Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / drivers / net / ethernet / amd / lance.c
bloba6e2e840884ecc1bf04084ddb02012b046b8cc4d
1 /* lance.c: An AMD LANCE/PCnet ethernet driver for Linux. */
2 /*
3 Written/copyright 1993-1998 by Donald Becker.
5 Copyright 1993 United States Government as represented by the
6 Director, National Security Agency.
7 This software may be used and distributed according to the terms
8 of the GNU General Public License, incorporated herein by reference.
10 This driver is for the Allied Telesis AT1500 and HP J2405A, and should work
11 with most other LANCE-based bus-master (NE2100/NE2500) ethercards.
13 The author may be reached as becker@scyld.com, or C/O
14 Scyld Computing Corporation
15 410 Severn Ave., Suite 210
16 Annapolis MD 21403
18 Andrey V. Savochkin:
19 - alignment problem with 1.3.* kernel and some minor changes.
20 Thomas Bogendoerfer (tsbogend@bigbug.franken.de):
21 - added support for Linux/Alpha, but removed most of it, because
22 it worked only for the PCI chip.
23 - added hook for the 32bit lance driver
24 - added PCnetPCI II (79C970A) to chip table
25 Paul Gortmaker (gpg109@rsphy1.anu.edu.au):
26 - hopefully fix above so Linux/Alpha can use ISA cards too.
27 8/20/96 Fixed 7990 autoIRQ failure and reversed unneeded alignment -djb
28 v1.12 10/27/97 Module support -djb
29 v1.14 2/3/98 Module support modified, made PCI support optional -djb
30 v1.15 5/27/99 Fixed bug in the cleanup_module(). dev->priv was freed
31 before unregister_netdev() which caused NULL pointer
32 reference later in the chain (in rtnetlink_fill_ifinfo())
33 -- Mika Kuoppala <miku@iki.fi>
35 Forward ported v1.14 to 2.1.129, merged the PCI and misc changes from
36 the 2.1 version of the old driver - Alan Cox
38 Get rid of check_region, check kmalloc return in lance_probe1
39 Arnaldo Carvalho de Melo <acme@conectiva.com.br> - 11/01/2001
41 Reworked detection, added support for Racal InterLan EtherBlaster cards
42 Vesselin Kostadinov <vesok at yahoo dot com > - 22/4/2004
45 static const char version[] = "lance.c:v1.16 2006/11/09 dplatt@3do.com, becker@cesdis.gsfc.nasa.gov\n";
47 #include <linux/module.h>
48 #include <linux/kernel.h>
49 #include <linux/string.h>
50 #include <linux/delay.h>
51 #include <linux/errno.h>
52 #include <linux/ioport.h>
53 #include <linux/slab.h>
54 #include <linux/interrupt.h>
55 #include <linux/pci.h>
56 #include <linux/init.h>
57 #include <linux/netdevice.h>
58 #include <linux/etherdevice.h>
59 #include <linux/skbuff.h>
60 #include <linux/mm.h>
61 #include <linux/bitops.h>
63 #include <asm/io.h>
64 #include <asm/dma.h>
66 static unsigned int lance_portlist[] __initdata = { 0x300, 0x320, 0x340, 0x360, 0};
67 static int lance_probe1(struct net_device *dev, int ioaddr, int irq, int options);
68 static int __init do_lance_probe(struct net_device *dev);
71 static struct card {
72 char id_offset14;
73 char id_offset15;
74 } cards[] = {
75 { //"normal"
76 .id_offset14 = 0x57,
77 .id_offset15 = 0x57,
79 { //NI6510EB
80 .id_offset14 = 0x52,
81 .id_offset15 = 0x44,
83 { //Racal InterLan EtherBlaster
84 .id_offset14 = 0x52,
85 .id_offset15 = 0x49,
88 #define NUM_CARDS 3
90 #ifdef LANCE_DEBUG
91 static int lance_debug = LANCE_DEBUG;
92 #else
93 static int lance_debug = 1;
94 #endif
97 Theory of Operation
99 I. Board Compatibility
101 This device driver is designed for the AMD 79C960, the "PCnet-ISA
102 single-chip ethernet controller for ISA". This chip is used in a wide
103 variety of boards from vendors such as Allied Telesis, HP, Kingston,
104 and Boca. This driver is also intended to work with older AMD 7990
105 designs, such as the NE1500 and NE2100, and newer 79C961. For convenience,
106 I use the name LANCE to refer to all of the AMD chips, even though it properly
107 refers only to the original 7990.
109 II. Board-specific settings
111 The driver is designed to work the boards that use the faster
112 bus-master mode, rather than in shared memory mode. (Only older designs
113 have on-board buffer memory needed to support the slower shared memory mode.)
115 Most ISA boards have jumpered settings for the I/O base, IRQ line, and DMA
116 channel. This driver probes the likely base addresses:
117 {0x300, 0x320, 0x340, 0x360}.
118 After the board is found it generates a DMA-timeout interrupt and uses
119 autoIRQ to find the IRQ line. The DMA channel can be set with the low bits
120 of the otherwise-unused dev->mem_start value (aka PARAM1). If unset it is
121 probed for by enabling each free DMA channel in turn and checking if
122 initialization succeeds.
124 The HP-J2405A board is an exception: with this board it is easy to read the
125 EEPROM-set values for the base, IRQ, and DMA. (Of course you must already
126 _know_ the base address -- that field is for writing the EEPROM.)
128 III. Driver operation
130 IIIa. Ring buffers
131 The LANCE uses ring buffers of Tx and Rx descriptors. Each entry describes
132 the base and length of the data buffer, along with status bits. The length
133 of these buffers is set by LANCE_LOG_{RX,TX}_BUFFERS, which is log_2() of
134 the buffer length (rather than being directly the buffer length) for
135 implementation ease. The current values are 2 (Tx) and 4 (Rx), which leads to
136 ring sizes of 4 (Tx) and 16 (Rx). Increasing the number of ring entries
137 needlessly uses extra space and reduces the chance that an upper layer will
138 be able to reorder queued Tx packets based on priority. Decreasing the number
139 of entries makes it more difficult to achieve back-to-back packet transmission
140 and increases the chance that Rx ring will overflow. (Consider the worst case
141 of receiving back-to-back minimum-sized packets.)
143 The LANCE has the capability to "chain" both Rx and Tx buffers, but this driver
144 statically allocates full-sized (slightly oversized -- PKT_BUF_SZ) buffers to
145 avoid the administrative overhead. For the Rx side this avoids dynamically
146 allocating full-sized buffers "just in case", at the expense of a
147 memory-to-memory data copy for each packet received. For most systems this
148 is a good tradeoff: the Rx buffer will always be in low memory, the copy
149 is inexpensive, and it primes the cache for later packet processing. For Tx
150 the buffers are only used when needed as low-memory bounce buffers.
152 IIIB. 16M memory limitations.
153 For the ISA bus master mode all structures used directly by the LANCE,
154 the initialization block, Rx and Tx rings, and data buffers, must be
155 accessible from the ISA bus, i.e. in the lower 16M of real memory.
156 This is a problem for current Linux kernels on >16M machines. The network
157 devices are initialized after memory initialization, and the kernel doles out
158 memory from the top of memory downward. The current solution is to have a
159 special network initialization routine that's called before memory
160 initialization; this will eventually be generalized for all network devices.
161 As mentioned before, low-memory "bounce-buffers" are used when needed.
163 IIIC. Synchronization
164 The driver runs as two independent, single-threaded flows of control. One
165 is the send-packet routine, which enforces single-threaded use by the
166 dev->tbusy flag. The other thread is the interrupt handler, which is single
167 threaded by the hardware and other software.
169 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
170 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
171 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
172 the 'lp->tx_full' flag.
174 The interrupt handler has exclusive control over the Rx ring and records stats
175 from the Tx ring. (The Tx-done interrupt can't be selectively turned off, so
176 we can't avoid the interrupt overhead by having the Tx routine reap the Tx
177 stats.) After reaping the stats, it marks the queue entry as empty by setting
178 the 'base' to zero. Iff the 'lp->tx_full' flag is set, it clears both the
179 tx_full and tbusy flags.
183 /* Set the number of Tx and Rx buffers, using Log_2(# buffers).
184 Reasonable default values are 16 Tx buffers, and 16 Rx buffers.
185 That translates to 4 and 4 (16 == 2^^4).
186 This is a compile-time option for efficiency.
188 #ifndef LANCE_LOG_TX_BUFFERS
189 #define LANCE_LOG_TX_BUFFERS 4
190 #define LANCE_LOG_RX_BUFFERS 4
191 #endif
193 #define TX_RING_SIZE (1 << (LANCE_LOG_TX_BUFFERS))
194 #define TX_RING_MOD_MASK (TX_RING_SIZE - 1)
195 #define TX_RING_LEN_BITS ((LANCE_LOG_TX_BUFFERS) << 29)
197 #define RX_RING_SIZE (1 << (LANCE_LOG_RX_BUFFERS))
198 #define RX_RING_MOD_MASK (RX_RING_SIZE - 1)
199 #define RX_RING_LEN_BITS ((LANCE_LOG_RX_BUFFERS) << 29)
201 #define PKT_BUF_SZ 1544
203 /* Offsets from base I/O address. */
204 #define LANCE_DATA 0x10
205 #define LANCE_ADDR 0x12
206 #define LANCE_RESET 0x14
207 #define LANCE_BUS_IF 0x16
208 #define LANCE_TOTAL_SIZE 0x18
210 #define TX_TIMEOUT (HZ/5)
212 /* The LANCE Rx and Tx ring descriptors. */
213 struct lance_rx_head {
214 s32 base;
215 s16 buf_length; /* This length is 2s complement (negative)! */
216 s16 msg_length; /* This length is "normal". */
219 struct lance_tx_head {
220 s32 base;
221 s16 length; /* Length is 2s complement (negative)! */
222 s16 misc;
225 /* The LANCE initialization block, described in databook. */
226 struct lance_init_block {
227 u16 mode; /* Pre-set mode (reg. 15) */
228 u8 phys_addr[6]; /* Physical ethernet address */
229 u32 filter[2]; /* Multicast filter (unused). */
230 /* Receive and transmit ring base, along with extra bits. */
231 u32 rx_ring; /* Tx and Rx ring base pointers */
232 u32 tx_ring;
235 struct lance_private {
236 /* The Tx and Rx ring entries must be aligned on 8-byte boundaries. */
237 struct lance_rx_head rx_ring[RX_RING_SIZE];
238 struct lance_tx_head tx_ring[TX_RING_SIZE];
239 struct lance_init_block init_block;
240 const char *name;
241 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
242 struct sk_buff* tx_skbuff[TX_RING_SIZE];
243 /* The addresses of receive-in-place skbuffs. */
244 struct sk_buff* rx_skbuff[RX_RING_SIZE];
245 unsigned long rx_buffs; /* Address of Rx and Tx buffers. */
246 /* Tx low-memory "bounce buffer" address. */
247 char (*tx_bounce_buffs)[PKT_BUF_SZ];
248 int cur_rx, cur_tx; /* The next free ring entry */
249 int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
250 int dma;
251 unsigned char chip_version; /* See lance_chip_type. */
252 spinlock_t devlock;
255 #define LANCE_MUST_PAD 0x00000001
256 #define LANCE_ENABLE_AUTOSELECT 0x00000002
257 #define LANCE_MUST_REINIT_RING 0x00000004
258 #define LANCE_MUST_UNRESET 0x00000008
259 #define LANCE_HAS_MISSED_FRAME 0x00000010
261 /* A mapping from the chip ID number to the part number and features.
262 These are from the datasheets -- in real life the '970 version
263 reportedly has the same ID as the '965. */
264 static struct lance_chip_type {
265 int id_number;
266 const char *name;
267 int flags;
268 } chip_table[] = {
269 {0x0000, "LANCE 7990", /* Ancient lance chip. */
270 LANCE_MUST_PAD + LANCE_MUST_UNRESET},
271 {0x0003, "PCnet/ISA 79C960", /* 79C960 PCnet/ISA. */
272 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
273 LANCE_HAS_MISSED_FRAME},
274 {0x2260, "PCnet/ISA+ 79C961", /* 79C961 PCnet/ISA+, Plug-n-Play. */
275 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
276 LANCE_HAS_MISSED_FRAME},
277 {0x2420, "PCnet/PCI 79C970", /* 79C970 or 79C974 PCnet-SCSI, PCI. */
278 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
279 LANCE_HAS_MISSED_FRAME},
280 /* Bug: the PCnet/PCI actually uses the PCnet/VLB ID number, so just call
281 it the PCnet32. */
282 {0x2430, "PCnet32", /* 79C965 PCnet for VL bus. */
283 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
284 LANCE_HAS_MISSED_FRAME},
285 {0x2621, "PCnet/PCI-II 79C970A", /* 79C970A PCInetPCI II. */
286 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
287 LANCE_HAS_MISSED_FRAME},
288 {0x0, "PCnet (unknown)",
289 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
290 LANCE_HAS_MISSED_FRAME},
293 enum {OLD_LANCE = 0, PCNET_ISA=1, PCNET_ISAP=2, PCNET_PCI=3, PCNET_VLB=4, PCNET_PCI_II=5, LANCE_UNKNOWN=6};
296 /* Non-zero if lance_probe1() needs to allocate low-memory bounce buffers.
297 Assume yes until we know the memory size. */
298 static unsigned char lance_need_isa_bounce_buffers = 1;
300 static int lance_open(struct net_device *dev);
301 static void lance_init_ring(struct net_device *dev, gfp_t mode);
302 static netdev_tx_t lance_start_xmit(struct sk_buff *skb,
303 struct net_device *dev);
304 static int lance_rx(struct net_device *dev);
305 static irqreturn_t lance_interrupt(int irq, void *dev_id);
306 static int lance_close(struct net_device *dev);
307 static struct net_device_stats *lance_get_stats(struct net_device *dev);
308 static void set_multicast_list(struct net_device *dev);
309 static void lance_tx_timeout (struct net_device *dev);
313 #ifdef MODULE
314 #define MAX_CARDS 8 /* Max number of interfaces (cards) per module */
316 static struct net_device *dev_lance[MAX_CARDS];
317 static int io[MAX_CARDS];
318 static int dma[MAX_CARDS];
319 static int irq[MAX_CARDS];
321 module_param_array(io, int, NULL, 0);
322 module_param_array(dma, int, NULL, 0);
323 module_param_array(irq, int, NULL, 0);
324 module_param(lance_debug, int, 0);
325 MODULE_PARM_DESC(io, "LANCE/PCnet I/O base address(es),required");
326 MODULE_PARM_DESC(dma, "LANCE/PCnet ISA DMA channel (ignored for some devices)");
327 MODULE_PARM_DESC(irq, "LANCE/PCnet IRQ number (ignored for some devices)");
328 MODULE_PARM_DESC(lance_debug, "LANCE/PCnet debug level (0-7)");
330 int __init init_module(void)
332 struct net_device *dev;
333 int this_dev, found = 0;
335 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) {
336 if (io[this_dev] == 0) {
337 if (this_dev != 0) /* only complain once */
338 break;
339 printk(KERN_NOTICE "lance.c: Module autoprobing not allowed. Append \"io=0xNNN\" value(s).\n");
340 return -EPERM;
342 dev = alloc_etherdev(0);
343 if (!dev)
344 break;
345 dev->irq = irq[this_dev];
346 dev->base_addr = io[this_dev];
347 dev->dma = dma[this_dev];
348 if (do_lance_probe(dev) == 0) {
349 dev_lance[found++] = dev;
350 continue;
352 free_netdev(dev);
353 break;
355 if (found != 0)
356 return 0;
357 return -ENXIO;
360 static void cleanup_card(struct net_device *dev)
362 struct lance_private *lp = dev->ml_priv;
363 if (dev->dma != 4)
364 free_dma(dev->dma);
365 release_region(dev->base_addr, LANCE_TOTAL_SIZE);
366 kfree(lp->tx_bounce_buffs);
367 kfree((void*)lp->rx_buffs);
368 kfree(lp);
371 void __exit cleanup_module(void)
373 int this_dev;
375 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) {
376 struct net_device *dev = dev_lance[this_dev];
377 if (dev) {
378 unregister_netdev(dev);
379 cleanup_card(dev);
380 free_netdev(dev);
384 #endif /* MODULE */
385 MODULE_LICENSE("GPL");
388 /* Starting in v2.1.*, the LANCE/PCnet probe is now similar to the other
389 board probes now that kmalloc() can allocate ISA DMA-able regions.
390 This also allows the LANCE driver to be used as a module.
392 static int __init do_lance_probe(struct net_device *dev)
394 unsigned int *port;
395 int result;
397 if (high_memory <= phys_to_virt(16*1024*1024))
398 lance_need_isa_bounce_buffers = 0;
400 for (port = lance_portlist; *port; port++) {
401 int ioaddr = *port;
402 struct resource *r = request_region(ioaddr, LANCE_TOTAL_SIZE,
403 "lance-probe");
405 if (r) {
406 /* Detect the card with minimal I/O reads */
407 char offset14 = inb(ioaddr + 14);
408 int card;
409 for (card = 0; card < NUM_CARDS; ++card)
410 if (cards[card].id_offset14 == offset14)
411 break;
412 if (card < NUM_CARDS) {/*yes, the first byte matches*/
413 char offset15 = inb(ioaddr + 15);
414 for (card = 0; card < NUM_CARDS; ++card)
415 if ((cards[card].id_offset14 == offset14) &&
416 (cards[card].id_offset15 == offset15))
417 break;
419 if (card < NUM_CARDS) { /*Signature OK*/
420 result = lance_probe1(dev, ioaddr, 0, 0);
421 if (!result) {
422 struct lance_private *lp = dev->ml_priv;
423 int ver = lp->chip_version;
425 r->name = chip_table[ver].name;
426 return 0;
429 release_region(ioaddr, LANCE_TOTAL_SIZE);
432 return -ENODEV;
435 #ifndef MODULE
436 struct net_device * __init lance_probe(int unit)
438 struct net_device *dev = alloc_etherdev(0);
439 int err;
441 if (!dev)
442 return ERR_PTR(-ENODEV);
444 sprintf(dev->name, "eth%d", unit);
445 netdev_boot_setup_check(dev);
447 err = do_lance_probe(dev);
448 if (err)
449 goto out;
450 return dev;
451 out:
452 free_netdev(dev);
453 return ERR_PTR(err);
455 #endif
457 static const struct net_device_ops lance_netdev_ops = {
458 .ndo_open = lance_open,
459 .ndo_start_xmit = lance_start_xmit,
460 .ndo_stop = lance_close,
461 .ndo_get_stats = lance_get_stats,
462 .ndo_set_rx_mode = set_multicast_list,
463 .ndo_tx_timeout = lance_tx_timeout,
464 .ndo_change_mtu = eth_change_mtu,
465 .ndo_set_mac_address = eth_mac_addr,
466 .ndo_validate_addr = eth_validate_addr,
469 static int __init lance_probe1(struct net_device *dev, int ioaddr, int irq, int options)
471 struct lance_private *lp;
472 unsigned long dma_channels; /* Mark spuriously-busy DMA channels */
473 int i, reset_val, lance_version;
474 const char *chipname;
475 /* Flags for specific chips or boards. */
476 unsigned char hpJ2405A = 0; /* HP ISA adaptor */
477 int hp_builtin = 0; /* HP on-board ethernet. */
478 static int did_version; /* Already printed version info. */
479 unsigned long flags;
480 int err = -ENOMEM;
481 void __iomem *bios;
483 /* First we look for special cases.
484 Check for HP's on-board ethernet by looking for 'HP' in the BIOS.
485 There are two HP versions, check the BIOS for the configuration port.
486 This method provided by L. Julliard, Laurent_Julliard@grenoble.hp.com.
488 bios = ioremap(0xf00f0, 0x14);
489 if (!bios)
490 return -ENOMEM;
491 if (readw(bios + 0x12) == 0x5048) {
492 static const short ioaddr_table[] = { 0x300, 0x320, 0x340, 0x360};
493 int hp_port = (readl(bios + 1) & 1) ? 0x499 : 0x99;
494 /* We can have boards other than the built-in! Verify this is on-board. */
495 if ((inb(hp_port) & 0xc0) == 0x80 &&
496 ioaddr_table[inb(hp_port) & 3] == ioaddr)
497 hp_builtin = hp_port;
499 iounmap(bios);
500 /* We also recognize the HP Vectra on-board here, but check below. */
501 hpJ2405A = (inb(ioaddr) == 0x08 && inb(ioaddr+1) == 0x00 &&
502 inb(ioaddr+2) == 0x09);
504 /* Reset the LANCE. */
505 reset_val = inw(ioaddr+LANCE_RESET); /* Reset the LANCE */
507 /* The Un-Reset needed is only needed for the real NE2100, and will
508 confuse the HP board. */
509 if (!hpJ2405A)
510 outw(reset_val, ioaddr+LANCE_RESET);
512 outw(0x0000, ioaddr+LANCE_ADDR); /* Switch to window 0 */
513 if (inw(ioaddr+LANCE_DATA) != 0x0004)
514 return -ENODEV;
516 /* Get the version of the chip. */
517 outw(88, ioaddr+LANCE_ADDR);
518 if (inw(ioaddr+LANCE_ADDR) != 88) {
519 lance_version = 0;
520 } else { /* Good, it's a newer chip. */
521 int chip_version = inw(ioaddr+LANCE_DATA);
522 outw(89, ioaddr+LANCE_ADDR);
523 chip_version |= inw(ioaddr+LANCE_DATA) << 16;
524 if (lance_debug > 2)
525 printk(" LANCE chip version is %#x.\n", chip_version);
526 if ((chip_version & 0xfff) != 0x003)
527 return -ENODEV;
528 chip_version = (chip_version >> 12) & 0xffff;
529 for (lance_version = 1; chip_table[lance_version].id_number; lance_version++) {
530 if (chip_table[lance_version].id_number == chip_version)
531 break;
535 /* We can't allocate private data from alloc_etherdev() because it must
536 a ISA DMA-able region. */
537 chipname = chip_table[lance_version].name;
538 printk("%s: %s at %#3x, ", dev->name, chipname, ioaddr);
540 /* There is a 16 byte station address PROM at the base address.
541 The first six bytes are the station address. */
542 for (i = 0; i < 6; i++)
543 dev->dev_addr[i] = inb(ioaddr + i);
544 printk("%pM", dev->dev_addr);
546 dev->base_addr = ioaddr;
547 /* Make certain the data structures used by the LANCE are aligned and DMAble. */
549 lp = kzalloc(sizeof(*lp), GFP_DMA | GFP_KERNEL);
550 if(lp==NULL)
551 return -ENODEV;
552 if (lance_debug > 6) printk(" (#0x%05lx)", (unsigned long)lp);
553 dev->ml_priv = lp;
554 lp->name = chipname;
555 lp->rx_buffs = (unsigned long)kmalloc(PKT_BUF_SZ*RX_RING_SIZE,
556 GFP_DMA | GFP_KERNEL);
557 if (!lp->rx_buffs)
558 goto out_lp;
559 if (lance_need_isa_bounce_buffers) {
560 lp->tx_bounce_buffs = kmalloc(PKT_BUF_SZ*TX_RING_SIZE,
561 GFP_DMA | GFP_KERNEL);
562 if (!lp->tx_bounce_buffs)
563 goto out_rx;
564 } else
565 lp->tx_bounce_buffs = NULL;
567 lp->chip_version = lance_version;
568 spin_lock_init(&lp->devlock);
570 lp->init_block.mode = 0x0003; /* Disable Rx and Tx. */
571 for (i = 0; i < 6; i++)
572 lp->init_block.phys_addr[i] = dev->dev_addr[i];
573 lp->init_block.filter[0] = 0x00000000;
574 lp->init_block.filter[1] = 0x00000000;
575 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS;
576 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS;
578 outw(0x0001, ioaddr+LANCE_ADDR);
579 inw(ioaddr+LANCE_ADDR);
580 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA);
581 outw(0x0002, ioaddr+LANCE_ADDR);
582 inw(ioaddr+LANCE_ADDR);
583 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA);
584 outw(0x0000, ioaddr+LANCE_ADDR);
585 inw(ioaddr+LANCE_ADDR);
587 if (irq) { /* Set iff PCI card. */
588 dev->dma = 4; /* Native bus-master, no DMA channel needed. */
589 dev->irq = irq;
590 } else if (hp_builtin) {
591 static const char dma_tbl[4] = {3, 5, 6, 0};
592 static const char irq_tbl[4] = {3, 4, 5, 9};
593 unsigned char port_val = inb(hp_builtin);
594 dev->dma = dma_tbl[(port_val >> 4) & 3];
595 dev->irq = irq_tbl[(port_val >> 2) & 3];
596 printk(" HP Vectra IRQ %d DMA %d.\n", dev->irq, dev->dma);
597 } else if (hpJ2405A) {
598 static const char dma_tbl[4] = {3, 5, 6, 7};
599 static const char irq_tbl[8] = {3, 4, 5, 9, 10, 11, 12, 15};
600 short reset_val = inw(ioaddr+LANCE_RESET);
601 dev->dma = dma_tbl[(reset_val >> 2) & 3];
602 dev->irq = irq_tbl[(reset_val >> 4) & 7];
603 printk(" HP J2405A IRQ %d DMA %d.\n", dev->irq, dev->dma);
604 } else if (lance_version == PCNET_ISAP) { /* The plug-n-play version. */
605 short bus_info;
606 outw(8, ioaddr+LANCE_ADDR);
607 bus_info = inw(ioaddr+LANCE_BUS_IF);
608 dev->dma = bus_info & 0x07;
609 dev->irq = (bus_info >> 4) & 0x0F;
610 } else {
611 /* The DMA channel may be passed in PARAM1. */
612 if (dev->mem_start & 0x07)
613 dev->dma = dev->mem_start & 0x07;
616 if (dev->dma == 0) {
617 /* Read the DMA channel status register, so that we can avoid
618 stuck DMA channels in the DMA detection below. */
619 dma_channels = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) |
620 (inb(DMA2_STAT_REG) & 0xf0);
622 err = -ENODEV;
623 if (dev->irq >= 2)
624 printk(" assigned IRQ %d", dev->irq);
625 else if (lance_version != 0) { /* 7990 boards need DMA detection first. */
626 unsigned long irq_mask;
628 /* To auto-IRQ we enable the initialization-done and DMA error
629 interrupts. For ISA boards we get a DMA error, but VLB and PCI
630 boards will work. */
631 irq_mask = probe_irq_on();
633 /* Trigger an initialization just for the interrupt. */
634 outw(0x0041, ioaddr+LANCE_DATA);
636 mdelay(20);
637 dev->irq = probe_irq_off(irq_mask);
638 if (dev->irq)
639 printk(", probed IRQ %d", dev->irq);
640 else {
641 printk(", failed to detect IRQ line.\n");
642 goto out_tx;
645 /* Check for the initialization done bit, 0x0100, which means
646 that we don't need a DMA channel. */
647 if (inw(ioaddr+LANCE_DATA) & 0x0100)
648 dev->dma = 4;
651 if (dev->dma == 4) {
652 printk(", no DMA needed.\n");
653 } else if (dev->dma) {
654 if (request_dma(dev->dma, chipname)) {
655 printk("DMA %d allocation failed.\n", dev->dma);
656 goto out_tx;
657 } else
658 printk(", assigned DMA %d.\n", dev->dma);
659 } else { /* OK, we have to auto-DMA. */
660 for (i = 0; i < 4; i++) {
661 static const char dmas[] = { 5, 6, 7, 3 };
662 int dma = dmas[i];
663 int boguscnt;
665 /* Don't enable a permanently busy DMA channel, or the machine
666 will hang. */
667 if (test_bit(dma, &dma_channels))
668 continue;
669 outw(0x7f04, ioaddr+LANCE_DATA); /* Clear the memory error bits. */
670 if (request_dma(dma, chipname))
671 continue;
673 flags=claim_dma_lock();
674 set_dma_mode(dma, DMA_MODE_CASCADE);
675 enable_dma(dma);
676 release_dma_lock(flags);
678 /* Trigger an initialization. */
679 outw(0x0001, ioaddr+LANCE_DATA);
680 for (boguscnt = 100; boguscnt > 0; --boguscnt)
681 if (inw(ioaddr+LANCE_DATA) & 0x0900)
682 break;
683 if (inw(ioaddr+LANCE_DATA) & 0x0100) {
684 dev->dma = dma;
685 printk(", DMA %d.\n", dev->dma);
686 break;
687 } else {
688 flags=claim_dma_lock();
689 disable_dma(dma);
690 release_dma_lock(flags);
691 free_dma(dma);
694 if (i == 4) { /* Failure: bail. */
695 printk("DMA detection failed.\n");
696 goto out_tx;
700 if (lance_version == 0 && dev->irq == 0) {
701 /* We may auto-IRQ now that we have a DMA channel. */
702 /* Trigger an initialization just for the interrupt. */
703 unsigned long irq_mask;
705 irq_mask = probe_irq_on();
706 outw(0x0041, ioaddr+LANCE_DATA);
708 mdelay(40);
709 dev->irq = probe_irq_off(irq_mask);
710 if (dev->irq == 0) {
711 printk(" Failed to detect the 7990 IRQ line.\n");
712 goto out_dma;
714 printk(" Auto-IRQ detected IRQ%d.\n", dev->irq);
717 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) {
718 /* Turn on auto-select of media (10baseT or BNC) so that the user
719 can watch the LEDs even if the board isn't opened. */
720 outw(0x0002, ioaddr+LANCE_ADDR);
721 /* Don't touch 10base2 power bit. */
722 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF);
725 if (lance_debug > 0 && did_version++ == 0)
726 printk(version);
728 /* The LANCE-specific entries in the device structure. */
729 dev->netdev_ops = &lance_netdev_ops;
730 dev->watchdog_timeo = TX_TIMEOUT;
732 err = register_netdev(dev);
733 if (err)
734 goto out_dma;
735 return 0;
736 out_dma:
737 if (dev->dma != 4)
738 free_dma(dev->dma);
739 out_tx:
740 kfree(lp->tx_bounce_buffs);
741 out_rx:
742 kfree((void*)lp->rx_buffs);
743 out_lp:
744 kfree(lp);
745 return err;
749 static int
750 lance_open(struct net_device *dev)
752 struct lance_private *lp = dev->ml_priv;
753 int ioaddr = dev->base_addr;
754 int i;
756 if (dev->irq == 0 ||
757 request_irq(dev->irq, lance_interrupt, 0, lp->name, dev)) {
758 return -EAGAIN;
761 /* We used to allocate DMA here, but that was silly.
762 DMA lines can't be shared! We now permanently allocate them. */
764 /* Reset the LANCE */
765 inw(ioaddr+LANCE_RESET);
767 /* The DMA controller is used as a no-operation slave, "cascade mode". */
768 if (dev->dma != 4) {
769 unsigned long flags=claim_dma_lock();
770 enable_dma(dev->dma);
771 set_dma_mode(dev->dma, DMA_MODE_CASCADE);
772 release_dma_lock(flags);
775 /* Un-Reset the LANCE, needed only for the NE2100. */
776 if (chip_table[lp->chip_version].flags & LANCE_MUST_UNRESET)
777 outw(0, ioaddr+LANCE_RESET);
779 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) {
780 /* This is 79C960-specific: Turn on auto-select of media (AUI, BNC). */
781 outw(0x0002, ioaddr+LANCE_ADDR);
782 /* Only touch autoselect bit. */
783 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF);
786 if (lance_debug > 1)
787 printk("%s: lance_open() irq %d dma %d tx/rx rings %#x/%#x init %#x.\n",
788 dev->name, dev->irq, dev->dma,
789 (u32) isa_virt_to_bus(lp->tx_ring),
790 (u32) isa_virt_to_bus(lp->rx_ring),
791 (u32) isa_virt_to_bus(&lp->init_block));
793 lance_init_ring(dev, GFP_KERNEL);
794 /* Re-initialize the LANCE, and start it when done. */
795 outw(0x0001, ioaddr+LANCE_ADDR);
796 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA);
797 outw(0x0002, ioaddr+LANCE_ADDR);
798 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA);
800 outw(0x0004, ioaddr+LANCE_ADDR);
801 outw(0x0915, ioaddr+LANCE_DATA);
803 outw(0x0000, ioaddr+LANCE_ADDR);
804 outw(0x0001, ioaddr+LANCE_DATA);
806 netif_start_queue (dev);
808 i = 0;
809 while (i++ < 100)
810 if (inw(ioaddr+LANCE_DATA) & 0x0100)
811 break;
813 * We used to clear the InitDone bit, 0x0100, here but Mark Stockton
814 * reports that doing so triggers a bug in the '974.
816 outw(0x0042, ioaddr+LANCE_DATA);
818 if (lance_debug > 2)
819 printk("%s: LANCE open after %d ticks, init block %#x csr0 %4.4x.\n",
820 dev->name, i, (u32) isa_virt_to_bus(&lp->init_block), inw(ioaddr+LANCE_DATA));
822 return 0; /* Always succeed */
825 /* The LANCE has been halted for one reason or another (busmaster memory
826 arbitration error, Tx FIFO underflow, driver stopped it to reconfigure,
827 etc.). Modern LANCE variants always reload their ring-buffer
828 configuration when restarted, so we must reinitialize our ring
829 context before restarting. As part of this reinitialization,
830 find all packets still on the Tx ring and pretend that they had been
831 sent (in effect, drop the packets on the floor) - the higher-level
832 protocols will time out and retransmit. It'd be better to shuffle
833 these skbs to a temp list and then actually re-Tx them after
834 restarting the chip, but I'm too lazy to do so right now. dplatt@3do.com
837 static void
838 lance_purge_ring(struct net_device *dev)
840 struct lance_private *lp = dev->ml_priv;
841 int i;
843 /* Free all the skbuffs in the Rx and Tx queues. */
844 for (i = 0; i < RX_RING_SIZE; i++) {
845 struct sk_buff *skb = lp->rx_skbuff[i];
846 lp->rx_skbuff[i] = NULL;
847 lp->rx_ring[i].base = 0; /* Not owned by LANCE chip. */
848 if (skb)
849 dev_kfree_skb_any(skb);
851 for (i = 0; i < TX_RING_SIZE; i++) {
852 if (lp->tx_skbuff[i]) {
853 dev_kfree_skb_any(lp->tx_skbuff[i]);
854 lp->tx_skbuff[i] = NULL;
860 /* Initialize the LANCE Rx and Tx rings. */
861 static void
862 lance_init_ring(struct net_device *dev, gfp_t gfp)
864 struct lance_private *lp = dev->ml_priv;
865 int i;
867 lp->cur_rx = lp->cur_tx = 0;
868 lp->dirty_rx = lp->dirty_tx = 0;
870 for (i = 0; i < RX_RING_SIZE; i++) {
871 struct sk_buff *skb;
872 void *rx_buff;
874 skb = alloc_skb(PKT_BUF_SZ, GFP_DMA | gfp);
875 lp->rx_skbuff[i] = skb;
876 if (skb) {
877 skb->dev = dev;
878 rx_buff = skb->data;
879 } else
880 rx_buff = kmalloc(PKT_BUF_SZ, GFP_DMA | gfp);
881 if (rx_buff == NULL)
882 lp->rx_ring[i].base = 0;
883 else
884 lp->rx_ring[i].base = (u32)isa_virt_to_bus(rx_buff) | 0x80000000;
885 lp->rx_ring[i].buf_length = -PKT_BUF_SZ;
887 /* The Tx buffer address is filled in as needed, but we do need to clear
888 the upper ownership bit. */
889 for (i = 0; i < TX_RING_SIZE; i++) {
890 lp->tx_skbuff[i] = NULL;
891 lp->tx_ring[i].base = 0;
894 lp->init_block.mode = 0x0000;
895 for (i = 0; i < 6; i++)
896 lp->init_block.phys_addr[i] = dev->dev_addr[i];
897 lp->init_block.filter[0] = 0x00000000;
898 lp->init_block.filter[1] = 0x00000000;
899 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS;
900 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS;
903 static void
904 lance_restart(struct net_device *dev, unsigned int csr0_bits, int must_reinit)
906 struct lance_private *lp = dev->ml_priv;
908 if (must_reinit ||
909 (chip_table[lp->chip_version].flags & LANCE_MUST_REINIT_RING)) {
910 lance_purge_ring(dev);
911 lance_init_ring(dev, GFP_ATOMIC);
913 outw(0x0000, dev->base_addr + LANCE_ADDR);
914 outw(csr0_bits, dev->base_addr + LANCE_DATA);
918 static void lance_tx_timeout (struct net_device *dev)
920 struct lance_private *lp = (struct lance_private *) dev->ml_priv;
921 int ioaddr = dev->base_addr;
923 outw (0, ioaddr + LANCE_ADDR);
924 printk ("%s: transmit timed out, status %4.4x, resetting.\n",
925 dev->name, inw (ioaddr + LANCE_DATA));
926 outw (0x0004, ioaddr + LANCE_DATA);
927 dev->stats.tx_errors++;
928 #ifndef final_version
929 if (lance_debug > 3) {
930 int i;
931 printk (" Ring data dump: dirty_tx %d cur_tx %d%s cur_rx %d.",
932 lp->dirty_tx, lp->cur_tx, netif_queue_stopped(dev) ? " (full)" : "",
933 lp->cur_rx);
934 for (i = 0; i < RX_RING_SIZE; i++)
935 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ",
936 lp->rx_ring[i].base, -lp->rx_ring[i].buf_length,
937 lp->rx_ring[i].msg_length);
938 for (i = 0; i < TX_RING_SIZE; i++)
939 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ",
940 lp->tx_ring[i].base, -lp->tx_ring[i].length,
941 lp->tx_ring[i].misc);
942 printk ("\n");
944 #endif
945 lance_restart (dev, 0x0043, 1);
947 dev->trans_start = jiffies; /* prevent tx timeout */
948 netif_wake_queue (dev);
952 static netdev_tx_t lance_start_xmit(struct sk_buff *skb,
953 struct net_device *dev)
955 struct lance_private *lp = dev->ml_priv;
956 int ioaddr = dev->base_addr;
957 int entry;
958 unsigned long flags;
960 spin_lock_irqsave(&lp->devlock, flags);
962 if (lance_debug > 3) {
963 outw(0x0000, ioaddr+LANCE_ADDR);
964 printk("%s: lance_start_xmit() called, csr0 %4.4x.\n", dev->name,
965 inw(ioaddr+LANCE_DATA));
966 outw(0x0000, ioaddr+LANCE_DATA);
969 /* Fill in a Tx ring entry */
971 /* Mask to ring buffer boundary. */
972 entry = lp->cur_tx & TX_RING_MOD_MASK;
974 /* Caution: the write order is important here, set the base address
975 with the "ownership" bits last. */
977 /* The old LANCE chips doesn't automatically pad buffers to min. size. */
978 if (chip_table[lp->chip_version].flags & LANCE_MUST_PAD) {
979 if (skb->len < ETH_ZLEN) {
980 if (skb_padto(skb, ETH_ZLEN))
981 goto out;
982 lp->tx_ring[entry].length = -ETH_ZLEN;
984 else
985 lp->tx_ring[entry].length = -skb->len;
986 } else
987 lp->tx_ring[entry].length = -skb->len;
989 lp->tx_ring[entry].misc = 0x0000;
991 dev->stats.tx_bytes += skb->len;
993 /* If any part of this buffer is >16M we must copy it to a low-memory
994 buffer. */
995 if ((u32)isa_virt_to_bus(skb->data) + skb->len > 0x01000000) {
996 if (lance_debug > 5)
997 printk("%s: bouncing a high-memory packet (%#x).\n",
998 dev->name, (u32)isa_virt_to_bus(skb->data));
999 skb_copy_from_linear_data(skb, &lp->tx_bounce_buffs[entry], skb->len);
1000 lp->tx_ring[entry].base =
1001 ((u32)isa_virt_to_bus((lp->tx_bounce_buffs + entry)) & 0xffffff) | 0x83000000;
1002 dev_kfree_skb(skb);
1003 } else {
1004 lp->tx_skbuff[entry] = skb;
1005 lp->tx_ring[entry].base = ((u32)isa_virt_to_bus(skb->data) & 0xffffff) | 0x83000000;
1007 lp->cur_tx++;
1009 /* Trigger an immediate send poll. */
1010 outw(0x0000, ioaddr+LANCE_ADDR);
1011 outw(0x0048, ioaddr+LANCE_DATA);
1013 if ((lp->cur_tx - lp->dirty_tx) >= TX_RING_SIZE)
1014 netif_stop_queue(dev);
1016 out:
1017 spin_unlock_irqrestore(&lp->devlock, flags);
1018 return NETDEV_TX_OK;
1021 /* The LANCE interrupt handler. */
1022 static irqreturn_t lance_interrupt(int irq, void *dev_id)
1024 struct net_device *dev = dev_id;
1025 struct lance_private *lp;
1026 int csr0, ioaddr, boguscnt=10;
1027 int must_restart;
1029 ioaddr = dev->base_addr;
1030 lp = dev->ml_priv;
1032 spin_lock (&lp->devlock);
1034 outw(0x00, dev->base_addr + LANCE_ADDR);
1035 while ((csr0 = inw(dev->base_addr + LANCE_DATA)) & 0x8600 &&
1036 --boguscnt >= 0) {
1037 /* Acknowledge all of the current interrupt sources ASAP. */
1038 outw(csr0 & ~0x004f, dev->base_addr + LANCE_DATA);
1040 must_restart = 0;
1042 if (lance_debug > 5)
1043 printk("%s: interrupt csr0=%#2.2x new csr=%#2.2x.\n",
1044 dev->name, csr0, inw(dev->base_addr + LANCE_DATA));
1046 if (csr0 & 0x0400) /* Rx interrupt */
1047 lance_rx(dev);
1049 if (csr0 & 0x0200) { /* Tx-done interrupt */
1050 int dirty_tx = lp->dirty_tx;
1052 while (dirty_tx < lp->cur_tx) {
1053 int entry = dirty_tx & TX_RING_MOD_MASK;
1054 int status = lp->tx_ring[entry].base;
1056 if (status < 0)
1057 break; /* It still hasn't been Txed */
1059 lp->tx_ring[entry].base = 0;
1061 if (status & 0x40000000) {
1062 /* There was an major error, log it. */
1063 int err_status = lp->tx_ring[entry].misc;
1064 dev->stats.tx_errors++;
1065 if (err_status & 0x0400)
1066 dev->stats.tx_aborted_errors++;
1067 if (err_status & 0x0800)
1068 dev->stats.tx_carrier_errors++;
1069 if (err_status & 0x1000)
1070 dev->stats.tx_window_errors++;
1071 if (err_status & 0x4000) {
1072 /* Ackk! On FIFO errors the Tx unit is turned off! */
1073 dev->stats.tx_fifo_errors++;
1074 /* Remove this verbosity later! */
1075 printk("%s: Tx FIFO error! Status %4.4x.\n",
1076 dev->name, csr0);
1077 /* Restart the chip. */
1078 must_restart = 1;
1080 } else {
1081 if (status & 0x18000000)
1082 dev->stats.collisions++;
1083 dev->stats.tx_packets++;
1086 /* We must free the original skb if it's not a data-only copy
1087 in the bounce buffer. */
1088 if (lp->tx_skbuff[entry]) {
1089 dev_kfree_skb_irq(lp->tx_skbuff[entry]);
1090 lp->tx_skbuff[entry] = NULL;
1092 dirty_tx++;
1095 #ifndef final_version
1096 if (lp->cur_tx - dirty_tx >= TX_RING_SIZE) {
1097 printk("out-of-sync dirty pointer, %d vs. %d, full=%s.\n",
1098 dirty_tx, lp->cur_tx,
1099 netif_queue_stopped(dev) ? "yes" : "no");
1100 dirty_tx += TX_RING_SIZE;
1102 #endif
1104 /* if the ring is no longer full, accept more packets */
1105 if (netif_queue_stopped(dev) &&
1106 dirty_tx > lp->cur_tx - TX_RING_SIZE + 2)
1107 netif_wake_queue (dev);
1109 lp->dirty_tx = dirty_tx;
1112 /* Log misc errors. */
1113 if (csr0 & 0x4000)
1114 dev->stats.tx_errors++; /* Tx babble. */
1115 if (csr0 & 0x1000)
1116 dev->stats.rx_errors++; /* Missed a Rx frame. */
1117 if (csr0 & 0x0800) {
1118 printk("%s: Bus master arbitration failure, status %4.4x.\n",
1119 dev->name, csr0);
1120 /* Restart the chip. */
1121 must_restart = 1;
1124 if (must_restart) {
1125 /* stop the chip to clear the error condition, then restart */
1126 outw(0x0000, dev->base_addr + LANCE_ADDR);
1127 outw(0x0004, dev->base_addr + LANCE_DATA);
1128 lance_restart(dev, 0x0002, 0);
1132 /* Clear any other interrupt, and set interrupt enable. */
1133 outw(0x0000, dev->base_addr + LANCE_ADDR);
1134 outw(0x7940, dev->base_addr + LANCE_DATA);
1136 if (lance_debug > 4)
1137 printk("%s: exiting interrupt, csr%d=%#4.4x.\n",
1138 dev->name, inw(ioaddr + LANCE_ADDR),
1139 inw(dev->base_addr + LANCE_DATA));
1141 spin_unlock (&lp->devlock);
1142 return IRQ_HANDLED;
1145 static int
1146 lance_rx(struct net_device *dev)
1148 struct lance_private *lp = dev->ml_priv;
1149 int entry = lp->cur_rx & RX_RING_MOD_MASK;
1150 int i;
1152 /* If we own the next entry, it's a new packet. Send it up. */
1153 while (lp->rx_ring[entry].base >= 0) {
1154 int status = lp->rx_ring[entry].base >> 24;
1156 if (status != 0x03) { /* There was an error. */
1157 /* There is a tricky error noted by John Murphy,
1158 <murf@perftech.com> to Russ Nelson: Even with full-sized
1159 buffers it's possible for a jabber packet to use two
1160 buffers, with only the last correctly noting the error. */
1161 if (status & 0x01) /* Only count a general error at the */
1162 dev->stats.rx_errors++; /* end of a packet.*/
1163 if (status & 0x20)
1164 dev->stats.rx_frame_errors++;
1165 if (status & 0x10)
1166 dev->stats.rx_over_errors++;
1167 if (status & 0x08)
1168 dev->stats.rx_crc_errors++;
1169 if (status & 0x04)
1170 dev->stats.rx_fifo_errors++;
1171 lp->rx_ring[entry].base &= 0x03ffffff;
1173 else
1175 /* Malloc up new buffer, compatible with net3. */
1176 short pkt_len = (lp->rx_ring[entry].msg_length & 0xfff)-4;
1177 struct sk_buff *skb;
1179 if(pkt_len<60)
1181 printk("%s: Runt packet!\n",dev->name);
1182 dev->stats.rx_errors++;
1184 else
1186 skb = dev_alloc_skb(pkt_len+2);
1187 if (skb == NULL)
1189 printk("%s: Memory squeeze, deferring packet.\n", dev->name);
1190 for (i=0; i < RX_RING_SIZE; i++)
1191 if (lp->rx_ring[(entry+i) & RX_RING_MOD_MASK].base < 0)
1192 break;
1194 if (i > RX_RING_SIZE -2)
1196 dev->stats.rx_dropped++;
1197 lp->rx_ring[entry].base |= 0x80000000;
1198 lp->cur_rx++;
1200 break;
1202 skb_reserve(skb,2); /* 16 byte align */
1203 skb_put(skb,pkt_len); /* Make room */
1204 skb_copy_to_linear_data(skb,
1205 (unsigned char *)isa_bus_to_virt((lp->rx_ring[entry].base & 0x00ffffff)),
1206 pkt_len);
1207 skb->protocol=eth_type_trans(skb,dev);
1208 netif_rx(skb);
1209 dev->stats.rx_packets++;
1210 dev->stats.rx_bytes += pkt_len;
1213 /* The docs say that the buffer length isn't touched, but Andrew Boyd
1214 of QNX reports that some revs of the 79C965 clear it. */
1215 lp->rx_ring[entry].buf_length = -PKT_BUF_SZ;
1216 lp->rx_ring[entry].base |= 0x80000000;
1217 entry = (++lp->cur_rx) & RX_RING_MOD_MASK;
1220 /* We should check that at least two ring entries are free. If not,
1221 we should free one and mark stats->rx_dropped++. */
1223 return 0;
1226 static int
1227 lance_close(struct net_device *dev)
1229 int ioaddr = dev->base_addr;
1230 struct lance_private *lp = dev->ml_priv;
1232 netif_stop_queue (dev);
1234 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) {
1235 outw(112, ioaddr+LANCE_ADDR);
1236 dev->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA);
1238 outw(0, ioaddr+LANCE_ADDR);
1240 if (lance_debug > 1)
1241 printk("%s: Shutting down ethercard, status was %2.2x.\n",
1242 dev->name, inw(ioaddr+LANCE_DATA));
1244 /* We stop the LANCE here -- it occasionally polls
1245 memory if we don't. */
1246 outw(0x0004, ioaddr+LANCE_DATA);
1248 if (dev->dma != 4)
1250 unsigned long flags=claim_dma_lock();
1251 disable_dma(dev->dma);
1252 release_dma_lock(flags);
1254 free_irq(dev->irq, dev);
1256 lance_purge_ring(dev);
1258 return 0;
1261 static struct net_device_stats *lance_get_stats(struct net_device *dev)
1263 struct lance_private *lp = dev->ml_priv;
1265 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) {
1266 short ioaddr = dev->base_addr;
1267 short saved_addr;
1268 unsigned long flags;
1270 spin_lock_irqsave(&lp->devlock, flags);
1271 saved_addr = inw(ioaddr+LANCE_ADDR);
1272 outw(112, ioaddr+LANCE_ADDR);
1273 dev->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA);
1274 outw(saved_addr, ioaddr+LANCE_ADDR);
1275 spin_unlock_irqrestore(&lp->devlock, flags);
1278 return &dev->stats;
1281 /* Set or clear the multicast filter for this adaptor.
1284 static void set_multicast_list(struct net_device *dev)
1286 short ioaddr = dev->base_addr;
1288 outw(0, ioaddr+LANCE_ADDR);
1289 outw(0x0004, ioaddr+LANCE_DATA); /* Temporarily stop the lance. */
1291 if (dev->flags&IFF_PROMISC) {
1292 outw(15, ioaddr+LANCE_ADDR);
1293 outw(0x8000, ioaddr+LANCE_DATA); /* Set promiscuous mode */
1294 } else {
1295 short multicast_table[4];
1296 int i;
1297 int num_addrs=netdev_mc_count(dev);
1298 if(dev->flags&IFF_ALLMULTI)
1299 num_addrs=1;
1300 /* FIXIT: We don't use the multicast table, but rely on upper-layer filtering. */
1301 memset(multicast_table, (num_addrs == 0) ? 0 : -1, sizeof(multicast_table));
1302 for (i = 0; i < 4; i++) {
1303 outw(8 + i, ioaddr+LANCE_ADDR);
1304 outw(multicast_table[i], ioaddr+LANCE_DATA);
1306 outw(15, ioaddr+LANCE_ADDR);
1307 outw(0x0000, ioaddr+LANCE_DATA); /* Unset promiscuous mode */
1310 lance_restart(dev, 0x0142, 0); /* Resume normal operation */