2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/platform_device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/delay.h>
14 #include <linux/module.h>
15 #include <linux/interrupt.h>
16 #include <linux/jiffies.h>
17 #include <linux/sched.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/nand.h>
20 #include <linux/mtd/partitions.h>
22 #include <linux/slab.h>
25 #include <plat/gpmc.h>
26 #include <plat/nand.h>
28 #define DRIVER_NAME "omap2-nand"
29 #define OMAP_NAND_TIMEOUT_MS 5000
31 #define NAND_Ecc_P1e (1 << 0)
32 #define NAND_Ecc_P2e (1 << 1)
33 #define NAND_Ecc_P4e (1 << 2)
34 #define NAND_Ecc_P8e (1 << 3)
35 #define NAND_Ecc_P16e (1 << 4)
36 #define NAND_Ecc_P32e (1 << 5)
37 #define NAND_Ecc_P64e (1 << 6)
38 #define NAND_Ecc_P128e (1 << 7)
39 #define NAND_Ecc_P256e (1 << 8)
40 #define NAND_Ecc_P512e (1 << 9)
41 #define NAND_Ecc_P1024e (1 << 10)
42 #define NAND_Ecc_P2048e (1 << 11)
44 #define NAND_Ecc_P1o (1 << 16)
45 #define NAND_Ecc_P2o (1 << 17)
46 #define NAND_Ecc_P4o (1 << 18)
47 #define NAND_Ecc_P8o (1 << 19)
48 #define NAND_Ecc_P16o (1 << 20)
49 #define NAND_Ecc_P32o (1 << 21)
50 #define NAND_Ecc_P64o (1 << 22)
51 #define NAND_Ecc_P128o (1 << 23)
52 #define NAND_Ecc_P256o (1 << 24)
53 #define NAND_Ecc_P512o (1 << 25)
54 #define NAND_Ecc_P1024o (1 << 26)
55 #define NAND_Ecc_P2048o (1 << 27)
57 #define TF(value) (value ? 1 : 0)
59 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
60 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
61 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
62 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
63 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
64 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
65 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
66 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
68 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
69 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
70 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
71 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
72 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
73 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
74 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
75 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
77 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
78 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
79 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
80 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
81 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
82 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
83 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
84 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
86 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
87 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
88 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
89 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
90 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
91 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
92 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
93 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
95 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
96 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
98 /* oob info generated runtime depending on ecc algorithm and layout selected */
99 static struct nand_ecclayout omap_oobinfo
;
100 /* Define some generic bad / good block scan pattern which are used
101 * while scanning a device for factory marked good / bad blocks
103 static uint8_t scan_ff_pattern
[] = { 0xff };
104 static struct nand_bbt_descr bb_descrip_flashbased
= {
105 .options
= NAND_BBT_SCANEMPTY
| NAND_BBT_SCANALLPAGES
,
108 .pattern
= scan_ff_pattern
,
112 struct omap_nand_info
{
113 struct nand_hw_control controller
;
114 struct omap_nand_platform_data
*pdata
;
116 struct nand_chip nand
;
117 struct platform_device
*pdev
;
120 unsigned long phys_base
;
121 struct completion comp
;
125 OMAP_NAND_IO_READ
= 0, /* read */
126 OMAP_NAND_IO_WRITE
, /* write */
133 * omap_hwcontrol - hardware specific access to control-lines
134 * @mtd: MTD device structure
135 * @cmd: command to device
137 * NAND_NCE: bit 0 -> don't care
138 * NAND_CLE: bit 1 -> Command Latch
139 * NAND_ALE: bit 2 -> Address Latch
141 * NOTE: boards may use different bits for these!!
143 static void omap_hwcontrol(struct mtd_info
*mtd
, int cmd
, unsigned int ctrl
)
145 struct omap_nand_info
*info
= container_of(mtd
,
146 struct omap_nand_info
, mtd
);
148 if (cmd
!= NAND_CMD_NONE
) {
150 gpmc_nand_write(info
->gpmc_cs
, GPMC_NAND_COMMAND
, cmd
);
152 else if (ctrl
& NAND_ALE
)
153 gpmc_nand_write(info
->gpmc_cs
, GPMC_NAND_ADDRESS
, cmd
);
156 gpmc_nand_write(info
->gpmc_cs
, GPMC_NAND_DATA
, cmd
);
161 * omap_read_buf8 - read data from NAND controller into buffer
162 * @mtd: MTD device structure
163 * @buf: buffer to store date
164 * @len: number of bytes to read
166 static void omap_read_buf8(struct mtd_info
*mtd
, u_char
*buf
, int len
)
168 struct nand_chip
*nand
= mtd
->priv
;
170 ioread8_rep(nand
->IO_ADDR_R
, buf
, len
);
174 * omap_write_buf8 - write buffer to NAND controller
175 * @mtd: MTD device structure
177 * @len: number of bytes to write
179 static void omap_write_buf8(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
181 struct omap_nand_info
*info
= container_of(mtd
,
182 struct omap_nand_info
, mtd
);
183 u_char
*p
= (u_char
*)buf
;
187 iowrite8(*p
++, info
->nand
.IO_ADDR_W
);
188 /* wait until buffer is available for write */
190 status
= gpmc_read_status(GPMC_STATUS_BUFFER
);
196 * omap_read_buf16 - read data from NAND controller into buffer
197 * @mtd: MTD device structure
198 * @buf: buffer to store date
199 * @len: number of bytes to read
201 static void omap_read_buf16(struct mtd_info
*mtd
, u_char
*buf
, int len
)
203 struct nand_chip
*nand
= mtd
->priv
;
205 ioread16_rep(nand
->IO_ADDR_R
, buf
, len
/ 2);
209 * omap_write_buf16 - write buffer to NAND controller
210 * @mtd: MTD device structure
212 * @len: number of bytes to write
214 static void omap_write_buf16(struct mtd_info
*mtd
, const u_char
* buf
, int len
)
216 struct omap_nand_info
*info
= container_of(mtd
,
217 struct omap_nand_info
, mtd
);
218 u16
*p
= (u16
*) buf
;
220 /* FIXME try bursts of writesw() or DMA ... */
224 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
225 /* wait until buffer is available for write */
227 status
= gpmc_read_status(GPMC_STATUS_BUFFER
);
233 * omap_read_buf_pref - read data from NAND controller into buffer
234 * @mtd: MTD device structure
235 * @buf: buffer to store date
236 * @len: number of bytes to read
238 static void omap_read_buf_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
240 struct omap_nand_info
*info
= container_of(mtd
,
241 struct omap_nand_info
, mtd
);
242 uint32_t r_count
= 0;
246 /* take care of subpage reads */
248 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
249 omap_read_buf16(mtd
, buf
, len
% 4);
251 omap_read_buf8(mtd
, buf
, len
% 4);
252 p
= (u32
*) (buf
+ len
% 4);
256 /* configure and start prefetch transfer */
257 ret
= gpmc_prefetch_enable(info
->gpmc_cs
,
258 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x0);
260 /* PFPW engine is busy, use cpu copy method */
261 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
262 omap_read_buf16(mtd
, (u_char
*)p
, len
);
264 omap_read_buf8(mtd
, (u_char
*)p
, len
);
267 r_count
= gpmc_read_status(GPMC_PREFETCH_FIFO_CNT
);
268 r_count
= r_count
>> 2;
269 ioread32_rep(info
->nand
.IO_ADDR_R
, p
, r_count
);
273 /* disable and stop the PFPW engine */
274 gpmc_prefetch_reset(info
->gpmc_cs
);
279 * omap_write_buf_pref - write buffer to NAND controller
280 * @mtd: MTD device structure
282 * @len: number of bytes to write
284 static void omap_write_buf_pref(struct mtd_info
*mtd
,
285 const u_char
*buf
, int len
)
287 struct omap_nand_info
*info
= container_of(mtd
,
288 struct omap_nand_info
, mtd
);
289 uint32_t w_count
= 0;
292 unsigned long tim
, limit
;
294 /* take care of subpage writes */
296 writeb(*buf
, info
->nand
.IO_ADDR_W
);
297 p
= (u16
*)(buf
+ 1);
301 /* configure and start prefetch transfer */
302 ret
= gpmc_prefetch_enable(info
->gpmc_cs
,
303 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x1);
305 /* PFPW engine is busy, use cpu copy method */
306 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
307 omap_write_buf16(mtd
, (u_char
*)p
, len
);
309 omap_write_buf8(mtd
, (u_char
*)p
, len
);
312 w_count
= gpmc_read_status(GPMC_PREFETCH_FIFO_CNT
);
313 w_count
= w_count
>> 1;
314 for (i
= 0; (i
< w_count
) && len
; i
++, len
-= 2)
315 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
317 /* wait for data to flushed-out before reset the prefetch */
319 limit
= (loops_per_jiffy
*
320 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
321 while (gpmc_read_status(GPMC_PREFETCH_COUNT
) && (tim
++ < limit
))
324 /* disable and stop the PFPW engine */
325 gpmc_prefetch_reset(info
->gpmc_cs
);
330 * omap_nand_dma_cb: callback on the completion of dma transfer
331 * @lch: logical channel
332 * @ch_satuts: channel status
333 * @data: pointer to completion data structure
335 static void omap_nand_dma_cb(int lch
, u16 ch_status
, void *data
)
337 complete((struct completion
*) data
);
341 * omap_nand_dma_transfer: configer and start dma transfer
342 * @mtd: MTD device structure
343 * @addr: virtual address in RAM of source/destination
344 * @len: number of data bytes to be transferred
345 * @is_write: flag for read/write operation
347 static inline int omap_nand_dma_transfer(struct mtd_info
*mtd
, void *addr
,
348 unsigned int len
, int is_write
)
350 struct omap_nand_info
*info
= container_of(mtd
,
351 struct omap_nand_info
, mtd
);
352 enum dma_data_direction dir
= is_write
? DMA_TO_DEVICE
:
356 unsigned long tim
, limit
;
358 /* The fifo depth is 64 bytes max.
359 * But configure the FIFO-threahold to 32 to get a sync at each frame
360 * and frame length is 32 bytes.
362 int buf_len
= len
>> 6;
364 if (addr
>= high_memory
) {
367 if (((size_t)addr
& PAGE_MASK
) !=
368 ((size_t)(addr
+ len
- 1) & PAGE_MASK
))
370 p1
= vmalloc_to_page(addr
);
373 addr
= page_address(p1
) + ((size_t)addr
& ~PAGE_MASK
);
376 dma_addr
= dma_map_single(&info
->pdev
->dev
, addr
, len
, dir
);
377 if (dma_mapping_error(&info
->pdev
->dev
, dma_addr
)) {
378 dev_err(&info
->pdev
->dev
,
379 "Couldn't DMA map a %d byte buffer\n", len
);
384 omap_set_dma_dest_params(info
->dma_ch
, 0, OMAP_DMA_AMODE_CONSTANT
,
385 info
->phys_base
, 0, 0);
386 omap_set_dma_src_params(info
->dma_ch
, 0, OMAP_DMA_AMODE_POST_INC
,
388 omap_set_dma_transfer_params(info
->dma_ch
, OMAP_DMA_DATA_TYPE_S32
,
389 0x10, buf_len
, OMAP_DMA_SYNC_FRAME
,
390 OMAP24XX_DMA_GPMC
, OMAP_DMA_DST_SYNC
);
392 omap_set_dma_src_params(info
->dma_ch
, 0, OMAP_DMA_AMODE_CONSTANT
,
393 info
->phys_base
, 0, 0);
394 omap_set_dma_dest_params(info
->dma_ch
, 0, OMAP_DMA_AMODE_POST_INC
,
396 omap_set_dma_transfer_params(info
->dma_ch
, OMAP_DMA_DATA_TYPE_S32
,
397 0x10, buf_len
, OMAP_DMA_SYNC_FRAME
,
398 OMAP24XX_DMA_GPMC
, OMAP_DMA_SRC_SYNC
);
400 /* configure and start prefetch transfer */
401 ret
= gpmc_prefetch_enable(info
->gpmc_cs
,
402 PREFETCH_FIFOTHRESHOLD_MAX
, 0x1, len
, is_write
);
404 /* PFPW engine is busy, use cpu copy method */
407 init_completion(&info
->comp
);
409 omap_start_dma(info
->dma_ch
);
411 /* setup and start DMA using dma_addr */
412 wait_for_completion(&info
->comp
);
414 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
415 while (gpmc_read_status(GPMC_PREFETCH_COUNT
) && (tim
++ < limit
))
418 /* disable and stop the PFPW engine */
419 gpmc_prefetch_reset(info
->gpmc_cs
);
421 dma_unmap_single(&info
->pdev
->dev
, dma_addr
, len
, dir
);
425 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
426 is_write
== 0 ? omap_read_buf16(mtd
, (u_char
*) addr
, len
)
427 : omap_write_buf16(mtd
, (u_char
*) addr
, len
);
429 is_write
== 0 ? omap_read_buf8(mtd
, (u_char
*) addr
, len
)
430 : omap_write_buf8(mtd
, (u_char
*) addr
, len
);
435 * omap_read_buf_dma_pref - read data from NAND controller into buffer
436 * @mtd: MTD device structure
437 * @buf: buffer to store date
438 * @len: number of bytes to read
440 static void omap_read_buf_dma_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
442 if (len
<= mtd
->oobsize
)
443 omap_read_buf_pref(mtd
, buf
, len
);
445 /* start transfer in DMA mode */
446 omap_nand_dma_transfer(mtd
, buf
, len
, 0x0);
450 * omap_write_buf_dma_pref - write buffer to NAND controller
451 * @mtd: MTD device structure
453 * @len: number of bytes to write
455 static void omap_write_buf_dma_pref(struct mtd_info
*mtd
,
456 const u_char
*buf
, int len
)
458 if (len
<= mtd
->oobsize
)
459 omap_write_buf_pref(mtd
, buf
, len
);
461 /* start transfer in DMA mode */
462 omap_nand_dma_transfer(mtd
, (u_char
*) buf
, len
, 0x1);
466 * omap_nand_irq - GMPC irq handler
467 * @this_irq: gpmc irq number
468 * @dev: omap_nand_info structure pointer is passed here
470 static irqreturn_t
omap_nand_irq(int this_irq
, void *dev
)
472 struct omap_nand_info
*info
= (struct omap_nand_info
*) dev
;
476 irq_stat
= gpmc_read_status(GPMC_GET_IRQ_STATUS
);
477 bytes
= gpmc_read_status(GPMC_PREFETCH_FIFO_CNT
);
478 bytes
= bytes
& 0xFFFC; /* io in multiple of 4 bytes */
479 if (info
->iomode
== OMAP_NAND_IO_WRITE
) { /* checks for write io */
483 if (info
->buf_len
&& (info
->buf_len
< bytes
))
484 bytes
= info
->buf_len
;
485 else if (!info
->buf_len
)
487 iowrite32_rep(info
->nand
.IO_ADDR_W
,
488 (u32
*)info
->buf
, bytes
>> 2);
489 info
->buf
= info
->buf
+ bytes
;
490 info
->buf_len
-= bytes
;
493 ioread32_rep(info
->nand
.IO_ADDR_R
,
494 (u32
*)info
->buf
, bytes
>> 2);
495 info
->buf
= info
->buf
+ bytes
;
500 gpmc_cs_configure(info
->gpmc_cs
, GPMC_SET_IRQ_STATUS
, irq_stat
);
505 complete(&info
->comp
);
507 gpmc_cs_configure(info
->gpmc_cs
, GPMC_ENABLE_IRQ
, 0);
510 gpmc_cs_configure(info
->gpmc_cs
, GPMC_SET_IRQ_STATUS
, irq_stat
);
516 * omap_read_buf_irq_pref - read data from NAND controller into buffer
517 * @mtd: MTD device structure
518 * @buf: buffer to store date
519 * @len: number of bytes to read
521 static void omap_read_buf_irq_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
523 struct omap_nand_info
*info
= container_of(mtd
,
524 struct omap_nand_info
, mtd
);
527 if (len
<= mtd
->oobsize
) {
528 omap_read_buf_pref(mtd
, buf
, len
);
532 info
->iomode
= OMAP_NAND_IO_READ
;
534 init_completion(&info
->comp
);
536 /* configure and start prefetch transfer */
537 ret
= gpmc_prefetch_enable(info
->gpmc_cs
,
538 PREFETCH_FIFOTHRESHOLD_MAX
/2, 0x0, len
, 0x0);
540 /* PFPW engine is busy, use cpu copy method */
545 gpmc_cs_configure(info
->gpmc_cs
, GPMC_ENABLE_IRQ
,
546 (GPMC_IRQ_FIFOEVENTENABLE
| GPMC_IRQ_COUNT_EVENT
));
548 /* waiting for read to complete */
549 wait_for_completion(&info
->comp
);
551 /* disable and stop the PFPW engine */
552 gpmc_prefetch_reset(info
->gpmc_cs
);
556 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
557 omap_read_buf16(mtd
, buf
, len
);
559 omap_read_buf8(mtd
, buf
, len
);
563 * omap_write_buf_irq_pref - write buffer to NAND controller
564 * @mtd: MTD device structure
566 * @len: number of bytes to write
568 static void omap_write_buf_irq_pref(struct mtd_info
*mtd
,
569 const u_char
*buf
, int len
)
571 struct omap_nand_info
*info
= container_of(mtd
,
572 struct omap_nand_info
, mtd
);
574 unsigned long tim
, limit
;
576 if (len
<= mtd
->oobsize
) {
577 omap_write_buf_pref(mtd
, buf
, len
);
581 info
->iomode
= OMAP_NAND_IO_WRITE
;
582 info
->buf
= (u_char
*) buf
;
583 init_completion(&info
->comp
);
585 /* configure and start prefetch transfer : size=24 */
586 ret
= gpmc_prefetch_enable(info
->gpmc_cs
,
587 (PREFETCH_FIFOTHRESHOLD_MAX
* 3) / 8, 0x0, len
, 0x1);
589 /* PFPW engine is busy, use cpu copy method */
594 gpmc_cs_configure(info
->gpmc_cs
, GPMC_ENABLE_IRQ
,
595 (GPMC_IRQ_FIFOEVENTENABLE
| GPMC_IRQ_COUNT_EVENT
));
597 /* waiting for write to complete */
598 wait_for_completion(&info
->comp
);
599 /* wait for data to flushed-out before reset the prefetch */
601 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
602 while (gpmc_read_status(GPMC_PREFETCH_COUNT
) && (tim
++ < limit
))
605 /* disable and stop the PFPW engine */
606 gpmc_prefetch_reset(info
->gpmc_cs
);
610 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
611 omap_write_buf16(mtd
, buf
, len
);
613 omap_write_buf8(mtd
, buf
, len
);
617 * omap_verify_buf - Verify chip data against buffer
618 * @mtd: MTD device structure
619 * @buf: buffer containing the data to compare
620 * @len: number of bytes to compare
622 static int omap_verify_buf(struct mtd_info
*mtd
, const u_char
* buf
, int len
)
624 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
626 u16
*p
= (u16
*) buf
;
630 if (*p
++ != cpu_to_le16(readw(info
->nand
.IO_ADDR_R
)))
638 * gen_true_ecc - This function will generate true ECC value
639 * @ecc_buf: buffer to store ecc code
641 * This generated true ECC value can be used when correcting
642 * data read from NAND flash memory core
644 static void gen_true_ecc(u8
*ecc_buf
)
646 u32 tmp
= ecc_buf
[0] | (ecc_buf
[1] << 16) |
647 ((ecc_buf
[2] & 0xF0) << 20) | ((ecc_buf
[2] & 0x0F) << 8);
649 ecc_buf
[0] = ~(P64o(tmp
) | P64e(tmp
) | P32o(tmp
) | P32e(tmp
) |
650 P16o(tmp
) | P16e(tmp
) | P8o(tmp
) | P8e(tmp
));
651 ecc_buf
[1] = ~(P1024o(tmp
) | P1024e(tmp
) | P512o(tmp
) | P512e(tmp
) |
652 P256o(tmp
) | P256e(tmp
) | P128o(tmp
) | P128e(tmp
));
653 ecc_buf
[2] = ~(P4o(tmp
) | P4e(tmp
) | P2o(tmp
) | P2e(tmp
) | P1o(tmp
) |
654 P1e(tmp
) | P2048o(tmp
) | P2048e(tmp
));
658 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
659 * @ecc_data1: ecc code from nand spare area
660 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
661 * @page_data: page data
663 * This function compares two ECC's and indicates if there is an error.
664 * If the error can be corrected it will be corrected to the buffer.
665 * If there is no error, %0 is returned. If there is an error but it
666 * was corrected, %1 is returned. Otherwise, %-1 is returned.
668 static int omap_compare_ecc(u8
*ecc_data1
, /* read from NAND memory */
669 u8
*ecc_data2
, /* read from register */
673 u8 tmp0_bit
[8], tmp1_bit
[8], tmp2_bit
[8];
674 u8 comp0_bit
[8], comp1_bit
[8], comp2_bit
[8];
681 isEccFF
= ((*(u32
*)ecc_data1
& 0xFFFFFF) == 0xFFFFFF);
683 gen_true_ecc(ecc_data1
);
684 gen_true_ecc(ecc_data2
);
686 for (i
= 0; i
<= 2; i
++) {
687 *(ecc_data1
+ i
) = ~(*(ecc_data1
+ i
));
688 *(ecc_data2
+ i
) = ~(*(ecc_data2
+ i
));
691 for (i
= 0; i
< 8; i
++) {
692 tmp0_bit
[i
] = *ecc_data1
% 2;
693 *ecc_data1
= *ecc_data1
/ 2;
696 for (i
= 0; i
< 8; i
++) {
697 tmp1_bit
[i
] = *(ecc_data1
+ 1) % 2;
698 *(ecc_data1
+ 1) = *(ecc_data1
+ 1) / 2;
701 for (i
= 0; i
< 8; i
++) {
702 tmp2_bit
[i
] = *(ecc_data1
+ 2) % 2;
703 *(ecc_data1
+ 2) = *(ecc_data1
+ 2) / 2;
706 for (i
= 0; i
< 8; i
++) {
707 comp0_bit
[i
] = *ecc_data2
% 2;
708 *ecc_data2
= *ecc_data2
/ 2;
711 for (i
= 0; i
< 8; i
++) {
712 comp1_bit
[i
] = *(ecc_data2
+ 1) % 2;
713 *(ecc_data2
+ 1) = *(ecc_data2
+ 1) / 2;
716 for (i
= 0; i
< 8; i
++) {
717 comp2_bit
[i
] = *(ecc_data2
+ 2) % 2;
718 *(ecc_data2
+ 2) = *(ecc_data2
+ 2) / 2;
721 for (i
= 0; i
< 6; i
++)
722 ecc_bit
[i
] = tmp2_bit
[i
+ 2] ^ comp2_bit
[i
+ 2];
724 for (i
= 0; i
< 8; i
++)
725 ecc_bit
[i
+ 6] = tmp0_bit
[i
] ^ comp0_bit
[i
];
727 for (i
= 0; i
< 8; i
++)
728 ecc_bit
[i
+ 14] = tmp1_bit
[i
] ^ comp1_bit
[i
];
730 ecc_bit
[22] = tmp2_bit
[0] ^ comp2_bit
[0];
731 ecc_bit
[23] = tmp2_bit
[1] ^ comp2_bit
[1];
733 for (i
= 0; i
< 24; i
++)
734 ecc_sum
+= ecc_bit
[i
];
738 /* Not reached because this function is not called if
739 * ECC values are equal
744 /* Uncorrectable error */
745 pr_debug("ECC UNCORRECTED_ERROR 1\n");
749 /* UN-Correctable error */
750 pr_debug("ECC UNCORRECTED_ERROR B\n");
754 /* Correctable error */
755 find_byte
= (ecc_bit
[23] << 8) +
765 find_bit
= (ecc_bit
[5] << 2) + (ecc_bit
[3] << 1) + ecc_bit
[1];
767 pr_debug("Correcting single bit ECC error at offset: "
768 "%d, bit: %d\n", find_byte
, find_bit
);
770 page_data
[find_byte
] ^= (1 << find_bit
);
775 if (ecc_data2
[0] == 0 &&
780 pr_debug("UNCORRECTED_ERROR default\n");
786 * omap_correct_data - Compares the ECC read with HW generated ECC
787 * @mtd: MTD device structure
789 * @read_ecc: ecc read from nand flash
790 * @calc_ecc: ecc read from HW ECC registers
792 * Compares the ecc read from nand spare area with ECC registers values
793 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
794 * detection and correction. If there are no errors, %0 is returned. If
795 * there were errors and all of the errors were corrected, the number of
796 * corrected errors is returned. If uncorrectable errors exist, %-1 is
799 static int omap_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
800 u_char
*read_ecc
, u_char
*calc_ecc
)
802 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
804 int blockCnt
= 0, i
= 0, ret
= 0;
807 /* Ex NAND_ECC_HW12_2048 */
808 if ((info
->nand
.ecc
.mode
== NAND_ECC_HW
) &&
809 (info
->nand
.ecc
.size
== 2048))
814 for (i
= 0; i
< blockCnt
; i
++) {
815 if (memcmp(read_ecc
, calc_ecc
, 3) != 0) {
816 ret
= omap_compare_ecc(read_ecc
, calc_ecc
, dat
);
819 /* keep track of the number of corrected errors */
830 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
831 * @mtd: MTD device structure
832 * @dat: The pointer to data on which ecc is computed
833 * @ecc_code: The ecc_code buffer
835 * Using noninverted ECC can be considered ugly since writing a blank
836 * page ie. padding will clear the ECC bytes. This is no problem as long
837 * nobody is trying to write data on the seemingly unused page. Reading
838 * an erased page will produce an ECC mismatch between generated and read
839 * ECC bytes that has to be dealt with separately.
841 static int omap_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
,
844 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
846 return gpmc_calculate_ecc(info
->gpmc_cs
, dat
, ecc_code
);
850 * omap_enable_hwecc - This function enables the hardware ecc functionality
851 * @mtd: MTD device structure
852 * @mode: Read/Write mode
854 static void omap_enable_hwecc(struct mtd_info
*mtd
, int mode
)
856 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
858 struct nand_chip
*chip
= mtd
->priv
;
859 unsigned int dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
861 gpmc_enable_hwecc(info
->gpmc_cs
, mode
, dev_width
, info
->nand
.ecc
.size
);
865 * omap_wait - wait until the command is done
866 * @mtd: MTD device structure
867 * @chip: NAND Chip structure
869 * Wait function is called during Program and erase operations and
870 * the way it is called from MTD layer, we should wait till the NAND
871 * chip is ready after the programming/erase operation has completed.
873 * Erase can take up to 400ms and program up to 20ms according to
874 * general NAND and SmartMedia specs
876 static int omap_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
878 struct nand_chip
*this = mtd
->priv
;
879 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
881 unsigned long timeo
= jiffies
;
882 int status
= NAND_STATUS_FAIL
, state
= this->state
;
884 if (state
== FL_ERASING
)
885 timeo
+= (HZ
* 400) / 1000;
887 timeo
+= (HZ
* 20) / 1000;
889 gpmc_nand_write(info
->gpmc_cs
,
890 GPMC_NAND_COMMAND
, (NAND_CMD_STATUS
& 0xFF));
891 while (time_before(jiffies
, timeo
)) {
892 status
= gpmc_nand_read(info
->gpmc_cs
, GPMC_NAND_DATA
);
893 if (status
& NAND_STATUS_READY
)
901 * omap_dev_ready - calls the platform specific dev_ready function
902 * @mtd: MTD device structure
904 static int omap_dev_ready(struct mtd_info
*mtd
)
906 unsigned int val
= 0;
907 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
910 val
= gpmc_read_status(GPMC_GET_IRQ_STATUS
);
911 if ((val
& 0x100) == 0x100) {
912 /* Clear IRQ Interrupt */
915 gpmc_cs_configure(info
->gpmc_cs
, GPMC_SET_IRQ_STATUS
, val
);
917 unsigned int cnt
= 0;
918 while (cnt
++ < 0x1FF) {
919 if ((val
& 0x100) == 0x100)
921 val
= gpmc_read_status(GPMC_GET_IRQ_STATUS
);
928 static int __devinit
omap_nand_probe(struct platform_device
*pdev
)
930 struct omap_nand_info
*info
;
931 struct omap_nand_platform_data
*pdata
;
935 pdata
= pdev
->dev
.platform_data
;
937 dev_err(&pdev
->dev
, "platform data missing\n");
941 info
= kzalloc(sizeof(struct omap_nand_info
), GFP_KERNEL
);
945 platform_set_drvdata(pdev
, info
);
947 spin_lock_init(&info
->controller
.lock
);
948 init_waitqueue_head(&info
->controller
.wq
);
952 info
->gpmc_cs
= pdata
->cs
;
953 info
->phys_base
= pdata
->phys_base
;
955 info
->mtd
.priv
= &info
->nand
;
956 info
->mtd
.name
= dev_name(&pdev
->dev
);
957 info
->mtd
.owner
= THIS_MODULE
;
959 info
->nand
.options
= pdata
->devsize
;
960 info
->nand
.options
|= NAND_SKIP_BBTSCAN
;
962 /* NAND write protect off */
963 gpmc_cs_configure(info
->gpmc_cs
, GPMC_CONFIG_WP
, 0);
965 if (!request_mem_region(info
->phys_base
, NAND_IO_SIZE
,
966 pdev
->dev
.driver
->name
)) {
971 info
->nand
.IO_ADDR_R
= ioremap(info
->phys_base
, NAND_IO_SIZE
);
972 if (!info
->nand
.IO_ADDR_R
) {
974 goto out_release_mem_region
;
977 info
->nand
.controller
= &info
->controller
;
979 info
->nand
.IO_ADDR_W
= info
->nand
.IO_ADDR_R
;
980 info
->nand
.cmd_ctrl
= omap_hwcontrol
;
983 * If RDY/BSY line is connected to OMAP then use the omap ready
984 * funcrtion and the generic nand_wait function which reads the status
985 * register after monitoring the RDY/BSY line.Otherwise use a standard
986 * chip delay which is slightly more than tR (AC Timing) of the NAND
987 * device and read status register until you get a failure or success
989 if (pdata
->dev_ready
) {
990 info
->nand
.dev_ready
= omap_dev_ready
;
991 info
->nand
.chip_delay
= 0;
993 info
->nand
.waitfunc
= omap_wait
;
994 info
->nand
.chip_delay
= 50;
997 switch (pdata
->xfer_type
) {
998 case NAND_OMAP_PREFETCH_POLLED
:
999 info
->nand
.read_buf
= omap_read_buf_pref
;
1000 info
->nand
.write_buf
= omap_write_buf_pref
;
1003 case NAND_OMAP_POLLED
:
1004 if (info
->nand
.options
& NAND_BUSWIDTH_16
) {
1005 info
->nand
.read_buf
= omap_read_buf16
;
1006 info
->nand
.write_buf
= omap_write_buf16
;
1008 info
->nand
.read_buf
= omap_read_buf8
;
1009 info
->nand
.write_buf
= omap_write_buf8
;
1013 case NAND_OMAP_PREFETCH_DMA
:
1014 err
= omap_request_dma(OMAP24XX_DMA_GPMC
, "NAND",
1015 omap_nand_dma_cb
, &info
->comp
, &info
->dma_ch
);
1018 dev_err(&pdev
->dev
, "DMA request failed!\n");
1019 goto out_release_mem_region
;
1021 omap_set_dma_dest_burst_mode(info
->dma_ch
,
1022 OMAP_DMA_DATA_BURST_16
);
1023 omap_set_dma_src_burst_mode(info
->dma_ch
,
1024 OMAP_DMA_DATA_BURST_16
);
1026 info
->nand
.read_buf
= omap_read_buf_dma_pref
;
1027 info
->nand
.write_buf
= omap_write_buf_dma_pref
;
1031 case NAND_OMAP_PREFETCH_IRQ
:
1032 err
= request_irq(pdata
->gpmc_irq
,
1033 omap_nand_irq
, IRQF_SHARED
, "gpmc-nand", info
);
1035 dev_err(&pdev
->dev
, "requesting irq(%d) error:%d",
1036 pdata
->gpmc_irq
, err
);
1037 goto out_release_mem_region
;
1039 info
->gpmc_irq
= pdata
->gpmc_irq
;
1040 info
->nand
.read_buf
= omap_read_buf_irq_pref
;
1041 info
->nand
.write_buf
= omap_write_buf_irq_pref
;
1047 "xfer_type(%d) not supported!\n", pdata
->xfer_type
);
1049 goto out_release_mem_region
;
1052 info
->nand
.verify_buf
= omap_verify_buf
;
1054 /* selsect the ecc type */
1055 if (pdata
->ecc_opt
== OMAP_ECC_HAMMING_CODE_DEFAULT
)
1056 info
->nand
.ecc
.mode
= NAND_ECC_SOFT
;
1057 else if ((pdata
->ecc_opt
== OMAP_ECC_HAMMING_CODE_HW
) ||
1058 (pdata
->ecc_opt
== OMAP_ECC_HAMMING_CODE_HW_ROMCODE
)) {
1059 info
->nand
.ecc
.bytes
= 3;
1060 info
->nand
.ecc
.size
= 512;
1061 info
->nand
.ecc
.calculate
= omap_calculate_ecc
;
1062 info
->nand
.ecc
.hwctl
= omap_enable_hwecc
;
1063 info
->nand
.ecc
.correct
= omap_correct_data
;
1064 info
->nand
.ecc
.mode
= NAND_ECC_HW
;
1067 /* DIP switches on some boards change between 8 and 16 bit
1068 * bus widths for flash. Try the other width if the first try fails.
1070 if (nand_scan_ident(&info
->mtd
, 1, NULL
)) {
1071 info
->nand
.options
^= NAND_BUSWIDTH_16
;
1072 if (nand_scan_ident(&info
->mtd
, 1, NULL
)) {
1074 goto out_release_mem_region
;
1078 /* rom code layout */
1079 if (pdata
->ecc_opt
== OMAP_ECC_HAMMING_CODE_HW_ROMCODE
) {
1081 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
1085 info
->nand
.badblock_pattern
= &bb_descrip_flashbased
;
1087 omap_oobinfo
.eccbytes
= 3 * (info
->mtd
.oobsize
/16);
1088 for (i
= 0; i
< omap_oobinfo
.eccbytes
; i
++)
1089 omap_oobinfo
.eccpos
[i
] = i
+offset
;
1091 omap_oobinfo
.oobfree
->offset
= offset
+ omap_oobinfo
.eccbytes
;
1092 omap_oobinfo
.oobfree
->length
= info
->mtd
.oobsize
-
1093 (offset
+ omap_oobinfo
.eccbytes
);
1095 info
->nand
.ecc
.layout
= &omap_oobinfo
;
1098 /* second phase scan */
1099 if (nand_scan_tail(&info
->mtd
)) {
1101 goto out_release_mem_region
;
1104 mtd_device_parse_register(&info
->mtd
, NULL
, 0,
1105 pdata
->parts
, pdata
->nr_parts
);
1107 platform_set_drvdata(pdev
, &info
->mtd
);
1111 out_release_mem_region
:
1112 release_mem_region(info
->phys_base
, NAND_IO_SIZE
);
1119 static int omap_nand_remove(struct platform_device
*pdev
)
1121 struct mtd_info
*mtd
= platform_get_drvdata(pdev
);
1122 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1125 platform_set_drvdata(pdev
, NULL
);
1126 if (info
->dma_ch
!= -1)
1127 omap_free_dma(info
->dma_ch
);
1130 free_irq(info
->gpmc_irq
, info
);
1132 /* Release NAND device, its internal structures and partitions */
1133 nand_release(&info
->mtd
);
1134 iounmap(info
->nand
.IO_ADDR_R
);
1139 static struct platform_driver omap_nand_driver
= {
1140 .probe
= omap_nand_probe
,
1141 .remove
= omap_nand_remove
,
1143 .name
= DRIVER_NAME
,
1144 .owner
= THIS_MODULE
,
1148 static int __init
omap_nand_init(void)
1150 pr_info("%s driver initializing\n", DRIVER_NAME
);
1152 return platform_driver_register(&omap_nand_driver
);
1155 static void __exit
omap_nand_exit(void)
1157 platform_driver_unregister(&omap_nand_driver
);
1160 module_init(omap_nand_init
);
1161 module_exit(omap_nand_exit
);
1163 MODULE_ALIAS("platform:" DRIVER_NAME
);
1164 MODULE_LICENSE("GPL");
1165 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");