacturer id and lookup if the type is supported.
2890 static struct nand_flash_dev
*nand_get_flash_type(struct mtd_info
*mtd
,
2891 struct nand_chip
*chip
,
2893 int *maf_id
, int *dev_id
,
2894 struct nand_flash_dev
*type
)
2900 /* Select the device */
2901 chip
->select_chip(mtd
, 0);
2904 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2907 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2909 /* Send the command for reading device ID */
2910 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2912 /* Read manufacturer and device IDs */
2913 *maf_id
= chip
->read_byte(mtd
);
2914 *dev_id
= chip
->read_byte(mtd
);
2917 * Try again to make sure, as some systems the bus-hold or other
2918 * interface concerns can cause random data which looks like a
2919 * possibly credible NAND flash to appear. If the two results do
2920 * not match, ignore the device completely.
2923 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2925 for (i
= 0; i
< 2; i
++)
2926 id_data
[i
] = chip
->read_byte(mtd
);
2928 if (id_data
[0] != *maf_id
|| id_data
[1] != *dev_id
) {
2929 pr_info("%s: second ID read did not match "
2930 "%02x,%02x against %02x,%02x\n", __func__
,
2931 *maf_id
, *dev_id
, id_data
[0], id_data
[1]);
2932 return ERR_PTR(-ENODEV
);
2936 type
= nand_flash_ids
;
2938 for (; type
->name
!= NULL
; type
++)
2939 if (*dev_id
== type
->id
)
2942 chip
->onfi_version
= 0;
2943 if (!type
->name
|| !type
->pagesize
) {
2944 /* Check is chip is ONFI compliant */
2945 ret
= nand_flash_detect_onfi(mtd
, chip
, &busw
);
2950 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2952 /* Read entire ID string */
2954 for (i
= 0; i
< 8; i
++)
2955 id_data
[i
] = chip
->read_byte(mtd
);
2958 return ERR_PTR(-ENODEV
);
2961 mtd
->name
= type
->name
;
2963 chip
->chipsize
= (uint64_t)type
->chipsize
<< 20;
2965 if (!type
->pagesize
&& chip
->init_size
) {
2966 /* Set the pagesize, oobsize, erasesize by the driver */
2967 busw
= chip
->init_size(mtd
, chip
, id_data
);
2968 } else if (!type
->pagesize
) {
2970 /* The 3rd id byte holds MLC / multichip data */
2971 chip
->cellinfo
= id_data
[2];
2972 /* The 4th id byte is the important one */
2976 * Field definitions are in the following datasheets:
2977 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2978 * New style (6 byte ID): Samsung K9GBG08U0M (p.40)
2980 * Check for wraparound + Samsung ID + nonzero 6th byte
2981 * to decide what to do.
2983 if (id_data
[0] == id_data
[6] && id_data
[1] == id_data
[7] &&
2984 id_data
[0] == NAND_MFR_SAMSUNG
&&
2985 (chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
) &&
2986 id_data
[5] != 0x00) {
2988 mtd
->writesize
= 2048 << (extid
& 0x03);
2991 switch (extid
& 0x03) {
3006 /* Calc blocksize */
3007 mtd
->erasesize
= (128 * 1024) <<
3008 (((extid
>> 1) & 0x04) | (extid
& 0x03));
3012 mtd
->writesize
= 1024 << (extid
& 0x03);
3015 mtd
->oobsize
= (8 << (extid
& 0x01)) *
3016 (mtd
->writesize
>> 9);
3018 /* Calc blocksize. Blocksize is multiples of 64KiB */
3019 mtd
->erasesize
= (64 * 1024) << (extid
& 0x03);
3021 /* Get buswidth information */
3022 busw
= (extid
& 0x01) ? NAND_BUSWIDTH_16
: 0;
3026 * Old devices have chip data hardcoded in the device id table.
3028 mtd
->erasesize
= type
->erasesize
;
3029 mtd
->writesize
= type
->pagesize
;
3030 mtd
->oobsize
= mtd
->writesize
/ 32;
3031 busw
= type
->options
& NAND_BUSWIDTH_16
;
3034 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3035 * some Spansion chips have erasesize that conflicts with size
3036 * listed in nand_ids table.
3037 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3039 if (*maf_id
== NAND_MFR_AMD
&& id_data
[4] != 0x00 &&
3040 id_data
[5] == 0x00 && id_data
[6] == 0x00 &&
3041 id_data
[7] == 0x00 && mtd
->writesize
== 512) {
3042 mtd
->erasesize
= 128 * 1024;
3043 mtd
->erasesize
<<= ((id_data
[3] & 0x03) << 1);
3046 /* Get chip options, preserve non chip based options */
3047 chip
->options
&= ~NAND_CHIPOPTIONS_MSK
;
3048 chip
->options
|= type
->options
& NAND_CHIPOPTIONS_MSK
;
3051 * Check if chip is not a Samsung device. Do not clear the
3052 * options for chips which do not have an extended id.
3054 if (*maf_id
!= NAND_MFR_SAMSUNG
&& !type
->pagesize
)
3055 chip
->options
&= ~NAND_SAMSUNG_LP_OPTIONS
;
3059 * Set chip as a default. Board drivers can override it, if necessary.
3061 chip
->options
|= NAND_NO_AUTOINCR
;
3063 /* Try to identify manufacturer */
3064 for (maf_idx
= 0; nand_manuf_ids
[maf_idx
].id
!= 0x0; maf_idx
++) {
3065 if (nand_manuf_ids
[maf_idx
].id
== *maf_id
)
3070 * Check, if buswidth is correct. Hardware drivers should set
3073 if (busw
!= (chip
->options
& NAND_BUSWIDTH_16
)) {
3074 pr_info("NAND device: Manufacturer ID:"
3075 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id
,
3076 *dev_id
, nand_manuf_ids
[maf_idx
].name
, mtd
->name
);
3077 pr_warn("NAND bus width %d instead %d bit\n",
3078 (chip
->options
& NAND_BUSWIDTH_16
) ? 16 : 8,
3080 return ERR_PTR(-EINVAL
);
3083 /* Calculate the address shift from the page size */
3084 chip
->page_shift
= ffs(mtd
->writesize
) - 1;
3085 /* Convert chipsize to number of pages per chip -1 */
3086 chip
->pagemask
= (chip
->chipsize
>> chip
->page_shift
) - 1;
3088 chip
->bbt_erase_shift
= chip
->phys_erase_shift
=
3089 ffs(mtd
->erasesize
) - 1;
3090 if (chip
->chipsize
& 0xffffffff)
3091 chip
->chip_shift
= ffs((unsigned)chip
->chipsize
) - 1;
3093 chip
->chip_shift
= ffs((unsigned)(chip
->chipsize
>> 32));
3094 chip
->chip_shift
+= 32 - 1;
3097 chip
->badblockbits
= 8;
3099 /* Set the bad block position */
3100 if (mtd
->writesize
> 512 || (busw
& NAND_BUSWIDTH_16
))
3101 chip
->badblockpos
= NAND_LARGE_BADBLOCK_POS
;
3103 chip
->badblockpos
= NAND_SMALL_BADBLOCK_POS
;
3106 * Bad block marker is stored in the last page of each block
3107 * on Samsung and Hynix MLC devices; stored in first two pages
3108 * of each block on Micron devices with 2KiB pages and on
3109 * SLC Samsung, Hynix, Toshiba and AMD/Spansion. All others scan
3110 * only the first page.
3112 if ((chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
) &&
3113 (*maf_id
== NAND_MFR_SAMSUNG
||
3114 *maf_id
== NAND_MFR_HYNIX
))
3115 chip
->bbt_options
|= NAND_BBT_SCANLASTPAGE
;
3116 else if ((!(chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
) &&
3117 (*maf_id
== NAND_MFR_SAMSUNG
||
3118 *maf_id
== NAND_MFR_HYNIX
||
3119 *maf_id
== NAND_MFR_TOSHIBA
||
3120 *maf_id
== NAND_MFR_AMD
)) ||
3121 (mtd
->writesize
== 2048 &&
3122 *maf_id
== NAND_MFR_MICRON
))
3123 chip
->bbt_options
|= NAND_BBT_SCAN2NDPAGE
;
3125 /* Check for AND chips with 4 page planes */
3126 if (chip
->options
& NAND_4PAGE_ARRAY
)
3127 chip
->erase_cmd
= multi_erase_cmd
;
3129 chip
->erase_cmd
= single_erase_cmd
;
3131 /* Do not replace user supplied command function! */
3132 if (mtd
->writesize
> 512 && chip
->cmdfunc
== nand_command
)
3133 chip
->cmdfunc
= nand_command_lp
;
3135 pr_info("NAND device: Manufacturer ID:"
3136 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id
, *dev_id
,
3137 nand_manuf_ids
[maf_idx
].name
,
3138 chip
->onfi_version
? chip
->onfi_params
.model
: type
->name
);
3144 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3145 * @mtd: MTD device structure
3146 * @maxchips: number of chips to scan for
3147 * @table: alternative NAND ID table
3149 * This is the first phase of the normal nand_scan() function. It reads the
3150 * flash ID and sets up MTD fields accordingly.
3152 * The mtd->owner field must be set to the module of the caller.
3154 int nand_scan_ident(struct mtd_info
*mtd
, int maxchips
,
3155 struct nand_flash_dev
*table
)
3157 int i
, busw
, nand_maf_id
, nand_dev_id
;
3158 struct nand_chip
*chip
= mtd
->priv
;
3159 struct nand_flash_dev
*type
;
3161 /* Get buswidth to select the correct functions */
3162 busw
= chip
->options
& NAND_BUSWIDTH_16
;
3163 /* Set the default functions */
3164 nand_set_defaults(chip
, busw
);
3166 /* Read the flash type */
3167 type
= nand_get_flash_type(mtd
, chip
, busw
,
3168 &nand_maf_id
, &nand_dev_id
, table
);
3171 if (!(chip
->options
& NAND_SCAN_SILENT_NODEV
))
3172 pr_warn("No NAND device found\n");
3173 chip
->select_chip(mtd
, -1);
3174 return PTR_ERR(type
);
3177 /* Check for a chip array */
3178 for (i
= 1; i
< maxchips
; i
++) {
3179 chip
->select_chip(mtd
, i
);
3180 /* See comment in nand_get_flash_type for reset */
3181 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
3182 /* Send the command for reading device ID */
3183 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
3184 /* Read manufacturer and device IDs */
3185 if (nand_maf_id
!= chip
->read_byte(mtd
) ||
3186 nand_dev_id
!= chip
->read_byte(mtd
))
3190 pr_info("%d NAND chips detected\n", i
);
3192 /* Store the number of chips and calc total size for mtd */
3194 mtd
->size
= i
* chip
->chipsize
;
3198 EXPORT_SYMBOL(nand_scan_ident
);
3202 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3203 * @mtd: MTD device structure
3205 * This is the second phase of the normal nand_scan() function. It fills out
3206 * all the uninitialized function pointers with the defaults and scans for a
3207 * bad block table if appropriate.
3209 int nand_scan_tail(struct mtd_info
*mtd
)
3212 struct nand_chip
*chip
= mtd
->priv
;
3214 if (!(chip
->options
& NAND_OWN_BUFFERS
))
3215 chip
->buffers
= kmalloc(sizeof(*chip
->buffers
), GFP_KERNEL
);
3219 /* Set the internal oob buffer location, just after the page data */
3220 chip
->oob_poi
= chip
->buffers
->databuf
+ mtd
->writesize
;
3223 * If no default placement scheme is given, select an appropriate one.
3225 if (!chip
->ecc
.layout
&& (chip
->ecc
.mode
!= NAND_ECC_SOFT_BCH
)) {
3226 switch (mtd
->oobsize
) {
3228 chip
->ecc
.layout
= &nand_oob_8
;
3231 chip
->ecc
.layout
= &nand_oob_16
;
3234 chip
->ecc
.layout
= &nand_oob_64
;
3237 chip
->ecc
.layout
= &nand_oob_128
;
3240 pr_warn("No oob scheme defined for oobsize %d\n",
3246 if (!chip
->write_page
)
3247 chip
->write_page
= nand_write_page
;
3250 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3251 * selected and we have 256 byte pagesize fallback to software ECC
3254 switch (chip
->ecc
.mode
) {
3255 case NAND_ECC_HW_OOB_FIRST
:
3256 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3257 if (!chip
->ecc
.calculate
|| !chip
->ecc
.correct
||
3259 pr_warn("No ECC functions supplied; "
3260 "hardware ECC not possible\n");
3263 if (!chip
->ecc
.read_page
)
3264 chip
->ecc
.read_page
= nand_read_page_hwecc_oob_first
;
3267 /* Use standard hwecc read page function? */
3268 if (!chip
->ecc
.read_page
)
3269 chip
->ecc
.read_page
= nand_read_page_hwecc
;
3270 if (!chip
->ecc
.write_page
)
3271 chip
->ecc
.write_page
= nand_write_page_hwecc
;
3272 if (!chip
->ecc
.read_page_raw
)
3273 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
3274 if (!chip
->ecc
.write_page_raw
)
3275 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
3276 if (!chip
->ecc
.read_oob
)
3277 chip
->ecc
.read_oob
= nand_read_oob_std
;
3278 if (!chip
->ecc
.write_oob
)
3279 chip
->ecc
.write_oob
= nand_write_oob_std
;
3281 case NAND_ECC_HW_SYNDROME
:
3282 if ((!chip
->ecc
.calculate
|| !chip
->ecc
.correct
||
3283 !chip
->ecc
.hwctl
) &&
3284 (!chip
->ecc
.read_page
||
3285 chip
->ecc
.read_page
== nand_read_page_hwecc
||
3286 !chip
->ecc
.write_page
||
3287 chip
->ecc
.write_page
== nand_write_page_hwecc
)) {
3288 pr_warn("No ECC functions supplied; "
3289 "hardware ECC not possible\n");
3292 /* Use standard syndrome read/write page function? */
3293 if (!chip
->ecc
.read_page
)
3294 chip
->ecc
.read_page
= nand_read_page_syndrome
;
3295 if (!chip
->ecc
.write_page
)
3296 chip
->ecc
.write_page
= nand_write_page_syndrome
;
3297 if (!chip
->ecc
.read_page_raw
)
3298 chip
->ecc
.read_page_raw
= nand_read_page_raw_syndrome
;
3299 if (!chip
->ecc
.write_page_raw
)
3300 chip
->ecc
.write_page_raw
= nand_write_page_raw_syndrome
;
3301 if (!chip
->ecc
.read_oob
)
3302 chip
->ecc
.read_oob
= nand_read_oob_syndrome
;
3303 if (!chip
->ecc
.write_oob
)
3304 chip
->ecc
.write_oob
= nand_write_oob_syndrome
;
3306 if (mtd
->writesize
>= chip
->ecc
.size
)
3308 pr_warn("%d byte HW ECC not possible on "
3309 "%d byte page size, fallback to SW ECC\n",
3310 chip
->ecc
.size
, mtd
->writesize
);
3311 chip
->ecc
.mode
= NAND_ECC_SOFT
;
3314 chip
->ecc
.calculate
= nand_calculate_ecc
;
3315 chip
->ecc
.correct
= nand_correct_data
;
3316 chip
->ecc
.read_page
= nand_read_page_swecc
;
3317 chip
->ecc
.read_subpage
= nand_read_subpage
;
3318 chip
->ecc
.write_page
= nand_write_page_swecc
;
3319 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
3320 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
3321 chip
->ecc
.read_oob
= nand_read_oob_std
;
3322 chip
->ecc
.write_oob
= nand_write_oob_std
;
3323 if (!chip
->ecc
.size
)
3324 chip
->ecc
.size
= 256;
3325 chip
->ecc
.bytes
= 3;
3328 case NAND_ECC_SOFT_BCH
:
3329 if (!mtd_nand_has_bch()) {
3330 pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
3333 chip
->ecc
.calculate
= nand_bch_calculate_ecc
;
3334 chip
->ecc
.correct
= nand_bch_correct_data
;
3335 chip
->ecc
.read_page
= nand_read_page_swecc
;
3336 chip
->ecc
.read_subpage
= nand_read_subpage
;
3337 chip
->ecc
.write_page
= nand_write_page_swecc
;
3338 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
3339 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
3340 chip
->ecc
.read_oob
= nand_read_oob_std
;
3341 chip
->ecc
.write_oob
= nand_write_oob_std
;
3343 * Board driver should supply ecc.size and ecc.bytes values to
3344 * select how many bits are correctable; see nand_bch_init()
3345 * for details. Otherwise, default to 4 bits for large page
3348 if (!chip
->ecc
.size
&& (mtd
->oobsize
>= 64)) {
3349 chip
->ecc
.size
= 512;
3350 chip
->ecc
.bytes
= 7;
3352 chip
->ecc
.priv
= nand_bch_init(mtd
,
3356 if (!chip
->ecc
.priv
) {
3357 pr_warn("BCH ECC initialization failed!\n");
3363 pr_warn("NAND_ECC_NONE selected by board driver. "
3364 "This is not recommended!\n");
3365 chip
->ecc
.read_page
= nand_read_page_raw
;
3366 chip
->ecc
.write_page
= nand_write_page_raw
;
3367 chip
->ecc
.read_oob
= nand_read_oob_std
;
3368 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
3369 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
3370 chip
->ecc
.write_oob
= nand_write_oob_std
;
3371 chip
->ecc
.size
= mtd
->writesize
;
3372 chip
->ecc
.bytes
= 0;
3376 pr_warn("Invalid NAND_ECC_MODE %d\n", chip
->ecc
.mode
);
3381 * The number of bytes available for a client to place data into
3382 * the out of band area.
3384 chip
->ecc
.layout
->oobavail
= 0;
3385 for (i
= 0; chip
->ecc
.layout
->oobfree
[i
].length
3386 && i
< ARRAY_SIZE(chip
->ecc
.layout
->oobfree
); i
++)
3387 chip
->ecc
.layout
->oobavail
+=
3388 chip
->ecc
.layout
->oobfree
[i
].length
;
3389 mtd
->oobavail
= chip
->ecc
.layout
->oobavail
;
3392 * Set the number of read / write steps for one page depending on ECC
3395 chip
->ecc
.steps
= mtd
->writesize
/ chip
->ecc
.size
;
3396 if (chip
->ecc
.steps
* chip
->ecc
.size
!= mtd
->writesize
) {
3397 pr_warn("Invalid ECC parameters\n");
3400 chip
->ecc
.total
= chip
->ecc
.steps
* chip
->ecc
.bytes
;
3402 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3403 if (!(chip
->options
& NAND_NO_SUBPAGE_WRITE
) &&
3404 !(chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
)) {
3405 switch (chip
->ecc
.steps
) {
3407 mtd
->subpage_sft
= 1;
3412 mtd
->subpage_sft
= 2;
3416 chip
->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
3418 /* Initialize state */
3419 chip
->state
= FL_READY
;
3421 /* De-select the device */
3422 chip
->select_chip(mtd
, -1);
3424 /* Invalidate the pagebuffer reference */
3427 /* Fill in remaining MTD driver data */
3428 mtd
->type
= MTD_NANDFLASH
;
3429 mtd
->flags
= (chip
->options
& NAND_ROM
) ? MTD_CAP_ROM
:
3431 mtd
->erase
= nand_erase
;
3433 mtd
->unpoint
= NULL
;
3434 mtd
->read
= nand_read
;
3435 mtd
->write
= nand_write
;
3436 mtd
->panic_write
= panic_nand_write
;
3437 mtd
->read_oob
= nand_read_oob
;
3438 mtd
->write_oob
= nand_write_oob
;
3439 mtd
->sync
= nand_sync
;
3442 mtd
->suspend
= nand_suspend
;
3443 mtd
->resume
= nand_resume
;
3444 mtd
->block_isbad
= nand_block_isbad
;
3445 mtd
->block_markbad
= nand_block_markbad
;
3446 mtd
->writebufsize
= mtd
->writesize
;
3448 /* propagate ecc.layout to mtd_info */
3449 mtd
->ecclayout
= chip
->ecc
.layout
;
3451 /* Check, if we should skip the bad block table scan */
3452 if (chip
->options
& NAND_SKIP_BBTSCAN
)
3455 /* Build bad block table */
3456 return chip
->scan_bbt(mtd
);
3458 EXPORT_SYMBOL(nand_scan_tail
);
3461 * is_module_text_address() isn't exported, and it's mostly a pointless
3462 * test if this is a module _anyway_ -- they'd have to try _really_ hard
3463 * to call us from in-kernel code if the core NAND support is modular.
3466 #define caller_is_module() (1)
3468 #define caller_is_module() \
3469 is_module_text_address((unsigned long)__builtin_return_address(0))
3473 * nand_scan - [NAND Interface] Scan for the NAND device
3474 * @mtd: MTD device structure
3475 * @maxchips: number of chips to scan for
3477 * This fills out all the uninitialized function pointers with the defaults.
3478 * The flash ID is read and the mtd/chip structures are filled with the
3479 * appropriate values. The mtd->owner field must be set to the module of the
3482 int nand_scan(struct mtd_info
*mtd
, int maxchips
)
3486 /* Many callers got this wrong, so check for it for a while... */
3487 if (!mtd
->owner
&& caller_is_module()) {
3488 pr_crit("%s called with NULL mtd->owner!\n", __func__
);
3492 ret
= nand_scan_ident(mtd
, maxchips
, NULL
);
3494 ret
= nand_scan_tail(mtd
);
3497 EXPORT_SYMBOL(nand_scan
);
3500 * nand_release - [NAND Interface] Free resources held by the NAND device
3501 * @mtd: MTD device structure
3503 void nand_release(struct mtd_info
*mtd
)
3505 struct nand_chip
*chip
= mtd
->priv
;
3507 if (chip
->ecc
.mode
== NAND_ECC_SOFT_BCH
)
3508 nand_bch_free((struct nand_bch_control
*)chip
->ecc
.priv
);
3510 mtd_device_unregister(mtd
);
3512 /* Free bad block table memory */
3514 if (!(chip
->options
& NAND_OWN_BUFFERS
))
3515 kfree(chip
->buffers
);
3517 EXPORT_SYMBOL_GPL(nand_release
);
3519 static int __init
nand_base_init(void)
3521 led_trigger_register_simple("nand-disk", &nand_led_trigger
);
3525 static void __exit
nand_base_exit(void)
3527 led_trigger_unregister_simple(nand_led_trigger
);
3530 module_init(nand_base_init
);
3531 module_exit(nand_base_exit
);
3533 MODULE_LICENSE("GPL");
3534 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3535 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3536 MODULE_DESCRIPTION("Generic NAND flash driver code");