Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / drivers / mtd / nand / omap2.c
blobf745f00f3167d455f3d802a0b5ea9dc82a66b617
1 /*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
11 #include <linux/platform_device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/delay.h>
14 #include <linux/module.h>
15 #include <linux/interrupt.h>
16 #include <linux/jiffies.h>
17 #include <linux/sched.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/nand.h>
20 #include <linux/mtd/partitions.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
24 #include <plat/dma.h>
25 #include <plat/gpmc.h>
26 #include <plat/nand.h>
28 #define DRIVER_NAME "omap2-nand"
29 #define OMAP_NAND_TIMEOUT_MS 5000
31 #define NAND_Ecc_P1e (1 << 0)
32 #define NAND_Ecc_P2e (1 << 1)
33 #define NAND_Ecc_P4e (1 << 2)
34 #define NAND_Ecc_P8e (1 << 3)
35 #define NAND_Ecc_P16e (1 << 4)
36 #define NAND_Ecc_P32e (1 << 5)
37 #define NAND_Ecc_P64e (1 << 6)
38 #define NAND_Ecc_P128e (1 << 7)
39 #define NAND_Ecc_P256e (1 << 8)
40 #define NAND_Ecc_P512e (1 << 9)
41 #define NAND_Ecc_P1024e (1 << 10)
42 #define NAND_Ecc_P2048e (1 << 11)
44 #define NAND_Ecc_P1o (1 << 16)
45 #define NAND_Ecc_P2o (1 << 17)
46 #define NAND_Ecc_P4o (1 << 18)
47 #define NAND_Ecc_P8o (1 << 19)
48 #define NAND_Ecc_P16o (1 << 20)
49 #define NAND_Ecc_P32o (1 << 21)
50 #define NAND_Ecc_P64o (1 << 22)
51 #define NAND_Ecc_P128o (1 << 23)
52 #define NAND_Ecc_P256o (1 << 24)
53 #define NAND_Ecc_P512o (1 << 25)
54 #define NAND_Ecc_P1024o (1 << 26)
55 #define NAND_Ecc_P2048o (1 << 27)
57 #define TF(value) (value ? 1 : 0)
59 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
60 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
61 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
62 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
63 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
64 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
65 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
66 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
68 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
69 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
70 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
71 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
72 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
73 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
74 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
75 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
77 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
78 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
79 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
80 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
81 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
82 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
83 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
84 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
86 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
87 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
88 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
89 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
90 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
91 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
92 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
93 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
95 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
96 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
98 /* oob info generated runtime depending on ecc algorithm and layout selected */
99 static struct nand_ecclayout omap_oobinfo;
100 /* Define some generic bad / good block scan pattern which are used
101 * while scanning a device for factory marked good / bad blocks
103 static uint8_t scan_ff_pattern[] = { 0xff };
104 static struct nand_bbt_descr bb_descrip_flashbased = {
105 .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
106 .offs = 0,
107 .len = 1,
108 .pattern = scan_ff_pattern,
112 struct omap_nand_info {
113 struct nand_hw_control controller;
114 struct omap_nand_platform_data *pdata;
115 struct mtd_info mtd;
116 struct nand_chip nand;
117 struct platform_device *pdev;
119 int gpmc_cs;
120 unsigned long phys_base;
121 struct completion comp;
122 int dma_ch;
123 int gpmc_irq;
124 enum {
125 OMAP_NAND_IO_READ = 0, /* read */
126 OMAP_NAND_IO_WRITE, /* write */
127 } iomode;
128 u_char *buf;
129 int buf_len;
133 * omap_hwcontrol - hardware specific access to control-lines
134 * @mtd: MTD device structure
135 * @cmd: command to device
136 * @ctrl:
137 * NAND_NCE: bit 0 -> don't care
138 * NAND_CLE: bit 1 -> Command Latch
139 * NAND_ALE: bit 2 -> Address Latch
141 * NOTE: boards may use different bits for these!!
143 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
145 struct omap_nand_info *info = container_of(mtd,
146 struct omap_nand_info, mtd);
148 if (cmd != NAND_CMD_NONE) {
149 if (ctrl & NAND_CLE)
150 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
152 else if (ctrl & NAND_ALE)
153 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
155 else /* NAND_NCE */
156 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
161 * omap_read_buf8 - read data from NAND controller into buffer
162 * @mtd: MTD device structure
163 * @buf: buffer to store date
164 * @len: number of bytes to read
166 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
168 struct nand_chip *nand = mtd->priv;
170 ioread8_rep(nand->IO_ADDR_R, buf, len);
174 * omap_write_buf8 - write buffer to NAND controller
175 * @mtd: MTD device structure
176 * @buf: data buffer
177 * @len: number of bytes to write
179 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
181 struct omap_nand_info *info = container_of(mtd,
182 struct omap_nand_info, mtd);
183 u_char *p = (u_char *)buf;
184 u32 status = 0;
186 while (len--) {
187 iowrite8(*p++, info->nand.IO_ADDR_W);
188 /* wait until buffer is available for write */
189 do {
190 status = gpmc_read_status(GPMC_STATUS_BUFFER);
191 } while (!status);
196 * omap_read_buf16 - read data from NAND controller into buffer
197 * @mtd: MTD device structure
198 * @buf: buffer to store date
199 * @len: number of bytes to read
201 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
203 struct nand_chip *nand = mtd->priv;
205 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
209 * omap_write_buf16 - write buffer to NAND controller
210 * @mtd: MTD device structure
211 * @buf: data buffer
212 * @len: number of bytes to write
214 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
216 struct omap_nand_info *info = container_of(mtd,
217 struct omap_nand_info, mtd);
218 u16 *p = (u16 *) buf;
219 u32 status = 0;
220 /* FIXME try bursts of writesw() or DMA ... */
221 len >>= 1;
223 while (len--) {
224 iowrite16(*p++, info->nand.IO_ADDR_W);
225 /* wait until buffer is available for write */
226 do {
227 status = gpmc_read_status(GPMC_STATUS_BUFFER);
228 } while (!status);
233 * omap_read_buf_pref - read data from NAND controller into buffer
234 * @mtd: MTD device structure
235 * @buf: buffer to store date
236 * @len: number of bytes to read
238 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
240 struct omap_nand_info *info = container_of(mtd,
241 struct omap_nand_info, mtd);
242 uint32_t r_count = 0;
243 int ret = 0;
244 u32 *p = (u32 *)buf;
246 /* take care of subpage reads */
247 if (len % 4) {
248 if (info->nand.options & NAND_BUSWIDTH_16)
249 omap_read_buf16(mtd, buf, len % 4);
250 else
251 omap_read_buf8(mtd, buf, len % 4);
252 p = (u32 *) (buf + len % 4);
253 len -= len % 4;
256 /* configure and start prefetch transfer */
257 ret = gpmc_prefetch_enable(info->gpmc_cs,
258 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
259 if (ret) {
260 /* PFPW engine is busy, use cpu copy method */
261 if (info->nand.options & NAND_BUSWIDTH_16)
262 omap_read_buf16(mtd, (u_char *)p, len);
263 else
264 omap_read_buf8(mtd, (u_char *)p, len);
265 } else {
266 do {
267 r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
268 r_count = r_count >> 2;
269 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
270 p += r_count;
271 len -= r_count << 2;
272 } while (len);
273 /* disable and stop the PFPW engine */
274 gpmc_prefetch_reset(info->gpmc_cs);
279 * omap_write_buf_pref - write buffer to NAND controller
280 * @mtd: MTD device structure
281 * @buf: data buffer
282 * @len: number of bytes to write
284 static void omap_write_buf_pref(struct mtd_info *mtd,
285 const u_char *buf, int len)
287 struct omap_nand_info *info = container_of(mtd,
288 struct omap_nand_info, mtd);
289 uint32_t w_count = 0;
290 int i = 0, ret = 0;
291 u16 *p = (u16 *)buf;
292 unsigned long tim, limit;
294 /* take care of subpage writes */
295 if (len % 2 != 0) {
296 writeb(*buf, info->nand.IO_ADDR_W);
297 p = (u16 *)(buf + 1);
298 len--;
301 /* configure and start prefetch transfer */
302 ret = gpmc_prefetch_enable(info->gpmc_cs,
303 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
304 if (ret) {
305 /* PFPW engine is busy, use cpu copy method */
306 if (info->nand.options & NAND_BUSWIDTH_16)
307 omap_write_buf16(mtd, (u_char *)p, len);
308 else
309 omap_write_buf8(mtd, (u_char *)p, len);
310 } else {
311 while (len) {
312 w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
313 w_count = w_count >> 1;
314 for (i = 0; (i < w_count) && len; i++, len -= 2)
315 iowrite16(*p++, info->nand.IO_ADDR_W);
317 /* wait for data to flushed-out before reset the prefetch */
318 tim = 0;
319 limit = (loops_per_jiffy *
320 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
321 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
322 cpu_relax();
324 /* disable and stop the PFPW engine */
325 gpmc_prefetch_reset(info->gpmc_cs);
330 * omap_nand_dma_cb: callback on the completion of dma transfer
331 * @lch: logical channel
332 * @ch_satuts: channel status
333 * @data: pointer to completion data structure
335 static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
337 complete((struct completion *) data);
341 * omap_nand_dma_transfer: configer and start dma transfer
342 * @mtd: MTD device structure
343 * @addr: virtual address in RAM of source/destination
344 * @len: number of data bytes to be transferred
345 * @is_write: flag for read/write operation
347 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
348 unsigned int len, int is_write)
350 struct omap_nand_info *info = container_of(mtd,
351 struct omap_nand_info, mtd);
352 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
353 DMA_FROM_DEVICE;
354 dma_addr_t dma_addr;
355 int ret;
356 unsigned long tim, limit;
358 /* The fifo depth is 64 bytes max.
359 * But configure the FIFO-threahold to 32 to get a sync at each frame
360 * and frame length is 32 bytes.
362 int buf_len = len >> 6;
364 if (addr >= high_memory) {
365 struct page *p1;
367 if (((size_t)addr & PAGE_MASK) !=
368 ((size_t)(addr + len - 1) & PAGE_MASK))
369 goto out_copy;
370 p1 = vmalloc_to_page(addr);
371 if (!p1)
372 goto out_copy;
373 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
376 dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
377 if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
378 dev_err(&info->pdev->dev,
379 "Couldn't DMA map a %d byte buffer\n", len);
380 goto out_copy;
383 if (is_write) {
384 omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
385 info->phys_base, 0, 0);
386 omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
387 dma_addr, 0, 0);
388 omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
389 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
390 OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
391 } else {
392 omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
393 info->phys_base, 0, 0);
394 omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
395 dma_addr, 0, 0);
396 omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
397 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
398 OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
400 /* configure and start prefetch transfer */
401 ret = gpmc_prefetch_enable(info->gpmc_cs,
402 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
403 if (ret)
404 /* PFPW engine is busy, use cpu copy method */
405 goto out_copy;
407 init_completion(&info->comp);
409 omap_start_dma(info->dma_ch);
411 /* setup and start DMA using dma_addr */
412 wait_for_completion(&info->comp);
413 tim = 0;
414 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
415 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
416 cpu_relax();
418 /* disable and stop the PFPW engine */
419 gpmc_prefetch_reset(info->gpmc_cs);
421 dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
422 return 0;
424 out_copy:
425 if (info->nand.options & NAND_BUSWIDTH_16)
426 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
427 : omap_write_buf16(mtd, (u_char *) addr, len);
428 else
429 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
430 : omap_write_buf8(mtd, (u_char *) addr, len);
431 return 0;
435 * omap_read_buf_dma_pref - read data from NAND controller into buffer
436 * @mtd: MTD device structure
437 * @buf: buffer to store date
438 * @len: number of bytes to read
440 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
442 if (len <= mtd->oobsize)
443 omap_read_buf_pref(mtd, buf, len);
444 else
445 /* start transfer in DMA mode */
446 omap_nand_dma_transfer(mtd, buf, len, 0x0);
450 * omap_write_buf_dma_pref - write buffer to NAND controller
451 * @mtd: MTD device structure
452 * @buf: data buffer
453 * @len: number of bytes to write
455 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
456 const u_char *buf, int len)
458 if (len <= mtd->oobsize)
459 omap_write_buf_pref(mtd, buf, len);
460 else
461 /* start transfer in DMA mode */
462 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
466 * omap_nand_irq - GMPC irq handler
467 * @this_irq: gpmc irq number
468 * @dev: omap_nand_info structure pointer is passed here
470 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
472 struct omap_nand_info *info = (struct omap_nand_info *) dev;
473 u32 bytes;
474 u32 irq_stat;
476 irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
477 bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
478 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
479 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
480 if (irq_stat & 0x2)
481 goto done;
483 if (info->buf_len && (info->buf_len < bytes))
484 bytes = info->buf_len;
485 else if (!info->buf_len)
486 bytes = 0;
487 iowrite32_rep(info->nand.IO_ADDR_W,
488 (u32 *)info->buf, bytes >> 2);
489 info->buf = info->buf + bytes;
490 info->buf_len -= bytes;
492 } else {
493 ioread32_rep(info->nand.IO_ADDR_R,
494 (u32 *)info->buf, bytes >> 2);
495 info->buf = info->buf + bytes;
497 if (irq_stat & 0x2)
498 goto done;
500 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
502 return IRQ_HANDLED;
504 done:
505 complete(&info->comp);
506 /* disable irq */
507 gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);
509 /* clear status */
510 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
512 return IRQ_HANDLED;
516 * omap_read_buf_irq_pref - read data from NAND controller into buffer
517 * @mtd: MTD device structure
518 * @buf: buffer to store date
519 * @len: number of bytes to read
521 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
523 struct omap_nand_info *info = container_of(mtd,
524 struct omap_nand_info, mtd);
525 int ret = 0;
527 if (len <= mtd->oobsize) {
528 omap_read_buf_pref(mtd, buf, len);
529 return;
532 info->iomode = OMAP_NAND_IO_READ;
533 info->buf = buf;
534 init_completion(&info->comp);
536 /* configure and start prefetch transfer */
537 ret = gpmc_prefetch_enable(info->gpmc_cs,
538 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
539 if (ret)
540 /* PFPW engine is busy, use cpu copy method */
541 goto out_copy;
543 info->buf_len = len;
544 /* enable irq */
545 gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
546 (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
548 /* waiting for read to complete */
549 wait_for_completion(&info->comp);
551 /* disable and stop the PFPW engine */
552 gpmc_prefetch_reset(info->gpmc_cs);
553 return;
555 out_copy:
556 if (info->nand.options & NAND_BUSWIDTH_16)
557 omap_read_buf16(mtd, buf, len);
558 else
559 omap_read_buf8(mtd, buf, len);
563 * omap_write_buf_irq_pref - write buffer to NAND controller
564 * @mtd: MTD device structure
565 * @buf: data buffer
566 * @len: number of bytes to write
568 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
569 const u_char *buf, int len)
571 struct omap_nand_info *info = container_of(mtd,
572 struct omap_nand_info, mtd);
573 int ret = 0;
574 unsigned long tim, limit;
576 if (len <= mtd->oobsize) {
577 omap_write_buf_pref(mtd, buf, len);
578 return;
581 info->iomode = OMAP_NAND_IO_WRITE;
582 info->buf = (u_char *) buf;
583 init_completion(&info->comp);
585 /* configure and start prefetch transfer : size=24 */
586 ret = gpmc_prefetch_enable(info->gpmc_cs,
587 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
588 if (ret)
589 /* PFPW engine is busy, use cpu copy method */
590 goto out_copy;
592 info->buf_len = len;
593 /* enable irq */
594 gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
595 (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
597 /* waiting for write to complete */
598 wait_for_completion(&info->comp);
599 /* wait for data to flushed-out before reset the prefetch */
600 tim = 0;
601 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
602 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
603 cpu_relax();
605 /* disable and stop the PFPW engine */
606 gpmc_prefetch_reset(info->gpmc_cs);
607 return;
609 out_copy:
610 if (info->nand.options & NAND_BUSWIDTH_16)
611 omap_write_buf16(mtd, buf, len);
612 else
613 omap_write_buf8(mtd, buf, len);
617 * omap_verify_buf - Verify chip data against buffer
618 * @mtd: MTD device structure
619 * @buf: buffer containing the data to compare
620 * @len: number of bytes to compare
622 static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
624 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
625 mtd);
626 u16 *p = (u16 *) buf;
628 len >>= 1;
629 while (len--) {
630 if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
631 return -EFAULT;
634 return 0;
638 * gen_true_ecc - This function will generate true ECC value
639 * @ecc_buf: buffer to store ecc code
641 * This generated true ECC value can be used when correcting
642 * data read from NAND flash memory core
644 static void gen_true_ecc(u8 *ecc_buf)
646 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
647 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
649 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
650 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
651 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
652 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
653 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
654 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
658 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
659 * @ecc_data1: ecc code from nand spare area
660 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
661 * @page_data: page data
663 * This function compares two ECC's and indicates if there is an error.
664 * If the error can be corrected it will be corrected to the buffer.
665 * If there is no error, %0 is returned. If there is an error but it
666 * was corrected, %1 is returned. Otherwise, %-1 is returned.
668 static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
669 u8 *ecc_data2, /* read from register */
670 u8 *page_data)
672 uint i;
673 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
674 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
675 u8 ecc_bit[24];
676 u8 ecc_sum = 0;
677 u8 find_bit = 0;
678 uint find_byte = 0;
679 int isEccFF;
681 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
683 gen_true_ecc(ecc_data1);
684 gen_true_ecc(ecc_data2);
686 for (i = 0; i <= 2; i++) {
687 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
688 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
691 for (i = 0; i < 8; i++) {
692 tmp0_bit[i] = *ecc_data1 % 2;
693 *ecc_data1 = *ecc_data1 / 2;
696 for (i = 0; i < 8; i++) {
697 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
698 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
701 for (i = 0; i < 8; i++) {
702 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
703 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
706 for (i = 0; i < 8; i++) {
707 comp0_bit[i] = *ecc_data2 % 2;
708 *ecc_data2 = *ecc_data2 / 2;
711 for (i = 0; i < 8; i++) {
712 comp1_bit[i] = *(ecc_data2 + 1) % 2;
713 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
716 for (i = 0; i < 8; i++) {
717 comp2_bit[i] = *(ecc_data2 + 2) % 2;
718 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
721 for (i = 0; i < 6; i++)
722 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
724 for (i = 0; i < 8; i++)
725 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
727 for (i = 0; i < 8; i++)
728 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
730 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
731 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
733 for (i = 0; i < 24; i++)
734 ecc_sum += ecc_bit[i];
736 switch (ecc_sum) {
737 case 0:
738 /* Not reached because this function is not called if
739 * ECC values are equal
741 return 0;
743 case 1:
744 /* Uncorrectable error */
745 pr_debug("ECC UNCORRECTED_ERROR 1\n");
746 return -1;
748 case 11:
749 /* UN-Correctable error */
750 pr_debug("ECC UNCORRECTED_ERROR B\n");
751 return -1;
753 case 12:
754 /* Correctable error */
755 find_byte = (ecc_bit[23] << 8) +
756 (ecc_bit[21] << 7) +
757 (ecc_bit[19] << 6) +
758 (ecc_bit[17] << 5) +
759 (ecc_bit[15] << 4) +
760 (ecc_bit[13] << 3) +
761 (ecc_bit[11] << 2) +
762 (ecc_bit[9] << 1) +
763 ecc_bit[7];
765 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
767 pr_debug("Correcting single bit ECC error at offset: "
768 "%d, bit: %d\n", find_byte, find_bit);
770 page_data[find_byte] ^= (1 << find_bit);
772 return 1;
773 default:
774 if (isEccFF) {
775 if (ecc_data2[0] == 0 &&
776 ecc_data2[1] == 0 &&
777 ecc_data2[2] == 0)
778 return 0;
780 pr_debug("UNCORRECTED_ERROR default\n");
781 return -1;
786 * omap_correct_data - Compares the ECC read with HW generated ECC
787 * @mtd: MTD device structure
788 * @dat: page data
789 * @read_ecc: ecc read from nand flash
790 * @calc_ecc: ecc read from HW ECC registers
792 * Compares the ecc read from nand spare area with ECC registers values
793 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
794 * detection and correction. If there are no errors, %0 is returned. If
795 * there were errors and all of the errors were corrected, the number of
796 * corrected errors is returned. If uncorrectable errors exist, %-1 is
797 * returned.
799 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
800 u_char *read_ecc, u_char *calc_ecc)
802 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
803 mtd);
804 int blockCnt = 0, i = 0, ret = 0;
805 int stat = 0;
807 /* Ex NAND_ECC_HW12_2048 */
808 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
809 (info->nand.ecc.size == 2048))
810 blockCnt = 4;
811 else
812 blockCnt = 1;
814 for (i = 0; i < blockCnt; i++) {
815 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
816 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
817 if (ret < 0)
818 return ret;
819 /* keep track of the number of corrected errors */
820 stat += ret;
822 read_ecc += 3;
823 calc_ecc += 3;
824 dat += 512;
826 return stat;
830 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
831 * @mtd: MTD device structure
832 * @dat: The pointer to data on which ecc is computed
833 * @ecc_code: The ecc_code buffer
835 * Using noninverted ECC can be considered ugly since writing a blank
836 * page ie. padding will clear the ECC bytes. This is no problem as long
837 * nobody is trying to write data on the seemingly unused page. Reading
838 * an erased page will produce an ECC mismatch between generated and read
839 * ECC bytes that has to be dealt with separately.
841 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
842 u_char *ecc_code)
844 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
845 mtd);
846 return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
850 * omap_enable_hwecc - This function enables the hardware ecc functionality
851 * @mtd: MTD device structure
852 * @mode: Read/Write mode
854 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
856 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
857 mtd);
858 struct nand_chip *chip = mtd->priv;
859 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
861 gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
865 * omap_wait - wait until the command is done
866 * @mtd: MTD device structure
867 * @chip: NAND Chip structure
869 * Wait function is called during Program and erase operations and
870 * the way it is called from MTD layer, we should wait till the NAND
871 * chip is ready after the programming/erase operation has completed.
873 * Erase can take up to 400ms and program up to 20ms according to
874 * general NAND and SmartMedia specs
876 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
878 struct nand_chip *this = mtd->priv;
879 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
880 mtd);
881 unsigned long timeo = jiffies;
882 int status = NAND_STATUS_FAIL, state = this->state;
884 if (state == FL_ERASING)
885 timeo += (HZ * 400) / 1000;
886 else
887 timeo += (HZ * 20) / 1000;
889 gpmc_nand_write(info->gpmc_cs,
890 GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
891 while (time_before(jiffies, timeo)) {
892 status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
893 if (status & NAND_STATUS_READY)
894 break;
895 cond_resched();
897 return status;
901 * omap_dev_ready - calls the platform specific dev_ready function
902 * @mtd: MTD device structure
904 static int omap_dev_ready(struct mtd_info *mtd)
906 unsigned int val = 0;
907 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
908 mtd);
910 val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
911 if ((val & 0x100) == 0x100) {
912 /* Clear IRQ Interrupt */
913 val |= 0x100;
914 val &= ~(0x0);
915 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
916 } else {
917 unsigned int cnt = 0;
918 while (cnt++ < 0x1FF) {
919 if ((val & 0x100) == 0x100)
920 return 0;
921 val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
925 return 1;
928 static int __devinit omap_nand_probe(struct platform_device *pdev)
930 struct omap_nand_info *info;
931 struct omap_nand_platform_data *pdata;
932 int err;
933 int i, offset;
935 pdata = pdev->dev.platform_data;
936 if (pdata == NULL) {
937 dev_err(&pdev->dev, "platform data missing\n");
938 return -ENODEV;
941 info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
942 if (!info)
943 return -ENOMEM;
945 platform_set_drvdata(pdev, info);
947 spin_lock_init(&info->controller.lock);
948 init_waitqueue_head(&info->controller.wq);
950 info->pdev = pdev;
952 info->gpmc_cs = pdata->cs;
953 info->phys_base = pdata->phys_base;
955 info->mtd.priv = &info->nand;
956 info->mtd.name = dev_name(&pdev->dev);
957 info->mtd.owner = THIS_MODULE;
959 info->nand.options = pdata->devsize;
960 info->nand.options |= NAND_SKIP_BBTSCAN;
962 /* NAND write protect off */
963 gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
965 if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
966 pdev->dev.driver->name)) {
967 err = -EBUSY;
968 goto out_free_info;
971 info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
972 if (!info->nand.IO_ADDR_R) {
973 err = -ENOMEM;
974 goto out_release_mem_region;
977 info->nand.controller = &info->controller;
979 info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
980 info->nand.cmd_ctrl = omap_hwcontrol;
983 * If RDY/BSY line is connected to OMAP then use the omap ready
984 * funcrtion and the generic nand_wait function which reads the status
985 * register after monitoring the RDY/BSY line.Otherwise use a standard
986 * chip delay which is slightly more than tR (AC Timing) of the NAND
987 * device and read status register until you get a failure or success
989 if (pdata->dev_ready) {
990 info->nand.dev_ready = omap_dev_ready;
991 info->nand.chip_delay = 0;
992 } else {
993 info->nand.waitfunc = omap_wait;
994 info->nand.chip_delay = 50;
997 switch (pdata->xfer_type) {
998 case NAND_OMAP_PREFETCH_POLLED:
999 info->nand.read_buf = omap_read_buf_pref;
1000 info->nand.write_buf = omap_write_buf_pref;
1001 break;
1003 case NAND_OMAP_POLLED:
1004 if (info->nand.options & NAND_BUSWIDTH_16) {
1005 info->nand.read_buf = omap_read_buf16;
1006 info->nand.write_buf = omap_write_buf16;
1007 } else {
1008 info->nand.read_buf = omap_read_buf8;
1009 info->nand.write_buf = omap_write_buf8;
1011 break;
1013 case NAND_OMAP_PREFETCH_DMA:
1014 err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
1015 omap_nand_dma_cb, &info->comp, &info->dma_ch);
1016 if (err < 0) {
1017 info->dma_ch = -1;
1018 dev_err(&pdev->dev, "DMA request failed!\n");
1019 goto out_release_mem_region;
1020 } else {
1021 omap_set_dma_dest_burst_mode(info->dma_ch,
1022 OMAP_DMA_DATA_BURST_16);
1023 omap_set_dma_src_burst_mode(info->dma_ch,
1024 OMAP_DMA_DATA_BURST_16);
1026 info->nand.read_buf = omap_read_buf_dma_pref;
1027 info->nand.write_buf = omap_write_buf_dma_pref;
1029 break;
1031 case NAND_OMAP_PREFETCH_IRQ:
1032 err = request_irq(pdata->gpmc_irq,
1033 omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
1034 if (err) {
1035 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1036 pdata->gpmc_irq, err);
1037 goto out_release_mem_region;
1038 } else {
1039 info->gpmc_irq = pdata->gpmc_irq;
1040 info->nand.read_buf = omap_read_buf_irq_pref;
1041 info->nand.write_buf = omap_write_buf_irq_pref;
1043 break;
1045 default:
1046 dev_err(&pdev->dev,
1047 "xfer_type(%d) not supported!\n", pdata->xfer_type);
1048 err = -EINVAL;
1049 goto out_release_mem_region;
1052 info->nand.verify_buf = omap_verify_buf;
1054 /* selsect the ecc type */
1055 if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1056 info->nand.ecc.mode = NAND_ECC_SOFT;
1057 else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1058 (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1059 info->nand.ecc.bytes = 3;
1060 info->nand.ecc.size = 512;
1061 info->nand.ecc.calculate = omap_calculate_ecc;
1062 info->nand.ecc.hwctl = omap_enable_hwecc;
1063 info->nand.ecc.correct = omap_correct_data;
1064 info->nand.ecc.mode = NAND_ECC_HW;
1067 /* DIP switches on some boards change between 8 and 16 bit
1068 * bus widths for flash. Try the other width if the first try fails.
1070 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1071 info->nand.options ^= NAND_BUSWIDTH_16;
1072 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1073 err = -ENXIO;
1074 goto out_release_mem_region;
1078 /* rom code layout */
1079 if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1081 if (info->nand.options & NAND_BUSWIDTH_16)
1082 offset = 2;
1083 else {
1084 offset = 1;
1085 info->nand.badblock_pattern = &bb_descrip_flashbased;
1087 omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1088 for (i = 0; i < omap_oobinfo.eccbytes; i++)
1089 omap_oobinfo.eccpos[i] = i+offset;
1091 omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1092 omap_oobinfo.oobfree->length = info->mtd.oobsize -
1093 (offset + omap_oobinfo.eccbytes);
1095 info->nand.ecc.layout = &omap_oobinfo;
1098 /* second phase scan */
1099 if (nand_scan_tail(&info->mtd)) {
1100 err = -ENXIO;
1101 goto out_release_mem_region;
1104 mtd_device_parse_register(&info->mtd, NULL, 0,
1105 pdata->parts, pdata->nr_parts);
1107 platform_set_drvdata(pdev, &info->mtd);
1109 return 0;
1111 out_release_mem_region:
1112 release_mem_region(info->phys_base, NAND_IO_SIZE);
1113 out_free_info:
1114 kfree(info);
1116 return err;
1119 static int omap_nand_remove(struct platform_device *pdev)
1121 struct mtd_info *mtd = platform_get_drvdata(pdev);
1122 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1123 mtd);
1125 platform_set_drvdata(pdev, NULL);
1126 if (info->dma_ch != -1)
1127 omap_free_dma(info->dma_ch);
1129 if (info->gpmc_irq)
1130 free_irq(info->gpmc_irq, info);
1132 /* Release NAND device, its internal structures and partitions */
1133 nand_release(&info->mtd);
1134 iounmap(info->nand.IO_ADDR_R);
1135 kfree(&info->mtd);
1136 return 0;
1139 static struct platform_driver omap_nand_driver = {
1140 .probe = omap_nand_probe,
1141 .remove = omap_nand_remove,
1142 .driver = {
1143 .name = DRIVER_NAME,
1144 .owner = THIS_MODULE,
1148 static int __init omap_nand_init(void)
1150 pr_info("%s driver initializing\n", DRIVER_NAME);
1152 return platform_driver_register(&omap_nand_driver);
1155 static void __exit omap_nand_exit(void)
1157 platform_driver_unregister(&omap_nand_driver);
1160 module_init(omap_nand_init);
1161 module_exit(omap_nand_exit);
1163 MODULE_ALIAS("platform:" DRIVER_NAME);
1164 MODULE_LICENSE("GPL");
1165 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");