2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
13 * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
16 * This program is free software; you can redistribute it and/or modify it
17 * under the terms of the GNU General Public License as published by the
18 * Free Software Foundation; either version 2 of the License, or (at your
19 * option) any later version.
21 * Gianfar: AKA Lambda Draconis, "Dragon"
29 * The driver is initialized through of_device. Configuration information
30 * is therefore conveyed through an OF-style device tree.
32 * The Gianfar Ethernet Controller uses a ring of buffer
33 * descriptors. The beginning is indicated by a register
34 * pointing to the physical address of the start of the ring.
35 * The end is determined by a "wrap" bit being set in the
36 * last descriptor of the ring.
38 * When a packet is received, the RXF bit in the
39 * IEVENT register is set, triggering an interrupt when the
40 * corresponding bit in the IMASK register is also set (if
41 * interrupt coalescing is active, then the interrupt may not
42 * happen immediately, but will wait until either a set number
43 * of frames or amount of time have passed). In NAPI, the
44 * interrupt handler will signal there is work to be done, and
45 * exit. This method will start at the last known empty
46 * descriptor, and process every subsequent descriptor until there
47 * are none left with data (NAPI will stop after a set number of
48 * packets to give time to other tasks, but will eventually
49 * process all the packets). The data arrives inside a
50 * pre-allocated skb, and so after the skb is passed up to the
51 * stack, a new skb must be allocated, and the address field in
52 * the buffer descriptor must be updated to indicate this new
55 * When the kernel requests that a packet be transmitted, the
56 * driver starts where it left off last time, and points the
57 * descriptor at the buffer which was passed in. The driver
58 * then informs the DMA engine that there are packets ready to
59 * be transmitted. Once the controller is finished transmitting
60 * the packet, an interrupt may be triggered (under the same
61 * conditions as for reception, but depending on the TXF bit).
62 * The driver then cleans up the buffer.
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
68 #include <linux/kernel.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
88 #include <linux/net_tstamp.h>
93 #include <asm/uaccess.h>
94 #include <linux/module.h>
95 #include <linux/dma-mapping.h>
96 #include <linux/crc32.h>
97 #include <linux/mii.h>
98 #include <linux/phy.h>
99 #include <linux/phy_fixed.h>
100 #include <linux/of.h>
101 #include <linux/of_net.h>
104 #include "fsl_pq_mdio.h"
106 #define TX_TIMEOUT (1*HZ)
107 #undef BRIEF_GFAR_ERRORS
108 #undef VERBOSE_GFAR_ERRORS
110 const char gfar_driver_name
[] = "Gianfar Ethernet";
111 const char gfar_driver_version
[] = "1.3";
113 static int gfar_enet_open(struct net_device
*dev
);
114 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
115 static void gfar_reset_task(struct work_struct
*work
);
116 static void gfar_timeout(struct net_device
*dev
);
117 static int gfar_close(struct net_device
*dev
);
118 struct sk_buff
*gfar_new_skb(struct net_device
*dev
);
119 static void gfar_new_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
120 struct sk_buff
*skb
);
121 static int gfar_set_mac_address(struct net_device
*dev
);
122 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
123 static irqreturn_t
gfar_error(int irq
, void *dev_id
);
124 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
);
125 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
);
126 static void adjust_link(struct net_device
*dev
);
127 static void init_registers(struct net_device
*dev
);
128 static int init_phy(struct net_device
*dev
);
129 static int gfar_probe(struct platform_device
*ofdev
);
130 static int gfar_remove(struct platform_device
*ofdev
);
131 static void free_skb_resources(struct gfar_private
*priv
);
132 static void gfar_set_multi(struct net_device
*dev
);
133 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
134 static void gfar_configure_serdes(struct net_device
*dev
);
135 static int gfar_poll(struct napi_struct
*napi
, int budget
);
136 #ifdef CONFIG_NET_POLL_CONTROLLER
137 static void gfar_netpoll(struct net_device
*dev
);
139 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
);
140 static int gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
);
141 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
143 void gfar_halt(struct net_device
*dev
);
144 static void gfar_halt_nodisable(struct net_device
*dev
);
145 void gfar_start(struct net_device
*dev
);
146 static void gfar_clear_exact_match(struct net_device
*dev
);
147 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
,
149 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
162 lstatus
= BD_LFLAG(RXBD_EMPTY
| RXBD_INTERRUPT
);
163 if (bdp
== rx_queue
->rx_bd_base
+ rx_queue
->rx_ring_size
- 1)
164 lstatus
|= BD_LFLAG(RXBD_WRAP
);
168 bdp
->lstatus
= lstatus
;
171 static int gfar_init_bds(struct net_device
*ndev
)
173 struct gfar_private
*priv
= netdev_priv(ndev
);
174 struct gfar_priv_tx_q
*tx_queue
= NULL
;
175 struct gfar_priv_rx_q
*rx_queue
= NULL
;
180 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
181 tx_queue
= priv
->tx_queue
[i
];
182 /* Initialize some variables in our dev structure */
183 tx_queue
->num_txbdfree
= tx_queue
->tx_ring_size
;
184 tx_queue
->dirty_tx
= tx_queue
->tx_bd_base
;
185 tx_queue
->cur_tx
= tx_queue
->tx_bd_base
;
186 tx_queue
->skb_curtx
= 0;
187 tx_queue
->skb_dirtytx
= 0;
189 /* Initialize Transmit Descriptor Ring */
190 txbdp
= tx_queue
->tx_bd_base
;
191 for (j
= 0; j
< tx_queue
->tx_ring_size
; j
++) {
197 /* Set the last descriptor in the ring to indicate wrap */
199 txbdp
->status
|= TXBD_WRAP
;
202 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
203 rx_queue
= priv
->rx_queue
[i
];
204 rx_queue
->cur_rx
= rx_queue
->rx_bd_base
;
205 rx_queue
->skb_currx
= 0;
206 rxbdp
= rx_queue
->rx_bd_base
;
208 for (j
= 0; j
< rx_queue
->rx_ring_size
; j
++) {
209 struct sk_buff
*skb
= rx_queue
->rx_skbuff
[j
];
212 gfar_init_rxbdp(rx_queue
, rxbdp
,
215 skb
= gfar_new_skb(ndev
);
217 netdev_err(ndev
, "Can't allocate RX buffers\n");
218 goto err_rxalloc_fail
;
220 rx_queue
->rx_skbuff
[j
] = skb
;
222 gfar_new_rxbdp(rx_queue
, rxbdp
, skb
);
233 free_skb_resources(priv
);
237 static int gfar_alloc_skb_resources(struct net_device
*ndev
)
242 struct gfar_private
*priv
= netdev_priv(ndev
);
243 struct device
*dev
= &priv
->ofdev
->dev
;
244 struct gfar_priv_tx_q
*tx_queue
= NULL
;
245 struct gfar_priv_rx_q
*rx_queue
= NULL
;
247 priv
->total_tx_ring_size
= 0;
248 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
249 priv
->total_tx_ring_size
+= priv
->tx_queue
[i
]->tx_ring_size
;
251 priv
->total_rx_ring_size
= 0;
252 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
253 priv
->total_rx_ring_size
+= priv
->rx_queue
[i
]->rx_ring_size
;
255 /* Allocate memory for the buffer descriptors */
256 vaddr
= dma_alloc_coherent(dev
,
257 sizeof(struct txbd8
) * priv
->total_tx_ring_size
+
258 sizeof(struct rxbd8
) * priv
->total_rx_ring_size
,
261 netif_err(priv
, ifup
, ndev
,
262 "Could not allocate buffer descriptors!\n");
266 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
267 tx_queue
= priv
->tx_queue
[i
];
268 tx_queue
->tx_bd_base
= vaddr
;
269 tx_queue
->tx_bd_dma_base
= addr
;
270 tx_queue
->dev
= ndev
;
271 /* enet DMA only understands physical addresses */
272 addr
+= sizeof(struct txbd8
) *tx_queue
->tx_ring_size
;
273 vaddr
+= sizeof(struct txbd8
) *tx_queue
->tx_ring_size
;
276 /* Start the rx descriptor ring where the tx ring leaves off */
277 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
278 rx_queue
= priv
->rx_queue
[i
];
279 rx_queue
->rx_bd_base
= vaddr
;
280 rx_queue
->rx_bd_dma_base
= addr
;
281 rx_queue
->dev
= ndev
;
282 addr
+= sizeof (struct rxbd8
) * rx_queue
->rx_ring_size
;
283 vaddr
+= sizeof (struct rxbd8
) * rx_queue
->rx_ring_size
;
286 /* Setup the skbuff rings */
287 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
288 tx_queue
= priv
->tx_queue
[i
];
289 tx_queue
->tx_skbuff
= kmalloc(sizeof(*tx_queue
->tx_skbuff
) *
290 tx_queue
->tx_ring_size
, GFP_KERNEL
);
291 if (!tx_queue
->tx_skbuff
) {
292 netif_err(priv
, ifup
, ndev
,
293 "Could not allocate tx_skbuff\n");
297 for (k
= 0; k
< tx_queue
->tx_ring_size
; k
++)
298 tx_queue
->tx_skbuff
[k
] = NULL
;
301 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
302 rx_queue
= priv
->rx_queue
[i
];
303 rx_queue
->rx_skbuff
= kmalloc(sizeof(*rx_queue
->rx_skbuff
) *
304 rx_queue
->rx_ring_size
, GFP_KERNEL
);
306 if (!rx_queue
->rx_skbuff
) {
307 netif_err(priv
, ifup
, ndev
,
308 "Could not allocate rx_skbuff\n");
312 for (j
= 0; j
< rx_queue
->rx_ring_size
; j
++)
313 rx_queue
->rx_skbuff
[j
] = NULL
;
316 if (gfar_init_bds(ndev
))
322 free_skb_resources(priv
);
326 static void gfar_init_tx_rx_base(struct gfar_private
*priv
)
328 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
332 baddr
= ®s
->tbase0
;
333 for(i
= 0; i
< priv
->num_tx_queues
; i
++) {
334 gfar_write(baddr
, priv
->tx_queue
[i
]->tx_bd_dma_base
);
338 baddr
= ®s
->rbase0
;
339 for(i
= 0; i
< priv
->num_rx_queues
; i
++) {
340 gfar_write(baddr
, priv
->rx_queue
[i
]->rx_bd_dma_base
);
345 static void gfar_init_mac(struct net_device
*ndev
)
347 struct gfar_private
*priv
= netdev_priv(ndev
);
348 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
353 /* write the tx/rx base registers */
354 gfar_init_tx_rx_base(priv
);
356 /* Configure the coalescing support */
357 gfar_configure_coalescing(priv
, 0xFF, 0xFF);
359 if (priv
->rx_filer_enable
) {
360 rctrl
|= RCTRL_FILREN
;
361 /* Program the RIR0 reg with the required distribution */
362 gfar_write(®s
->rir0
, DEFAULT_RIR0
);
365 if (ndev
->features
& NETIF_F_RXCSUM
)
366 rctrl
|= RCTRL_CHECKSUMMING
;
368 if (priv
->extended_hash
) {
369 rctrl
|= RCTRL_EXTHASH
;
371 gfar_clear_exact_match(ndev
);
376 rctrl
&= ~RCTRL_PAL_MASK
;
377 rctrl
|= RCTRL_PADDING(priv
->padding
);
380 /* Insert receive time stamps into padding alignment bytes */
381 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
) {
382 rctrl
&= ~RCTRL_PAL_MASK
;
383 rctrl
|= RCTRL_PADDING(8);
387 /* Enable HW time stamping if requested from user space */
388 if (priv
->hwts_rx_en
)
389 rctrl
|= RCTRL_PRSDEP_INIT
| RCTRL_TS_ENABLE
;
391 if (ndev
->features
& NETIF_F_HW_VLAN_RX
)
392 rctrl
|= RCTRL_VLEX
| RCTRL_PRSDEP_INIT
;
394 /* Init rctrl based on our settings */
395 gfar_write(®s
->rctrl
, rctrl
);
397 if (ndev
->features
& NETIF_F_IP_CSUM
)
398 tctrl
|= TCTRL_INIT_CSUM
;
400 tctrl
|= TCTRL_TXSCHED_PRIO
;
402 gfar_write(®s
->tctrl
, tctrl
);
404 /* Set the extraction length and index */
405 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
406 ATTRELI_EI(priv
->rx_stash_index
);
408 gfar_write(®s
->attreli
, attrs
);
410 /* Start with defaults, and add stashing or locking
411 * depending on the approprate variables */
412 attrs
= ATTR_INIT_SETTINGS
;
414 if (priv
->bd_stash_en
)
415 attrs
|= ATTR_BDSTASH
;
417 if (priv
->rx_stash_size
!= 0)
418 attrs
|= ATTR_BUFSTASH
;
420 gfar_write(®s
->attr
, attrs
);
422 gfar_write(®s
->fifo_tx_thr
, priv
->fifo_threshold
);
423 gfar_write(®s
->fifo_tx_starve
, priv
->fifo_starve
);
424 gfar_write(®s
->fifo_tx_starve_shutoff
, priv
->fifo_starve_off
);
427 static struct net_device_stats
*gfar_get_stats(struct net_device
*dev
)
429 struct gfar_private
*priv
= netdev_priv(dev
);
430 unsigned long rx_packets
= 0, rx_bytes
= 0, rx_dropped
= 0;
431 unsigned long tx_packets
= 0, tx_bytes
= 0;
434 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
435 rx_packets
+= priv
->rx_queue
[i
]->stats
.rx_packets
;
436 rx_bytes
+= priv
->rx_queue
[i
]->stats
.rx_bytes
;
437 rx_dropped
+= priv
->rx_queue
[i
]->stats
.rx_dropped
;
440 dev
->stats
.rx_packets
= rx_packets
;
441 dev
->stats
.rx_bytes
= rx_bytes
;
442 dev
->stats
.rx_dropped
= rx_dropped
;
444 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
445 tx_bytes
+= priv
->tx_queue
[i
]->stats
.tx_bytes
;
446 tx_packets
+= priv
->tx_queue
[i
]->stats
.tx_packets
;
449 dev
->stats
.tx_bytes
= tx_bytes
;
450 dev
->stats
.tx_packets
= tx_packets
;
455 static const struct net_device_ops gfar_netdev_ops
= {
456 .ndo_open
= gfar_enet_open
,
457 .ndo_start_xmit
= gfar_start_xmit
,
458 .ndo_stop
= gfar_close
,
459 .ndo_change_mtu
= gfar_change_mtu
,
460 .ndo_set_features
= gfar_set_features
,
461 .ndo_set_rx_mode
= gfar_set_multi
,
462 .ndo_tx_timeout
= gfar_timeout
,
463 .ndo_do_ioctl
= gfar_ioctl
,
464 .ndo_get_stats
= gfar_get_stats
,
465 .ndo_set_mac_address
= eth_mac_addr
,
466 .ndo_validate_addr
= eth_validate_addr
,
467 #ifdef CONFIG_NET_POLL_CONTROLLER
468 .ndo_poll_controller
= gfar_netpoll
,
472 void lock_rx_qs(struct gfar_private
*priv
)
476 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
477 spin_lock(&priv
->rx_queue
[i
]->rxlock
);
480 void lock_tx_qs(struct gfar_private
*priv
)
484 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
485 spin_lock(&priv
->tx_queue
[i
]->txlock
);
488 void unlock_rx_qs(struct gfar_private
*priv
)
492 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
493 spin_unlock(&priv
->rx_queue
[i
]->rxlock
);
496 void unlock_tx_qs(struct gfar_private
*priv
)
500 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
501 spin_unlock(&priv
->tx_queue
[i
]->txlock
);
504 static bool gfar_is_vlan_on(struct gfar_private
*priv
)
506 return (priv
->ndev
->features
& NETIF_F_HW_VLAN_RX
) ||
507 (priv
->ndev
->features
& NETIF_F_HW_VLAN_TX
);
510 /* Returns 1 if incoming frames use an FCB */
511 static inline int gfar_uses_fcb(struct gfar_private
*priv
)
513 return gfar_is_vlan_on(priv
) ||
514 (priv
->ndev
->features
& NETIF_F_RXCSUM
) ||
515 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
);
518 static void free_tx_pointers(struct gfar_private
*priv
)
522 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
523 kfree(priv
->tx_queue
[i
]);
526 static void free_rx_pointers(struct gfar_private
*priv
)
530 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
531 kfree(priv
->rx_queue
[i
]);
534 static void unmap_group_regs(struct gfar_private
*priv
)
538 for (i
= 0; i
< MAXGROUPS
; i
++)
539 if (priv
->gfargrp
[i
].regs
)
540 iounmap(priv
->gfargrp
[i
].regs
);
543 static void disable_napi(struct gfar_private
*priv
)
547 for (i
= 0; i
< priv
->num_grps
; i
++)
548 napi_disable(&priv
->gfargrp
[i
].napi
);
551 static void enable_napi(struct gfar_private
*priv
)
555 for (i
= 0; i
< priv
->num_grps
; i
++)
556 napi_enable(&priv
->gfargrp
[i
].napi
);
559 static int gfar_parse_group(struct device_node
*np
,
560 struct gfar_private
*priv
, const char *model
)
564 priv
->gfargrp
[priv
->num_grps
].regs
= of_iomap(np
, 0);
565 if (!priv
->gfargrp
[priv
->num_grps
].regs
)
568 priv
->gfargrp
[priv
->num_grps
].interruptTransmit
=
569 irq_of_parse_and_map(np
, 0);
571 /* If we aren't the FEC we have multiple interrupts */
572 if (model
&& strcasecmp(model
, "FEC")) {
573 priv
->gfargrp
[priv
->num_grps
].interruptReceive
=
574 irq_of_parse_and_map(np
, 1);
575 priv
->gfargrp
[priv
->num_grps
].interruptError
=
576 irq_of_parse_and_map(np
,2);
577 if (priv
->gfargrp
[priv
->num_grps
].interruptTransmit
== NO_IRQ
||
578 priv
->gfargrp
[priv
->num_grps
].interruptReceive
== NO_IRQ
||
579 priv
->gfargrp
[priv
->num_grps
].interruptError
== NO_IRQ
)
583 priv
->gfargrp
[priv
->num_grps
].grp_id
= priv
->num_grps
;
584 priv
->gfargrp
[priv
->num_grps
].priv
= priv
;
585 spin_lock_init(&priv
->gfargrp
[priv
->num_grps
].grplock
);
586 if(priv
->mode
== MQ_MG_MODE
) {
587 queue_mask
= (u32
*)of_get_property(np
,
588 "fsl,rx-bit-map", NULL
);
589 priv
->gfargrp
[priv
->num_grps
].rx_bit_map
=
590 queue_mask
? *queue_mask
:(DEFAULT_MAPPING
>> priv
->num_grps
);
591 queue_mask
= (u32
*)of_get_property(np
,
592 "fsl,tx-bit-map", NULL
);
593 priv
->gfargrp
[priv
->num_grps
].tx_bit_map
=
594 queue_mask
? *queue_mask
: (DEFAULT_MAPPING
>> priv
->num_grps
);
596 priv
->gfargrp
[priv
->num_grps
].rx_bit_map
= 0xFF;
597 priv
->gfargrp
[priv
->num_grps
].tx_bit_map
= 0xFF;
604 static int gfar_of_init(struct platform_device
*ofdev
, struct net_device
**pdev
)
608 const void *mac_addr
;
610 struct net_device
*dev
= NULL
;
611 struct gfar_private
*priv
= NULL
;
612 struct device_node
*np
= ofdev
->dev
.of_node
;
613 struct device_node
*child
= NULL
;
615 const u32
*stash_len
;
616 const u32
*stash_idx
;
617 unsigned int num_tx_qs
, num_rx_qs
;
618 u32
*tx_queues
, *rx_queues
;
620 if (!np
|| !of_device_is_available(np
))
623 /* parse the num of tx and rx queues */
624 tx_queues
= (u32
*)of_get_property(np
, "fsl,num_tx_queues", NULL
);
625 num_tx_qs
= tx_queues
? *tx_queues
: 1;
627 if (num_tx_qs
> MAX_TX_QS
) {
628 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
629 num_tx_qs
, MAX_TX_QS
);
630 pr_err("Cannot do alloc_etherdev, aborting\n");
634 rx_queues
= (u32
*)of_get_property(np
, "fsl,num_rx_queues", NULL
);
635 num_rx_qs
= rx_queues
? *rx_queues
: 1;
637 if (num_rx_qs
> MAX_RX_QS
) {
638 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
639 num_rx_qs
, MAX_RX_QS
);
640 pr_err("Cannot do alloc_etherdev, aborting\n");
644 *pdev
= alloc_etherdev_mq(sizeof(*priv
), num_tx_qs
);
649 priv
= netdev_priv(dev
);
650 priv
->node
= ofdev
->dev
.of_node
;
653 priv
->num_tx_queues
= num_tx_qs
;
654 netif_set_real_num_rx_queues(dev
, num_rx_qs
);
655 priv
->num_rx_queues
= num_rx_qs
;
656 priv
->num_grps
= 0x0;
658 /* Init Rx queue filer rule set linked list*/
659 INIT_LIST_HEAD(&priv
->rx_list
.list
);
660 priv
->rx_list
.count
= 0;
661 mutex_init(&priv
->rx_queue_access
);
663 model
= of_get_property(np
, "model", NULL
);
665 for (i
= 0; i
< MAXGROUPS
; i
++)
666 priv
->gfargrp
[i
].regs
= NULL
;
668 /* Parse and initialize group specific information */
669 if (of_device_is_compatible(np
, "fsl,etsec2")) {
670 priv
->mode
= MQ_MG_MODE
;
671 for_each_child_of_node(np
, child
) {
672 err
= gfar_parse_group(child
, priv
, model
);
677 priv
->mode
= SQ_SG_MODE
;
678 err
= gfar_parse_group(np
, priv
, model
);
683 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
684 priv
->tx_queue
[i
] = NULL
;
685 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
686 priv
->rx_queue
[i
] = NULL
;
688 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
689 priv
->tx_queue
[i
] = kzalloc(sizeof(struct gfar_priv_tx_q
),
691 if (!priv
->tx_queue
[i
]) {
693 goto tx_alloc_failed
;
695 priv
->tx_queue
[i
]->tx_skbuff
= NULL
;
696 priv
->tx_queue
[i
]->qindex
= i
;
697 priv
->tx_queue
[i
]->dev
= dev
;
698 spin_lock_init(&(priv
->tx_queue
[i
]->txlock
));
701 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
702 priv
->rx_queue
[i
] = kzalloc(sizeof(struct gfar_priv_rx_q
),
704 if (!priv
->rx_queue
[i
]) {
706 goto rx_alloc_failed
;
708 priv
->rx_queue
[i
]->rx_skbuff
= NULL
;
709 priv
->rx_queue
[i
]->qindex
= i
;
710 priv
->rx_queue
[i
]->dev
= dev
;
711 spin_lock_init(&(priv
->rx_queue
[i
]->rxlock
));
715 stash
= of_get_property(np
, "bd-stash", NULL
);
718 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BD_STASHING
;
719 priv
->bd_stash_en
= 1;
722 stash_len
= of_get_property(np
, "rx-stash-len", NULL
);
725 priv
->rx_stash_size
= *stash_len
;
727 stash_idx
= of_get_property(np
, "rx-stash-idx", NULL
);
730 priv
->rx_stash_index
= *stash_idx
;
732 if (stash_len
|| stash_idx
)
733 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BUF_STASHING
;
735 mac_addr
= of_get_mac_address(np
);
737 memcpy(dev
->dev_addr
, mac_addr
, MAC_ADDR_LEN
);
739 if (model
&& !strcasecmp(model
, "TSEC"))
741 FSL_GIANFAR_DEV_HAS_GIGABIT
|
742 FSL_GIANFAR_DEV_HAS_COALESCE
|
743 FSL_GIANFAR_DEV_HAS_RMON
|
744 FSL_GIANFAR_DEV_HAS_MULTI_INTR
;
745 if (model
&& !strcasecmp(model
, "eTSEC"))
747 FSL_GIANFAR_DEV_HAS_GIGABIT
|
748 FSL_GIANFAR_DEV_HAS_COALESCE
|
749 FSL_GIANFAR_DEV_HAS_RMON
|
750 FSL_GIANFAR_DEV_HAS_MULTI_INTR
|
751 FSL_GIANFAR_DEV_HAS_PADDING
|
752 FSL_GIANFAR_DEV_HAS_CSUM
|
753 FSL_GIANFAR_DEV_HAS_VLAN
|
754 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
|
755 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
|
756 FSL_GIANFAR_DEV_HAS_TIMER
;
758 ctype
= of_get_property(np
, "phy-connection-type", NULL
);
760 /* We only care about rgmii-id. The rest are autodetected */
761 if (ctype
&& !strcmp(ctype
, "rgmii-id"))
762 priv
->interface
= PHY_INTERFACE_MODE_RGMII_ID
;
764 priv
->interface
= PHY_INTERFACE_MODE_MII
;
766 if (of_get_property(np
, "fsl,magic-packet", NULL
))
767 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
;
769 priv
->phy_node
= of_parse_phandle(np
, "phy-handle", 0);
771 /* Find the TBI PHY. If it's not there, we don't support SGMII */
772 priv
->tbi_node
= of_parse_phandle(np
, "tbi-handle", 0);
777 free_rx_pointers(priv
);
779 free_tx_pointers(priv
);
781 unmap_group_regs(priv
);
786 static int gfar_hwtstamp_ioctl(struct net_device
*netdev
,
787 struct ifreq
*ifr
, int cmd
)
789 struct hwtstamp_config config
;
790 struct gfar_private
*priv
= netdev_priv(netdev
);
792 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
795 /* reserved for future extensions */
799 switch (config
.tx_type
) {
800 case HWTSTAMP_TX_OFF
:
801 priv
->hwts_tx_en
= 0;
804 if (!(priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
))
806 priv
->hwts_tx_en
= 1;
812 switch (config
.rx_filter
) {
813 case HWTSTAMP_FILTER_NONE
:
814 if (priv
->hwts_rx_en
) {
816 priv
->hwts_rx_en
= 0;
817 startup_gfar(netdev
);
821 if (!(priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
))
823 if (!priv
->hwts_rx_en
) {
825 priv
->hwts_rx_en
= 1;
826 startup_gfar(netdev
);
828 config
.rx_filter
= HWTSTAMP_FILTER_ALL
;
832 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
)) ?
836 /* Ioctl MII Interface */
837 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
839 struct gfar_private
*priv
= netdev_priv(dev
);
841 if (!netif_running(dev
))
844 if (cmd
== SIOCSHWTSTAMP
)
845 return gfar_hwtstamp_ioctl(dev
, rq
, cmd
);
850 return phy_mii_ioctl(priv
->phydev
, rq
, cmd
);
853 static unsigned int reverse_bitmap(unsigned int bit_map
, unsigned int max_qs
)
855 unsigned int new_bit_map
= 0x0;
856 int mask
= 0x1 << (max_qs
- 1), i
;
857 for (i
= 0; i
< max_qs
; i
++) {
859 new_bit_map
= new_bit_map
+ (1 << i
);
865 static u32
cluster_entry_per_class(struct gfar_private
*priv
, u32 rqfar
,
868 u32 rqfpr
= FPR_FILER_MASK
;
872 rqfcr
= RQFCR_CLE
| RQFCR_PID_MASK
| RQFCR_CMP_EXACT
;
873 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
874 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
875 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
878 rqfcr
= RQFCR_CMP_NOMATCH
;
879 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
880 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
881 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
884 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_PARSE
| RQFCR_CLE
| RQFCR_AND
;
886 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
887 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
888 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
891 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_MASK
| RQFCR_AND
;
893 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
894 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
895 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
900 static void gfar_init_filer_table(struct gfar_private
*priv
)
903 u32 rqfar
= MAX_FILER_IDX
;
905 u32 rqfpr
= FPR_FILER_MASK
;
908 rqfcr
= RQFCR_CMP_MATCH
;
909 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
910 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
911 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
913 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
);
914 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_UDP
);
915 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_TCP
);
916 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
);
917 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_UDP
);
918 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_TCP
);
920 /* cur_filer_idx indicated the first non-masked rule */
921 priv
->cur_filer_idx
= rqfar
;
923 /* Rest are masked rules */
924 rqfcr
= RQFCR_CMP_NOMATCH
;
925 for (i
= 0; i
< rqfar
; i
++) {
926 priv
->ftp_rqfcr
[i
] = rqfcr
;
927 priv
->ftp_rqfpr
[i
] = rqfpr
;
928 gfar_write_filer(priv
, i
, rqfcr
, rqfpr
);
932 static void gfar_detect_errata(struct gfar_private
*priv
)
934 struct device
*dev
= &priv
->ofdev
->dev
;
935 unsigned int pvr
= mfspr(SPRN_PVR
);
936 unsigned int svr
= mfspr(SPRN_SVR
);
937 unsigned int mod
= (svr
>> 16) & 0xfff6; /* w/o E suffix */
938 unsigned int rev
= svr
& 0xffff;
940 /* MPC8313 Rev 2.0 and higher; All MPC837x */
941 if ((pvr
== 0x80850010 && mod
== 0x80b0 && rev
>= 0x0020) ||
942 (pvr
== 0x80861010 && (mod
& 0xfff9) == 0x80c0))
943 priv
->errata
|= GFAR_ERRATA_74
;
945 /* MPC8313 and MPC837x all rev */
946 if ((pvr
== 0x80850010 && mod
== 0x80b0) ||
947 (pvr
== 0x80861010 && (mod
& 0xfff9) == 0x80c0))
948 priv
->errata
|= GFAR_ERRATA_76
;
950 /* MPC8313 and MPC837x all rev */
951 if ((pvr
== 0x80850010 && mod
== 0x80b0) ||
952 (pvr
== 0x80861010 && (mod
& 0xfff9) == 0x80c0))
953 priv
->errata
|= GFAR_ERRATA_A002
;
955 /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
956 if ((pvr
== 0x80850010 && mod
== 0x80b0 && rev
< 0x0020) ||
957 (pvr
== 0x80210020 && mod
== 0x8030 && rev
== 0x0020))
958 priv
->errata
|= GFAR_ERRATA_12
;
961 dev_info(dev
, "enabled errata workarounds, flags: 0x%x\n",
965 /* Set up the ethernet device structure, private data,
966 * and anything else we need before we start */
967 static int gfar_probe(struct platform_device
*ofdev
)
970 struct net_device
*dev
= NULL
;
971 struct gfar_private
*priv
= NULL
;
972 struct gfar __iomem
*regs
= NULL
;
973 int err
= 0, i
, grp_idx
= 0;
975 u32 rstat
= 0, tstat
= 0, rqueue
= 0, tqueue
= 0;
979 err
= gfar_of_init(ofdev
, &dev
);
984 priv
= netdev_priv(dev
);
987 priv
->node
= ofdev
->dev
.of_node
;
988 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
990 spin_lock_init(&priv
->bflock
);
991 INIT_WORK(&priv
->reset_task
, gfar_reset_task
);
993 dev_set_drvdata(&ofdev
->dev
, priv
);
994 regs
= priv
->gfargrp
[0].regs
;
996 gfar_detect_errata(priv
);
998 /* Stop the DMA engine now, in case it was running before */
999 /* (The firmware could have used it, and left it running). */
1002 /* Reset MAC layer */
1003 gfar_write(®s
->maccfg1
, MACCFG1_SOFT_RESET
);
1005 /* We need to delay at least 3 TX clocks */
1008 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
1009 gfar_write(®s
->maccfg1
, tempval
);
1011 /* Initialize MACCFG2. */
1012 tempval
= MACCFG2_INIT_SETTINGS
;
1013 if (gfar_has_errata(priv
, GFAR_ERRATA_74
))
1014 tempval
|= MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
;
1015 gfar_write(®s
->maccfg2
, tempval
);
1017 /* Initialize ECNTRL */
1018 gfar_write(®s
->ecntrl
, ECNTRL_INIT_SETTINGS
);
1020 /* Set the dev->base_addr to the gfar reg region */
1021 dev
->base_addr
= (unsigned long) regs
;
1023 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
1025 /* Fill in the dev structure */
1026 dev
->watchdog_timeo
= TX_TIMEOUT
;
1028 dev
->netdev_ops
= &gfar_netdev_ops
;
1029 dev
->ethtool_ops
= &gfar_ethtool_ops
;
1031 /* Register for napi ...We are registering NAPI for each grp */
1032 for (i
= 0; i
< priv
->num_grps
; i
++)
1033 netif_napi_add(dev
, &priv
->gfargrp
[i
].napi
, gfar_poll
, GFAR_DEV_WEIGHT
);
1035 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
1036 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
1038 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
|
1039 NETIF_F_RXCSUM
| NETIF_F_HIGHDMA
;
1042 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
) {
1043 dev
->hw_features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
1044 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
1047 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
1048 priv
->extended_hash
= 1;
1049 priv
->hash_width
= 9;
1051 priv
->hash_regs
[0] = ®s
->igaddr0
;
1052 priv
->hash_regs
[1] = ®s
->igaddr1
;
1053 priv
->hash_regs
[2] = ®s
->igaddr2
;
1054 priv
->hash_regs
[3] = ®s
->igaddr3
;
1055 priv
->hash_regs
[4] = ®s
->igaddr4
;
1056 priv
->hash_regs
[5] = ®s
->igaddr5
;
1057 priv
->hash_regs
[6] = ®s
->igaddr6
;
1058 priv
->hash_regs
[7] = ®s
->igaddr7
;
1059 priv
->hash_regs
[8] = ®s
->gaddr0
;
1060 priv
->hash_regs
[9] = ®s
->gaddr1
;
1061 priv
->hash_regs
[10] = ®s
->gaddr2
;
1062 priv
->hash_regs
[11] = ®s
->gaddr3
;
1063 priv
->hash_regs
[12] = ®s
->gaddr4
;
1064 priv
->hash_regs
[13] = ®s
->gaddr5
;
1065 priv
->hash_regs
[14] = ®s
->gaddr6
;
1066 priv
->hash_regs
[15] = ®s
->gaddr7
;
1069 priv
->extended_hash
= 0;
1070 priv
->hash_width
= 8;
1072 priv
->hash_regs
[0] = ®s
->gaddr0
;
1073 priv
->hash_regs
[1] = ®s
->gaddr1
;
1074 priv
->hash_regs
[2] = ®s
->gaddr2
;
1075 priv
->hash_regs
[3] = ®s
->gaddr3
;
1076 priv
->hash_regs
[4] = ®s
->gaddr4
;
1077 priv
->hash_regs
[5] = ®s
->gaddr5
;
1078 priv
->hash_regs
[6] = ®s
->gaddr6
;
1079 priv
->hash_regs
[7] = ®s
->gaddr7
;
1082 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_PADDING
)
1083 priv
->padding
= DEFAULT_PADDING
;
1087 if (dev
->features
& NETIF_F_IP_CSUM
||
1088 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
)
1089 dev
->hard_header_len
+= GMAC_FCB_LEN
;
1091 /* Program the isrg regs only if number of grps > 1 */
1092 if (priv
->num_grps
> 1) {
1093 baddr
= ®s
->isrg0
;
1094 for (i
= 0; i
< priv
->num_grps
; i
++) {
1095 isrg
|= (priv
->gfargrp
[i
].rx_bit_map
<< ISRG_SHIFT_RX
);
1096 isrg
|= (priv
->gfargrp
[i
].tx_bit_map
<< ISRG_SHIFT_TX
);
1097 gfar_write(baddr
, isrg
);
1103 /* Need to reverse the bit maps as bit_map's MSB is q0
1104 * but, for_each_set_bit parses from right to left, which
1105 * basically reverses the queue numbers */
1106 for (i
= 0; i
< priv
->num_grps
; i
++) {
1107 priv
->gfargrp
[i
].tx_bit_map
= reverse_bitmap(
1108 priv
->gfargrp
[i
].tx_bit_map
, MAX_TX_QS
);
1109 priv
->gfargrp
[i
].rx_bit_map
= reverse_bitmap(
1110 priv
->gfargrp
[i
].rx_bit_map
, MAX_RX_QS
);
1113 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1114 * also assign queues to groups */
1115 for (grp_idx
= 0; grp_idx
< priv
->num_grps
; grp_idx
++) {
1116 priv
->gfargrp
[grp_idx
].num_rx_queues
= 0x0;
1117 for_each_set_bit(i
, &priv
->gfargrp
[grp_idx
].rx_bit_map
,
1118 priv
->num_rx_queues
) {
1119 priv
->gfargrp
[grp_idx
].num_rx_queues
++;
1120 priv
->rx_queue
[i
]->grp
= &priv
->gfargrp
[grp_idx
];
1121 rstat
= rstat
| (RSTAT_CLEAR_RHALT
>> i
);
1122 rqueue
= rqueue
| ((RQUEUE_EN0
| RQUEUE_EX0
) >> i
);
1124 priv
->gfargrp
[grp_idx
].num_tx_queues
= 0x0;
1125 for_each_set_bit(i
, &priv
->gfargrp
[grp_idx
].tx_bit_map
,
1126 priv
->num_tx_queues
) {
1127 priv
->gfargrp
[grp_idx
].num_tx_queues
++;
1128 priv
->tx_queue
[i
]->grp
= &priv
->gfargrp
[grp_idx
];
1129 tstat
= tstat
| (TSTAT_CLEAR_THALT
>> i
);
1130 tqueue
= tqueue
| (TQUEUE_EN0
>> i
);
1132 priv
->gfargrp
[grp_idx
].rstat
= rstat
;
1133 priv
->gfargrp
[grp_idx
].tstat
= tstat
;
1137 gfar_write(®s
->rqueue
, rqueue
);
1138 gfar_write(®s
->tqueue
, tqueue
);
1140 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
1142 /* Initializing some of the rx/tx queue level parameters */
1143 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
1144 priv
->tx_queue
[i
]->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
1145 priv
->tx_queue
[i
]->num_txbdfree
= DEFAULT_TX_RING_SIZE
;
1146 priv
->tx_queue
[i
]->txcoalescing
= DEFAULT_TX_COALESCE
;
1147 priv
->tx_queue
[i
]->txic
= DEFAULT_TXIC
;
1150 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
1151 priv
->rx_queue
[i
]->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
1152 priv
->rx_queue
[i
]->rxcoalescing
= DEFAULT_RX_COALESCE
;
1153 priv
->rx_queue
[i
]->rxic
= DEFAULT_RXIC
;
1156 /* always enable rx filer*/
1157 priv
->rx_filer_enable
= 1;
1158 /* Enable most messages by default */
1159 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
1161 /* Carrier starts down, phylib will bring it up */
1162 netif_carrier_off(dev
);
1164 err
= register_netdev(dev
);
1167 pr_err("%s: Cannot register net device, aborting\n", dev
->name
);
1171 device_init_wakeup(&dev
->dev
,
1172 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1174 /* fill out IRQ number and name fields */
1175 len_devname
= strlen(dev
->name
);
1176 for (i
= 0; i
< priv
->num_grps
; i
++) {
1177 strncpy(&priv
->gfargrp
[i
].int_name_tx
[0], dev
->name
,
1179 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1180 strncpy(&priv
->gfargrp
[i
].int_name_tx
[len_devname
],
1181 "_g", sizeof("_g"));
1182 priv
->gfargrp
[i
].int_name_tx
[
1183 strlen(priv
->gfargrp
[i
].int_name_tx
)] = i
+48;
1184 strncpy(&priv
->gfargrp
[i
].int_name_tx
[strlen(
1185 priv
->gfargrp
[i
].int_name_tx
)],
1186 "_tx", sizeof("_tx") + 1);
1188 strncpy(&priv
->gfargrp
[i
].int_name_rx
[0], dev
->name
,
1190 strncpy(&priv
->gfargrp
[i
].int_name_rx
[len_devname
],
1191 "_g", sizeof("_g"));
1192 priv
->gfargrp
[i
].int_name_rx
[
1193 strlen(priv
->gfargrp
[i
].int_name_rx
)] = i
+48;
1194 strncpy(&priv
->gfargrp
[i
].int_name_rx
[strlen(
1195 priv
->gfargrp
[i
].int_name_rx
)],
1196 "_rx", sizeof("_rx") + 1);
1198 strncpy(&priv
->gfargrp
[i
].int_name_er
[0], dev
->name
,
1200 strncpy(&priv
->gfargrp
[i
].int_name_er
[len_devname
],
1201 "_g", sizeof("_g"));
1202 priv
->gfargrp
[i
].int_name_er
[strlen(
1203 priv
->gfargrp
[i
].int_name_er
)] = i
+48;
1204 strncpy(&priv
->gfargrp
[i
].int_name_er
[strlen(\
1205 priv
->gfargrp
[i
].int_name_er
)],
1206 "_er", sizeof("_er") + 1);
1208 priv
->gfargrp
[i
].int_name_tx
[len_devname
] = '\0';
1211 /* Initialize the filer table */
1212 gfar_init_filer_table(priv
);
1214 /* Create all the sysfs files */
1215 gfar_init_sysfs(dev
);
1217 /* Print out the device info */
1218 netdev_info(dev
, "mac: %pM\n", dev
->dev_addr
);
1220 /* Even more device info helps when determining which kernel */
1221 /* provided which set of benchmarks. */
1222 netdev_info(dev
, "Running with NAPI enabled\n");
1223 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
1224 netdev_info(dev
, "RX BD ring size for Q[%d]: %d\n",
1225 i
, priv
->rx_queue
[i
]->rx_ring_size
);
1226 for(i
= 0; i
< priv
->num_tx_queues
; i
++)
1227 netdev_info(dev
, "TX BD ring size for Q[%d]: %d\n",
1228 i
, priv
->tx_queue
[i
]->tx_ring_size
);
1233 unmap_group_regs(priv
);
1234 free_tx_pointers(priv
);
1235 free_rx_pointers(priv
);
1237 of_node_put(priv
->phy_node
);
1239 of_node_put(priv
->tbi_node
);
1244 static int gfar_remove(struct platform_device
*ofdev
)
1246 struct gfar_private
*priv
= dev_get_drvdata(&ofdev
->dev
);
1249 of_node_put(priv
->phy_node
);
1251 of_node_put(priv
->tbi_node
);
1253 dev_set_drvdata(&ofdev
->dev
, NULL
);
1255 unregister_netdev(priv
->ndev
);
1256 unmap_group_regs(priv
);
1257 free_netdev(priv
->ndev
);
1264 static int gfar_suspend(struct device
*dev
)
1266 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1267 struct net_device
*ndev
= priv
->ndev
;
1268 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1269 unsigned long flags
;
1272 int magic_packet
= priv
->wol_en
&&
1273 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1275 netif_device_detach(ndev
);
1277 if (netif_running(ndev
)) {
1279 local_irq_save(flags
);
1283 gfar_halt_nodisable(ndev
);
1285 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1286 tempval
= gfar_read(®s
->maccfg1
);
1288 tempval
&= ~MACCFG1_TX_EN
;
1291 tempval
&= ~MACCFG1_RX_EN
;
1293 gfar_write(®s
->maccfg1
, tempval
);
1297 local_irq_restore(flags
);
1302 /* Enable interrupt on Magic Packet */
1303 gfar_write(®s
->imask
, IMASK_MAG
);
1305 /* Enable Magic Packet mode */
1306 tempval
= gfar_read(®s
->maccfg2
);
1307 tempval
|= MACCFG2_MPEN
;
1308 gfar_write(®s
->maccfg2
, tempval
);
1310 phy_stop(priv
->phydev
);
1317 static int gfar_resume(struct device
*dev
)
1319 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1320 struct net_device
*ndev
= priv
->ndev
;
1321 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1322 unsigned long flags
;
1324 int magic_packet
= priv
->wol_en
&&
1325 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1327 if (!netif_running(ndev
)) {
1328 netif_device_attach(ndev
);
1332 if (!magic_packet
&& priv
->phydev
)
1333 phy_start(priv
->phydev
);
1335 /* Disable Magic Packet mode, in case something
1338 local_irq_save(flags
);
1342 tempval
= gfar_read(®s
->maccfg2
);
1343 tempval
&= ~MACCFG2_MPEN
;
1344 gfar_write(®s
->maccfg2
, tempval
);
1350 local_irq_restore(flags
);
1352 netif_device_attach(ndev
);
1359 static int gfar_restore(struct device
*dev
)
1361 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1362 struct net_device
*ndev
= priv
->ndev
;
1364 if (!netif_running(ndev
))
1367 gfar_init_bds(ndev
);
1368 init_registers(ndev
);
1369 gfar_set_mac_address(ndev
);
1370 gfar_init_mac(ndev
);
1375 priv
->oldduplex
= -1;
1378 phy_start(priv
->phydev
);
1380 netif_device_attach(ndev
);
1386 static struct dev_pm_ops gfar_pm_ops
= {
1387 .suspend
= gfar_suspend
,
1388 .resume
= gfar_resume
,
1389 .freeze
= gfar_suspend
,
1390 .thaw
= gfar_resume
,
1391 .restore
= gfar_restore
,
1394 #define GFAR_PM_OPS (&gfar_pm_ops)
1398 #define GFAR_PM_OPS NULL
1402 /* Reads the controller's registers to determine what interface
1403 * connects it to the PHY.
1405 static phy_interface_t
gfar_get_interface(struct net_device
*dev
)
1407 struct gfar_private
*priv
= netdev_priv(dev
);
1408 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1411 ecntrl
= gfar_read(®s
->ecntrl
);
1413 if (ecntrl
& ECNTRL_SGMII_MODE
)
1414 return PHY_INTERFACE_MODE_SGMII
;
1416 if (ecntrl
& ECNTRL_TBI_MODE
) {
1417 if (ecntrl
& ECNTRL_REDUCED_MODE
)
1418 return PHY_INTERFACE_MODE_RTBI
;
1420 return PHY_INTERFACE_MODE_TBI
;
1423 if (ecntrl
& ECNTRL_REDUCED_MODE
) {
1424 if (ecntrl
& ECNTRL_REDUCED_MII_MODE
)
1425 return PHY_INTERFACE_MODE_RMII
;
1427 phy_interface_t interface
= priv
->interface
;
1430 * This isn't autodetected right now, so it must
1431 * be set by the device tree or platform code.
1433 if (interface
== PHY_INTERFACE_MODE_RGMII_ID
)
1434 return PHY_INTERFACE_MODE_RGMII_ID
;
1436 return PHY_INTERFACE_MODE_RGMII
;
1440 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
)
1441 return PHY_INTERFACE_MODE_GMII
;
1443 return PHY_INTERFACE_MODE_MII
;
1447 /* Initializes driver's PHY state, and attaches to the PHY.
1448 * Returns 0 on success.
1450 static int init_phy(struct net_device
*dev
)
1452 struct gfar_private
*priv
= netdev_priv(dev
);
1453 uint gigabit_support
=
1454 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
1455 SUPPORTED_1000baseT_Full
: 0;
1456 phy_interface_t interface
;
1460 priv
->oldduplex
= -1;
1462 interface
= gfar_get_interface(dev
);
1464 priv
->phydev
= of_phy_connect(dev
, priv
->phy_node
, &adjust_link
, 0,
1467 priv
->phydev
= of_phy_connect_fixed_link(dev
, &adjust_link
,
1469 if (!priv
->phydev
) {
1470 dev_err(&dev
->dev
, "could not attach to PHY\n");
1474 if (interface
== PHY_INTERFACE_MODE_SGMII
)
1475 gfar_configure_serdes(dev
);
1477 /* Remove any features not supported by the controller */
1478 priv
->phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
1479 priv
->phydev
->advertising
= priv
->phydev
->supported
;
1485 * Initialize TBI PHY interface for communicating with the
1486 * SERDES lynx PHY on the chip. We communicate with this PHY
1487 * through the MDIO bus on each controller, treating it as a
1488 * "normal" PHY at the address found in the TBIPA register. We assume
1489 * that the TBIPA register is valid. Either the MDIO bus code will set
1490 * it to a value that doesn't conflict with other PHYs on the bus, or the
1491 * value doesn't matter, as there are no other PHYs on the bus.
1493 static void gfar_configure_serdes(struct net_device
*dev
)
1495 struct gfar_private
*priv
= netdev_priv(dev
);
1496 struct phy_device
*tbiphy
;
1498 if (!priv
->tbi_node
) {
1499 dev_warn(&dev
->dev
, "error: SGMII mode requires that the "
1500 "device tree specify a tbi-handle\n");
1504 tbiphy
= of_phy_find_device(priv
->tbi_node
);
1506 dev_err(&dev
->dev
, "error: Could not get TBI device\n");
1511 * If the link is already up, we must already be ok, and don't need to
1512 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1513 * everything for us? Resetting it takes the link down and requires
1514 * several seconds for it to come back.
1516 if (phy_read(tbiphy
, MII_BMSR
) & BMSR_LSTATUS
)
1519 /* Single clk mode, mii mode off(for serdes communication) */
1520 phy_write(tbiphy
, MII_TBICON
, TBICON_CLK_SELECT
);
1522 phy_write(tbiphy
, MII_ADVERTISE
,
1523 ADVERTISE_1000XFULL
| ADVERTISE_1000XPAUSE
|
1524 ADVERTISE_1000XPSE_ASYM
);
1526 phy_write(tbiphy
, MII_BMCR
, BMCR_ANENABLE
|
1527 BMCR_ANRESTART
| BMCR_FULLDPLX
| BMCR_SPEED1000
);
1530 static void init_registers(struct net_device
*dev
)
1532 struct gfar_private
*priv
= netdev_priv(dev
);
1533 struct gfar __iomem
*regs
= NULL
;
1536 for (i
= 0; i
< priv
->num_grps
; i
++) {
1537 regs
= priv
->gfargrp
[i
].regs
;
1539 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
1541 /* Initialize IMASK */
1542 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1545 regs
= priv
->gfargrp
[0].regs
;
1546 /* Init hash registers to zero */
1547 gfar_write(®s
->igaddr0
, 0);
1548 gfar_write(®s
->igaddr1
, 0);
1549 gfar_write(®s
->igaddr2
, 0);
1550 gfar_write(®s
->igaddr3
, 0);
1551 gfar_write(®s
->igaddr4
, 0);
1552 gfar_write(®s
->igaddr5
, 0);
1553 gfar_write(®s
->igaddr6
, 0);
1554 gfar_write(®s
->igaddr7
, 0);
1556 gfar_write(®s
->gaddr0
, 0);
1557 gfar_write(®s
->gaddr1
, 0);
1558 gfar_write(®s
->gaddr2
, 0);
1559 gfar_write(®s
->gaddr3
, 0);
1560 gfar_write(®s
->gaddr4
, 0);
1561 gfar_write(®s
->gaddr5
, 0);
1562 gfar_write(®s
->gaddr6
, 0);
1563 gfar_write(®s
->gaddr7
, 0);
1565 /* Zero out the rmon mib registers if it has them */
1566 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
1567 memset_io(&(regs
->rmon
), 0, sizeof (struct rmon_mib
));
1569 /* Mask off the CAM interrupts */
1570 gfar_write(®s
->rmon
.cam1
, 0xffffffff);
1571 gfar_write(®s
->rmon
.cam2
, 0xffffffff);
1574 /* Initialize the max receive buffer length */
1575 gfar_write(®s
->mrblr
, priv
->rx_buffer_size
);
1577 /* Initialize the Minimum Frame Length Register */
1578 gfar_write(®s
->minflr
, MINFLR_INIT_SETTINGS
);
1581 static int __gfar_is_rx_idle(struct gfar_private
*priv
)
1586 * Normaly TSEC should not hang on GRS commands, so we should
1587 * actually wait for IEVENT_GRSC flag.
1589 if (likely(!gfar_has_errata(priv
, GFAR_ERRATA_A002
)))
1593 * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1594 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1595 * and the Rx can be safely reset.
1597 res
= gfar_read((void __iomem
*)priv
->gfargrp
[0].regs
+ 0xd1c);
1599 if ((res
& 0xffff) == (res
>> 16))
1605 /* Halt the receive and transmit queues */
1606 static void gfar_halt_nodisable(struct net_device
*dev
)
1608 struct gfar_private
*priv
= netdev_priv(dev
);
1609 struct gfar __iomem
*regs
= NULL
;
1613 for (i
= 0; i
< priv
->num_grps
; i
++) {
1614 regs
= priv
->gfargrp
[i
].regs
;
1615 /* Mask all interrupts */
1616 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1618 /* Clear all interrupts */
1619 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
1622 regs
= priv
->gfargrp
[0].regs
;
1623 /* Stop the DMA, and wait for it to stop */
1624 tempval
= gfar_read(®s
->dmactrl
);
1625 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
1626 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
1629 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
1630 gfar_write(®s
->dmactrl
, tempval
);
1633 ret
= spin_event_timeout(((gfar_read(®s
->ievent
) &
1634 (IEVENT_GRSC
| IEVENT_GTSC
)) ==
1635 (IEVENT_GRSC
| IEVENT_GTSC
)), 1000000, 0);
1636 if (!ret
&& !(gfar_read(®s
->ievent
) & IEVENT_GRSC
))
1637 ret
= __gfar_is_rx_idle(priv
);
1642 /* Halt the receive and transmit queues */
1643 void gfar_halt(struct net_device
*dev
)
1645 struct gfar_private
*priv
= netdev_priv(dev
);
1646 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1649 gfar_halt_nodisable(dev
);
1651 /* Disable Rx and Tx */
1652 tempval
= gfar_read(®s
->maccfg1
);
1653 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
1654 gfar_write(®s
->maccfg1
, tempval
);
1657 static void free_grp_irqs(struct gfar_priv_grp
*grp
)
1659 free_irq(grp
->interruptError
, grp
);
1660 free_irq(grp
->interruptTransmit
, grp
);
1661 free_irq(grp
->interruptReceive
, grp
);
1664 void stop_gfar(struct net_device
*dev
)
1666 struct gfar_private
*priv
= netdev_priv(dev
);
1667 unsigned long flags
;
1670 phy_stop(priv
->phydev
);
1674 local_irq_save(flags
);
1682 local_irq_restore(flags
);
1685 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1686 for (i
= 0; i
< priv
->num_grps
; i
++)
1687 free_grp_irqs(&priv
->gfargrp
[i
]);
1689 for (i
= 0; i
< priv
->num_grps
; i
++)
1690 free_irq(priv
->gfargrp
[i
].interruptTransmit
,
1694 free_skb_resources(priv
);
1697 static void free_skb_tx_queue(struct gfar_priv_tx_q
*tx_queue
)
1699 struct txbd8
*txbdp
;
1700 struct gfar_private
*priv
= netdev_priv(tx_queue
->dev
);
1703 txbdp
= tx_queue
->tx_bd_base
;
1705 for (i
= 0; i
< tx_queue
->tx_ring_size
; i
++) {
1706 if (!tx_queue
->tx_skbuff
[i
])
1709 dma_unmap_single(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
1710 txbdp
->length
, DMA_TO_DEVICE
);
1712 for (j
= 0; j
< skb_shinfo(tx_queue
->tx_skbuff
[i
])->nr_frags
;
1715 dma_unmap_page(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
1716 txbdp
->length
, DMA_TO_DEVICE
);
1719 dev_kfree_skb_any(tx_queue
->tx_skbuff
[i
]);
1720 tx_queue
->tx_skbuff
[i
] = NULL
;
1722 kfree(tx_queue
->tx_skbuff
);
1725 static void free_skb_rx_queue(struct gfar_priv_rx_q
*rx_queue
)
1727 struct rxbd8
*rxbdp
;
1728 struct gfar_private
*priv
= netdev_priv(rx_queue
->dev
);
1731 rxbdp
= rx_queue
->rx_bd_base
;
1733 for (i
= 0; i
< rx_queue
->rx_ring_size
; i
++) {
1734 if (rx_queue
->rx_skbuff
[i
]) {
1735 dma_unmap_single(&priv
->ofdev
->dev
,
1736 rxbdp
->bufPtr
, priv
->rx_buffer_size
,
1738 dev_kfree_skb_any(rx_queue
->rx_skbuff
[i
]);
1739 rx_queue
->rx_skbuff
[i
] = NULL
;
1745 kfree(rx_queue
->rx_skbuff
);
1748 /* If there are any tx skbs or rx skbs still around, free them.
1749 * Then free tx_skbuff and rx_skbuff */
1750 static void free_skb_resources(struct gfar_private
*priv
)
1752 struct gfar_priv_tx_q
*tx_queue
= NULL
;
1753 struct gfar_priv_rx_q
*rx_queue
= NULL
;
1756 /* Go through all the buffer descriptors and free their data buffers */
1757 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
1758 tx_queue
= priv
->tx_queue
[i
];
1759 if(tx_queue
->tx_skbuff
)
1760 free_skb_tx_queue(tx_queue
);
1763 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
1764 rx_queue
= priv
->rx_queue
[i
];
1765 if(rx_queue
->rx_skbuff
)
1766 free_skb_rx_queue(rx_queue
);
1769 dma_free_coherent(&priv
->ofdev
->dev
,
1770 sizeof(struct txbd8
) * priv
->total_tx_ring_size
+
1771 sizeof(struct rxbd8
) * priv
->total_rx_ring_size
,
1772 priv
->tx_queue
[0]->tx_bd_base
,
1773 priv
->tx_queue
[0]->tx_bd_dma_base
);
1774 skb_queue_purge(&priv
->rx_recycle
);
1777 void gfar_start(struct net_device
*dev
)
1779 struct gfar_private
*priv
= netdev_priv(dev
);
1780 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1784 /* Enable Rx and Tx in MACCFG1 */
1785 tempval
= gfar_read(®s
->maccfg1
);
1786 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
1787 gfar_write(®s
->maccfg1
, tempval
);
1789 /* Initialize DMACTRL to have WWR and WOP */
1790 tempval
= gfar_read(®s
->dmactrl
);
1791 tempval
|= DMACTRL_INIT_SETTINGS
;
1792 gfar_write(®s
->dmactrl
, tempval
);
1794 /* Make sure we aren't stopped */
1795 tempval
= gfar_read(®s
->dmactrl
);
1796 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
1797 gfar_write(®s
->dmactrl
, tempval
);
1799 for (i
= 0; i
< priv
->num_grps
; i
++) {
1800 regs
= priv
->gfargrp
[i
].regs
;
1801 /* Clear THLT/RHLT, so that the DMA starts polling now */
1802 gfar_write(®s
->tstat
, priv
->gfargrp
[i
].tstat
);
1803 gfar_write(®s
->rstat
, priv
->gfargrp
[i
].rstat
);
1804 /* Unmask the interrupts we look for */
1805 gfar_write(®s
->imask
, IMASK_DEFAULT
);
1808 dev
->trans_start
= jiffies
; /* prevent tx timeout */
1811 void gfar_configure_coalescing(struct gfar_private
*priv
,
1812 unsigned long tx_mask
, unsigned long rx_mask
)
1814 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1818 /* Backward compatible case ---- even if we enable
1819 * multiple queues, there's only single reg to program
1821 gfar_write(®s
->txic
, 0);
1822 if(likely(priv
->tx_queue
[0]->txcoalescing
))
1823 gfar_write(®s
->txic
, priv
->tx_queue
[0]->txic
);
1825 gfar_write(®s
->rxic
, 0);
1826 if(unlikely(priv
->rx_queue
[0]->rxcoalescing
))
1827 gfar_write(®s
->rxic
, priv
->rx_queue
[0]->rxic
);
1829 if (priv
->mode
== MQ_MG_MODE
) {
1830 baddr
= ®s
->txic0
;
1831 for_each_set_bit(i
, &tx_mask
, priv
->num_tx_queues
) {
1832 if (likely(priv
->tx_queue
[i
]->txcoalescing
)) {
1833 gfar_write(baddr
+ i
, 0);
1834 gfar_write(baddr
+ i
, priv
->tx_queue
[i
]->txic
);
1838 baddr
= ®s
->rxic0
;
1839 for_each_set_bit(i
, &rx_mask
, priv
->num_rx_queues
) {
1840 if (likely(priv
->rx_queue
[i
]->rxcoalescing
)) {
1841 gfar_write(baddr
+ i
, 0);
1842 gfar_write(baddr
+ i
, priv
->rx_queue
[i
]->rxic
);
1848 static int register_grp_irqs(struct gfar_priv_grp
*grp
)
1850 struct gfar_private
*priv
= grp
->priv
;
1851 struct net_device
*dev
= priv
->ndev
;
1854 /* If the device has multiple interrupts, register for
1855 * them. Otherwise, only register for the one */
1856 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1857 /* Install our interrupt handlers for Error,
1858 * Transmit, and Receive */
1859 if ((err
= request_irq(grp
->interruptError
, gfar_error
, 0,
1860 grp
->int_name_er
,grp
)) < 0) {
1861 netif_err(priv
, intr
, dev
, "Can't get IRQ %d\n",
1862 grp
->interruptError
);
1867 if ((err
= request_irq(grp
->interruptTransmit
, gfar_transmit
,
1868 0, grp
->int_name_tx
, grp
)) < 0) {
1869 netif_err(priv
, intr
, dev
, "Can't get IRQ %d\n",
1870 grp
->interruptTransmit
);
1874 if ((err
= request_irq(grp
->interruptReceive
, gfar_receive
, 0,
1875 grp
->int_name_rx
, grp
)) < 0) {
1876 netif_err(priv
, intr
, dev
, "Can't get IRQ %d\n",
1877 grp
->interruptReceive
);
1881 if ((err
= request_irq(grp
->interruptTransmit
, gfar_interrupt
, 0,
1882 grp
->int_name_tx
, grp
)) < 0) {
1883 netif_err(priv
, intr
, dev
, "Can't get IRQ %d\n",
1884 grp
->interruptTransmit
);
1892 free_irq(grp
->interruptTransmit
, grp
);
1894 free_irq(grp
->interruptError
, grp
);
1900 /* Bring the controller up and running */
1901 int startup_gfar(struct net_device
*ndev
)
1903 struct gfar_private
*priv
= netdev_priv(ndev
);
1904 struct gfar __iomem
*regs
= NULL
;
1907 for (i
= 0; i
< priv
->num_grps
; i
++) {
1908 regs
= priv
->gfargrp
[i
].regs
;
1909 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1912 regs
= priv
->gfargrp
[0].regs
;
1913 err
= gfar_alloc_skb_resources(ndev
);
1917 gfar_init_mac(ndev
);
1919 for (i
= 0; i
< priv
->num_grps
; i
++) {
1920 err
= register_grp_irqs(&priv
->gfargrp
[i
]);
1922 for (j
= 0; j
< i
; j
++)
1923 free_grp_irqs(&priv
->gfargrp
[j
]);
1928 /* Start the controller */
1931 phy_start(priv
->phydev
);
1933 gfar_configure_coalescing(priv
, 0xFF, 0xFF);
1938 free_skb_resources(priv
);
1942 /* Called when something needs to use the ethernet device */
1943 /* Returns 0 for success. */
1944 static int gfar_enet_open(struct net_device
*dev
)
1946 struct gfar_private
*priv
= netdev_priv(dev
);
1951 skb_queue_head_init(&priv
->rx_recycle
);
1953 /* Initialize a bunch of registers */
1954 init_registers(dev
);
1956 gfar_set_mac_address(dev
);
1958 err
= init_phy(dev
);
1965 err
= startup_gfar(dev
);
1971 netif_tx_start_all_queues(dev
);
1973 device_set_wakeup_enable(&dev
->dev
, priv
->wol_en
);
1978 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
)
1980 struct txfcb
*fcb
= (struct txfcb
*)skb_push(skb
, GMAC_FCB_LEN
);
1982 memset(fcb
, 0, GMAC_FCB_LEN
);
1987 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
)
1991 /* If we're here, it's a IP packet with a TCP or UDP
1992 * payload. We set it to checksum, using a pseudo-header
1995 flags
= TXFCB_DEFAULT
;
1997 /* Tell the controller what the protocol is */
1998 /* And provide the already calculated phcs */
1999 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
2001 fcb
->phcs
= udp_hdr(skb
)->check
;
2003 fcb
->phcs
= tcp_hdr(skb
)->check
;
2005 /* l3os is the distance between the start of the
2006 * frame (skb->data) and the start of the IP hdr.
2007 * l4os is the distance between the start of the
2008 * l3 hdr and the l4 hdr */
2009 fcb
->l3os
= (u16
)(skb_network_offset(skb
) - GMAC_FCB_LEN
);
2010 fcb
->l4os
= skb_network_header_len(skb
);
2015 void inline gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
2017 fcb
->flags
|= TXFCB_VLN
;
2018 fcb
->vlctl
= vlan_tx_tag_get(skb
);
2021 static inline struct txbd8
*skip_txbd(struct txbd8
*bdp
, int stride
,
2022 struct txbd8
*base
, int ring_size
)
2024 struct txbd8
*new_bd
= bdp
+ stride
;
2026 return (new_bd
>= (base
+ ring_size
)) ? (new_bd
- ring_size
) : new_bd
;
2029 static inline struct txbd8
*next_txbd(struct txbd8
*bdp
, struct txbd8
*base
,
2032 return skip_txbd(bdp
, 1, base
, ring_size
);
2035 /* This is called by the kernel when a frame is ready for transmission. */
2036 /* It is pointed to by the dev->hard_start_xmit function pointer */
2037 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2039 struct gfar_private
*priv
= netdev_priv(dev
);
2040 struct gfar_priv_tx_q
*tx_queue
= NULL
;
2041 struct netdev_queue
*txq
;
2042 struct gfar __iomem
*regs
= NULL
;
2043 struct txfcb
*fcb
= NULL
;
2044 struct txbd8
*txbdp
, *txbdp_start
, *base
, *txbdp_tstamp
= NULL
;
2046 int i
, rq
= 0, do_tstamp
= 0;
2048 unsigned long flags
;
2049 unsigned int nr_frags
, nr_txbds
, length
;
2052 * TOE=1 frames larger than 2500 bytes may see excess delays
2053 * before start of transmission.
2055 if (unlikely(gfar_has_errata(priv
, GFAR_ERRATA_76
) &&
2056 skb
->ip_summed
== CHECKSUM_PARTIAL
&&
2060 ret
= skb_checksum_help(skb
);
2065 rq
= skb
->queue_mapping
;
2066 tx_queue
= priv
->tx_queue
[rq
];
2067 txq
= netdev_get_tx_queue(dev
, rq
);
2068 base
= tx_queue
->tx_bd_base
;
2069 regs
= tx_queue
->grp
->regs
;
2071 /* check if time stamp should be generated */
2072 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
&&
2076 /* make space for additional header when fcb is needed */
2077 if (((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
2078 vlan_tx_tag_present(skb
) ||
2079 unlikely(do_tstamp
)) &&
2080 (skb_headroom(skb
) < GMAC_FCB_LEN
)) {
2081 struct sk_buff
*skb_new
;
2083 skb_new
= skb_realloc_headroom(skb
, GMAC_FCB_LEN
);
2085 dev
->stats
.tx_errors
++;
2087 return NETDEV_TX_OK
;
2093 /* total number of fragments in the SKB */
2094 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2096 /* calculate the required number of TxBDs for this skb */
2097 if (unlikely(do_tstamp
))
2098 nr_txbds
= nr_frags
+ 2;
2100 nr_txbds
= nr_frags
+ 1;
2102 /* check if there is space to queue this packet */
2103 if (nr_txbds
> tx_queue
->num_txbdfree
) {
2104 /* no space, stop the queue */
2105 netif_tx_stop_queue(txq
);
2106 dev
->stats
.tx_fifo_errors
++;
2107 return NETDEV_TX_BUSY
;
2110 /* Update transmit stats */
2111 tx_queue
->stats
.tx_bytes
+= skb
->len
;
2112 tx_queue
->stats
.tx_packets
++;
2114 txbdp
= txbdp_start
= tx_queue
->cur_tx
;
2115 lstatus
= txbdp
->lstatus
;
2117 /* Time stamp insertion requires one additional TxBD */
2118 if (unlikely(do_tstamp
))
2119 txbdp_tstamp
= txbdp
= next_txbd(txbdp
, base
,
2120 tx_queue
->tx_ring_size
);
2122 if (nr_frags
== 0) {
2123 if (unlikely(do_tstamp
))
2124 txbdp_tstamp
->lstatus
|= BD_LFLAG(TXBD_LAST
|
2127 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
2129 /* Place the fragment addresses and lengths into the TxBDs */
2130 for (i
= 0; i
< nr_frags
; i
++) {
2131 /* Point at the next BD, wrapping as needed */
2132 txbdp
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2134 length
= skb_shinfo(skb
)->frags
[i
].size
;
2136 lstatus
= txbdp
->lstatus
| length
|
2137 BD_LFLAG(TXBD_READY
);
2139 /* Handle the last BD specially */
2140 if (i
== nr_frags
- 1)
2141 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
2143 bufaddr
= skb_frag_dma_map(&priv
->ofdev
->dev
,
2144 &skb_shinfo(skb
)->frags
[i
],
2149 /* set the TxBD length and buffer pointer */
2150 txbdp
->bufPtr
= bufaddr
;
2151 txbdp
->lstatus
= lstatus
;
2154 lstatus
= txbdp_start
->lstatus
;
2157 /* Set up checksumming */
2158 if (CHECKSUM_PARTIAL
== skb
->ip_summed
) {
2159 fcb
= gfar_add_fcb(skb
);
2160 /* as specified by errata */
2161 if (unlikely(gfar_has_errata(priv
, GFAR_ERRATA_12
)
2162 && ((unsigned long)fcb
% 0x20) > 0x18)) {
2163 __skb_pull(skb
, GMAC_FCB_LEN
);
2164 skb_checksum_help(skb
);
2166 lstatus
|= BD_LFLAG(TXBD_TOE
);
2167 gfar_tx_checksum(skb
, fcb
);
2171 if (vlan_tx_tag_present(skb
)) {
2172 if (unlikely(NULL
== fcb
)) {
2173 fcb
= gfar_add_fcb(skb
);
2174 lstatus
|= BD_LFLAG(TXBD_TOE
);
2177 gfar_tx_vlan(skb
, fcb
);
2180 /* Setup tx hardware time stamping if requested */
2181 if (unlikely(do_tstamp
)) {
2182 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
2184 fcb
= gfar_add_fcb(skb
);
2186 lstatus
|= BD_LFLAG(TXBD_TOE
);
2189 txbdp_start
->bufPtr
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
2190 skb_headlen(skb
), DMA_TO_DEVICE
);
2193 * If time stamping is requested one additional TxBD must be set up. The
2194 * first TxBD points to the FCB and must have a data length of
2195 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2196 * the full frame length.
2198 if (unlikely(do_tstamp
)) {
2199 txbdp_tstamp
->bufPtr
= txbdp_start
->bufPtr
+ GMAC_FCB_LEN
;
2200 txbdp_tstamp
->lstatus
|= BD_LFLAG(TXBD_READY
) |
2201 (skb_headlen(skb
) - GMAC_FCB_LEN
);
2202 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | GMAC_FCB_LEN
;
2204 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | skb_headlen(skb
);
2208 * We can work in parallel with gfar_clean_tx_ring(), except
2209 * when modifying num_txbdfree. Note that we didn't grab the lock
2210 * when we were reading the num_txbdfree and checking for available
2211 * space, that's because outside of this function it can only grow,
2212 * and once we've got needed space, it cannot suddenly disappear.
2214 * The lock also protects us from gfar_error(), which can modify
2215 * regs->tstat and thus retrigger the transfers, which is why we
2216 * also must grab the lock before setting ready bit for the first
2217 * to be transmitted BD.
2219 spin_lock_irqsave(&tx_queue
->txlock
, flags
);
2222 * The powerpc-specific eieio() is used, as wmb() has too strong
2223 * semantics (it requires synchronization between cacheable and
2224 * uncacheable mappings, which eieio doesn't provide and which we
2225 * don't need), thus requiring a more expensive sync instruction. At
2226 * some point, the set of architecture-independent barrier functions
2227 * should be expanded to include weaker barriers.
2231 txbdp_start
->lstatus
= lstatus
;
2233 eieio(); /* force lstatus write before tx_skbuff */
2235 tx_queue
->tx_skbuff
[tx_queue
->skb_curtx
] = skb
;
2237 /* Update the current skb pointer to the next entry we will use
2238 * (wrapping if necessary) */
2239 tx_queue
->skb_curtx
= (tx_queue
->skb_curtx
+ 1) &
2240 TX_RING_MOD_MASK(tx_queue
->tx_ring_size
);
2242 tx_queue
->cur_tx
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2244 /* reduce TxBD free count */
2245 tx_queue
->num_txbdfree
-= (nr_txbds
);
2247 /* If the next BD still needs to be cleaned up, then the bds
2248 are full. We need to tell the kernel to stop sending us stuff. */
2249 if (!tx_queue
->num_txbdfree
) {
2250 netif_tx_stop_queue(txq
);
2252 dev
->stats
.tx_fifo_errors
++;
2255 /* Tell the DMA to go go go */
2256 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
>> tx_queue
->qindex
);
2259 spin_unlock_irqrestore(&tx_queue
->txlock
, flags
);
2261 return NETDEV_TX_OK
;
2264 /* Stops the kernel queue, and halts the controller */
2265 static int gfar_close(struct net_device
*dev
)
2267 struct gfar_private
*priv
= netdev_priv(dev
);
2271 cancel_work_sync(&priv
->reset_task
);
2274 /* Disconnect from the PHY */
2275 phy_disconnect(priv
->phydev
);
2276 priv
->phydev
= NULL
;
2278 netif_tx_stop_all_queues(dev
);
2283 /* Changes the mac address if the controller is not running. */
2284 static int gfar_set_mac_address(struct net_device
*dev
)
2286 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
2291 /* Check if rx parser should be activated */
2292 void gfar_check_rx_parser_mode(struct gfar_private
*priv
)
2294 struct gfar __iomem
*regs
;
2297 regs
= priv
->gfargrp
[0].regs
;
2299 tempval
= gfar_read(®s
->rctrl
);
2300 /* If parse is no longer required, then disable parser */
2301 if (tempval
& RCTRL_REQ_PARSER
)
2302 tempval
|= RCTRL_PRSDEP_INIT
;
2304 tempval
&= ~RCTRL_PRSDEP_INIT
;
2305 gfar_write(®s
->rctrl
, tempval
);
2308 /* Enables and disables VLAN insertion/extraction */
2309 void gfar_vlan_mode(struct net_device
*dev
, u32 features
)
2311 struct gfar_private
*priv
= netdev_priv(dev
);
2312 struct gfar __iomem
*regs
= NULL
;
2313 unsigned long flags
;
2316 regs
= priv
->gfargrp
[0].regs
;
2317 local_irq_save(flags
);
2320 if (features
& NETIF_F_HW_VLAN_TX
) {
2321 /* Enable VLAN tag insertion */
2322 tempval
= gfar_read(®s
->tctrl
);
2323 tempval
|= TCTRL_VLINS
;
2324 gfar_write(®s
->tctrl
, tempval
);
2326 /* Disable VLAN tag insertion */
2327 tempval
= gfar_read(®s
->tctrl
);
2328 tempval
&= ~TCTRL_VLINS
;
2329 gfar_write(®s
->tctrl
, tempval
);
2332 if (features
& NETIF_F_HW_VLAN_RX
) {
2333 /* Enable VLAN tag extraction */
2334 tempval
= gfar_read(®s
->rctrl
);
2335 tempval
|= (RCTRL_VLEX
| RCTRL_PRSDEP_INIT
);
2336 gfar_write(®s
->rctrl
, tempval
);
2338 /* Disable VLAN tag extraction */
2339 tempval
= gfar_read(®s
->rctrl
);
2340 tempval
&= ~RCTRL_VLEX
;
2341 gfar_write(®s
->rctrl
, tempval
);
2343 gfar_check_rx_parser_mode(priv
);
2346 gfar_change_mtu(dev
, dev
->mtu
);
2349 local_irq_restore(flags
);
2352 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
2354 int tempsize
, tempval
;
2355 struct gfar_private
*priv
= netdev_priv(dev
);
2356 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2357 int oldsize
= priv
->rx_buffer_size
;
2358 int frame_size
= new_mtu
+ ETH_HLEN
;
2360 if (gfar_is_vlan_on(priv
))
2361 frame_size
+= VLAN_HLEN
;
2363 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
2364 netif_err(priv
, drv
, dev
, "Invalid MTU setting\n");
2368 if (gfar_uses_fcb(priv
))
2369 frame_size
+= GMAC_FCB_LEN
;
2371 frame_size
+= priv
->padding
;
2374 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
2375 INCREMENTAL_BUFFER_SIZE
;
2377 /* Only stop and start the controller if it isn't already
2378 * stopped, and we changed something */
2379 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
2382 priv
->rx_buffer_size
= tempsize
;
2386 gfar_write(®s
->mrblr
, priv
->rx_buffer_size
);
2387 gfar_write(®s
->maxfrm
, priv
->rx_buffer_size
);
2389 /* If the mtu is larger than the max size for standard
2390 * ethernet frames (ie, a jumbo frame), then set maccfg2
2391 * to allow huge frames, and to check the length */
2392 tempval
= gfar_read(®s
->maccfg2
);
2394 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
||
2395 gfar_has_errata(priv
, GFAR_ERRATA_74
))
2396 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
2398 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
2400 gfar_write(®s
->maccfg2
, tempval
);
2402 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
2408 /* gfar_reset_task gets scheduled when a packet has not been
2409 * transmitted after a set amount of time.
2410 * For now, assume that clearing out all the structures, and
2411 * starting over will fix the problem.
2413 static void gfar_reset_task(struct work_struct
*work
)
2415 struct gfar_private
*priv
= container_of(work
, struct gfar_private
,
2417 struct net_device
*dev
= priv
->ndev
;
2419 if (dev
->flags
& IFF_UP
) {
2420 netif_tx_stop_all_queues(dev
);
2423 netif_tx_start_all_queues(dev
);
2426 netif_tx_schedule_all(dev
);
2429 static void gfar_timeout(struct net_device
*dev
)
2431 struct gfar_private
*priv
= netdev_priv(dev
);
2433 dev
->stats
.tx_errors
++;
2434 schedule_work(&priv
->reset_task
);
2437 static void gfar_align_skb(struct sk_buff
*skb
)
2439 /* We need the data buffer to be aligned properly. We will reserve
2440 * as many bytes as needed to align the data properly
2442 skb_reserve(skb
, RXBUF_ALIGNMENT
-
2443 (((unsigned long) skb
->data
) & (RXBUF_ALIGNMENT
- 1)));
2446 /* Interrupt Handler for Transmit complete */
2447 static int gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
)
2449 struct net_device
*dev
= tx_queue
->dev
;
2450 struct gfar_private
*priv
= netdev_priv(dev
);
2451 struct gfar_priv_rx_q
*rx_queue
= NULL
;
2452 struct txbd8
*bdp
, *next
= NULL
;
2453 struct txbd8
*lbdp
= NULL
;
2454 struct txbd8
*base
= tx_queue
->tx_bd_base
;
2455 struct sk_buff
*skb
;
2457 int tx_ring_size
= tx_queue
->tx_ring_size
;
2458 int frags
= 0, nr_txbds
= 0;
2464 rx_queue
= priv
->rx_queue
[tx_queue
->qindex
];
2465 bdp
= tx_queue
->dirty_tx
;
2466 skb_dirtytx
= tx_queue
->skb_dirtytx
;
2468 while ((skb
= tx_queue
->tx_skbuff
[skb_dirtytx
])) {
2469 unsigned long flags
;
2471 frags
= skb_shinfo(skb
)->nr_frags
;
2474 * When time stamping, one additional TxBD must be freed.
2475 * Also, we need to dma_unmap_single() the TxPAL.
2477 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
))
2478 nr_txbds
= frags
+ 2;
2480 nr_txbds
= frags
+ 1;
2482 lbdp
= skip_txbd(bdp
, nr_txbds
- 1, base
, tx_ring_size
);
2484 lstatus
= lbdp
->lstatus
;
2486 /* Only clean completed frames */
2487 if ((lstatus
& BD_LFLAG(TXBD_READY
)) &&
2488 (lstatus
& BD_LENGTH_MASK
))
2491 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
)) {
2492 next
= next_txbd(bdp
, base
, tx_ring_size
);
2493 buflen
= next
->length
+ GMAC_FCB_LEN
;
2495 buflen
= bdp
->length
;
2497 dma_unmap_single(&priv
->ofdev
->dev
, bdp
->bufPtr
,
2498 buflen
, DMA_TO_DEVICE
);
2500 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
)) {
2501 struct skb_shared_hwtstamps shhwtstamps
;
2502 u64
*ns
= (u64
*) (((u32
)skb
->data
+ 0x10) & ~0x7);
2503 memset(&shhwtstamps
, 0, sizeof(shhwtstamps
));
2504 shhwtstamps
.hwtstamp
= ns_to_ktime(*ns
);
2505 skb_tstamp_tx(skb
, &shhwtstamps
);
2506 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2510 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2511 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2513 for (i
= 0; i
< frags
; i
++) {
2514 dma_unmap_page(&priv
->ofdev
->dev
,
2518 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2519 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2523 * If there's room in the queue (limit it to rx_buffer_size)
2524 * we add this skb back into the pool, if it's the right size
2526 if (skb_queue_len(&priv
->rx_recycle
) < rx_queue
->rx_ring_size
&&
2527 skb_recycle_check(skb
, priv
->rx_buffer_size
+
2529 gfar_align_skb(skb
);
2530 skb_queue_head(&priv
->rx_recycle
, skb
);
2532 dev_kfree_skb_any(skb
);
2534 tx_queue
->tx_skbuff
[skb_dirtytx
] = NULL
;
2536 skb_dirtytx
= (skb_dirtytx
+ 1) &
2537 TX_RING_MOD_MASK(tx_ring_size
);
2540 spin_lock_irqsave(&tx_queue
->txlock
, flags
);
2541 tx_queue
->num_txbdfree
+= nr_txbds
;
2542 spin_unlock_irqrestore(&tx_queue
->txlock
, flags
);
2545 /* If we freed a buffer, we can restart transmission, if necessary */
2546 if (__netif_subqueue_stopped(dev
, tx_queue
->qindex
) && tx_queue
->num_txbdfree
)
2547 netif_wake_subqueue(dev
, tx_queue
->qindex
);
2549 /* Update dirty indicators */
2550 tx_queue
->skb_dirtytx
= skb_dirtytx
;
2551 tx_queue
->dirty_tx
= bdp
;
2556 static void gfar_schedule_cleanup(struct gfar_priv_grp
*gfargrp
)
2558 unsigned long flags
;
2560 spin_lock_irqsave(&gfargrp
->grplock
, flags
);
2561 if (napi_schedule_prep(&gfargrp
->napi
)) {
2562 gfar_write(&gfargrp
->regs
->imask
, IMASK_RTX_DISABLED
);
2563 __napi_schedule(&gfargrp
->napi
);
2566 * Clear IEVENT, so interrupts aren't called again
2567 * because of the packets that have already arrived.
2569 gfar_write(&gfargrp
->regs
->ievent
, IEVENT_RTX_MASK
);
2571 spin_unlock_irqrestore(&gfargrp
->grplock
, flags
);
2575 /* Interrupt Handler for Transmit complete */
2576 static irqreturn_t
gfar_transmit(int irq
, void *grp_id
)
2578 gfar_schedule_cleanup((struct gfar_priv_grp
*)grp_id
);
2582 static void gfar_new_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
2583 struct sk_buff
*skb
)
2585 struct net_device
*dev
= rx_queue
->dev
;
2586 struct gfar_private
*priv
= netdev_priv(dev
);
2589 buf
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
2590 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
2591 gfar_init_rxbdp(rx_queue
, bdp
, buf
);
2594 static struct sk_buff
* gfar_alloc_skb(struct net_device
*dev
)
2596 struct gfar_private
*priv
= netdev_priv(dev
);
2597 struct sk_buff
*skb
= NULL
;
2599 skb
= netdev_alloc_skb(dev
, priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
2603 gfar_align_skb(skb
);
2608 struct sk_buff
* gfar_new_skb(struct net_device
*dev
)
2610 struct gfar_private
*priv
= netdev_priv(dev
);
2611 struct sk_buff
*skb
= NULL
;
2613 skb
= skb_dequeue(&priv
->rx_recycle
);
2615 skb
= gfar_alloc_skb(dev
);
2620 static inline void count_errors(unsigned short status
, struct net_device
*dev
)
2622 struct gfar_private
*priv
= netdev_priv(dev
);
2623 struct net_device_stats
*stats
= &dev
->stats
;
2624 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
2626 /* If the packet was truncated, none of the other errors
2628 if (status
& RXBD_TRUNCATED
) {
2629 stats
->rx_length_errors
++;
2635 /* Count the errors, if there were any */
2636 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
2637 stats
->rx_length_errors
++;
2639 if (status
& RXBD_LARGE
)
2644 if (status
& RXBD_NONOCTET
) {
2645 stats
->rx_frame_errors
++;
2646 estats
->rx_nonoctet
++;
2648 if (status
& RXBD_CRCERR
) {
2649 estats
->rx_crcerr
++;
2650 stats
->rx_crc_errors
++;
2652 if (status
& RXBD_OVERRUN
) {
2653 estats
->rx_overrun
++;
2654 stats
->rx_crc_errors
++;
2658 irqreturn_t
gfar_receive(int irq
, void *grp_id
)
2660 gfar_schedule_cleanup((struct gfar_priv_grp
*)grp_id
);
2664 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
2666 /* If valid headers were found, and valid sums
2667 * were verified, then we tell the kernel that no
2668 * checksumming is necessary. Otherwise, it is */
2669 if ((fcb
->flags
& RXFCB_CSUM_MASK
) == (RXFCB_CIP
| RXFCB_CTU
))
2670 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2672 skb_checksum_none_assert(skb
);
2676 /* gfar_process_frame() -- handle one incoming packet if skb
2678 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
2681 struct gfar_private
*priv
= netdev_priv(dev
);
2682 struct rxfcb
*fcb
= NULL
;
2686 /* fcb is at the beginning if exists */
2687 fcb
= (struct rxfcb
*)skb
->data
;
2689 /* Remove the FCB from the skb */
2690 /* Remove the padded bytes, if there are any */
2692 skb_record_rx_queue(skb
, fcb
->rq
);
2693 skb_pull(skb
, amount_pull
);
2696 /* Get receive timestamp from the skb */
2697 if (priv
->hwts_rx_en
) {
2698 struct skb_shared_hwtstamps
*shhwtstamps
= skb_hwtstamps(skb
);
2699 u64
*ns
= (u64
*) skb
->data
;
2700 memset(shhwtstamps
, 0, sizeof(*shhwtstamps
));
2701 shhwtstamps
->hwtstamp
= ns_to_ktime(*ns
);
2705 skb_pull(skb
, priv
->padding
);
2707 if (dev
->features
& NETIF_F_RXCSUM
)
2708 gfar_rx_checksum(skb
, fcb
);
2710 /* Tell the skb what kind of packet this is */
2711 skb
->protocol
= eth_type_trans(skb
, dev
);
2714 * There's need to check for NETIF_F_HW_VLAN_RX here.
2715 * Even if vlan rx accel is disabled, on some chips
2716 * RXFCB_VLN is pseudo randomly set.
2718 if (dev
->features
& NETIF_F_HW_VLAN_RX
&&
2719 fcb
->flags
& RXFCB_VLN
)
2720 __vlan_hwaccel_put_tag(skb
, fcb
->vlctl
);
2722 /* Send the packet up the stack */
2723 ret
= netif_receive_skb(skb
);
2725 if (NET_RX_DROP
== ret
)
2726 priv
->extra_stats
.kernel_dropped
++;
2731 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2732 * until the budget/quota has been reached. Returns the number
2735 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
)
2737 struct net_device
*dev
= rx_queue
->dev
;
2738 struct rxbd8
*bdp
, *base
;
2739 struct sk_buff
*skb
;
2743 struct gfar_private
*priv
= netdev_priv(dev
);
2745 /* Get the first full descriptor */
2746 bdp
= rx_queue
->cur_rx
;
2747 base
= rx_queue
->rx_bd_base
;
2749 amount_pull
= (gfar_uses_fcb(priv
) ? GMAC_FCB_LEN
: 0);
2751 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
2752 struct sk_buff
*newskb
;
2755 /* Add another skb for the future */
2756 newskb
= gfar_new_skb(dev
);
2758 skb
= rx_queue
->rx_skbuff
[rx_queue
->skb_currx
];
2760 dma_unmap_single(&priv
->ofdev
->dev
, bdp
->bufPtr
,
2761 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
2763 if (unlikely(!(bdp
->status
& RXBD_ERR
) &&
2764 bdp
->length
> priv
->rx_buffer_size
))
2765 bdp
->status
= RXBD_LARGE
;
2767 /* We drop the frame if we failed to allocate a new buffer */
2768 if (unlikely(!newskb
|| !(bdp
->status
& RXBD_LAST
) ||
2769 bdp
->status
& RXBD_ERR
)) {
2770 count_errors(bdp
->status
, dev
);
2772 if (unlikely(!newskb
))
2775 skb_queue_head(&priv
->rx_recycle
, skb
);
2777 /* Increment the number of packets */
2778 rx_queue
->stats
.rx_packets
++;
2782 pkt_len
= bdp
->length
- ETH_FCS_LEN
;
2783 /* Remove the FCS from the packet length */
2784 skb_put(skb
, pkt_len
);
2785 rx_queue
->stats
.rx_bytes
+= pkt_len
;
2786 skb_record_rx_queue(skb
, rx_queue
->qindex
);
2787 gfar_process_frame(dev
, skb
, amount_pull
);
2790 netif_warn(priv
, rx_err
, dev
, "Missing skb!\n");
2791 rx_queue
->stats
.rx_dropped
++;
2792 priv
->extra_stats
.rx_skbmissing
++;
2797 rx_queue
->rx_skbuff
[rx_queue
->skb_currx
] = newskb
;
2799 /* Setup the new bdp */
2800 gfar_new_rxbdp(rx_queue
, bdp
, newskb
);
2802 /* Update to the next pointer */
2803 bdp
= next_bd(bdp
, base
, rx_queue
->rx_ring_size
);
2805 /* update to point at the next skb */
2806 rx_queue
->skb_currx
=
2807 (rx_queue
->skb_currx
+ 1) &
2808 RX_RING_MOD_MASK(rx_queue
->rx_ring_size
);
2811 /* Update the current rxbd pointer to be the next one */
2812 rx_queue
->cur_rx
= bdp
;
2817 static int gfar_poll(struct napi_struct
*napi
, int budget
)
2819 struct gfar_priv_grp
*gfargrp
= container_of(napi
,
2820 struct gfar_priv_grp
, napi
);
2821 struct gfar_private
*priv
= gfargrp
->priv
;
2822 struct gfar __iomem
*regs
= gfargrp
->regs
;
2823 struct gfar_priv_tx_q
*tx_queue
= NULL
;
2824 struct gfar_priv_rx_q
*rx_queue
= NULL
;
2825 int rx_cleaned
= 0, budget_per_queue
= 0, rx_cleaned_per_queue
= 0;
2826 int tx_cleaned
= 0, i
, left_over_budget
= budget
;
2827 unsigned long serviced_queues
= 0;
2830 num_queues
= gfargrp
->num_rx_queues
;
2831 budget_per_queue
= budget
/num_queues
;
2833 /* Clear IEVENT, so interrupts aren't called again
2834 * because of the packets that have already arrived */
2835 gfar_write(®s
->ievent
, IEVENT_RTX_MASK
);
2837 while (num_queues
&& left_over_budget
) {
2839 budget_per_queue
= left_over_budget
/num_queues
;
2840 left_over_budget
= 0;
2842 for_each_set_bit(i
, &gfargrp
->rx_bit_map
, priv
->num_rx_queues
) {
2843 if (test_bit(i
, &serviced_queues
))
2845 rx_queue
= priv
->rx_queue
[i
];
2846 tx_queue
= priv
->tx_queue
[rx_queue
->qindex
];
2848 tx_cleaned
+= gfar_clean_tx_ring(tx_queue
);
2849 rx_cleaned_per_queue
= gfar_clean_rx_ring(rx_queue
,
2851 rx_cleaned
+= rx_cleaned_per_queue
;
2852 if(rx_cleaned_per_queue
< budget_per_queue
) {
2853 left_over_budget
= left_over_budget
+
2854 (budget_per_queue
- rx_cleaned_per_queue
);
2855 set_bit(i
, &serviced_queues
);
2864 if (rx_cleaned
< budget
) {
2865 napi_complete(napi
);
2867 /* Clear the halt bit in RSTAT */
2868 gfar_write(®s
->rstat
, gfargrp
->rstat
);
2870 gfar_write(®s
->imask
, IMASK_DEFAULT
);
2872 /* If we are coalescing interrupts, update the timer */
2873 /* Otherwise, clear it */
2874 gfar_configure_coalescing(priv
,
2875 gfargrp
->rx_bit_map
, gfargrp
->tx_bit_map
);
2881 #ifdef CONFIG_NET_POLL_CONTROLLER
2883 * Polling 'interrupt' - used by things like netconsole to send skbs
2884 * without having to re-enable interrupts. It's not called while
2885 * the interrupt routine is executing.
2887 static void gfar_netpoll(struct net_device
*dev
)
2889 struct gfar_private
*priv
= netdev_priv(dev
);
2892 /* If the device has multiple interrupts, run tx/rx */
2893 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
2894 for (i
= 0; i
< priv
->num_grps
; i
++) {
2895 disable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2896 disable_irq(priv
->gfargrp
[i
].interruptReceive
);
2897 disable_irq(priv
->gfargrp
[i
].interruptError
);
2898 gfar_interrupt(priv
->gfargrp
[i
].interruptTransmit
,
2900 enable_irq(priv
->gfargrp
[i
].interruptError
);
2901 enable_irq(priv
->gfargrp
[i
].interruptReceive
);
2902 enable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2905 for (i
= 0; i
< priv
->num_grps
; i
++) {
2906 disable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2907 gfar_interrupt(priv
->gfargrp
[i
].interruptTransmit
,
2909 enable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2915 /* The interrupt handler for devices with one interrupt */
2916 static irqreturn_t
gfar_interrupt(int irq
, void *grp_id
)
2918 struct gfar_priv_grp
*gfargrp
= grp_id
;
2920 /* Save ievent for future reference */
2921 u32 events
= gfar_read(&gfargrp
->regs
->ievent
);
2923 /* Check for reception */
2924 if (events
& IEVENT_RX_MASK
)
2925 gfar_receive(irq
, grp_id
);
2927 /* Check for transmit completion */
2928 if (events
& IEVENT_TX_MASK
)
2929 gfar_transmit(irq
, grp_id
);
2931 /* Check for errors */
2932 if (events
& IEVENT_ERR_MASK
)
2933 gfar_error(irq
, grp_id
);
2938 /* Called every time the controller might need to be made
2939 * aware of new link state. The PHY code conveys this
2940 * information through variables in the phydev structure, and this
2941 * function converts those variables into the appropriate
2942 * register values, and can bring down the device if needed.
2944 static void adjust_link(struct net_device
*dev
)
2946 struct gfar_private
*priv
= netdev_priv(dev
);
2947 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2948 unsigned long flags
;
2949 struct phy_device
*phydev
= priv
->phydev
;
2952 local_irq_save(flags
);
2956 u32 tempval
= gfar_read(®s
->maccfg2
);
2957 u32 ecntrl
= gfar_read(®s
->ecntrl
);
2959 /* Now we make sure that we can be in full duplex mode.
2960 * If not, we operate in half-duplex mode. */
2961 if (phydev
->duplex
!= priv
->oldduplex
) {
2963 if (!(phydev
->duplex
))
2964 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
2966 tempval
|= MACCFG2_FULL_DUPLEX
;
2968 priv
->oldduplex
= phydev
->duplex
;
2971 if (phydev
->speed
!= priv
->oldspeed
) {
2973 switch (phydev
->speed
) {
2976 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
2978 ecntrl
&= ~(ECNTRL_R100
);
2983 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
2985 /* Reduced mode distinguishes
2986 * between 10 and 100 */
2987 if (phydev
->speed
== SPEED_100
)
2988 ecntrl
|= ECNTRL_R100
;
2990 ecntrl
&= ~(ECNTRL_R100
);
2993 netif_warn(priv
, link
, dev
,
2994 "Ack! Speed (%d) is not 10/100/1000!\n",
2999 priv
->oldspeed
= phydev
->speed
;
3002 gfar_write(®s
->maccfg2
, tempval
);
3003 gfar_write(®s
->ecntrl
, ecntrl
);
3005 if (!priv
->oldlink
) {
3009 } else if (priv
->oldlink
) {
3013 priv
->oldduplex
= -1;
3016 if (new_state
&& netif_msg_link(priv
))
3017 phy_print_status(phydev
);
3019 local_irq_restore(flags
);
3022 /* Update the hash table based on the current list of multicast
3023 * addresses we subscribe to. Also, change the promiscuity of
3024 * the device based on the flags (this function is called
3025 * whenever dev->flags is changed */
3026 static void gfar_set_multi(struct net_device
*dev
)
3028 struct netdev_hw_addr
*ha
;
3029 struct gfar_private
*priv
= netdev_priv(dev
);
3030 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
3033 if (dev
->flags
& IFF_PROMISC
) {
3034 /* Set RCTRL to PROM */
3035 tempval
= gfar_read(®s
->rctrl
);
3036 tempval
|= RCTRL_PROM
;
3037 gfar_write(®s
->rctrl
, tempval
);
3039 /* Set RCTRL to not PROM */
3040 tempval
= gfar_read(®s
->rctrl
);
3041 tempval
&= ~(RCTRL_PROM
);
3042 gfar_write(®s
->rctrl
, tempval
);
3045 if (dev
->flags
& IFF_ALLMULTI
) {
3046 /* Set the hash to rx all multicast frames */
3047 gfar_write(®s
->igaddr0
, 0xffffffff);
3048 gfar_write(®s
->igaddr1
, 0xffffffff);
3049 gfar_write(®s
->igaddr2
, 0xffffffff);
3050 gfar_write(®s
->igaddr3
, 0xffffffff);
3051 gfar_write(®s
->igaddr4
, 0xffffffff);
3052 gfar_write(®s
->igaddr5
, 0xffffffff);
3053 gfar_write(®s
->igaddr6
, 0xffffffff);
3054 gfar_write(®s
->igaddr7
, 0xffffffff);
3055 gfar_write(®s
->gaddr0
, 0xffffffff);
3056 gfar_write(®s
->gaddr1
, 0xffffffff);
3057 gfar_write(®s
->gaddr2
, 0xffffffff);
3058 gfar_write(®s
->gaddr3
, 0xffffffff);
3059 gfar_write(®s
->gaddr4
, 0xffffffff);
3060 gfar_write(®s
->gaddr5
, 0xffffffff);
3061 gfar_write(®s
->gaddr6
, 0xffffffff);
3062 gfar_write(®s
->gaddr7
, 0xffffffff);
3067 /* zero out the hash */
3068 gfar_write(®s
->igaddr0
, 0x0);
3069 gfar_write(®s
->igaddr1
, 0x0);
3070 gfar_write(®s
->igaddr2
, 0x0);
3071 gfar_write(®s
->igaddr3
, 0x0);
3072 gfar_write(®s
->igaddr4
, 0x0);
3073 gfar_write(®s
->igaddr5
, 0x0);
3074 gfar_write(®s
->igaddr6
, 0x0);
3075 gfar_write(®s
->igaddr7
, 0x0);
3076 gfar_write(®s
->gaddr0
, 0x0);
3077 gfar_write(®s
->gaddr1
, 0x0);
3078 gfar_write(®s
->gaddr2
, 0x0);
3079 gfar_write(®s
->gaddr3
, 0x0);
3080 gfar_write(®s
->gaddr4
, 0x0);
3081 gfar_write(®s
->gaddr5
, 0x0);
3082 gfar_write(®s
->gaddr6
, 0x0);
3083 gfar_write(®s
->gaddr7
, 0x0);
3085 /* If we have extended hash tables, we need to
3086 * clear the exact match registers to prepare for
3088 if (priv
->extended_hash
) {
3089 em_num
= GFAR_EM_NUM
+ 1;
3090 gfar_clear_exact_match(dev
);
3097 if (netdev_mc_empty(dev
))
3100 /* Parse the list, and set the appropriate bits */
3101 netdev_for_each_mc_addr(ha
, dev
) {
3103 gfar_set_mac_for_addr(dev
, idx
, ha
->addr
);
3106 gfar_set_hash_for_addr(dev
, ha
->addr
);
3112 /* Clears each of the exact match registers to zero, so they
3113 * don't interfere with normal reception */
3114 static void gfar_clear_exact_match(struct net_device
*dev
)
3117 static const u8 zero_arr
[MAC_ADDR_LEN
] = {0, 0, 0, 0, 0, 0};
3119 for(idx
= 1;idx
< GFAR_EM_NUM
+ 1;idx
++)
3120 gfar_set_mac_for_addr(dev
, idx
, zero_arr
);
3123 /* Set the appropriate hash bit for the given addr */
3124 /* The algorithm works like so:
3125 * 1) Take the Destination Address (ie the multicast address), and
3126 * do a CRC on it (little endian), and reverse the bits of the
3128 * 2) Use the 8 most significant bits as a hash into a 256-entry
3129 * table. The table is controlled through 8 32-bit registers:
3130 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3131 * gaddr7. This means that the 3 most significant bits in the
3132 * hash index which gaddr register to use, and the 5 other bits
3133 * indicate which bit (assuming an IBM numbering scheme, which
3134 * for PowerPC (tm) is usually the case) in the register holds
3136 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
3139 struct gfar_private
*priv
= netdev_priv(dev
);
3140 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
3141 int width
= priv
->hash_width
;
3142 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
3143 u8 whichreg
= result
>> (32 - width
+ 5);
3144 u32 value
= (1 << (31-whichbit
));
3146 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
3148 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
3152 /* There are multiple MAC Address register pairs on some controllers
3153 * This function sets the numth pair to a given address
3155 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
,
3158 struct gfar_private
*priv
= netdev_priv(dev
);
3159 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
3161 char tmpbuf
[MAC_ADDR_LEN
];
3163 u32 __iomem
*macptr
= ®s
->macstnaddr1
;
3167 /* Now copy it into the mac registers backwards, cuz */
3168 /* little endian is silly */
3169 for (idx
= 0; idx
< MAC_ADDR_LEN
; idx
++)
3170 tmpbuf
[MAC_ADDR_LEN
- 1 - idx
] = addr
[idx
];
3172 gfar_write(macptr
, *((u32
*) (tmpbuf
)));
3174 tempval
= *((u32
*) (tmpbuf
+ 4));
3176 gfar_write(macptr
+1, tempval
);
3179 /* GFAR error interrupt handler */
3180 static irqreturn_t
gfar_error(int irq
, void *grp_id
)
3182 struct gfar_priv_grp
*gfargrp
= grp_id
;
3183 struct gfar __iomem
*regs
= gfargrp
->regs
;
3184 struct gfar_private
*priv
= gfargrp
->priv
;
3185 struct net_device
*dev
= priv
->ndev
;
3187 /* Save ievent for future reference */
3188 u32 events
= gfar_read(®s
->ievent
);
3191 gfar_write(®s
->ievent
, events
& IEVENT_ERR_MASK
);
3193 /* Magic Packet is not an error. */
3194 if ((priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
) &&
3195 (events
& IEVENT_MAG
))
3196 events
&= ~IEVENT_MAG
;
3199 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
3200 netdev_dbg(dev
, "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3201 events
, gfar_read(®s
->imask
));
3203 /* Update the error counters */
3204 if (events
& IEVENT_TXE
) {
3205 dev
->stats
.tx_errors
++;
3207 if (events
& IEVENT_LC
)
3208 dev
->stats
.tx_window_errors
++;
3209 if (events
& IEVENT_CRL
)
3210 dev
->stats
.tx_aborted_errors
++;
3211 if (events
& IEVENT_XFUN
) {
3212 unsigned long flags
;
3214 netif_dbg(priv
, tx_err
, dev
,
3215 "TX FIFO underrun, packet dropped\n");
3216 dev
->stats
.tx_dropped
++;
3217 priv
->extra_stats
.tx_underrun
++;
3219 local_irq_save(flags
);
3222 /* Reactivate the Tx Queues */
3223 gfar_write(®s
->tstat
, gfargrp
->tstat
);
3226 local_irq_restore(flags
);
3228 netif_dbg(priv
, tx_err
, dev
, "Transmit Error\n");
3230 if (events
& IEVENT_BSY
) {
3231 dev
->stats
.rx_errors
++;
3232 priv
->extra_stats
.rx_bsy
++;
3234 gfar_receive(irq
, grp_id
);
3236 netif_dbg(priv
, rx_err
, dev
, "busy error (rstat: %x)\n",
3237 gfar_read(®s
->rstat
));
3239 if (events
& IEVENT_BABR
) {
3240 dev
->stats
.rx_errors
++;
3241 priv
->extra_stats
.rx_babr
++;
3243 netif_dbg(priv
, rx_err
, dev
, "babbling RX error\n");
3245 if (events
& IEVENT_EBERR
) {
3246 priv
->extra_stats
.eberr
++;
3247 netif_dbg(priv
, rx_err
, dev
, "bus error\n");
3249 if (events
& IEVENT_RXC
)
3250 netif_dbg(priv
, rx_status
, dev
, "control frame\n");
3252 if (events
& IEVENT_BABT
) {
3253 priv
->extra_stats
.tx_babt
++;
3254 netif_dbg(priv
, tx_err
, dev
, "babbling TX error\n");
3259 static struct of_device_id gfar_match
[] =
3263 .compatible
= "gianfar",
3266 .compatible
= "fsl,etsec2",
3270 MODULE_DEVICE_TABLE(of
, gfar_match
);
3272 /* Structure for a device driver */
3273 static struct platform_driver gfar_driver
= {
3275 .name
= "fsl-gianfar",
3276 .owner
= THIS_MODULE
,
3278 .of_match_table
= gfar_match
,
3280 .probe
= gfar_probe
,
3281 .remove
= gfar_remove
,
3284 static int __init
gfar_init(void)
3286 return platform_driver_register(&gfar_driver
);
3289 static void __exit
gfar_exit(void)
3291 platform_driver_unregister(&gfar_driver
);
3294 module_init(gfar_init
);
3295 module_exit(gfar_exit
);