2 * e100net.c: A network driver for the ETRAX 100LX network controller.
4 * Copyright (c) 1998-2002 Axis Communications AB.
6 * The outline of this driver comes from skeleton.c.
11 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/delay.h>
15 #include <linux/types.h>
16 #include <linux/fcntl.h>
17 #include <linux/interrupt.h>
18 #include <linux/ptrace.h>
19 #include <linux/ioport.h>
21 #include <linux/string.h>
22 #include <linux/spinlock.h>
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/bitops.h>
28 #include <linux/mii.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/ethtool.h>
34 #include <arch/svinto.h>/* DMA and register descriptions */
35 #include <asm/io.h> /* CRIS_LED_* I/O functions */
38 #include <asm/system.h>
39 #include <asm/ethernet.h>
40 #include <asm/cache.h>
41 #include <arch/io_interface_mux.h>
47 * The name of the card. Is used for messages and in the requests for
48 * io regions, irqs and dma channels
51 static const char* cardname
= "ETRAX 100LX built-in ethernet controller";
53 /* A default ethernet address. Highlevel SW will set the real one later */
55 static struct sockaddr default_mac
= {
57 { 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 }
60 /* Information that need to be kept for each board. */
62 struct mii_if_info mii_if
;
64 /* Tx control lock. This protects the transmit buffer ring
65 * state along with the "tx full" state of the driver. This
66 * means all netif_queue flow control actions are protected
67 * by this lock as well.
71 spinlock_t led_lock
; /* Protect LED state */
72 spinlock_t transceiver_lock
; /* Protect transceiver state. */
75 typedef struct etrax_eth_descr
77 etrax_dma_descr descr
;
81 /* Some transceivers requires special handling */
82 struct transceiver_ops
85 void (*check_speed
)(struct net_device
* dev
);
86 void (*check_duplex
)(struct net_device
* dev
);
97 /* Dma descriptors etc. */
99 #define MAX_MEDIA_DATA_SIZE 1522
101 #define MIN_PACKET_LEN 46
102 #define ETHER_HEAD_LEN 14
107 #define MDIO_START 0x1
108 #define MDIO_READ 0x2
109 #define MDIO_WRITE 0x1
110 #define MDIO_PREAMBLE 0xfffffffful
112 /* Broadcom specific */
113 #define MDIO_AUX_CTRL_STATUS_REG 0x18
114 #define MDIO_BC_FULL_DUPLEX_IND 0x1
115 #define MDIO_BC_SPEED 0x2
118 #define MDIO_TDK_DIAGNOSTIC_REG 18
119 #define MDIO_TDK_DIAGNOSTIC_RATE 0x400
120 #define MDIO_TDK_DIAGNOSTIC_DPLX 0x800
122 /*Intel LXT972A specific*/
123 #define MDIO_INT_STATUS_REG_2 0x0011
124 #define MDIO_INT_FULL_DUPLEX_IND (1 << 9)
125 #define MDIO_INT_SPEED (1 << 14)
127 /* Network flash constants */
128 #define NET_FLASH_TIME (HZ/50) /* 20 ms */
129 #define NET_FLASH_PAUSE (HZ/100) /* 10 ms */
130 #define NET_LINK_UP_CHECK_INTERVAL (2*HZ) /* 2 s */
131 #define NET_DUPLEX_CHECK_INTERVAL (2*HZ) /* 2 s */
133 #define NO_NETWORK_ACTIVITY 0
134 #define NETWORK_ACTIVITY 1
136 #define NBR_OF_RX_DESC 32
137 #define NBR_OF_TX_DESC 16
139 /* Large packets are sent directly to upper layers while small packets are */
140 /* copied (to reduce memory waste). The following constant decides the breakpoint */
141 #define RX_COPYBREAK 256
143 /* Due to a chip bug we need to flush the cache when descriptors are returned */
144 /* to the DMA. To decrease performance impact we return descriptors in chunks. */
145 /* The following constant determines the number of descriptors to return. */
146 #define RX_QUEUE_THRESHOLD NBR_OF_RX_DESC/2
148 #define GET_BIT(bit,val) (((val) >> (bit)) & 0x01)
150 /* Define some macros to access ETRAX 100 registers */
151 #define SETF(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
152 IO_FIELD_(reg##_, field##_, val)
153 #define SETS(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
154 IO_STATE_(reg##_, field##_, _##val)
156 static etrax_eth_descr
*myNextRxDesc
; /* Points to the next descriptor to
158 static etrax_eth_descr
*myLastRxDesc
; /* The last processed descriptor */
160 static etrax_eth_descr RxDescList
[NBR_OF_RX_DESC
] __attribute__ ((aligned(32)));
162 static etrax_eth_descr
* myFirstTxDesc
; /* First packet not yet sent */
163 static etrax_eth_descr
* myLastTxDesc
; /* End of send queue */
164 static etrax_eth_descr
* myNextTxDesc
; /* Next descriptor to use */
165 static etrax_eth_descr TxDescList
[NBR_OF_TX_DESC
] __attribute__ ((aligned(32)));
167 static unsigned int network_rec_config_shadow
= 0;
169 static unsigned int network_tr_ctrl_shadow
= 0;
171 /* Network speed indication. */
172 static DEFINE_TIMER(speed_timer
, NULL
, 0, 0);
173 static DEFINE_TIMER(clear_led_timer
, NULL
, 0, 0);
174 static int current_speed
; /* Speed read from transceiver */
175 static int current_speed_selection
; /* Speed selected by user */
176 static unsigned long led_next_time
;
177 static int led_active
;
178 static int rx_queue_len
;
181 static DEFINE_TIMER(duplex_timer
, NULL
, 0, 0);
182 static int full_duplex
;
183 static enum duplex current_duplex
;
185 /* Index to functions, as function prototypes. */
187 static int etrax_ethernet_init(void);
189 static int e100_open(struct net_device
*dev
);
190 static int e100_set_mac_address(struct net_device
*dev
, void *addr
);
191 static int e100_send_packet(struct sk_buff
*skb
, struct net_device
*dev
);
192 static irqreturn_t
e100rxtx_interrupt(int irq
, void *dev_id
);
193 static irqreturn_t
e100nw_interrupt(int irq
, void *dev_id
);
194 static void e100_rx(struct net_device
*dev
);
195 static int e100_close(struct net_device
*dev
);
196 static int e100_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
);
197 static int e100_set_config(struct net_device
* dev
, struct ifmap
* map
);
198 static void e100_tx_timeout(struct net_device
*dev
);
199 static struct net_device_stats
*e100_get_stats(struct net_device
*dev
);
200 static void set_multicast_list(struct net_device
*dev
);
201 static void e100_hardware_send_packet(struct net_local
* np
, char *buf
, int length
);
202 static void update_rx_stats(struct net_device_stats
*);
203 static void update_tx_stats(struct net_device_stats
*);
204 static int e100_probe_transceiver(struct net_device
* dev
);
206 static void e100_check_speed(unsigned long priv
);
207 static void e100_set_speed(struct net_device
* dev
, unsigned long speed
);
208 static void e100_check_duplex(unsigned long priv
);
209 static void e100_set_duplex(struct net_device
* dev
, enum duplex
);
210 static void e100_negotiate(struct net_device
* dev
);
212 static int e100_get_mdio_reg(struct net_device
*dev
, int phy_id
, int location
);
213 static void e100_set_mdio_reg(struct net_device
*dev
, int phy_id
, int location
, int value
);
215 static void e100_send_mdio_cmd(unsigned short cmd
, int write_cmd
);
216 static void e100_send_mdio_bit(unsigned char bit
);
217 static unsigned char e100_receive_mdio_bit(void);
218 static void e100_reset_transceiver(struct net_device
* net
);
220 static void e100_clear_network_leds(unsigned long dummy
);
221 static void e100_set_network_leds(int active
);
223 static const struct ethtool_ops e100_ethtool_ops
;
224 #if defined(CONFIG_ETRAX_NO_PHY)
225 static void dummy_check_speed(struct net_device
* dev
);
226 static void dummy_check_duplex(struct net_device
* dev
);
228 static void broadcom_check_speed(struct net_device
* dev
);
229 static void broadcom_check_duplex(struct net_device
* dev
);
230 static void tdk_check_speed(struct net_device
* dev
);
231 static void tdk_check_duplex(struct net_device
* dev
);
232 static void intel_check_speed(struct net_device
* dev
);
233 static void intel_check_duplex(struct net_device
* dev
);
234 static void generic_check_speed(struct net_device
* dev
);
235 static void generic_check_duplex(struct net_device
* dev
);
237 #ifdef CONFIG_NET_POLL_CONTROLLER
238 static void e100_netpoll(struct net_device
* dev
);
241 static int autoneg_normal
= 1;
243 struct transceiver_ops transceivers
[] =
245 #if defined(CONFIG_ETRAX_NO_PHY)
246 {0x0000, dummy_check_speed
, dummy_check_duplex
} /* Dummy */
248 {0x1018, broadcom_check_speed
, broadcom_check_duplex
}, /* Broadcom */
249 {0xC039, tdk_check_speed
, tdk_check_duplex
}, /* TDK 2120 */
250 {0x039C, tdk_check_speed
, tdk_check_duplex
}, /* TDK 2120C */
251 {0x04de, intel_check_speed
, intel_check_duplex
}, /* Intel LXT972A*/
252 {0x0000, generic_check_speed
, generic_check_duplex
} /* Generic, must be last */
256 struct transceiver_ops
* transceiver
= &transceivers
[0];
258 static const struct net_device_ops e100_netdev_ops
= {
259 .ndo_open
= e100_open
,
260 .ndo_stop
= e100_close
,
261 .ndo_start_xmit
= e100_send_packet
,
262 .ndo_tx_timeout
= e100_tx_timeout
,
263 .ndo_get_stats
= e100_get_stats
,
264 .ndo_set_rx_mode
= set_multicast_list
,
265 .ndo_do_ioctl
= e100_ioctl
,
266 .ndo_set_mac_address
= e100_set_mac_address
,
267 .ndo_validate_addr
= eth_validate_addr
,
268 .ndo_change_mtu
= eth_change_mtu
,
269 .ndo_set_config
= e100_set_config
,
270 #ifdef CONFIG_NET_POLL_CONTROLLER
271 .ndo_poll_controller
= e100_netpoll
,
275 #define tx_done(dev) (*R_DMA_CH0_CMD == 0)
278 * Check for a network adaptor of this type, and return '0' if one exists.
279 * If dev->base_addr == 0, probe all likely locations.
280 * If dev->base_addr == 1, always return failure.
281 * If dev->base_addr == 2, allocate space for the device and return success
282 * (detachable devices only).
286 etrax_ethernet_init(void)
288 struct net_device
*dev
;
289 struct net_local
* np
;
293 "ETRAX 100LX 10/100MBit ethernet v2.0 (c) 1998-2007 Axis Communications AB\n");
295 if (cris_request_io_interface(if_eth
, cardname
)) {
296 printk(KERN_CRIT
"etrax_ethernet_init failed to get IO interface\n");
300 dev
= alloc_etherdev(sizeof(struct net_local
));
304 np
= netdev_priv(dev
);
306 /* we do our own locking */
307 dev
->features
|= NETIF_F_LLTX
;
309 dev
->base_addr
= (unsigned int)R_NETWORK_SA_0
; /* just to have something to show */
311 /* now setup our etrax specific stuff */
313 dev
->irq
= NETWORK_DMA_RX_IRQ_NBR
; /* we really use DMATX as well... */
314 dev
->dma
= NETWORK_RX_DMA_NBR
;
316 /* fill in our handlers so the network layer can talk to us in the future */
318 dev
->ethtool_ops
= &e100_ethtool_ops
;
319 dev
->netdev_ops
= &e100_netdev_ops
;
321 spin_lock_init(&np
->lock
);
322 spin_lock_init(&np
->led_lock
);
323 spin_lock_init(&np
->transceiver_lock
);
325 /* Initialise the list of Etrax DMA-descriptors */
327 /* Initialise receive descriptors */
329 for (i
= 0; i
< NBR_OF_RX_DESC
; i
++) {
330 /* Allocate two extra cachelines to make sure that buffer used
331 * by DMA does not share cacheline with any other data (to
334 RxDescList
[i
].skb
= dev_alloc_skb(MAX_MEDIA_DATA_SIZE
+ 2 * L1_CACHE_BYTES
);
335 if (!RxDescList
[i
].skb
)
337 RxDescList
[i
].descr
.ctrl
= 0;
338 RxDescList
[i
].descr
.sw_len
= MAX_MEDIA_DATA_SIZE
;
339 RxDescList
[i
].descr
.next
= virt_to_phys(&RxDescList
[i
+ 1]);
340 RxDescList
[i
].descr
.buf
= L1_CACHE_ALIGN(virt_to_phys(RxDescList
[i
].skb
->data
));
341 RxDescList
[i
].descr
.status
= 0;
342 RxDescList
[i
].descr
.hw_len
= 0;
343 prepare_rx_descriptor(&RxDescList
[i
].descr
);
346 RxDescList
[NBR_OF_RX_DESC
- 1].descr
.ctrl
= d_eol
;
347 RxDescList
[NBR_OF_RX_DESC
- 1].descr
.next
= virt_to_phys(&RxDescList
[0]);
350 /* Initialize transmit descriptors */
351 for (i
= 0; i
< NBR_OF_TX_DESC
; i
++) {
352 TxDescList
[i
].descr
.ctrl
= 0;
353 TxDescList
[i
].descr
.sw_len
= 0;
354 TxDescList
[i
].descr
.next
= virt_to_phys(&TxDescList
[i
+ 1].descr
);
355 TxDescList
[i
].descr
.buf
= 0;
356 TxDescList
[i
].descr
.status
= 0;
357 TxDescList
[i
].descr
.hw_len
= 0;
358 TxDescList
[i
].skb
= 0;
361 TxDescList
[NBR_OF_TX_DESC
- 1].descr
.ctrl
= d_eol
;
362 TxDescList
[NBR_OF_TX_DESC
- 1].descr
.next
= virt_to_phys(&TxDescList
[0].descr
);
364 /* Initialise initial pointers */
366 myNextRxDesc
= &RxDescList
[0];
367 myLastRxDesc
= &RxDescList
[NBR_OF_RX_DESC
- 1];
368 myFirstTxDesc
= &TxDescList
[0];
369 myNextTxDesc
= &TxDescList
[0];
370 myLastTxDesc
= &TxDescList
[NBR_OF_TX_DESC
- 1];
372 /* Register device */
373 err
= register_netdev(dev
);
379 /* set the default MAC address */
381 e100_set_mac_address(dev
, &default_mac
);
383 /* Initialize speed indicator stuff. */
386 current_speed_selection
= 0; /* Auto */
387 speed_timer
.expires
= jiffies
+ NET_LINK_UP_CHECK_INTERVAL
;
388 speed_timer
.data
= (unsigned long)dev
;
389 speed_timer
.function
= e100_check_speed
;
391 clear_led_timer
.function
= e100_clear_network_leds
;
392 clear_led_timer
.data
= (unsigned long)dev
;
395 current_duplex
= autoneg
;
396 duplex_timer
.expires
= jiffies
+ NET_DUPLEX_CHECK_INTERVAL
;
397 duplex_timer
.data
= (unsigned long)dev
;
398 duplex_timer
.function
= e100_check_duplex
;
400 /* Initialize mii interface */
401 np
->mii_if
.phy_id_mask
= 0x1f;
402 np
->mii_if
.reg_num_mask
= 0x1f;
403 np
->mii_if
.dev
= dev
;
404 np
->mii_if
.mdio_read
= e100_get_mdio_reg
;
405 np
->mii_if
.mdio_write
= e100_set_mdio_reg
;
407 /* Initialize group address registers to make sure that no */
408 /* unwanted addresses are matched */
409 *R_NETWORK_GA_0
= 0x00000000;
410 *R_NETWORK_GA_1
= 0x00000000;
412 /* Initialize next time the led can flash */
413 led_next_time
= jiffies
;
417 /* set MAC address of the interface. called from the core after a
418 * SIOCSIFADDR ioctl, and from the bootup above.
422 e100_set_mac_address(struct net_device
*dev
, void *p
)
424 struct net_local
*np
= netdev_priv(dev
);
425 struct sockaddr
*addr
= p
;
427 spin_lock(&np
->lock
); /* preemption protection */
431 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
433 /* Write it to the hardware.
434 * Note the way the address is wrapped:
435 * *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24);
436 * *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8);
439 *R_NETWORK_SA_0
= dev
->dev_addr
[0] | (dev
->dev_addr
[1] << 8) |
440 (dev
->dev_addr
[2] << 16) | (dev
->dev_addr
[3] << 24);
441 *R_NETWORK_SA_1
= dev
->dev_addr
[4] | (dev
->dev_addr
[5] << 8);
444 /* show it in the log as well */
446 printk(KERN_INFO
"%s: changed MAC to %pM\n", dev
->name
, dev
->dev_addr
);
448 spin_unlock(&np
->lock
);
454 * Open/initialize the board. This is called (in the current kernel)
455 * sometime after booting when the 'ifconfig' program is run.
457 * This routine should set everything up anew at each open, even
458 * registers that "should" only need to be set once at boot, so that
459 * there is non-reboot way to recover if something goes wrong.
463 e100_open(struct net_device
*dev
)
467 /* enable the MDIO output pin */
469 *R_NETWORK_MGM_CTRL
= IO_STATE(R_NETWORK_MGM_CTRL
, mdoe
, enable
);
472 IO_STATE(R_IRQ_MASK0_CLR
, overrun
, clr
) |
473 IO_STATE(R_IRQ_MASK0_CLR
, underrun
, clr
) |
474 IO_STATE(R_IRQ_MASK0_CLR
, excessive_col
, clr
);
476 /* clear dma0 and 1 eop and descr irq masks */
478 IO_STATE(R_IRQ_MASK2_CLR
, dma0_descr
, clr
) |
479 IO_STATE(R_IRQ_MASK2_CLR
, dma0_eop
, clr
) |
480 IO_STATE(R_IRQ_MASK2_CLR
, dma1_descr
, clr
) |
481 IO_STATE(R_IRQ_MASK2_CLR
, dma1_eop
, clr
);
483 /* Reset and wait for the DMA channels */
485 RESET_DMA(NETWORK_TX_DMA_NBR
);
486 RESET_DMA(NETWORK_RX_DMA_NBR
);
487 WAIT_DMA(NETWORK_TX_DMA_NBR
);
488 WAIT_DMA(NETWORK_RX_DMA_NBR
);
490 /* Initialise the etrax network controller */
492 /* allocate the irq corresponding to the receiving DMA */
494 if (request_irq(NETWORK_DMA_RX_IRQ_NBR
, e100rxtx_interrupt
, 0, cardname
,
499 /* allocate the irq corresponding to the transmitting DMA */
501 if (request_irq(NETWORK_DMA_TX_IRQ_NBR
, e100rxtx_interrupt
, 0,
502 cardname
, (void *)dev
)) {
506 /* allocate the irq corresponding to the network errors etc */
508 if (request_irq(NETWORK_STATUS_IRQ_NBR
, e100nw_interrupt
, 0,
509 cardname
, (void *)dev
)) {
514 * Always allocate the DMA channels after the IRQ,
515 * and clean up on failure.
518 if (cris_request_dma(NETWORK_TX_DMA_NBR
,
520 DMA_VERBOSE_ON_ERROR
,
525 if (cris_request_dma(NETWORK_RX_DMA_NBR
,
527 DMA_VERBOSE_ON_ERROR
,
532 /* give the HW an idea of what MAC address we want */
534 *R_NETWORK_SA_0
= dev
->dev_addr
[0] | (dev
->dev_addr
[1] << 8) |
535 (dev
->dev_addr
[2] << 16) | (dev
->dev_addr
[3] << 24);
536 *R_NETWORK_SA_1
= dev
->dev_addr
[4] | (dev
->dev_addr
[5] << 8);
540 /* use promiscuous mode for testing */
541 *R_NETWORK_GA_0
= 0xffffffff;
542 *R_NETWORK_GA_1
= 0xffffffff;
544 *R_NETWORK_REC_CONFIG
= 0xd; /* broadcast rec, individ. rec, ma0 enabled */
546 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, max_size
, size1522
);
547 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, broadcast
, receive
);
548 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, ma0
, enable
);
549 SETF(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, duplex
, full_duplex
);
550 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
553 *R_NETWORK_GEN_CONFIG
=
554 IO_STATE(R_NETWORK_GEN_CONFIG
, phy
, mii_clk
) |
555 IO_STATE(R_NETWORK_GEN_CONFIG
, enable
, on
);
557 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, clr
);
558 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, delay
, none
);
559 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, cancel
, dont
);
560 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, cd
, enable
);
561 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, retry
, enable
);
562 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, pad
, enable
);
563 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, crc
, enable
);
564 *R_NETWORK_TR_CTRL
= network_tr_ctrl_shadow
;
566 local_irq_save(flags
);
568 /* enable the irq's for ethernet DMA */
571 IO_STATE(R_IRQ_MASK2_SET
, dma0_eop
, set
) |
572 IO_STATE(R_IRQ_MASK2_SET
, dma1_eop
, set
);
575 IO_STATE(R_IRQ_MASK0_SET
, overrun
, set
) |
576 IO_STATE(R_IRQ_MASK0_SET
, underrun
, set
) |
577 IO_STATE(R_IRQ_MASK0_SET
, excessive_col
, set
);
579 /* make sure the irqs are cleared */
581 *R_DMA_CH0_CLR_INTR
= IO_STATE(R_DMA_CH0_CLR_INTR
, clr_eop
, do);
582 *R_DMA_CH1_CLR_INTR
= IO_STATE(R_DMA_CH1_CLR_INTR
, clr_eop
, do);
584 /* make sure the rec and transmit error counters are cleared */
586 (void)*R_REC_COUNTERS
; /* dummy read */
587 (void)*R_TR_COUNTERS
; /* dummy read */
589 /* start the receiving DMA channel so we can receive packets from now on */
591 *R_DMA_CH1_FIRST
= virt_to_phys(myNextRxDesc
);
592 *R_DMA_CH1_CMD
= IO_STATE(R_DMA_CH1_CMD
, cmd
, start
);
594 /* Set up transmit DMA channel so it can be restarted later */
596 *R_DMA_CH0_FIRST
= 0;
597 *R_DMA_CH0_DESCR
= virt_to_phys(myLastTxDesc
);
598 netif_start_queue(dev
);
600 local_irq_restore(flags
);
602 /* Probe for transceiver */
603 if (e100_probe_transceiver(dev
))
606 /* Start duplex/speed timers */
607 add_timer(&speed_timer
);
608 add_timer(&duplex_timer
);
610 /* We are now ready to accept transmit requeusts from
611 * the queueing layer of the networking.
613 netif_carrier_on(dev
);
618 cris_free_dma(NETWORK_RX_DMA_NBR
, cardname
);
620 cris_free_dma(NETWORK_TX_DMA_NBR
, cardname
);
622 free_irq(NETWORK_STATUS_IRQ_NBR
, (void *)dev
);
624 free_irq(NETWORK_DMA_TX_IRQ_NBR
, (void *)dev
);
626 free_irq(NETWORK_DMA_RX_IRQ_NBR
, (void *)dev
);
631 #if defined(CONFIG_ETRAX_NO_PHY)
633 dummy_check_speed(struct net_device
* dev
)
639 generic_check_speed(struct net_device
* dev
)
642 struct net_local
*np
= netdev_priv(dev
);
644 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_ADVERTISE
);
645 if ((data
& ADVERTISE_100FULL
) ||
646 (data
& ADVERTISE_100HALF
))
653 tdk_check_speed(struct net_device
* dev
)
656 struct net_local
*np
= netdev_priv(dev
);
658 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
659 MDIO_TDK_DIAGNOSTIC_REG
);
660 current_speed
= (data
& MDIO_TDK_DIAGNOSTIC_RATE
? 100 : 10);
664 broadcom_check_speed(struct net_device
* dev
)
667 struct net_local
*np
= netdev_priv(dev
);
669 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
670 MDIO_AUX_CTRL_STATUS_REG
);
671 current_speed
= (data
& MDIO_BC_SPEED
? 100 : 10);
675 intel_check_speed(struct net_device
* dev
)
678 struct net_local
*np
= netdev_priv(dev
);
680 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
681 MDIO_INT_STATUS_REG_2
);
682 current_speed
= (data
& MDIO_INT_SPEED
? 100 : 10);
686 e100_check_speed(unsigned long priv
)
688 struct net_device
* dev
= (struct net_device
*)priv
;
689 struct net_local
*np
= netdev_priv(dev
);
690 static int led_initiated
= 0;
692 int old_speed
= current_speed
;
694 spin_lock(&np
->transceiver_lock
);
696 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_BMSR
);
697 if (!(data
& BMSR_LSTATUS
)) {
700 transceiver
->check_speed(dev
);
703 spin_lock(&np
->led_lock
);
704 if ((old_speed
!= current_speed
) || !led_initiated
) {
706 e100_set_network_leds(NO_NETWORK_ACTIVITY
);
708 netif_carrier_on(dev
);
710 netif_carrier_off(dev
);
712 spin_unlock(&np
->led_lock
);
714 /* Reinitialize the timer. */
715 speed_timer
.expires
= jiffies
+ NET_LINK_UP_CHECK_INTERVAL
;
716 add_timer(&speed_timer
);
718 spin_unlock(&np
->transceiver_lock
);
722 e100_negotiate(struct net_device
* dev
)
724 struct net_local
*np
= netdev_priv(dev
);
725 unsigned short data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
728 /* Discard old speed and duplex settings */
729 data
&= ~(ADVERTISE_100HALF
| ADVERTISE_100FULL
|
730 ADVERTISE_10HALF
| ADVERTISE_10FULL
);
732 switch (current_speed_selection
) {
734 if (current_duplex
== full
)
735 data
|= ADVERTISE_10FULL
;
736 else if (current_duplex
== half
)
737 data
|= ADVERTISE_10HALF
;
739 data
|= ADVERTISE_10HALF
| ADVERTISE_10FULL
;
743 if (current_duplex
== full
)
744 data
|= ADVERTISE_100FULL
;
745 else if (current_duplex
== half
)
746 data
|= ADVERTISE_100HALF
;
748 data
|= ADVERTISE_100HALF
| ADVERTISE_100FULL
;
752 if (current_duplex
== full
)
753 data
|= ADVERTISE_100FULL
| ADVERTISE_10FULL
;
754 else if (current_duplex
== half
)
755 data
|= ADVERTISE_100HALF
| ADVERTISE_10HALF
;
757 data
|= ADVERTISE_10HALF
| ADVERTISE_10FULL
|
758 ADVERTISE_100HALF
| ADVERTISE_100FULL
;
761 default: /* assume autoneg speed and duplex */
762 data
|= ADVERTISE_10HALF
| ADVERTISE_10FULL
|
763 ADVERTISE_100HALF
| ADVERTISE_100FULL
;
767 e100_set_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_ADVERTISE
, data
);
769 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_BMCR
);
770 if (autoneg_normal
) {
771 /* Renegotiate with link partner */
772 data
|= BMCR_ANENABLE
| BMCR_ANRESTART
;
774 /* Don't negotiate speed or duplex */
775 data
&= ~(BMCR_ANENABLE
| BMCR_ANRESTART
);
777 /* Set speed and duplex static */
778 if (current_speed_selection
== 10)
779 data
&= ~BMCR_SPEED100
;
781 data
|= BMCR_SPEED100
;
783 if (current_duplex
!= full
)
784 data
&= ~BMCR_FULLDPLX
;
786 data
|= BMCR_FULLDPLX
;
788 e100_set_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_BMCR
, data
);
792 e100_set_speed(struct net_device
* dev
, unsigned long speed
)
794 struct net_local
*np
= netdev_priv(dev
);
796 spin_lock(&np
->transceiver_lock
);
797 if (speed
!= current_speed_selection
) {
798 current_speed_selection
= speed
;
801 spin_unlock(&np
->transceiver_lock
);
805 e100_check_duplex(unsigned long priv
)
807 struct net_device
*dev
= (struct net_device
*)priv
;
808 struct net_local
*np
= netdev_priv(dev
);
811 spin_lock(&np
->transceiver_lock
);
812 old_duplex
= full_duplex
;
813 transceiver
->check_duplex(dev
);
814 if (old_duplex
!= full_duplex
) {
816 SETF(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, duplex
, full_duplex
);
817 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
820 /* Reinitialize the timer. */
821 duplex_timer
.expires
= jiffies
+ NET_DUPLEX_CHECK_INTERVAL
;
822 add_timer(&duplex_timer
);
823 np
->mii_if
.full_duplex
= full_duplex
;
824 spin_unlock(&np
->transceiver_lock
);
826 #if defined(CONFIG_ETRAX_NO_PHY)
828 dummy_check_duplex(struct net_device
* dev
)
834 generic_check_duplex(struct net_device
* dev
)
837 struct net_local
*np
= netdev_priv(dev
);
839 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_ADVERTISE
);
840 if ((data
& ADVERTISE_10FULL
) ||
841 (data
& ADVERTISE_100FULL
))
848 tdk_check_duplex(struct net_device
* dev
)
851 struct net_local
*np
= netdev_priv(dev
);
853 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
854 MDIO_TDK_DIAGNOSTIC_REG
);
855 full_duplex
= (data
& MDIO_TDK_DIAGNOSTIC_DPLX
) ? 1 : 0;
859 broadcom_check_duplex(struct net_device
* dev
)
862 struct net_local
*np
= netdev_priv(dev
);
864 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
865 MDIO_AUX_CTRL_STATUS_REG
);
866 full_duplex
= (data
& MDIO_BC_FULL_DUPLEX_IND
) ? 1 : 0;
870 intel_check_duplex(struct net_device
* dev
)
873 struct net_local
*np
= netdev_priv(dev
);
875 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
876 MDIO_INT_STATUS_REG_2
);
877 full_duplex
= (data
& MDIO_INT_FULL_DUPLEX_IND
) ? 1 : 0;
881 e100_set_duplex(struct net_device
* dev
, enum duplex new_duplex
)
883 struct net_local
*np
= netdev_priv(dev
);
885 spin_lock(&np
->transceiver_lock
);
886 if (new_duplex
!= current_duplex
) {
887 current_duplex
= new_duplex
;
890 spin_unlock(&np
->transceiver_lock
);
894 e100_probe_transceiver(struct net_device
* dev
)
898 #if !defined(CONFIG_ETRAX_NO_PHY)
899 unsigned int phyid_high
;
900 unsigned int phyid_low
;
902 struct transceiver_ops
* ops
= NULL
;
903 struct net_local
*np
= netdev_priv(dev
);
905 spin_lock(&np
->transceiver_lock
);
907 /* Probe MDIO physical address */
908 for (np
->mii_if
.phy_id
= 0; np
->mii_if
.phy_id
<= 31;
909 np
->mii_if
.phy_id
++) {
910 if (e100_get_mdio_reg(dev
,
911 np
->mii_if
.phy_id
, MII_BMSR
) != 0xffff)
914 if (np
->mii_if
.phy_id
== 32) {
919 /* Get manufacturer */
920 phyid_high
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_PHYSID1
);
921 phyid_low
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_PHYSID2
);
922 oui
= (phyid_high
<< 6) | (phyid_low
>> 10);
924 for (ops
= &transceivers
[0]; ops
->oui
; ops
++) {
930 spin_unlock(&np
->transceiver_lock
);
936 e100_get_mdio_reg(struct net_device
*dev
, int phy_id
, int location
)
938 unsigned short cmd
; /* Data to be sent on MDIO port */
939 int data
; /* Data read from MDIO */
942 /* Start of frame, OP Code, Physical Address, Register Address */
943 cmd
= (MDIO_START
<< 14) | (MDIO_READ
<< 12) | (phy_id
<< 7) |
946 e100_send_mdio_cmd(cmd
, 0);
951 for (bitCounter
=15; bitCounter
>=0 ; bitCounter
--) {
952 data
|= (e100_receive_mdio_bit() << bitCounter
);
959 e100_set_mdio_reg(struct net_device
*dev
, int phy_id
, int location
, int value
)
964 cmd
= (MDIO_START
<< 14) | (MDIO_WRITE
<< 12) | (phy_id
<< 7) |
967 e100_send_mdio_cmd(cmd
, 1);
970 for (bitCounter
=15; bitCounter
>=0 ; bitCounter
--) {
971 e100_send_mdio_bit(GET_BIT(bitCounter
, value
));
977 e100_send_mdio_cmd(unsigned short cmd
, int write_cmd
)
980 unsigned char data
= 0x2;
983 for (bitCounter
= 31; bitCounter
>= 0; bitCounter
--)
984 e100_send_mdio_bit(GET_BIT(bitCounter
, MDIO_PREAMBLE
));
986 for (bitCounter
= 15; bitCounter
>= 2; bitCounter
--)
987 e100_send_mdio_bit(GET_BIT(bitCounter
, cmd
));
990 for (bitCounter
= 1; bitCounter
>= 0 ; bitCounter
--)
992 e100_send_mdio_bit(GET_BIT(bitCounter
, data
));
994 e100_receive_mdio_bit();
998 e100_send_mdio_bit(unsigned char bit
)
1000 *R_NETWORK_MGM_CTRL
=
1001 IO_STATE(R_NETWORK_MGM_CTRL
, mdoe
, enable
) |
1002 IO_FIELD(R_NETWORK_MGM_CTRL
, mdio
, bit
);
1004 *R_NETWORK_MGM_CTRL
=
1005 IO_STATE(R_NETWORK_MGM_CTRL
, mdoe
, enable
) |
1006 IO_MASK(R_NETWORK_MGM_CTRL
, mdck
) |
1007 IO_FIELD(R_NETWORK_MGM_CTRL
, mdio
, bit
);
1011 static unsigned char
1012 e100_receive_mdio_bit()
1015 *R_NETWORK_MGM_CTRL
= 0;
1016 bit
= IO_EXTRACT(R_NETWORK_STAT
, mdio
, *R_NETWORK_STAT
);
1018 *R_NETWORK_MGM_CTRL
= IO_MASK(R_NETWORK_MGM_CTRL
, mdck
);
1024 e100_reset_transceiver(struct net_device
* dev
)
1026 struct net_local
*np
= netdev_priv(dev
);
1028 unsigned short data
;
1031 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_BMCR
);
1033 cmd
= (MDIO_START
<< 14) | (MDIO_WRITE
<< 12) | (np
->mii_if
.phy_id
<< 7) | (MII_BMCR
<< 2);
1035 e100_send_mdio_cmd(cmd
, 1);
1039 for (bitCounter
= 15; bitCounter
>= 0 ; bitCounter
--) {
1040 e100_send_mdio_bit(GET_BIT(bitCounter
, data
));
1044 /* Called by upper layers if they decide it took too long to complete
1045 * sending a packet - we need to reset and stuff.
1049 e100_tx_timeout(struct net_device
*dev
)
1051 struct net_local
*np
= netdev_priv(dev
);
1052 unsigned long flags
;
1054 spin_lock_irqsave(&np
->lock
, flags
);
1056 printk(KERN_WARNING
"%s: transmit timed out, %s?\n", dev
->name
,
1057 tx_done(dev
) ? "IRQ problem" : "network cable problem");
1059 /* remember we got an error */
1061 dev
->stats
.tx_errors
++;
1063 /* reset the TX DMA in case it has hung on something */
1065 RESET_DMA(NETWORK_TX_DMA_NBR
);
1066 WAIT_DMA(NETWORK_TX_DMA_NBR
);
1068 /* Reset the transceiver. */
1070 e100_reset_transceiver(dev
);
1072 /* and get rid of the packets that never got an interrupt */
1073 while (myFirstTxDesc
!= myNextTxDesc
) {
1074 dev_kfree_skb(myFirstTxDesc
->skb
);
1075 myFirstTxDesc
->skb
= 0;
1076 myFirstTxDesc
= phys_to_virt(myFirstTxDesc
->descr
.next
);
1079 /* Set up transmit DMA channel so it can be restarted later */
1080 *R_DMA_CH0_FIRST
= 0;
1081 *R_DMA_CH0_DESCR
= virt_to_phys(myLastTxDesc
);
1083 /* tell the upper layers we're ok again */
1085 netif_wake_queue(dev
);
1086 spin_unlock_irqrestore(&np
->lock
, flags
);
1090 /* This will only be invoked if the driver is _not_ in XOFF state.
1091 * What this means is that we need not check it, and that this
1092 * invariant will hold if we make sure that the netif_*_queue()
1093 * calls are done at the proper times.
1097 e100_send_packet(struct sk_buff
*skb
, struct net_device
*dev
)
1099 struct net_local
*np
= netdev_priv(dev
);
1100 unsigned char *buf
= skb
->data
;
1101 unsigned long flags
;
1104 printk("send packet len %d\n", length
);
1106 spin_lock_irqsave(&np
->lock
, flags
); /* protect from tx_interrupt and ourself */
1108 myNextTxDesc
->skb
= skb
;
1110 dev
->trans_start
= jiffies
; /* NETIF_F_LLTX driver :( */
1112 e100_hardware_send_packet(np
, buf
, skb
->len
);
1114 myNextTxDesc
= phys_to_virt(myNextTxDesc
->descr
.next
);
1116 /* Stop queue if full */
1117 if (myNextTxDesc
== myFirstTxDesc
) {
1118 netif_stop_queue(dev
);
1121 spin_unlock_irqrestore(&np
->lock
, flags
);
1123 return NETDEV_TX_OK
;
1127 * The typical workload of the driver:
1128 * Handle the network interface interrupts.
1132 e100rxtx_interrupt(int irq
, void *dev_id
)
1134 struct net_device
*dev
= (struct net_device
*)dev_id
;
1135 unsigned long irqbits
;
1138 * Note that both rx and tx interrupts are blocked at this point,
1139 * regardless of which got us here.
1142 irqbits
= *R_IRQ_MASK2_RD
;
1144 /* Handle received packets */
1145 if (irqbits
& IO_STATE(R_IRQ_MASK2_RD
, dma1_eop
, active
)) {
1146 /* acknowledge the eop interrupt */
1148 *R_DMA_CH1_CLR_INTR
= IO_STATE(R_DMA_CH1_CLR_INTR
, clr_eop
, do);
1150 /* check if one or more complete packets were indeed received */
1152 while ((*R_DMA_CH1_FIRST
!= virt_to_phys(myNextRxDesc
)) &&
1153 (myNextRxDesc
!= myLastRxDesc
)) {
1154 /* Take out the buffer and give it to the OS, then
1155 * allocate a new buffer to put a packet in.
1158 dev
->stats
.rx_packets
++;
1159 /* restart/continue on the channel, for safety */
1160 *R_DMA_CH1_CMD
= IO_STATE(R_DMA_CH1_CMD
, cmd
, restart
);
1161 /* clear dma channel 1 eop/descr irq bits */
1162 *R_DMA_CH1_CLR_INTR
=
1163 IO_STATE(R_DMA_CH1_CLR_INTR
, clr_eop
, do) |
1164 IO_STATE(R_DMA_CH1_CLR_INTR
, clr_descr
, do);
1166 /* now, we might have gotten another packet
1167 so we have to loop back and check if so */
1171 /* Report any packets that have been sent */
1172 while (virt_to_phys(myFirstTxDesc
) != *R_DMA_CH0_FIRST
&&
1173 (netif_queue_stopped(dev
) || myFirstTxDesc
!= myNextTxDesc
)) {
1174 dev
->stats
.tx_bytes
+= myFirstTxDesc
->skb
->len
;
1175 dev
->stats
.tx_packets
++;
1177 /* dma is ready with the transmission of the data in tx_skb, so now
1178 we can release the skb memory */
1179 dev_kfree_skb_irq(myFirstTxDesc
->skb
);
1180 myFirstTxDesc
->skb
= 0;
1181 myFirstTxDesc
= phys_to_virt(myFirstTxDesc
->descr
.next
);
1182 /* Wake up queue. */
1183 netif_wake_queue(dev
);
1186 if (irqbits
& IO_STATE(R_IRQ_MASK2_RD
, dma0_eop
, active
)) {
1187 /* acknowledge the eop interrupt. */
1188 *R_DMA_CH0_CLR_INTR
= IO_STATE(R_DMA_CH0_CLR_INTR
, clr_eop
, do);
1195 e100nw_interrupt(int irq
, void *dev_id
)
1197 struct net_device
*dev
= (struct net_device
*)dev_id
;
1198 unsigned long irqbits
= *R_IRQ_MASK0_RD
;
1200 /* check for underrun irq */
1201 if (irqbits
& IO_STATE(R_IRQ_MASK0_RD
, underrun
, active
)) {
1202 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, clr
);
1203 *R_NETWORK_TR_CTRL
= network_tr_ctrl_shadow
;
1204 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, nop
);
1205 dev
->stats
.tx_errors
++;
1206 D(printk("ethernet receiver underrun!\n"));
1209 /* check for overrun irq */
1210 if (irqbits
& IO_STATE(R_IRQ_MASK0_RD
, overrun
, active
)) {
1211 update_rx_stats(&dev
->stats
); /* this will ack the irq */
1212 D(printk("ethernet receiver overrun!\n"));
1214 /* check for excessive collision irq */
1215 if (irqbits
& IO_STATE(R_IRQ_MASK0_RD
, excessive_col
, active
)) {
1216 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, clr
);
1217 *R_NETWORK_TR_CTRL
= network_tr_ctrl_shadow
;
1218 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, nop
);
1219 dev
->stats
.tx_errors
++;
1220 D(printk("ethernet excessive collisions!\n"));
1225 /* We have a good packet(s), get it/them out of the buffers. */
1227 e100_rx(struct net_device
*dev
)
1229 struct sk_buff
*skb
;
1231 struct net_local
*np
= netdev_priv(dev
);
1232 unsigned char *skb_data_ptr
;
1236 etrax_eth_descr
*prevRxDesc
; /* The descriptor right before myNextRxDesc */
1237 spin_lock(&np
->led_lock
);
1238 if (!led_active
&& time_after(jiffies
, led_next_time
)) {
1239 /* light the network leds depending on the current speed. */
1240 e100_set_network_leds(NETWORK_ACTIVITY
);
1242 /* Set the earliest time we may clear the LED */
1243 led_next_time
= jiffies
+ NET_FLASH_TIME
;
1245 mod_timer(&clear_led_timer
, jiffies
+ HZ
/10);
1247 spin_unlock(&np
->led_lock
);
1249 length
= myNextRxDesc
->descr
.hw_len
- 4;
1250 dev
->stats
.rx_bytes
+= length
;
1253 printk("Got a packet of length %d:\n", length
);
1254 /* dump the first bytes in the packet */
1255 skb_data_ptr
= (unsigned char *)phys_to_virt(myNextRxDesc
->descr
.buf
);
1256 for (i
= 0; i
< 8; i
++) {
1257 printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i
* 8,
1258 skb_data_ptr
[0],skb_data_ptr
[1],skb_data_ptr
[2],skb_data_ptr
[3],
1259 skb_data_ptr
[4],skb_data_ptr
[5],skb_data_ptr
[6],skb_data_ptr
[7]);
1264 if (length
< RX_COPYBREAK
) {
1265 /* Small packet, copy data */
1266 skb
= dev_alloc_skb(length
- ETHER_HEAD_LEN
);
1268 dev
->stats
.rx_errors
++;
1269 printk(KERN_NOTICE
"%s: Memory squeeze, dropping packet.\n", dev
->name
);
1270 goto update_nextrxdesc
;
1273 skb_put(skb
, length
- ETHER_HEAD_LEN
); /* allocate room for the packet body */
1274 skb_data_ptr
= skb_push(skb
, ETHER_HEAD_LEN
); /* allocate room for the header */
1277 printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n",
1278 skb
->head
, skb
->data
, skb_tail_pointer(skb
),
1279 skb_end_pointer(skb
));
1280 printk("copying packet to 0x%x.\n", skb_data_ptr
);
1283 memcpy(skb_data_ptr
, phys_to_virt(myNextRxDesc
->descr
.buf
), length
);
1286 /* Large packet, send directly to upper layers and allocate new
1287 * memory (aligned to cache line boundary to avoid bug).
1288 * Before sending the skb to upper layers we must make sure
1289 * that skb->data points to the aligned start of the packet.
1292 struct sk_buff
*new_skb
= dev_alloc_skb(MAX_MEDIA_DATA_SIZE
+ 2 * L1_CACHE_BYTES
);
1294 dev
->stats
.rx_errors
++;
1295 printk(KERN_NOTICE
"%s: Memory squeeze, dropping packet.\n", dev
->name
);
1296 goto update_nextrxdesc
;
1298 skb
= myNextRxDesc
->skb
;
1299 align
= (int)phys_to_virt(myNextRxDesc
->descr
.buf
) - (int)skb
->data
;
1300 skb_put(skb
, length
+ align
);
1301 skb_pull(skb
, align
); /* Remove alignment bytes */
1302 myNextRxDesc
->skb
= new_skb
;
1303 myNextRxDesc
->descr
.buf
= L1_CACHE_ALIGN(virt_to_phys(myNextRxDesc
->skb
->data
));
1306 skb
->protocol
= eth_type_trans(skb
, dev
);
1308 /* Send the packet to the upper layers */
1312 /* Prepare for next packet */
1313 myNextRxDesc
->descr
.status
= 0;
1314 prevRxDesc
= myNextRxDesc
;
1315 myNextRxDesc
= phys_to_virt(myNextRxDesc
->descr
.next
);
1319 /* Check if descriptors should be returned */
1320 if (rx_queue_len
== RX_QUEUE_THRESHOLD
) {
1321 flush_etrax_cache();
1322 prevRxDesc
->descr
.ctrl
|= d_eol
;
1323 myLastRxDesc
->descr
.ctrl
&= ~d_eol
;
1324 myLastRxDesc
= prevRxDesc
;
1329 /* The inverse routine to net_open(). */
1331 e100_close(struct net_device
*dev
)
1333 printk(KERN_INFO
"Closing %s.\n", dev
->name
);
1335 netif_stop_queue(dev
);
1338 IO_STATE(R_IRQ_MASK0_CLR
, overrun
, clr
) |
1339 IO_STATE(R_IRQ_MASK0_CLR
, underrun
, clr
) |
1340 IO_STATE(R_IRQ_MASK0_CLR
, excessive_col
, clr
);
1343 IO_STATE(R_IRQ_MASK2_CLR
, dma0_descr
, clr
) |
1344 IO_STATE(R_IRQ_MASK2_CLR
, dma0_eop
, clr
) |
1345 IO_STATE(R_IRQ_MASK2_CLR
, dma1_descr
, clr
) |
1346 IO_STATE(R_IRQ_MASK2_CLR
, dma1_eop
, clr
);
1348 /* Stop the receiver and the transmitter */
1350 RESET_DMA(NETWORK_TX_DMA_NBR
);
1351 RESET_DMA(NETWORK_RX_DMA_NBR
);
1353 /* Flush the Tx and disable Rx here. */
1355 free_irq(NETWORK_DMA_RX_IRQ_NBR
, (void *)dev
);
1356 free_irq(NETWORK_DMA_TX_IRQ_NBR
, (void *)dev
);
1357 free_irq(NETWORK_STATUS_IRQ_NBR
, (void *)dev
);
1359 cris_free_dma(NETWORK_TX_DMA_NBR
, cardname
);
1360 cris_free_dma(NETWORK_RX_DMA_NBR
, cardname
);
1362 /* Update the statistics here. */
1364 update_rx_stats(&dev
->stats
);
1365 update_tx_stats(&dev
->stats
);
1367 /* Stop speed/duplex timers */
1368 del_timer(&speed_timer
);
1369 del_timer(&duplex_timer
);
1375 e100_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
1377 struct mii_ioctl_data
*data
= if_mii(ifr
);
1378 struct net_local
*np
= netdev_priv(dev
);
1382 spin_lock(&np
->lock
); /* Preempt protection */
1384 /* The ioctls below should be considered obsolete but are */
1385 /* still present for compatibility with old scripts/apps */
1386 case SET_ETH_SPEED_10
: /* 10 Mbps */
1387 e100_set_speed(dev
, 10);
1389 case SET_ETH_SPEED_100
: /* 100 Mbps */
1390 e100_set_speed(dev
, 100);
1392 case SET_ETH_SPEED_AUTO
: /* Auto-negotiate speed */
1393 e100_set_speed(dev
, 0);
1395 case SET_ETH_DUPLEX_HALF
: /* Half duplex */
1396 e100_set_duplex(dev
, half
);
1398 case SET_ETH_DUPLEX_FULL
: /* Full duplex */
1399 e100_set_duplex(dev
, full
);
1401 case SET_ETH_DUPLEX_AUTO
: /* Auto-negotiate duplex */
1402 e100_set_duplex(dev
, autoneg
);
1404 case SET_ETH_AUTONEG
:
1405 old_autoneg
= autoneg_normal
;
1406 autoneg_normal
= *(int*)data
;
1407 if (autoneg_normal
!= old_autoneg
)
1408 e100_negotiate(dev
);
1411 rc
= generic_mii_ioctl(&np
->mii_if
, if_mii(ifr
),
1415 spin_unlock(&np
->lock
);
1419 static int e100_get_settings(struct net_device
*dev
,
1420 struct ethtool_cmd
*cmd
)
1422 struct net_local
*np
= netdev_priv(dev
);
1425 spin_lock_irq(&np
->lock
);
1426 err
= mii_ethtool_gset(&np
->mii_if
, cmd
);
1427 spin_unlock_irq(&np
->lock
);
1429 /* The PHY may support 1000baseT, but the Etrax100 does not. */
1430 cmd
->supported
&= ~(SUPPORTED_1000baseT_Half
1431 | SUPPORTED_1000baseT_Full
);
1435 static int e100_set_settings(struct net_device
*dev
,
1436 struct ethtool_cmd
*ecmd
)
1438 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
1439 e100_set_duplex(dev
, autoneg
);
1440 e100_set_speed(dev
, 0);
1442 e100_set_duplex(dev
, ecmd
->duplex
== DUPLEX_HALF
? half
: full
);
1443 e100_set_speed(dev
, ecmd
->speed
== SPEED_10
? 10: 100);
1449 static void e100_get_drvinfo(struct net_device
*dev
,
1450 struct ethtool_drvinfo
*info
)
1452 strncpy(info
->driver
, "ETRAX 100LX", sizeof(info
->driver
) - 1);
1453 strncpy(info
->version
, "$Revision: 1.31 $", sizeof(info
->version
) - 1);
1454 strncpy(info
->fw_version
, "N/A", sizeof(info
->fw_version
) - 1);
1455 strncpy(info
->bus_info
, "N/A", sizeof(info
->bus_info
) - 1);
1458 static int e100_nway_reset(struct net_device
*dev
)
1460 if (current_duplex
== autoneg
&& current_speed_selection
== 0)
1461 e100_negotiate(dev
);
1465 static const struct ethtool_ops e100_ethtool_ops
= {
1466 .get_settings
= e100_get_settings
,
1467 .set_settings
= e100_set_settings
,
1468 .get_drvinfo
= e100_get_drvinfo
,
1469 .nway_reset
= e100_nway_reset
,
1470 .get_link
= ethtool_op_get_link
,
1474 e100_set_config(struct net_device
*dev
, struct ifmap
*map
)
1476 struct net_local
*np
= netdev_priv(dev
);
1478 spin_lock(&np
->lock
); /* Preempt protection */
1481 case IF_PORT_UNKNOWN
:
1483 e100_set_speed(dev
, 0);
1484 e100_set_duplex(dev
, autoneg
);
1486 case IF_PORT_10BASET
:
1487 e100_set_speed(dev
, 10);
1488 e100_set_duplex(dev
, autoneg
);
1490 case IF_PORT_100BASET
:
1491 case IF_PORT_100BASETX
:
1492 e100_set_speed(dev
, 100);
1493 e100_set_duplex(dev
, autoneg
);
1495 case IF_PORT_100BASEFX
:
1496 case IF_PORT_10BASE2
:
1498 spin_unlock(&np
->lock
);
1502 printk(KERN_ERR
"%s: Invalid media selected", dev
->name
);
1503 spin_unlock(&np
->lock
);
1506 spin_unlock(&np
->lock
);
1511 update_rx_stats(struct net_device_stats
*es
)
1513 unsigned long r
= *R_REC_COUNTERS
;
1514 /* update stats relevant to reception errors */
1515 es
->rx_fifo_errors
+= IO_EXTRACT(R_REC_COUNTERS
, congestion
, r
);
1516 es
->rx_crc_errors
+= IO_EXTRACT(R_REC_COUNTERS
, crc_error
, r
);
1517 es
->rx_frame_errors
+= IO_EXTRACT(R_REC_COUNTERS
, alignment_error
, r
);
1518 es
->rx_length_errors
+= IO_EXTRACT(R_REC_COUNTERS
, oversize
, r
);
1522 update_tx_stats(struct net_device_stats
*es
)
1524 unsigned long r
= *R_TR_COUNTERS
;
1525 /* update stats relevant to transmission errors */
1527 IO_EXTRACT(R_TR_COUNTERS
, single_col
, r
) +
1528 IO_EXTRACT(R_TR_COUNTERS
, multiple_col
, r
);
1532 * Get the current statistics.
1533 * This may be called with the card open or closed.
1535 static struct net_device_stats
*
1536 e100_get_stats(struct net_device
*dev
)
1538 struct net_local
*lp
= netdev_priv(dev
);
1539 unsigned long flags
;
1541 spin_lock_irqsave(&lp
->lock
, flags
);
1543 update_rx_stats(&dev
->stats
);
1544 update_tx_stats(&dev
->stats
);
1546 spin_unlock_irqrestore(&lp
->lock
, flags
);
1551 * Set or clear the multicast filter for this adaptor.
1552 * num_addrs == -1 Promiscuous mode, receive all packets
1553 * num_addrs == 0 Normal mode, clear multicast list
1554 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1555 * and do best-effort filtering.
1558 set_multicast_list(struct net_device
*dev
)
1560 struct net_local
*lp
= netdev_priv(dev
);
1561 int num_addr
= netdev_mc_count(dev
);
1562 unsigned long int lo_bits
;
1563 unsigned long int hi_bits
;
1565 spin_lock(&lp
->lock
);
1566 if (dev
->flags
& IFF_PROMISC
) {
1567 /* promiscuous mode */
1568 lo_bits
= 0xfffffffful
;
1569 hi_bits
= 0xfffffffful
;
1571 /* Enable individual receive */
1572 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, individual
, receive
);
1573 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
1574 } else if (dev
->flags
& IFF_ALLMULTI
) {
1575 /* enable all multicasts */
1576 lo_bits
= 0xfffffffful
;
1577 hi_bits
= 0xfffffffful
;
1579 /* Disable individual receive */
1580 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, individual
, discard
);
1581 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
1582 } else if (num_addr
== 0) {
1583 /* Normal, clear the mc list */
1584 lo_bits
= 0x00000000ul
;
1585 hi_bits
= 0x00000000ul
;
1587 /* Disable individual receive */
1588 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, individual
, discard
);
1589 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
1591 /* MC mode, receive normal and MC packets */
1593 struct netdev_hw_addr
*ha
;
1596 lo_bits
= 0x00000000ul
;
1597 hi_bits
= 0x00000000ul
;
1598 netdev_for_each_mc_addr(ha
, dev
) {
1599 /* Calculate the hash index for the GA registers */
1603 hash_ix
^= (*baddr
) & 0x3f;
1604 hash_ix
^= ((*baddr
) >> 6) & 0x03;
1606 hash_ix
^= ((*baddr
) << 2) & 0x03c;
1607 hash_ix
^= ((*baddr
) >> 4) & 0xf;
1609 hash_ix
^= ((*baddr
) << 4) & 0x30;
1610 hash_ix
^= ((*baddr
) >> 2) & 0x3f;
1612 hash_ix
^= (*baddr
) & 0x3f;
1613 hash_ix
^= ((*baddr
) >> 6) & 0x03;
1615 hash_ix
^= ((*baddr
) << 2) & 0x03c;
1616 hash_ix
^= ((*baddr
) >> 4) & 0xf;
1618 hash_ix
^= ((*baddr
) << 4) & 0x30;
1619 hash_ix
^= ((*baddr
) >> 2) & 0x3f;
1623 if (hash_ix
>= 32) {
1624 hi_bits
|= (1 << (hash_ix
-32));
1626 lo_bits
|= (1 << hash_ix
);
1629 /* Disable individual receive */
1630 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, individual
, discard
);
1631 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
1633 *R_NETWORK_GA_0
= lo_bits
;
1634 *R_NETWORK_GA_1
= hi_bits
;
1635 spin_unlock(&lp
->lock
);
1639 e100_hardware_send_packet(struct net_local
*np
, char *buf
, int length
)
1641 D(printk("e100 send pack, buf 0x%x len %d\n", buf
, length
));
1643 spin_lock(&np
->led_lock
);
1644 if (!led_active
&& time_after(jiffies
, led_next_time
)) {
1645 /* light the network leds depending on the current speed. */
1646 e100_set_network_leds(NETWORK_ACTIVITY
);
1648 /* Set the earliest time we may clear the LED */
1649 led_next_time
= jiffies
+ NET_FLASH_TIME
;
1651 mod_timer(&clear_led_timer
, jiffies
+ HZ
/10);
1653 spin_unlock(&np
->led_lock
);
1655 /* configure the tx dma descriptor */
1656 myNextTxDesc
->descr
.sw_len
= length
;
1657 myNextTxDesc
->descr
.ctrl
= d_eop
| d_eol
| d_wait
;
1658 myNextTxDesc
->descr
.buf
= virt_to_phys(buf
);
1660 /* Move end of list */
1661 myLastTxDesc
->descr
.ctrl
&= ~d_eol
;
1662 myLastTxDesc
= myNextTxDesc
;
1664 /* Restart DMA channel */
1665 *R_DMA_CH0_CMD
= IO_STATE(R_DMA_CH0_CMD
, cmd
, restart
);
1669 e100_clear_network_leds(unsigned long dummy
)
1671 struct net_device
*dev
= (struct net_device
*)dummy
;
1672 struct net_local
*np
= netdev_priv(dev
);
1674 spin_lock(&np
->led_lock
);
1676 if (led_active
&& time_after(jiffies
, led_next_time
)) {
1677 e100_set_network_leds(NO_NETWORK_ACTIVITY
);
1679 /* Set the earliest time we may set the LED */
1680 led_next_time
= jiffies
+ NET_FLASH_PAUSE
;
1684 spin_unlock(&np
->led_lock
);
1688 e100_set_network_leds(int active
)
1690 #if defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK)
1691 int light_leds
= (active
== NO_NETWORK_ACTIVITY
);
1692 #elif defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY)
1693 int light_leds
= (active
== NETWORK_ACTIVITY
);
1695 #error "Define either CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK or CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY"
1698 if (!current_speed
) {
1699 /* Make LED red, link is down */
1700 CRIS_LED_NETWORK_SET(CRIS_LED_OFF
);
1701 } else if (light_leds
) {
1702 if (current_speed
== 10) {
1703 CRIS_LED_NETWORK_SET(CRIS_LED_ORANGE
);
1705 CRIS_LED_NETWORK_SET(CRIS_LED_GREEN
);
1708 CRIS_LED_NETWORK_SET(CRIS_LED_OFF
);
1712 #ifdef CONFIG_NET_POLL_CONTROLLER
1714 e100_netpoll(struct net_device
* netdev
)
1716 e100rxtx_interrupt(NETWORK_DMA_TX_IRQ_NBR
, netdev
, NULL
);
1721 etrax_init_module(void)
1723 return etrax_ethernet_init();
1727 e100_boot_setup(char* str
)
1729 struct sockaddr sa
= {0};
1732 /* Parse the colon separated Ethernet station address */
1733 for (i
= 0; i
< ETH_ALEN
; i
++) {
1735 if (sscanf(str
+ 3*i
, "%2x", &tmp
) != 1) {
1736 printk(KERN_WARNING
"Malformed station address");
1739 sa
.sa_data
[i
] = (char)tmp
;
1746 __setup("etrax100_eth=", e100_boot_setup
);
1748 module_init(etrax_init_module
);