1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
36 /* Intel Media SOC GbE MDIO physical base address */
37 static unsigned long ce4100_gbe_mdio_base_phy
;
38 /* Intel Media SOC GbE MDIO virtual base address */
39 void __iomem
*ce4100_gbe_mdio_base_virt
;
41 char e1000_driver_name
[] = "e1000";
42 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
43 #define DRV_VERSION "7.3.21-k8-NAPI"
44 const char e1000_driver_version
[] = DRV_VERSION
;
45 static const char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
47 /* e1000_pci_tbl - PCI Device ID Table
49 * Last entry must be all 0s
52 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
54 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl
) = {
55 INTEL_E1000_ETHERNET_DEVICE(0x1000),
56 INTEL_E1000_ETHERNET_DEVICE(0x1001),
57 INTEL_E1000_ETHERNET_DEVICE(0x1004),
58 INTEL_E1000_ETHERNET_DEVICE(0x1008),
59 INTEL_E1000_ETHERNET_DEVICE(0x1009),
60 INTEL_E1000_ETHERNET_DEVICE(0x100C),
61 INTEL_E1000_ETHERNET_DEVICE(0x100D),
62 INTEL_E1000_ETHERNET_DEVICE(0x100E),
63 INTEL_E1000_ETHERNET_DEVICE(0x100F),
64 INTEL_E1000_ETHERNET_DEVICE(0x1010),
65 INTEL_E1000_ETHERNET_DEVICE(0x1011),
66 INTEL_E1000_ETHERNET_DEVICE(0x1012),
67 INTEL_E1000_ETHERNET_DEVICE(0x1013),
68 INTEL_E1000_ETHERNET_DEVICE(0x1014),
69 INTEL_E1000_ETHERNET_DEVICE(0x1015),
70 INTEL_E1000_ETHERNET_DEVICE(0x1016),
71 INTEL_E1000_ETHERNET_DEVICE(0x1017),
72 INTEL_E1000_ETHERNET_DEVICE(0x1018),
73 INTEL_E1000_ETHERNET_DEVICE(0x1019),
74 INTEL_E1000_ETHERNET_DEVICE(0x101A),
75 INTEL_E1000_ETHERNET_DEVICE(0x101D),
76 INTEL_E1000_ETHERNET_DEVICE(0x101E),
77 INTEL_E1000_ETHERNET_DEVICE(0x1026),
78 INTEL_E1000_ETHERNET_DEVICE(0x1027),
79 INTEL_E1000_ETHERNET_DEVICE(0x1028),
80 INTEL_E1000_ETHERNET_DEVICE(0x1075),
81 INTEL_E1000_ETHERNET_DEVICE(0x1076),
82 INTEL_E1000_ETHERNET_DEVICE(0x1077),
83 INTEL_E1000_ETHERNET_DEVICE(0x1078),
84 INTEL_E1000_ETHERNET_DEVICE(0x1079),
85 INTEL_E1000_ETHERNET_DEVICE(0x107A),
86 INTEL_E1000_ETHERNET_DEVICE(0x107B),
87 INTEL_E1000_ETHERNET_DEVICE(0x107C),
88 INTEL_E1000_ETHERNET_DEVICE(0x108A),
89 INTEL_E1000_ETHERNET_DEVICE(0x1099),
90 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
91 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
92 /* required last entry */
96 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
98 int e1000_up(struct e1000_adapter
*adapter
);
99 void e1000_down(struct e1000_adapter
*adapter
);
100 void e1000_reinit_locked(struct e1000_adapter
*adapter
);
101 void e1000_reset(struct e1000_adapter
*adapter
);
102 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
103 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
104 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
105 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
106 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
107 struct e1000_tx_ring
*txdr
);
108 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
109 struct e1000_rx_ring
*rxdr
);
110 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
111 struct e1000_tx_ring
*tx_ring
);
112 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
113 struct e1000_rx_ring
*rx_ring
);
114 void e1000_update_stats(struct e1000_adapter
*adapter
);
116 static int e1000_init_module(void);
117 static void e1000_exit_module(void);
118 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
119 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
120 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
121 static int e1000_sw_init(struct e1000_adapter
*adapter
);
122 static int e1000_open(struct net_device
*netdev
);
123 static int e1000_close(struct net_device
*netdev
);
124 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
125 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
126 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
127 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
128 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
129 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
130 struct e1000_tx_ring
*tx_ring
);
131 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
132 struct e1000_rx_ring
*rx_ring
);
133 static void e1000_set_rx_mode(struct net_device
*netdev
);
134 static void e1000_update_phy_info(unsigned long data
);
135 static void e1000_update_phy_info_task(struct work_struct
*work
);
136 static void e1000_watchdog(unsigned long data
);
137 static void e1000_82547_tx_fifo_stall(unsigned long data
);
138 static void e1000_82547_tx_fifo_stall_task(struct work_struct
*work
);
139 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
140 struct net_device
*netdev
);
141 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
142 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
143 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
144 static irqreturn_t
e1000_intr(int irq
, void *data
);
145 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
146 struct e1000_tx_ring
*tx_ring
);
147 static int e1000_clean(struct napi_struct
*napi
, int budget
);
148 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
149 struct e1000_rx_ring
*rx_ring
,
150 int *work_done
, int work_to_do
);
151 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
152 struct e1000_rx_ring
*rx_ring
,
153 int *work_done
, int work_to_do
);
154 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
155 struct e1000_rx_ring
*rx_ring
,
157 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
158 struct e1000_rx_ring
*rx_ring
,
160 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
161 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
163 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
164 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
165 static void e1000_tx_timeout(struct net_device
*dev
);
166 static void e1000_reset_task(struct work_struct
*work
);
167 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
168 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
169 struct sk_buff
*skb
);
171 static bool e1000_vlan_used(struct e1000_adapter
*adapter
);
172 static void e1000_vlan_mode(struct net_device
*netdev
, u32 features
);
173 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
);
174 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
);
175 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
178 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
179 static int e1000_resume(struct pci_dev
*pdev
);
181 static void e1000_shutdown(struct pci_dev
*pdev
);
183 #ifdef CONFIG_NET_POLL_CONTROLLER
184 /* for netdump / net console */
185 static void e1000_netpoll (struct net_device
*netdev
);
188 #define COPYBREAK_DEFAULT 256
189 static unsigned int copybreak __read_mostly
= COPYBREAK_DEFAULT
;
190 module_param(copybreak
, uint
, 0644);
191 MODULE_PARM_DESC(copybreak
,
192 "Maximum size of packet that is copied to a new buffer on receive");
194 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
195 pci_channel_state_t state
);
196 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
197 static void e1000_io_resume(struct pci_dev
*pdev
);
199 static struct pci_error_handlers e1000_err_handler
= {
200 .error_detected
= e1000_io_error_detected
,
201 .slot_reset
= e1000_io_slot_reset
,
202 .resume
= e1000_io_resume
,
205 static struct pci_driver e1000_driver
= {
206 .name
= e1000_driver_name
,
207 .id_table
= e1000_pci_tbl
,
208 .probe
= e1000_probe
,
209 .remove
= __devexit_p(e1000_remove
),
211 /* Power Management Hooks */
212 .suspend
= e1000_suspend
,
213 .resume
= e1000_resume
,
215 .shutdown
= e1000_shutdown
,
216 .err_handler
= &e1000_err_handler
219 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
220 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
221 MODULE_LICENSE("GPL");
222 MODULE_VERSION(DRV_VERSION
);
224 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
225 module_param(debug
, int, 0);
226 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
229 * e1000_get_hw_dev - return device
230 * used by hardware layer to print debugging information
233 struct net_device
*e1000_get_hw_dev(struct e1000_hw
*hw
)
235 struct e1000_adapter
*adapter
= hw
->back
;
236 return adapter
->netdev
;
240 * e1000_init_module - Driver Registration Routine
242 * e1000_init_module is the first routine called when the driver is
243 * loaded. All it does is register with the PCI subsystem.
246 static int __init
e1000_init_module(void)
249 pr_info("%s - version %s\n", e1000_driver_string
, e1000_driver_version
);
251 pr_info("%s\n", e1000_copyright
);
253 ret
= pci_register_driver(&e1000_driver
);
254 if (copybreak
!= COPYBREAK_DEFAULT
) {
256 pr_info("copybreak disabled\n");
258 pr_info("copybreak enabled for "
259 "packets <= %u bytes\n", copybreak
);
264 module_init(e1000_init_module
);
267 * e1000_exit_module - Driver Exit Cleanup Routine
269 * e1000_exit_module is called just before the driver is removed
273 static void __exit
e1000_exit_module(void)
275 pci_unregister_driver(&e1000_driver
);
278 module_exit(e1000_exit_module
);
280 static int e1000_request_irq(struct e1000_adapter
*adapter
)
282 struct net_device
*netdev
= adapter
->netdev
;
283 irq_handler_t handler
= e1000_intr
;
284 int irq_flags
= IRQF_SHARED
;
287 err
= request_irq(adapter
->pdev
->irq
, handler
, irq_flags
, netdev
->name
,
290 e_err(probe
, "Unable to allocate interrupt Error: %d\n", err
);
296 static void e1000_free_irq(struct e1000_adapter
*adapter
)
298 struct net_device
*netdev
= adapter
->netdev
;
300 free_irq(adapter
->pdev
->irq
, netdev
);
304 * e1000_irq_disable - Mask off interrupt generation on the NIC
305 * @adapter: board private structure
308 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
310 struct e1000_hw
*hw
= &adapter
->hw
;
314 synchronize_irq(adapter
->pdev
->irq
);
318 * e1000_irq_enable - Enable default interrupt generation settings
319 * @adapter: board private structure
322 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
324 struct e1000_hw
*hw
= &adapter
->hw
;
326 ew32(IMS
, IMS_ENABLE_MASK
);
330 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
332 struct e1000_hw
*hw
= &adapter
->hw
;
333 struct net_device
*netdev
= adapter
->netdev
;
334 u16 vid
= hw
->mng_cookie
.vlan_id
;
335 u16 old_vid
= adapter
->mng_vlan_id
;
337 if (!e1000_vlan_used(adapter
))
340 if (!test_bit(vid
, adapter
->active_vlans
)) {
341 if (hw
->mng_cookie
.status
&
342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
343 e1000_vlan_rx_add_vid(netdev
, vid
);
344 adapter
->mng_vlan_id
= vid
;
346 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
348 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
350 !test_bit(old_vid
, adapter
->active_vlans
))
351 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
353 adapter
->mng_vlan_id
= vid
;
357 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
359 struct e1000_hw
*hw
= &adapter
->hw
;
361 if (adapter
->en_mng_pt
) {
362 u32 manc
= er32(MANC
);
364 /* disable hardware interception of ARP */
365 manc
&= ~(E1000_MANC_ARP_EN
);
371 static void e1000_release_manageability(struct e1000_adapter
*adapter
)
373 struct e1000_hw
*hw
= &adapter
->hw
;
375 if (adapter
->en_mng_pt
) {
376 u32 manc
= er32(MANC
);
378 /* re-enable hardware interception of ARP */
379 manc
|= E1000_MANC_ARP_EN
;
386 * e1000_configure - configure the hardware for RX and TX
387 * @adapter = private board structure
389 static void e1000_configure(struct e1000_adapter
*adapter
)
391 struct net_device
*netdev
= adapter
->netdev
;
394 e1000_set_rx_mode(netdev
);
396 e1000_restore_vlan(adapter
);
397 e1000_init_manageability(adapter
);
399 e1000_configure_tx(adapter
);
400 e1000_setup_rctl(adapter
);
401 e1000_configure_rx(adapter
);
402 /* call E1000_DESC_UNUSED which always leaves
403 * at least 1 descriptor unused to make sure
404 * next_to_use != next_to_clean */
405 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
406 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
407 adapter
->alloc_rx_buf(adapter
, ring
,
408 E1000_DESC_UNUSED(ring
));
412 int e1000_up(struct e1000_adapter
*adapter
)
414 struct e1000_hw
*hw
= &adapter
->hw
;
416 /* hardware has been reset, we need to reload some things */
417 e1000_configure(adapter
);
419 clear_bit(__E1000_DOWN
, &adapter
->flags
);
421 napi_enable(&adapter
->napi
);
423 e1000_irq_enable(adapter
);
425 netif_wake_queue(adapter
->netdev
);
427 /* fire a link change interrupt to start the watchdog */
428 ew32(ICS
, E1000_ICS_LSC
);
433 * e1000_power_up_phy - restore link in case the phy was powered down
434 * @adapter: address of board private structure
436 * The phy may be powered down to save power and turn off link when the
437 * driver is unloaded and wake on lan is not enabled (among others)
438 * *** this routine MUST be followed by a call to e1000_reset ***
442 void e1000_power_up_phy(struct e1000_adapter
*adapter
)
444 struct e1000_hw
*hw
= &adapter
->hw
;
447 /* Just clear the power down bit to wake the phy back up */
448 if (hw
->media_type
== e1000_media_type_copper
) {
449 /* according to the manual, the phy will retain its
450 * settings across a power-down/up cycle */
451 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
452 mii_reg
&= ~MII_CR_POWER_DOWN
;
453 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
457 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
459 struct e1000_hw
*hw
= &adapter
->hw
;
461 /* Power down the PHY so no link is implied when interface is down *
462 * The PHY cannot be powered down if any of the following is true *
465 * (c) SoL/IDER session is active */
466 if (!adapter
->wol
&& hw
->mac_type
>= e1000_82540
&&
467 hw
->media_type
== e1000_media_type_copper
) {
470 switch (hw
->mac_type
) {
473 case e1000_82545_rev_3
:
476 case e1000_82546_rev_3
:
478 case e1000_82541_rev_2
:
480 case e1000_82547_rev_2
:
481 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
487 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
488 mii_reg
|= MII_CR_POWER_DOWN
;
489 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
496 void e1000_down(struct e1000_adapter
*adapter
)
498 struct e1000_hw
*hw
= &adapter
->hw
;
499 struct net_device
*netdev
= adapter
->netdev
;
503 /* disable receives in the hardware */
505 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
506 /* flush and sleep below */
508 netif_tx_disable(netdev
);
510 /* disable transmits in the hardware */
512 tctl
&= ~E1000_TCTL_EN
;
514 /* flush both disables and wait for them to finish */
518 napi_disable(&adapter
->napi
);
520 e1000_irq_disable(adapter
);
523 * Setting DOWN must be after irq_disable to prevent
524 * a screaming interrupt. Setting DOWN also prevents
525 * timers and tasks from rescheduling.
527 set_bit(__E1000_DOWN
, &adapter
->flags
);
529 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
530 del_timer_sync(&adapter
->watchdog_timer
);
531 del_timer_sync(&adapter
->phy_info_timer
);
533 adapter
->link_speed
= 0;
534 adapter
->link_duplex
= 0;
535 netif_carrier_off(netdev
);
537 e1000_reset(adapter
);
538 e1000_clean_all_tx_rings(adapter
);
539 e1000_clean_all_rx_rings(adapter
);
542 static void e1000_reinit_safe(struct e1000_adapter
*adapter
)
544 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
550 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
553 void e1000_reinit_locked(struct e1000_adapter
*adapter
)
555 /* if rtnl_lock is not held the call path is bogus */
557 WARN_ON(in_interrupt());
558 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
562 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
565 void e1000_reset(struct e1000_adapter
*adapter
)
567 struct e1000_hw
*hw
= &adapter
->hw
;
568 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
569 bool legacy_pba_adjust
= false;
572 /* Repartition Pba for greater than 9k mtu
573 * To take effect CTRL.RST is required.
576 switch (hw
->mac_type
) {
577 case e1000_82542_rev2_0
:
578 case e1000_82542_rev2_1
:
583 case e1000_82541_rev_2
:
584 legacy_pba_adjust
= true;
588 case e1000_82545_rev_3
:
591 case e1000_82546_rev_3
:
595 case e1000_82547_rev_2
:
596 legacy_pba_adjust
= true;
599 case e1000_undefined
:
604 if (legacy_pba_adjust
) {
605 if (hw
->max_frame_size
> E1000_RXBUFFER_8192
)
606 pba
-= 8; /* allocate more FIFO for Tx */
608 if (hw
->mac_type
== e1000_82547
) {
609 adapter
->tx_fifo_head
= 0;
610 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
611 adapter
->tx_fifo_size
=
612 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
613 atomic_set(&adapter
->tx_fifo_stall
, 0);
615 } else if (hw
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
616 /* adjust PBA for jumbo frames */
619 /* To maintain wire speed transmits, the Tx FIFO should be
620 * large enough to accommodate two full transmit packets,
621 * rounded up to the next 1KB and expressed in KB. Likewise,
622 * the Rx FIFO should be large enough to accommodate at least
623 * one full receive packet and is similarly rounded up and
624 * expressed in KB. */
626 /* upper 16 bits has Tx packet buffer allocation size in KB */
627 tx_space
= pba
>> 16;
628 /* lower 16 bits has Rx packet buffer allocation size in KB */
631 * the tx fifo also stores 16 bytes of information about the tx
632 * but don't include ethernet FCS because hardware appends it
634 min_tx_space
= (hw
->max_frame_size
+
635 sizeof(struct e1000_tx_desc
) -
637 min_tx_space
= ALIGN(min_tx_space
, 1024);
639 /* software strips receive CRC, so leave room for it */
640 min_rx_space
= hw
->max_frame_size
;
641 min_rx_space
= ALIGN(min_rx_space
, 1024);
644 /* If current Tx allocation is less than the min Tx FIFO size,
645 * and the min Tx FIFO size is less than the current Rx FIFO
646 * allocation, take space away from current Rx allocation */
647 if (tx_space
< min_tx_space
&&
648 ((min_tx_space
- tx_space
) < pba
)) {
649 pba
= pba
- (min_tx_space
- tx_space
);
651 /* PCI/PCIx hardware has PBA alignment constraints */
652 switch (hw
->mac_type
) {
653 case e1000_82545
... e1000_82546_rev_3
:
654 pba
&= ~(E1000_PBA_8K
- 1);
660 /* if short on rx space, rx wins and must trump tx
661 * adjustment or use Early Receive if available */
662 if (pba
< min_rx_space
)
670 * flow control settings:
671 * The high water mark must be low enough to fit one full frame
672 * (or the size used for early receive) above it in the Rx FIFO.
673 * Set it to the lower of:
674 * - 90% of the Rx FIFO size, and
675 * - the full Rx FIFO size minus the early receive size (for parts
676 * with ERT support assuming ERT set to E1000_ERT_2048), or
677 * - the full Rx FIFO size minus one full frame
679 hwm
= min(((pba
<< 10) * 9 / 10),
680 ((pba
<< 10) - hw
->max_frame_size
));
682 hw
->fc_high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
683 hw
->fc_low_water
= hw
->fc_high_water
- 8;
684 hw
->fc_pause_time
= E1000_FC_PAUSE_TIME
;
686 hw
->fc
= hw
->original_fc
;
688 /* Allow time for pending master requests to run */
690 if (hw
->mac_type
>= e1000_82544
)
693 if (e1000_init_hw(hw
))
694 e_dev_err("Hardware Error\n");
695 e1000_update_mng_vlan(adapter
);
697 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
698 if (hw
->mac_type
>= e1000_82544
&&
700 hw
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
701 u32 ctrl
= er32(CTRL
);
702 /* clear phy power management bit if we are in gig only mode,
703 * which if enabled will attempt negotiation to 100Mb, which
704 * can cause a loss of link at power off or driver unload */
705 ctrl
&= ~E1000_CTRL_SWDPIN3
;
709 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
710 ew32(VET
, ETHERNET_IEEE_VLAN_TYPE
);
712 e1000_reset_adaptive(hw
);
713 e1000_phy_get_info(hw
, &adapter
->phy_info
);
715 e1000_release_manageability(adapter
);
719 * Dump the eeprom for users having checksum issues
721 static void e1000_dump_eeprom(struct e1000_adapter
*adapter
)
723 struct net_device
*netdev
= adapter
->netdev
;
724 struct ethtool_eeprom eeprom
;
725 const struct ethtool_ops
*ops
= netdev
->ethtool_ops
;
728 u16 csum_old
, csum_new
= 0;
730 eeprom
.len
= ops
->get_eeprom_len(netdev
);
733 data
= kmalloc(eeprom
.len
, GFP_KERNEL
);
735 pr_err("Unable to allocate memory to dump EEPROM data\n");
739 ops
->get_eeprom(netdev
, &eeprom
, data
);
741 csum_old
= (data
[EEPROM_CHECKSUM_REG
* 2]) +
742 (data
[EEPROM_CHECKSUM_REG
* 2 + 1] << 8);
743 for (i
= 0; i
< EEPROM_CHECKSUM_REG
* 2; i
+= 2)
744 csum_new
+= data
[i
] + (data
[i
+ 1] << 8);
745 csum_new
= EEPROM_SUM
- csum_new
;
747 pr_err("/*********************/\n");
748 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old
);
749 pr_err("Calculated : 0x%04x\n", csum_new
);
751 pr_err("Offset Values\n");
752 pr_err("======== ======\n");
753 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1, data
, 128, 0);
755 pr_err("Include this output when contacting your support provider.\n");
756 pr_err("This is not a software error! Something bad happened to\n");
757 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
758 pr_err("result in further problems, possibly loss of data,\n");
759 pr_err("corruption or system hangs!\n");
760 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
761 pr_err("which is invalid and requires you to set the proper MAC\n");
762 pr_err("address manually before continuing to enable this network\n");
763 pr_err("device. Please inspect the EEPROM dump and report the\n");
764 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
765 pr_err("/*********************/\n");
771 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
772 * @pdev: PCI device information struct
774 * Return true if an adapter needs ioport resources
776 static int e1000_is_need_ioport(struct pci_dev
*pdev
)
778 switch (pdev
->device
) {
779 case E1000_DEV_ID_82540EM
:
780 case E1000_DEV_ID_82540EM_LOM
:
781 case E1000_DEV_ID_82540EP
:
782 case E1000_DEV_ID_82540EP_LOM
:
783 case E1000_DEV_ID_82540EP_LP
:
784 case E1000_DEV_ID_82541EI
:
785 case E1000_DEV_ID_82541EI_MOBILE
:
786 case E1000_DEV_ID_82541ER
:
787 case E1000_DEV_ID_82541ER_LOM
:
788 case E1000_DEV_ID_82541GI
:
789 case E1000_DEV_ID_82541GI_LF
:
790 case E1000_DEV_ID_82541GI_MOBILE
:
791 case E1000_DEV_ID_82544EI_COPPER
:
792 case E1000_DEV_ID_82544EI_FIBER
:
793 case E1000_DEV_ID_82544GC_COPPER
:
794 case E1000_DEV_ID_82544GC_LOM
:
795 case E1000_DEV_ID_82545EM_COPPER
:
796 case E1000_DEV_ID_82545EM_FIBER
:
797 case E1000_DEV_ID_82546EB_COPPER
:
798 case E1000_DEV_ID_82546EB_FIBER
:
799 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
806 static u32
e1000_fix_features(struct net_device
*netdev
, u32 features
)
809 * Since there is no support for separate rx/tx vlan accel
810 * enable/disable make sure tx flag is always in same state as rx.
812 if (features
& NETIF_F_HW_VLAN_RX
)
813 features
|= NETIF_F_HW_VLAN_TX
;
815 features
&= ~NETIF_F_HW_VLAN_TX
;
820 static int e1000_set_features(struct net_device
*netdev
, u32 features
)
822 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
823 u32 changed
= features
^ netdev
->features
;
825 if (changed
& NETIF_F_HW_VLAN_RX
)
826 e1000_vlan_mode(netdev
, features
);
828 if (!(changed
& NETIF_F_RXCSUM
))
831 adapter
->rx_csum
= !!(features
& NETIF_F_RXCSUM
);
833 if (netif_running(netdev
))
834 e1000_reinit_locked(adapter
);
836 e1000_reset(adapter
);
841 static const struct net_device_ops e1000_netdev_ops
= {
842 .ndo_open
= e1000_open
,
843 .ndo_stop
= e1000_close
,
844 .ndo_start_xmit
= e1000_xmit_frame
,
845 .ndo_get_stats
= e1000_get_stats
,
846 .ndo_set_rx_mode
= e1000_set_rx_mode
,
847 .ndo_set_mac_address
= e1000_set_mac
,
848 .ndo_tx_timeout
= e1000_tx_timeout
,
849 .ndo_change_mtu
= e1000_change_mtu
,
850 .ndo_do_ioctl
= e1000_ioctl
,
851 .ndo_validate_addr
= eth_validate_addr
,
852 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
853 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
854 #ifdef CONFIG_NET_POLL_CONTROLLER
855 .ndo_poll_controller
= e1000_netpoll
,
857 .ndo_fix_features
= e1000_fix_features
,
858 .ndo_set_features
= e1000_set_features
,
862 * e1000_init_hw_struct - initialize members of hw struct
863 * @adapter: board private struct
864 * @hw: structure used by e1000_hw.c
866 * Factors out initialization of the e1000_hw struct to its own function
867 * that can be called very early at init (just after struct allocation).
868 * Fields are initialized based on PCI device information and
869 * OS network device settings (MTU size).
870 * Returns negative error codes if MAC type setup fails.
872 static int e1000_init_hw_struct(struct e1000_adapter
*adapter
,
875 struct pci_dev
*pdev
= adapter
->pdev
;
877 /* PCI config space info */
878 hw
->vendor_id
= pdev
->vendor
;
879 hw
->device_id
= pdev
->device
;
880 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
881 hw
->subsystem_id
= pdev
->subsystem_device
;
882 hw
->revision_id
= pdev
->revision
;
884 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
886 hw
->max_frame_size
= adapter
->netdev
->mtu
+
887 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
888 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
890 /* identify the MAC */
891 if (e1000_set_mac_type(hw
)) {
892 e_err(probe
, "Unknown MAC Type\n");
896 switch (hw
->mac_type
) {
901 case e1000_82541_rev_2
:
902 case e1000_82547_rev_2
:
903 hw
->phy_init_script
= 1;
907 e1000_set_media_type(hw
);
908 e1000_get_bus_info(hw
);
910 hw
->wait_autoneg_complete
= false;
911 hw
->tbi_compatibility_en
= true;
912 hw
->adaptive_ifs
= true;
916 if (hw
->media_type
== e1000_media_type_copper
) {
917 hw
->mdix
= AUTO_ALL_MODES
;
918 hw
->disable_polarity_correction
= false;
919 hw
->master_slave
= E1000_MASTER_SLAVE
;
926 * e1000_probe - Device Initialization Routine
927 * @pdev: PCI device information struct
928 * @ent: entry in e1000_pci_tbl
930 * Returns 0 on success, negative on failure
932 * e1000_probe initializes an adapter identified by a pci_dev structure.
933 * The OS initialization, configuring of the adapter private structure,
934 * and a hardware reset occur.
936 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
937 const struct pci_device_id
*ent
)
939 struct net_device
*netdev
;
940 struct e1000_adapter
*adapter
;
943 static int cards_found
= 0;
944 static int global_quad_port_a
= 0; /* global ksp3 port a indication */
945 int i
, err
, pci_using_dac
;
948 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
949 int bars
, need_ioport
;
951 /* do not allocate ioport bars when not needed */
952 need_ioport
= e1000_is_need_ioport(pdev
);
954 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
| IORESOURCE_IO
);
955 err
= pci_enable_device(pdev
);
957 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
958 err
= pci_enable_device_mem(pdev
);
963 err
= pci_request_selected_regions(pdev
, bars
, e1000_driver_name
);
967 pci_set_master(pdev
);
968 err
= pci_save_state(pdev
);
970 goto err_alloc_etherdev
;
973 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
975 goto err_alloc_etherdev
;
977 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
979 pci_set_drvdata(pdev
, netdev
);
980 adapter
= netdev_priv(netdev
);
981 adapter
->netdev
= netdev
;
982 adapter
->pdev
= pdev
;
983 adapter
->msg_enable
= (1 << debug
) - 1;
984 adapter
->bars
= bars
;
985 adapter
->need_ioport
= need_ioport
;
991 hw
->hw_addr
= pci_ioremap_bar(pdev
, BAR_0
);
995 if (adapter
->need_ioport
) {
996 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
997 if (pci_resource_len(pdev
, i
) == 0)
999 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
1000 hw
->io_base
= pci_resource_start(pdev
, i
);
1006 /* make ready for any if (hw->...) below */
1007 err
= e1000_init_hw_struct(adapter
, hw
);
1012 * there is a workaround being applied below that limits
1013 * 64-bit DMA addresses to 64-bit hardware. There are some
1014 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1017 if ((hw
->bus_type
== e1000_bus_type_pcix
) &&
1018 !dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64))) {
1020 * according to DMA-API-HOWTO, coherent calls will always
1021 * succeed if the set call did
1023 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
1026 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1028 pr_err("No usable DMA config, aborting\n");
1031 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1034 netdev
->netdev_ops
= &e1000_netdev_ops
;
1035 e1000_set_ethtool_ops(netdev
);
1036 netdev
->watchdog_timeo
= 5 * HZ
;
1037 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
1039 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
1041 adapter
->bd_number
= cards_found
;
1043 /* setup the private structure */
1045 err
= e1000_sw_init(adapter
);
1050 if (hw
->mac_type
== e1000_ce4100
) {
1051 ce4100_gbe_mdio_base_phy
= pci_resource_start(pdev
, BAR_1
);
1052 ce4100_gbe_mdio_base_virt
= ioremap(ce4100_gbe_mdio_base_phy
,
1053 pci_resource_len(pdev
, BAR_1
));
1055 if (!ce4100_gbe_mdio_base_virt
)
1056 goto err_mdio_ioremap
;
1059 if (hw
->mac_type
>= e1000_82543
) {
1060 netdev
->hw_features
= NETIF_F_SG
|
1063 netdev
->features
= NETIF_F_HW_VLAN_TX
|
1064 NETIF_F_HW_VLAN_FILTER
;
1067 if ((hw
->mac_type
>= e1000_82544
) &&
1068 (hw
->mac_type
!= e1000_82547
))
1069 netdev
->hw_features
|= NETIF_F_TSO
;
1071 netdev
->features
|= netdev
->hw_features
;
1072 netdev
->hw_features
|= NETIF_F_RXCSUM
;
1074 if (pci_using_dac
) {
1075 netdev
->features
|= NETIF_F_HIGHDMA
;
1076 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
1079 netdev
->vlan_features
|= NETIF_F_TSO
;
1080 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
1081 netdev
->vlan_features
|= NETIF_F_SG
;
1083 netdev
->priv_flags
|= IFF_UNICAST_FLT
;
1085 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(hw
);
1087 /* initialize eeprom parameters */
1088 if (e1000_init_eeprom_params(hw
)) {
1089 e_err(probe
, "EEPROM initialization failed\n");
1093 /* before reading the EEPROM, reset the controller to
1094 * put the device in a known good starting state */
1098 /* make sure the EEPROM is good */
1099 if (e1000_validate_eeprom_checksum(hw
) < 0) {
1100 e_err(probe
, "The EEPROM Checksum Is Not Valid\n");
1101 e1000_dump_eeprom(adapter
);
1103 * set MAC address to all zeroes to invalidate and temporary
1104 * disable this device for the user. This blocks regular
1105 * traffic while still permitting ethtool ioctls from reaching
1106 * the hardware as well as allowing the user to run the
1107 * interface after manually setting a hw addr using
1110 memset(hw
->mac_addr
, 0, netdev
->addr_len
);
1112 /* copy the MAC address out of the EEPROM */
1113 if (e1000_read_mac_addr(hw
))
1114 e_err(probe
, "EEPROM Read Error\n");
1116 /* don't block initalization here due to bad MAC address */
1117 memcpy(netdev
->dev_addr
, hw
->mac_addr
, netdev
->addr_len
);
1118 memcpy(netdev
->perm_addr
, hw
->mac_addr
, netdev
->addr_len
);
1120 if (!is_valid_ether_addr(netdev
->perm_addr
))
1121 e_err(probe
, "Invalid MAC Address\n");
1123 init_timer(&adapter
->tx_fifo_stall_timer
);
1124 adapter
->tx_fifo_stall_timer
.function
= e1000_82547_tx_fifo_stall
;
1125 adapter
->tx_fifo_stall_timer
.data
= (unsigned long)adapter
;
1127 init_timer(&adapter
->watchdog_timer
);
1128 adapter
->watchdog_timer
.function
= e1000_watchdog
;
1129 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
1131 init_timer(&adapter
->phy_info_timer
);
1132 adapter
->phy_info_timer
.function
= e1000_update_phy_info
;
1133 adapter
->phy_info_timer
.data
= (unsigned long)adapter
;
1135 INIT_WORK(&adapter
->fifo_stall_task
, e1000_82547_tx_fifo_stall_task
);
1136 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
1137 INIT_WORK(&adapter
->phy_info_task
, e1000_update_phy_info_task
);
1139 e1000_check_options(adapter
);
1141 /* Initial Wake on LAN setting
1142 * If APM wake is enabled in the EEPROM,
1143 * enable the ACPI Magic Packet filter
1146 switch (hw
->mac_type
) {
1147 case e1000_82542_rev2_0
:
1148 case e1000_82542_rev2_1
:
1152 e1000_read_eeprom(hw
,
1153 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
1154 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
1157 case e1000_82546_rev_3
:
1158 if (er32(STATUS
) & E1000_STATUS_FUNC_1
){
1159 e1000_read_eeprom(hw
,
1160 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1165 e1000_read_eeprom(hw
,
1166 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1169 if (eeprom_data
& eeprom_apme_mask
)
1170 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1172 /* now that we have the eeprom settings, apply the special cases
1173 * where the eeprom may be wrong or the board simply won't support
1174 * wake on lan on a particular port */
1175 switch (pdev
->device
) {
1176 case E1000_DEV_ID_82546GB_PCIE
:
1177 adapter
->eeprom_wol
= 0;
1179 case E1000_DEV_ID_82546EB_FIBER
:
1180 case E1000_DEV_ID_82546GB_FIBER
:
1181 /* Wake events only supported on port A for dual fiber
1182 * regardless of eeprom setting */
1183 if (er32(STATUS
) & E1000_STATUS_FUNC_1
)
1184 adapter
->eeprom_wol
= 0;
1186 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1187 /* if quad port adapter, disable WoL on all but port A */
1188 if (global_quad_port_a
!= 0)
1189 adapter
->eeprom_wol
= 0;
1191 adapter
->quad_port_a
= 1;
1192 /* Reset for multiple quad port adapters */
1193 if (++global_quad_port_a
== 4)
1194 global_quad_port_a
= 0;
1198 /* initialize the wol settings based on the eeprom settings */
1199 adapter
->wol
= adapter
->eeprom_wol
;
1200 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1202 /* Auto detect PHY address */
1203 if (hw
->mac_type
== e1000_ce4100
) {
1204 for (i
= 0; i
< 32; i
++) {
1206 e1000_read_phy_reg(hw
, PHY_ID2
, &tmp
);
1207 if (tmp
== 0 || tmp
== 0xFF) {
1216 /* reset the hardware with the new settings */
1217 e1000_reset(adapter
);
1219 strcpy(netdev
->name
, "eth%d");
1220 err
= register_netdev(netdev
);
1224 e1000_vlan_mode(netdev
, netdev
->features
);
1226 /* print bus type/speed/width info */
1227 e_info(probe
, "(PCI%s:%dMHz:%d-bit) %pM\n",
1228 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" : ""),
1229 ((hw
->bus_speed
== e1000_bus_speed_133
) ? 133 :
1230 (hw
->bus_speed
== e1000_bus_speed_120
) ? 120 :
1231 (hw
->bus_speed
== e1000_bus_speed_100
) ? 100 :
1232 (hw
->bus_speed
== e1000_bus_speed_66
) ? 66 : 33),
1233 ((hw
->bus_width
== e1000_bus_width_64
) ? 64 : 32),
1236 /* carrier off reporting is important to ethtool even BEFORE open */
1237 netif_carrier_off(netdev
);
1239 e_info(probe
, "Intel(R) PRO/1000 Network Connection\n");
1246 e1000_phy_hw_reset(hw
);
1248 if (hw
->flash_address
)
1249 iounmap(hw
->flash_address
);
1250 kfree(adapter
->tx_ring
);
1251 kfree(adapter
->rx_ring
);
1255 iounmap(ce4100_gbe_mdio_base_virt
);
1256 iounmap(hw
->hw_addr
);
1258 free_netdev(netdev
);
1260 pci_release_selected_regions(pdev
, bars
);
1262 pci_disable_device(pdev
);
1267 * e1000_remove - Device Removal Routine
1268 * @pdev: PCI device information struct
1270 * e1000_remove is called by the PCI subsystem to alert the driver
1271 * that it should release a PCI device. The could be caused by a
1272 * Hot-Plug event, or because the driver is going to be removed from
1276 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
1278 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1279 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1280 struct e1000_hw
*hw
= &adapter
->hw
;
1282 set_bit(__E1000_DOWN
, &adapter
->flags
);
1283 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
1284 del_timer_sync(&adapter
->watchdog_timer
);
1285 del_timer_sync(&adapter
->phy_info_timer
);
1287 cancel_work_sync(&adapter
->reset_task
);
1289 e1000_release_manageability(adapter
);
1291 unregister_netdev(netdev
);
1293 e1000_phy_hw_reset(hw
);
1295 kfree(adapter
->tx_ring
);
1296 kfree(adapter
->rx_ring
);
1298 iounmap(hw
->hw_addr
);
1299 if (hw
->flash_address
)
1300 iounmap(hw
->flash_address
);
1301 pci_release_selected_regions(pdev
, adapter
->bars
);
1303 free_netdev(netdev
);
1305 pci_disable_device(pdev
);
1309 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1310 * @adapter: board private structure to initialize
1312 * e1000_sw_init initializes the Adapter private data structure.
1313 * e1000_init_hw_struct MUST be called before this function
1316 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
1318 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1320 adapter
->num_tx_queues
= 1;
1321 adapter
->num_rx_queues
= 1;
1323 if (e1000_alloc_queues(adapter
)) {
1324 e_err(probe
, "Unable to allocate memory for queues\n");
1328 /* Explicitly disable IRQ since the NIC can be in any state. */
1329 e1000_irq_disable(adapter
);
1331 spin_lock_init(&adapter
->stats_lock
);
1333 set_bit(__E1000_DOWN
, &adapter
->flags
);
1339 * e1000_alloc_queues - Allocate memory for all rings
1340 * @adapter: board private structure to initialize
1342 * We allocate one ring per queue at run-time since we don't know the
1343 * number of queues at compile-time.
1346 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
1348 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
1349 sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
1350 if (!adapter
->tx_ring
)
1353 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
1354 sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
1355 if (!adapter
->rx_ring
) {
1356 kfree(adapter
->tx_ring
);
1360 return E1000_SUCCESS
;
1364 * e1000_open - Called when a network interface is made active
1365 * @netdev: network interface device structure
1367 * Returns 0 on success, negative value on failure
1369 * The open entry point is called when a network interface is made
1370 * active by the system (IFF_UP). At this point all resources needed
1371 * for transmit and receive operations are allocated, the interrupt
1372 * handler is registered with the OS, the watchdog timer is started,
1373 * and the stack is notified that the interface is ready.
1376 static int e1000_open(struct net_device
*netdev
)
1378 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1379 struct e1000_hw
*hw
= &adapter
->hw
;
1382 /* disallow open during test */
1383 if (test_bit(__E1000_TESTING
, &adapter
->flags
))
1386 netif_carrier_off(netdev
);
1388 /* allocate transmit descriptors */
1389 err
= e1000_setup_all_tx_resources(adapter
);
1393 /* allocate receive descriptors */
1394 err
= e1000_setup_all_rx_resources(adapter
);
1398 e1000_power_up_phy(adapter
);
1400 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1401 if ((hw
->mng_cookie
.status
&
1402 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1403 e1000_update_mng_vlan(adapter
);
1406 /* before we allocate an interrupt, we must be ready to handle it.
1407 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1408 * as soon as we call pci_request_irq, so we have to setup our
1409 * clean_rx handler before we do so. */
1410 e1000_configure(adapter
);
1412 err
= e1000_request_irq(adapter
);
1416 /* From here on the code is the same as e1000_up() */
1417 clear_bit(__E1000_DOWN
, &adapter
->flags
);
1419 napi_enable(&adapter
->napi
);
1421 e1000_irq_enable(adapter
);
1423 netif_start_queue(netdev
);
1425 /* fire a link status change interrupt to start the watchdog */
1426 ew32(ICS
, E1000_ICS_LSC
);
1428 return E1000_SUCCESS
;
1431 e1000_power_down_phy(adapter
);
1432 e1000_free_all_rx_resources(adapter
);
1434 e1000_free_all_tx_resources(adapter
);
1436 e1000_reset(adapter
);
1442 * e1000_close - Disables a network interface
1443 * @netdev: network interface device structure
1445 * Returns 0, this is not allowed to fail
1447 * The close entry point is called when an interface is de-activated
1448 * by the OS. The hardware is still under the drivers control, but
1449 * needs to be disabled. A global MAC reset is issued to stop the
1450 * hardware, and all transmit and receive resources are freed.
1453 static int e1000_close(struct net_device
*netdev
)
1455 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1456 struct e1000_hw
*hw
= &adapter
->hw
;
1458 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1459 e1000_down(adapter
);
1460 e1000_power_down_phy(adapter
);
1461 e1000_free_irq(adapter
);
1463 e1000_free_all_tx_resources(adapter
);
1464 e1000_free_all_rx_resources(adapter
);
1466 /* kill manageability vlan ID if supported, but not if a vlan with
1467 * the same ID is registered on the host OS (let 8021q kill it) */
1468 if ((hw
->mng_cookie
.status
&
1469 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
1470 !test_bit(adapter
->mng_vlan_id
, adapter
->active_vlans
)) {
1471 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1478 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1479 * @adapter: address of board private structure
1480 * @start: address of beginning of memory
1481 * @len: length of memory
1483 static bool e1000_check_64k_bound(struct e1000_adapter
*adapter
, void *start
,
1486 struct e1000_hw
*hw
= &adapter
->hw
;
1487 unsigned long begin
= (unsigned long)start
;
1488 unsigned long end
= begin
+ len
;
1490 /* First rev 82545 and 82546 need to not allow any memory
1491 * write location to cross 64k boundary due to errata 23 */
1492 if (hw
->mac_type
== e1000_82545
||
1493 hw
->mac_type
== e1000_ce4100
||
1494 hw
->mac_type
== e1000_82546
) {
1495 return ((begin
^ (end
- 1)) >> 16) != 0 ? false : true;
1502 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1503 * @adapter: board private structure
1504 * @txdr: tx descriptor ring (for a specific queue) to setup
1506 * Return 0 on success, negative on failure
1509 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1510 struct e1000_tx_ring
*txdr
)
1512 struct pci_dev
*pdev
= adapter
->pdev
;
1515 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1516 txdr
->buffer_info
= vzalloc(size
);
1517 if (!txdr
->buffer_info
) {
1518 e_err(probe
, "Unable to allocate memory for the Tx descriptor "
1523 /* round up to nearest 4K */
1525 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1526 txdr
->size
= ALIGN(txdr
->size
, 4096);
1528 txdr
->desc
= dma_alloc_coherent(&pdev
->dev
, txdr
->size
, &txdr
->dma
,
1532 vfree(txdr
->buffer_info
);
1533 e_err(probe
, "Unable to allocate memory for the Tx descriptor "
1538 /* Fix for errata 23, can't cross 64kB boundary */
1539 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1540 void *olddesc
= txdr
->desc
;
1541 dma_addr_t olddma
= txdr
->dma
;
1542 e_err(tx_err
, "txdr align check failed: %u bytes at %p\n",
1543 txdr
->size
, txdr
->desc
);
1544 /* Try again, without freeing the previous */
1545 txdr
->desc
= dma_alloc_coherent(&pdev
->dev
, txdr
->size
,
1546 &txdr
->dma
, GFP_KERNEL
);
1547 /* Failed allocation, critical failure */
1549 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1551 goto setup_tx_desc_die
;
1554 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1556 dma_free_coherent(&pdev
->dev
, txdr
->size
, txdr
->desc
,
1558 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1560 e_err(probe
, "Unable to allocate aligned memory "
1561 "for the transmit descriptor ring\n");
1562 vfree(txdr
->buffer_info
);
1565 /* Free old allocation, new allocation was successful */
1566 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1570 memset(txdr
->desc
, 0, txdr
->size
);
1572 txdr
->next_to_use
= 0;
1573 txdr
->next_to_clean
= 0;
1579 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1580 * (Descriptors) for all queues
1581 * @adapter: board private structure
1583 * Return 0 on success, negative on failure
1586 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1590 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1591 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1593 e_err(probe
, "Allocation for Tx Queue %u failed\n", i
);
1594 for (i
-- ; i
>= 0; i
--)
1595 e1000_free_tx_resources(adapter
,
1596 &adapter
->tx_ring
[i
]);
1605 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1606 * @adapter: board private structure
1608 * Configure the Tx unit of the MAC after a reset.
1611 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
1614 struct e1000_hw
*hw
= &adapter
->hw
;
1615 u32 tdlen
, tctl
, tipg
;
1618 /* Setup the HW Tx Head and Tail descriptor pointers */
1620 switch (adapter
->num_tx_queues
) {
1623 tdba
= adapter
->tx_ring
[0].dma
;
1624 tdlen
= adapter
->tx_ring
[0].count
*
1625 sizeof(struct e1000_tx_desc
);
1627 ew32(TDBAH
, (tdba
>> 32));
1628 ew32(TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1631 adapter
->tx_ring
[0].tdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDH
: E1000_82542_TDH
);
1632 adapter
->tx_ring
[0].tdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDT
: E1000_82542_TDT
);
1636 /* Set the default values for the Tx Inter Packet Gap timer */
1637 if ((hw
->media_type
== e1000_media_type_fiber
||
1638 hw
->media_type
== e1000_media_type_internal_serdes
))
1639 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1641 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1643 switch (hw
->mac_type
) {
1644 case e1000_82542_rev2_0
:
1645 case e1000_82542_rev2_1
:
1646 tipg
= DEFAULT_82542_TIPG_IPGT
;
1647 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1648 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1651 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1652 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1655 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1656 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1659 /* Set the Tx Interrupt Delay register */
1661 ew32(TIDV
, adapter
->tx_int_delay
);
1662 if (hw
->mac_type
>= e1000_82540
)
1663 ew32(TADV
, adapter
->tx_abs_int_delay
);
1665 /* Program the Transmit Control Register */
1668 tctl
&= ~E1000_TCTL_CT
;
1669 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1670 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1672 e1000_config_collision_dist(hw
);
1674 /* Setup Transmit Descriptor Settings for eop descriptor */
1675 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1677 /* only set IDE if we are delaying interrupts using the timers */
1678 if (adapter
->tx_int_delay
)
1679 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1681 if (hw
->mac_type
< e1000_82543
)
1682 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1684 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1686 /* Cache if we're 82544 running in PCI-X because we'll
1687 * need this to apply a workaround later in the send path. */
1688 if (hw
->mac_type
== e1000_82544
&&
1689 hw
->bus_type
== e1000_bus_type_pcix
)
1690 adapter
->pcix_82544
= 1;
1697 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1698 * @adapter: board private structure
1699 * @rxdr: rx descriptor ring (for a specific queue) to setup
1701 * Returns 0 on success, negative on failure
1704 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1705 struct e1000_rx_ring
*rxdr
)
1707 struct pci_dev
*pdev
= adapter
->pdev
;
1710 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1711 rxdr
->buffer_info
= vzalloc(size
);
1712 if (!rxdr
->buffer_info
) {
1713 e_err(probe
, "Unable to allocate memory for the Rx descriptor "
1718 desc_len
= sizeof(struct e1000_rx_desc
);
1720 /* Round up to nearest 4K */
1722 rxdr
->size
= rxdr
->count
* desc_len
;
1723 rxdr
->size
= ALIGN(rxdr
->size
, 4096);
1725 rxdr
->desc
= dma_alloc_coherent(&pdev
->dev
, rxdr
->size
, &rxdr
->dma
,
1729 e_err(probe
, "Unable to allocate memory for the Rx descriptor "
1732 vfree(rxdr
->buffer_info
);
1736 /* Fix for errata 23, can't cross 64kB boundary */
1737 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1738 void *olddesc
= rxdr
->desc
;
1739 dma_addr_t olddma
= rxdr
->dma
;
1740 e_err(rx_err
, "rxdr align check failed: %u bytes at %p\n",
1741 rxdr
->size
, rxdr
->desc
);
1742 /* Try again, without freeing the previous */
1743 rxdr
->desc
= dma_alloc_coherent(&pdev
->dev
, rxdr
->size
,
1744 &rxdr
->dma
, GFP_KERNEL
);
1745 /* Failed allocation, critical failure */
1747 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1749 e_err(probe
, "Unable to allocate memory for the Rx "
1750 "descriptor ring\n");
1751 goto setup_rx_desc_die
;
1754 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1756 dma_free_coherent(&pdev
->dev
, rxdr
->size
, rxdr
->desc
,
1758 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1760 e_err(probe
, "Unable to allocate aligned memory for "
1761 "the Rx descriptor ring\n");
1762 goto setup_rx_desc_die
;
1764 /* Free old allocation, new allocation was successful */
1765 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1769 memset(rxdr
->desc
, 0, rxdr
->size
);
1771 rxdr
->next_to_clean
= 0;
1772 rxdr
->next_to_use
= 0;
1773 rxdr
->rx_skb_top
= NULL
;
1779 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1780 * (Descriptors) for all queues
1781 * @adapter: board private structure
1783 * Return 0 on success, negative on failure
1786 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1790 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1791 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1793 e_err(probe
, "Allocation for Rx Queue %u failed\n", i
);
1794 for (i
-- ; i
>= 0; i
--)
1795 e1000_free_rx_resources(adapter
,
1796 &adapter
->rx_ring
[i
]);
1805 * e1000_setup_rctl - configure the receive control registers
1806 * @adapter: Board private structure
1808 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
1810 struct e1000_hw
*hw
= &adapter
->hw
;
1815 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1817 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1818 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1819 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1821 if (hw
->tbi_compatibility_on
== 1)
1822 rctl
|= E1000_RCTL_SBP
;
1824 rctl
&= ~E1000_RCTL_SBP
;
1826 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1827 rctl
&= ~E1000_RCTL_LPE
;
1829 rctl
|= E1000_RCTL_LPE
;
1831 /* Setup buffer sizes */
1832 rctl
&= ~E1000_RCTL_SZ_4096
;
1833 rctl
|= E1000_RCTL_BSEX
;
1834 switch (adapter
->rx_buffer_len
) {
1835 case E1000_RXBUFFER_2048
:
1837 rctl
|= E1000_RCTL_SZ_2048
;
1838 rctl
&= ~E1000_RCTL_BSEX
;
1840 case E1000_RXBUFFER_4096
:
1841 rctl
|= E1000_RCTL_SZ_4096
;
1843 case E1000_RXBUFFER_8192
:
1844 rctl
|= E1000_RCTL_SZ_8192
;
1846 case E1000_RXBUFFER_16384
:
1847 rctl
|= E1000_RCTL_SZ_16384
;
1855 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1856 * @adapter: board private structure
1858 * Configure the Rx unit of the MAC after a reset.
1861 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
1864 struct e1000_hw
*hw
= &adapter
->hw
;
1865 u32 rdlen
, rctl
, rxcsum
;
1867 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
1868 rdlen
= adapter
->rx_ring
[0].count
*
1869 sizeof(struct e1000_rx_desc
);
1870 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
1871 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
1873 rdlen
= adapter
->rx_ring
[0].count
*
1874 sizeof(struct e1000_rx_desc
);
1875 adapter
->clean_rx
= e1000_clean_rx_irq
;
1876 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
1879 /* disable receives while setting up the descriptors */
1881 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1883 /* set the Receive Delay Timer Register */
1884 ew32(RDTR
, adapter
->rx_int_delay
);
1886 if (hw
->mac_type
>= e1000_82540
) {
1887 ew32(RADV
, adapter
->rx_abs_int_delay
);
1888 if (adapter
->itr_setting
!= 0)
1889 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1892 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1893 * the Base and Length of the Rx Descriptor Ring */
1894 switch (adapter
->num_rx_queues
) {
1897 rdba
= adapter
->rx_ring
[0].dma
;
1899 ew32(RDBAH
, (rdba
>> 32));
1900 ew32(RDBAL
, (rdba
& 0x00000000ffffffffULL
));
1903 adapter
->rx_ring
[0].rdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDH
: E1000_82542_RDH
);
1904 adapter
->rx_ring
[0].rdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDT
: E1000_82542_RDT
);
1908 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1909 if (hw
->mac_type
>= e1000_82543
) {
1910 rxcsum
= er32(RXCSUM
);
1911 if (adapter
->rx_csum
)
1912 rxcsum
|= E1000_RXCSUM_TUOFL
;
1914 /* don't need to clear IPPCSE as it defaults to 0 */
1915 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1916 ew32(RXCSUM
, rxcsum
);
1919 /* Enable Receives */
1924 * e1000_free_tx_resources - Free Tx Resources per Queue
1925 * @adapter: board private structure
1926 * @tx_ring: Tx descriptor ring for a specific queue
1928 * Free all transmit software resources
1931 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
1932 struct e1000_tx_ring
*tx_ring
)
1934 struct pci_dev
*pdev
= adapter
->pdev
;
1936 e1000_clean_tx_ring(adapter
, tx_ring
);
1938 vfree(tx_ring
->buffer_info
);
1939 tx_ring
->buffer_info
= NULL
;
1941 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1944 tx_ring
->desc
= NULL
;
1948 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1949 * @adapter: board private structure
1951 * Free all transmit software resources
1954 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
1958 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1959 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1962 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
1963 struct e1000_buffer
*buffer_info
)
1965 if (buffer_info
->dma
) {
1966 if (buffer_info
->mapped_as_page
)
1967 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
1968 buffer_info
->length
, DMA_TO_DEVICE
);
1970 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
1971 buffer_info
->length
,
1973 buffer_info
->dma
= 0;
1975 if (buffer_info
->skb
) {
1976 dev_kfree_skb_any(buffer_info
->skb
);
1977 buffer_info
->skb
= NULL
;
1979 buffer_info
->time_stamp
= 0;
1980 /* buffer_info must be completely set up in the transmit path */
1984 * e1000_clean_tx_ring - Free Tx Buffers
1985 * @adapter: board private structure
1986 * @tx_ring: ring to be cleaned
1989 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
1990 struct e1000_tx_ring
*tx_ring
)
1992 struct e1000_hw
*hw
= &adapter
->hw
;
1993 struct e1000_buffer
*buffer_info
;
1997 /* Free all the Tx ring sk_buffs */
1999 for (i
= 0; i
< tx_ring
->count
; i
++) {
2000 buffer_info
= &tx_ring
->buffer_info
[i
];
2001 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2004 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2005 memset(tx_ring
->buffer_info
, 0, size
);
2007 /* Zero out the descriptor ring */
2009 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2011 tx_ring
->next_to_use
= 0;
2012 tx_ring
->next_to_clean
= 0;
2013 tx_ring
->last_tx_tso
= 0;
2015 writel(0, hw
->hw_addr
+ tx_ring
->tdh
);
2016 writel(0, hw
->hw_addr
+ tx_ring
->tdt
);
2020 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2021 * @adapter: board private structure
2024 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
2028 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2029 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
2033 * e1000_free_rx_resources - Free Rx Resources
2034 * @adapter: board private structure
2035 * @rx_ring: ring to clean the resources from
2037 * Free all receive software resources
2040 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
2041 struct e1000_rx_ring
*rx_ring
)
2043 struct pci_dev
*pdev
= adapter
->pdev
;
2045 e1000_clean_rx_ring(adapter
, rx_ring
);
2047 vfree(rx_ring
->buffer_info
);
2048 rx_ring
->buffer_info
= NULL
;
2050 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2053 rx_ring
->desc
= NULL
;
2057 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2058 * @adapter: board private structure
2060 * Free all receive software resources
2063 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
2067 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2068 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
2072 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2073 * @adapter: board private structure
2074 * @rx_ring: ring to free buffers from
2077 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
2078 struct e1000_rx_ring
*rx_ring
)
2080 struct e1000_hw
*hw
= &adapter
->hw
;
2081 struct e1000_buffer
*buffer_info
;
2082 struct pci_dev
*pdev
= adapter
->pdev
;
2086 /* Free all the Rx ring sk_buffs */
2087 for (i
= 0; i
< rx_ring
->count
; i
++) {
2088 buffer_info
= &rx_ring
->buffer_info
[i
];
2089 if (buffer_info
->dma
&&
2090 adapter
->clean_rx
== e1000_clean_rx_irq
) {
2091 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
2092 buffer_info
->length
,
2094 } else if (buffer_info
->dma
&&
2095 adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
) {
2096 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
2097 buffer_info
->length
,
2101 buffer_info
->dma
= 0;
2102 if (buffer_info
->page
) {
2103 put_page(buffer_info
->page
);
2104 buffer_info
->page
= NULL
;
2106 if (buffer_info
->skb
) {
2107 dev_kfree_skb(buffer_info
->skb
);
2108 buffer_info
->skb
= NULL
;
2112 /* there also may be some cached data from a chained receive */
2113 if (rx_ring
->rx_skb_top
) {
2114 dev_kfree_skb(rx_ring
->rx_skb_top
);
2115 rx_ring
->rx_skb_top
= NULL
;
2118 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2119 memset(rx_ring
->buffer_info
, 0, size
);
2121 /* Zero out the descriptor ring */
2122 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2124 rx_ring
->next_to_clean
= 0;
2125 rx_ring
->next_to_use
= 0;
2127 writel(0, hw
->hw_addr
+ rx_ring
->rdh
);
2128 writel(0, hw
->hw_addr
+ rx_ring
->rdt
);
2132 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2133 * @adapter: board private structure
2136 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2140 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2141 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2144 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2145 * and memory write and invalidate disabled for certain operations
2147 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2149 struct e1000_hw
*hw
= &adapter
->hw
;
2150 struct net_device
*netdev
= adapter
->netdev
;
2153 e1000_pci_clear_mwi(hw
);
2156 rctl
|= E1000_RCTL_RST
;
2158 E1000_WRITE_FLUSH();
2161 if (netif_running(netdev
))
2162 e1000_clean_all_rx_rings(adapter
);
2165 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2167 struct e1000_hw
*hw
= &adapter
->hw
;
2168 struct net_device
*netdev
= adapter
->netdev
;
2172 rctl
&= ~E1000_RCTL_RST
;
2174 E1000_WRITE_FLUSH();
2177 if (hw
->pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2178 e1000_pci_set_mwi(hw
);
2180 if (netif_running(netdev
)) {
2181 /* No need to loop, because 82542 supports only 1 queue */
2182 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2183 e1000_configure_rx(adapter
);
2184 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2189 * e1000_set_mac - Change the Ethernet Address of the NIC
2190 * @netdev: network interface device structure
2191 * @p: pointer to an address structure
2193 * Returns 0 on success, negative on failure
2196 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
2198 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2199 struct e1000_hw
*hw
= &adapter
->hw
;
2200 struct sockaddr
*addr
= p
;
2202 if (!is_valid_ether_addr(addr
->sa_data
))
2203 return -EADDRNOTAVAIL
;
2205 /* 82542 2.0 needs to be in reset to write receive address registers */
2207 if (hw
->mac_type
== e1000_82542_rev2_0
)
2208 e1000_enter_82542_rst(adapter
);
2210 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2211 memcpy(hw
->mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2213 e1000_rar_set(hw
, hw
->mac_addr
, 0);
2215 if (hw
->mac_type
== e1000_82542_rev2_0
)
2216 e1000_leave_82542_rst(adapter
);
2222 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2223 * @netdev: network interface device structure
2225 * The set_rx_mode entry point is called whenever the unicast or multicast
2226 * address lists or the network interface flags are updated. This routine is
2227 * responsible for configuring the hardware for proper unicast, multicast,
2228 * promiscuous mode, and all-multi behavior.
2231 static void e1000_set_rx_mode(struct net_device
*netdev
)
2233 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2234 struct e1000_hw
*hw
= &adapter
->hw
;
2235 struct netdev_hw_addr
*ha
;
2236 bool use_uc
= false;
2239 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2240 int mta_reg_count
= E1000_NUM_MTA_REGISTERS
;
2241 u32
*mcarray
= kcalloc(mta_reg_count
, sizeof(u32
), GFP_ATOMIC
);
2244 e_err(probe
, "memory allocation failed\n");
2248 /* Check for Promiscuous and All Multicast modes */
2252 if (netdev
->flags
& IFF_PROMISC
) {
2253 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2254 rctl
&= ~E1000_RCTL_VFE
;
2256 if (netdev
->flags
& IFF_ALLMULTI
)
2257 rctl
|= E1000_RCTL_MPE
;
2259 rctl
&= ~E1000_RCTL_MPE
;
2260 /* Enable VLAN filter if there is a VLAN */
2261 if (e1000_vlan_used(adapter
))
2262 rctl
|= E1000_RCTL_VFE
;
2265 if (netdev_uc_count(netdev
) > rar_entries
- 1) {
2266 rctl
|= E1000_RCTL_UPE
;
2267 } else if (!(netdev
->flags
& IFF_PROMISC
)) {
2268 rctl
&= ~E1000_RCTL_UPE
;
2274 /* 82542 2.0 needs to be in reset to write receive address registers */
2276 if (hw
->mac_type
== e1000_82542_rev2_0
)
2277 e1000_enter_82542_rst(adapter
);
2279 /* load the first 14 addresses into the exact filters 1-14. Unicast
2280 * addresses take precedence to avoid disabling unicast filtering
2283 * RAR 0 is used for the station MAC address
2284 * if there are not 14 addresses, go ahead and clear the filters
2288 netdev_for_each_uc_addr(ha
, netdev
) {
2289 if (i
== rar_entries
)
2291 e1000_rar_set(hw
, ha
->addr
, i
++);
2294 netdev_for_each_mc_addr(ha
, netdev
) {
2295 if (i
== rar_entries
) {
2296 /* load any remaining addresses into the hash table */
2297 u32 hash_reg
, hash_bit
, mta
;
2298 hash_value
= e1000_hash_mc_addr(hw
, ha
->addr
);
2299 hash_reg
= (hash_value
>> 5) & 0x7F;
2300 hash_bit
= hash_value
& 0x1F;
2301 mta
= (1 << hash_bit
);
2302 mcarray
[hash_reg
] |= mta
;
2304 e1000_rar_set(hw
, ha
->addr
, i
++);
2308 for (; i
< rar_entries
; i
++) {
2309 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2310 E1000_WRITE_FLUSH();
2311 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2312 E1000_WRITE_FLUSH();
2315 /* write the hash table completely, write from bottom to avoid
2316 * both stupid write combining chipsets, and flushing each write */
2317 for (i
= mta_reg_count
- 1; i
>= 0 ; i
--) {
2319 * If we are on an 82544 has an errata where writing odd
2320 * offsets overwrites the previous even offset, but writing
2321 * backwards over the range solves the issue by always
2322 * writing the odd offset first
2324 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, mcarray
[i
]);
2326 E1000_WRITE_FLUSH();
2328 if (hw
->mac_type
== e1000_82542_rev2_0
)
2329 e1000_leave_82542_rst(adapter
);
2334 /* Need to wait a few seconds after link up to get diagnostic information from
2337 static void e1000_update_phy_info(unsigned long data
)
2339 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2340 schedule_work(&adapter
->phy_info_task
);
2343 static void e1000_update_phy_info_task(struct work_struct
*work
)
2345 struct e1000_adapter
*adapter
= container_of(work
,
2346 struct e1000_adapter
,
2348 struct e1000_hw
*hw
= &adapter
->hw
;
2351 e1000_phy_get_info(hw
, &adapter
->phy_info
);
2356 * e1000_82547_tx_fifo_stall - Timer Call-back
2357 * @data: pointer to adapter cast into an unsigned long
2359 static void e1000_82547_tx_fifo_stall(unsigned long data
)
2361 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2362 schedule_work(&adapter
->fifo_stall_task
);
2366 * e1000_82547_tx_fifo_stall_task - task to complete work
2367 * @work: work struct contained inside adapter struct
2369 static void e1000_82547_tx_fifo_stall_task(struct work_struct
*work
)
2371 struct e1000_adapter
*adapter
= container_of(work
,
2372 struct e1000_adapter
,
2374 struct e1000_hw
*hw
= &adapter
->hw
;
2375 struct net_device
*netdev
= adapter
->netdev
;
2379 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2380 if ((er32(TDT
) == er32(TDH
)) &&
2381 (er32(TDFT
) == er32(TDFH
)) &&
2382 (er32(TDFTS
) == er32(TDFHS
))) {
2384 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
2385 ew32(TDFT
, adapter
->tx_head_addr
);
2386 ew32(TDFH
, adapter
->tx_head_addr
);
2387 ew32(TDFTS
, adapter
->tx_head_addr
);
2388 ew32(TDFHS
, adapter
->tx_head_addr
);
2390 E1000_WRITE_FLUSH();
2392 adapter
->tx_fifo_head
= 0;
2393 atomic_set(&adapter
->tx_fifo_stall
, 0);
2394 netif_wake_queue(netdev
);
2395 } else if (!test_bit(__E1000_DOWN
, &adapter
->flags
)) {
2396 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
2402 bool e1000_has_link(struct e1000_adapter
*adapter
)
2404 struct e1000_hw
*hw
= &adapter
->hw
;
2405 bool link_active
= false;
2407 /* get_link_status is set on LSC (link status) interrupt or rx
2408 * sequence error interrupt (except on intel ce4100).
2409 * get_link_status will stay false until the
2410 * e1000_check_for_link establishes link for copper adapters
2413 switch (hw
->media_type
) {
2414 case e1000_media_type_copper
:
2415 if (hw
->mac_type
== e1000_ce4100
)
2416 hw
->get_link_status
= 1;
2417 if (hw
->get_link_status
) {
2418 e1000_check_for_link(hw
);
2419 link_active
= !hw
->get_link_status
;
2424 case e1000_media_type_fiber
:
2425 e1000_check_for_link(hw
);
2426 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
2428 case e1000_media_type_internal_serdes
:
2429 e1000_check_for_link(hw
);
2430 link_active
= hw
->serdes_has_link
;
2440 * e1000_watchdog - Timer Call-back
2441 * @data: pointer to adapter cast into an unsigned long
2443 static void e1000_watchdog(unsigned long data
)
2445 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2446 struct e1000_hw
*hw
= &adapter
->hw
;
2447 struct net_device
*netdev
= adapter
->netdev
;
2448 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2451 link
= e1000_has_link(adapter
);
2452 if ((netif_carrier_ok(netdev
)) && link
)
2456 if (!netif_carrier_ok(netdev
)) {
2459 /* update snapshot of PHY registers on LSC */
2460 e1000_get_speed_and_duplex(hw
,
2461 &adapter
->link_speed
,
2462 &adapter
->link_duplex
);
2465 pr_info("%s NIC Link is Up %d Mbps %s, "
2466 "Flow Control: %s\n",
2468 adapter
->link_speed
,
2469 adapter
->link_duplex
== FULL_DUPLEX
?
2470 "Full Duplex" : "Half Duplex",
2471 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2472 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2473 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2474 E1000_CTRL_TFCE
) ? "TX" : "None")));
2476 /* adjust timeout factor according to speed/duplex */
2477 adapter
->tx_timeout_factor
= 1;
2478 switch (adapter
->link_speed
) {
2481 adapter
->tx_timeout_factor
= 16;
2485 /* maybe add some timeout factor ? */
2489 /* enable transmits in the hardware */
2491 tctl
|= E1000_TCTL_EN
;
2494 netif_carrier_on(netdev
);
2495 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2496 mod_timer(&adapter
->phy_info_timer
,
2497 round_jiffies(jiffies
+ 2 * HZ
));
2498 adapter
->smartspeed
= 0;
2501 if (netif_carrier_ok(netdev
)) {
2502 adapter
->link_speed
= 0;
2503 adapter
->link_duplex
= 0;
2504 pr_info("%s NIC Link is Down\n",
2506 netif_carrier_off(netdev
);
2508 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2509 mod_timer(&adapter
->phy_info_timer
,
2510 round_jiffies(jiffies
+ 2 * HZ
));
2513 e1000_smartspeed(adapter
);
2517 e1000_update_stats(adapter
);
2519 hw
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2520 adapter
->tpt_old
= adapter
->stats
.tpt
;
2521 hw
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2522 adapter
->colc_old
= adapter
->stats
.colc
;
2524 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2525 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2526 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2527 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2529 e1000_update_adaptive(hw
);
2531 if (!netif_carrier_ok(netdev
)) {
2532 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2533 /* We've lost link, so the controller stops DMA,
2534 * but we've got queued Tx work that's never going
2535 * to get done, so reset controller to flush Tx.
2536 * (Do the reset outside of interrupt context). */
2537 adapter
->tx_timeout_count
++;
2538 schedule_work(&adapter
->reset_task
);
2539 /* return immediately since reset is imminent */
2544 /* Simple mode for Interrupt Throttle Rate (ITR) */
2545 if (hw
->mac_type
>= e1000_82540
&& adapter
->itr_setting
== 4) {
2547 * Symmetric Tx/Rx gets a reduced ITR=2000;
2548 * Total asymmetrical Tx or Rx gets ITR=8000;
2549 * everyone else is between 2000-8000.
2551 u32 goc
= (adapter
->gotcl
+ adapter
->gorcl
) / 10000;
2552 u32 dif
= (adapter
->gotcl
> adapter
->gorcl
?
2553 adapter
->gotcl
- adapter
->gorcl
:
2554 adapter
->gorcl
- adapter
->gotcl
) / 10000;
2555 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
2557 ew32(ITR
, 1000000000 / (itr
* 256));
2560 /* Cause software interrupt to ensure rx ring is cleaned */
2561 ew32(ICS
, E1000_ICS_RXDMT0
);
2563 /* Force detection of hung controller every watchdog period */
2564 adapter
->detect_tx_hung
= true;
2566 /* Reset the timer */
2567 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2568 mod_timer(&adapter
->watchdog_timer
,
2569 round_jiffies(jiffies
+ 2 * HZ
));
2572 enum latency_range
{
2576 latency_invalid
= 255
2580 * e1000_update_itr - update the dynamic ITR value based on statistics
2581 * @adapter: pointer to adapter
2582 * @itr_setting: current adapter->itr
2583 * @packets: the number of packets during this measurement interval
2584 * @bytes: the number of bytes during this measurement interval
2586 * Stores a new ITR value based on packets and byte
2587 * counts during the last interrupt. The advantage of per interrupt
2588 * computation is faster updates and more accurate ITR for the current
2589 * traffic pattern. Constants in this function were computed
2590 * based on theoretical maximum wire speed and thresholds were set based
2591 * on testing data as well as attempting to minimize response time
2592 * while increasing bulk throughput.
2593 * this functionality is controlled by the InterruptThrottleRate module
2594 * parameter (see e1000_param.c)
2596 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2597 u16 itr_setting
, int packets
, int bytes
)
2599 unsigned int retval
= itr_setting
;
2600 struct e1000_hw
*hw
= &adapter
->hw
;
2602 if (unlikely(hw
->mac_type
< e1000_82540
))
2603 goto update_itr_done
;
2606 goto update_itr_done
;
2608 switch (itr_setting
) {
2609 case lowest_latency
:
2610 /* jumbo frames get bulk treatment*/
2611 if (bytes
/packets
> 8000)
2612 retval
= bulk_latency
;
2613 else if ((packets
< 5) && (bytes
> 512))
2614 retval
= low_latency
;
2616 case low_latency
: /* 50 usec aka 20000 ints/s */
2617 if (bytes
> 10000) {
2618 /* jumbo frames need bulk latency setting */
2619 if (bytes
/packets
> 8000)
2620 retval
= bulk_latency
;
2621 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2622 retval
= bulk_latency
;
2623 else if ((packets
> 35))
2624 retval
= lowest_latency
;
2625 } else if (bytes
/packets
> 2000)
2626 retval
= bulk_latency
;
2627 else if (packets
<= 2 && bytes
< 512)
2628 retval
= lowest_latency
;
2630 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2631 if (bytes
> 25000) {
2633 retval
= low_latency
;
2634 } else if (bytes
< 6000) {
2635 retval
= low_latency
;
2644 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2646 struct e1000_hw
*hw
= &adapter
->hw
;
2648 u32 new_itr
= adapter
->itr
;
2650 if (unlikely(hw
->mac_type
< e1000_82540
))
2653 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2654 if (unlikely(adapter
->link_speed
!= SPEED_1000
)) {
2660 adapter
->tx_itr
= e1000_update_itr(adapter
,
2662 adapter
->total_tx_packets
,
2663 adapter
->total_tx_bytes
);
2664 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2665 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2666 adapter
->tx_itr
= low_latency
;
2668 adapter
->rx_itr
= e1000_update_itr(adapter
,
2670 adapter
->total_rx_packets
,
2671 adapter
->total_rx_bytes
);
2672 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2673 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2674 adapter
->rx_itr
= low_latency
;
2676 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2678 switch (current_itr
) {
2679 /* counts and packets in update_itr are dependent on these numbers */
2680 case lowest_latency
:
2684 new_itr
= 20000; /* aka hwitr = ~200 */
2694 if (new_itr
!= adapter
->itr
) {
2695 /* this attempts to bias the interrupt rate towards Bulk
2696 * by adding intermediate steps when interrupt rate is
2698 new_itr
= new_itr
> adapter
->itr
?
2699 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2701 adapter
->itr
= new_itr
;
2702 ew32(ITR
, 1000000000 / (new_itr
* 256));
2706 #define E1000_TX_FLAGS_CSUM 0x00000001
2707 #define E1000_TX_FLAGS_VLAN 0x00000002
2708 #define E1000_TX_FLAGS_TSO 0x00000004
2709 #define E1000_TX_FLAGS_IPV4 0x00000008
2710 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2711 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2713 static int e1000_tso(struct e1000_adapter
*adapter
,
2714 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2716 struct e1000_context_desc
*context_desc
;
2717 struct e1000_buffer
*buffer_info
;
2720 u16 ipcse
= 0, tucse
, mss
;
2721 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2724 if (skb_is_gso(skb
)) {
2725 if (skb_header_cloned(skb
)) {
2726 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2731 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2732 mss
= skb_shinfo(skb
)->gso_size
;
2733 if (skb
->protocol
== htons(ETH_P_IP
)) {
2734 struct iphdr
*iph
= ip_hdr(skb
);
2737 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2741 cmd_length
= E1000_TXD_CMD_IP
;
2742 ipcse
= skb_transport_offset(skb
) - 1;
2743 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2744 ipv6_hdr(skb
)->payload_len
= 0;
2745 tcp_hdr(skb
)->check
=
2746 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2747 &ipv6_hdr(skb
)->daddr
,
2751 ipcss
= skb_network_offset(skb
);
2752 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
2753 tucss
= skb_transport_offset(skb
);
2754 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
2757 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2758 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2760 i
= tx_ring
->next_to_use
;
2761 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2762 buffer_info
= &tx_ring
->buffer_info
[i
];
2764 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2765 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2766 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2767 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2768 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2769 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2770 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2771 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2772 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2774 buffer_info
->time_stamp
= jiffies
;
2775 buffer_info
->next_to_watch
= i
;
2777 if (++i
== tx_ring
->count
) i
= 0;
2778 tx_ring
->next_to_use
= i
;
2785 static bool e1000_tx_csum(struct e1000_adapter
*adapter
,
2786 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2788 struct e1000_context_desc
*context_desc
;
2789 struct e1000_buffer
*buffer_info
;
2792 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
2794 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2797 switch (skb
->protocol
) {
2798 case cpu_to_be16(ETH_P_IP
):
2799 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2800 cmd_len
|= E1000_TXD_CMD_TCP
;
2802 case cpu_to_be16(ETH_P_IPV6
):
2803 /* XXX not handling all IPV6 headers */
2804 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2805 cmd_len
|= E1000_TXD_CMD_TCP
;
2808 if (unlikely(net_ratelimit()))
2809 e_warn(drv
, "checksum_partial proto=%x!\n",
2814 css
= skb_checksum_start_offset(skb
);
2816 i
= tx_ring
->next_to_use
;
2817 buffer_info
= &tx_ring
->buffer_info
[i
];
2818 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2820 context_desc
->lower_setup
.ip_config
= 0;
2821 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2822 context_desc
->upper_setup
.tcp_fields
.tucso
=
2823 css
+ skb
->csum_offset
;
2824 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2825 context_desc
->tcp_seg_setup
.data
= 0;
2826 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
2828 buffer_info
->time_stamp
= jiffies
;
2829 buffer_info
->next_to_watch
= i
;
2831 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2832 tx_ring
->next_to_use
= i
;
2837 #define E1000_MAX_TXD_PWR 12
2838 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2840 static int e1000_tx_map(struct e1000_adapter
*adapter
,
2841 struct e1000_tx_ring
*tx_ring
,
2842 struct sk_buff
*skb
, unsigned int first
,
2843 unsigned int max_per_txd
, unsigned int nr_frags
,
2846 struct e1000_hw
*hw
= &adapter
->hw
;
2847 struct pci_dev
*pdev
= adapter
->pdev
;
2848 struct e1000_buffer
*buffer_info
;
2849 unsigned int len
= skb_headlen(skb
);
2850 unsigned int offset
= 0, size
, count
= 0, i
;
2851 unsigned int f
, bytecount
, segs
;
2853 i
= tx_ring
->next_to_use
;
2856 buffer_info
= &tx_ring
->buffer_info
[i
];
2857 size
= min(len
, max_per_txd
);
2858 /* Workaround for Controller erratum --
2859 * descriptor for non-tso packet in a linear SKB that follows a
2860 * tso gets written back prematurely before the data is fully
2861 * DMA'd to the controller */
2862 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
2864 tx_ring
->last_tx_tso
= 0;
2868 /* Workaround for premature desc write-backs
2869 * in TSO mode. Append 4-byte sentinel desc */
2870 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
2872 /* work-around for errata 10 and it applies
2873 * to all controllers in PCI-X mode
2874 * The fix is to make sure that the first descriptor of a
2875 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2877 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
2878 (size
> 2015) && count
== 0))
2881 /* Workaround for potential 82544 hang in PCI-X. Avoid
2882 * terminating buffers within evenly-aligned dwords. */
2883 if (unlikely(adapter
->pcix_82544
&&
2884 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
2888 buffer_info
->length
= size
;
2889 /* set time_stamp *before* dma to help avoid a possible race */
2890 buffer_info
->time_stamp
= jiffies
;
2891 buffer_info
->mapped_as_page
= false;
2892 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
2894 size
, DMA_TO_DEVICE
);
2895 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2897 buffer_info
->next_to_watch
= i
;
2904 if (unlikely(i
== tx_ring
->count
))
2909 for (f
= 0; f
< nr_frags
; f
++) {
2910 struct skb_frag_struct
*frag
;
2912 frag
= &skb_shinfo(skb
)->frags
[f
];
2917 unsigned long bufend
;
2919 if (unlikely(i
== tx_ring
->count
))
2922 buffer_info
= &tx_ring
->buffer_info
[i
];
2923 size
= min(len
, max_per_txd
);
2924 /* Workaround for premature desc write-backs
2925 * in TSO mode. Append 4-byte sentinel desc */
2926 if (unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
2928 /* Workaround for potential 82544 hang in PCI-X.
2929 * Avoid terminating buffers within evenly-aligned
2931 bufend
= (unsigned long)
2932 page_to_phys(skb_frag_page(frag
));
2933 bufend
+= offset
+ size
- 1;
2934 if (unlikely(adapter
->pcix_82544
&&
2939 buffer_info
->length
= size
;
2940 buffer_info
->time_stamp
= jiffies
;
2941 buffer_info
->mapped_as_page
= true;
2942 buffer_info
->dma
= skb_frag_dma_map(&pdev
->dev
, frag
,
2943 offset
, size
, DMA_TO_DEVICE
);
2944 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2946 buffer_info
->next_to_watch
= i
;
2954 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
2955 /* multiply data chunks by size of headers */
2956 bytecount
= ((segs
- 1) * skb_headlen(skb
)) + skb
->len
;
2958 tx_ring
->buffer_info
[i
].skb
= skb
;
2959 tx_ring
->buffer_info
[i
].segs
= segs
;
2960 tx_ring
->buffer_info
[i
].bytecount
= bytecount
;
2961 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2966 dev_err(&pdev
->dev
, "TX DMA map failed\n");
2967 buffer_info
->dma
= 0;
2973 i
+= tx_ring
->count
;
2975 buffer_info
= &tx_ring
->buffer_info
[i
];
2976 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2982 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
2983 struct e1000_tx_ring
*tx_ring
, int tx_flags
,
2986 struct e1000_hw
*hw
= &adapter
->hw
;
2987 struct e1000_tx_desc
*tx_desc
= NULL
;
2988 struct e1000_buffer
*buffer_info
;
2989 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
2992 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
2993 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
2995 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2997 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
2998 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
3001 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
3002 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
3003 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3006 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
3007 txd_lower
|= E1000_TXD_CMD_VLE
;
3008 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
3011 i
= tx_ring
->next_to_use
;
3014 buffer_info
= &tx_ring
->buffer_info
[i
];
3015 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3016 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3017 tx_desc
->lower
.data
=
3018 cpu_to_le32(txd_lower
| buffer_info
->length
);
3019 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
3020 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3023 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
3025 /* Force memory writes to complete before letting h/w
3026 * know there are new descriptors to fetch. (Only
3027 * applicable for weak-ordered memory model archs,
3028 * such as IA-64). */
3031 tx_ring
->next_to_use
= i
;
3032 writel(i
, hw
->hw_addr
+ tx_ring
->tdt
);
3033 /* we need this if more than one processor can write to our tail
3034 * at a time, it syncronizes IO on IA64/Altix systems */
3039 * 82547 workaround to avoid controller hang in half-duplex environment.
3040 * The workaround is to avoid queuing a large packet that would span
3041 * the internal Tx FIFO ring boundary by notifying the stack to resend
3042 * the packet at a later time. This gives the Tx FIFO an opportunity to
3043 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3044 * to the beginning of the Tx FIFO.
3047 #define E1000_FIFO_HDR 0x10
3048 #define E1000_82547_PAD_LEN 0x3E0
3050 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
3051 struct sk_buff
*skb
)
3053 u32 fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
3054 u32 skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
3056 skb_fifo_len
= ALIGN(skb_fifo_len
, E1000_FIFO_HDR
);
3058 if (adapter
->link_duplex
!= HALF_DUPLEX
)
3059 goto no_fifo_stall_required
;
3061 if (atomic_read(&adapter
->tx_fifo_stall
))
3064 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
3065 atomic_set(&adapter
->tx_fifo_stall
, 1);
3069 no_fifo_stall_required
:
3070 adapter
->tx_fifo_head
+= skb_fifo_len
;
3071 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
3072 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
3076 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3078 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3079 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
3081 netif_stop_queue(netdev
);
3082 /* Herbert's original patch had:
3083 * smp_mb__after_netif_stop_queue();
3084 * but since that doesn't exist yet, just open code it. */
3087 /* We need to check again in a case another CPU has just
3088 * made room available. */
3089 if (likely(E1000_DESC_UNUSED(tx_ring
) < size
))
3093 netif_start_queue(netdev
);
3094 ++adapter
->restart_queue
;
3098 static int e1000_maybe_stop_tx(struct net_device
*netdev
,
3099 struct e1000_tx_ring
*tx_ring
, int size
)
3101 if (likely(E1000_DESC_UNUSED(tx_ring
) >= size
))
3103 return __e1000_maybe_stop_tx(netdev
, size
);
3106 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3107 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
3108 struct net_device
*netdev
)
3110 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3111 struct e1000_hw
*hw
= &adapter
->hw
;
3112 struct e1000_tx_ring
*tx_ring
;
3113 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
3114 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
3115 unsigned int tx_flags
= 0;
3116 unsigned int len
= skb_headlen(skb
);
3117 unsigned int nr_frags
;
3123 /* This goes back to the question of how to logically map a tx queue
3124 * to a flow. Right now, performance is impacted slightly negatively
3125 * if using multiple tx queues. If the stack breaks away from a
3126 * single qdisc implementation, we can look at this again. */
3127 tx_ring
= adapter
->tx_ring
;
3129 if (unlikely(skb
->len
<= 0)) {
3130 dev_kfree_skb_any(skb
);
3131 return NETDEV_TX_OK
;
3134 mss
= skb_shinfo(skb
)->gso_size
;
3135 /* The controller does a simple calculation to
3136 * make sure there is enough room in the FIFO before
3137 * initiating the DMA for each buffer. The calc is:
3138 * 4 = ceil(buffer len/mss). To make sure we don't
3139 * overrun the FIFO, adjust the max buffer len if mss
3143 max_per_txd
= min(mss
<< 2, max_per_txd
);
3144 max_txd_pwr
= fls(max_per_txd
) - 1;
3146 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3147 if (skb
->data_len
&& hdr_len
== len
) {
3148 switch (hw
->mac_type
) {
3149 unsigned int pull_size
;
3151 /* Make sure we have room to chop off 4 bytes,
3152 * and that the end alignment will work out to
3153 * this hardware's requirements
3154 * NOTE: this is a TSO only workaround
3155 * if end byte alignment not correct move us
3156 * into the next dword */
3157 if ((unsigned long)(skb_tail_pointer(skb
) - 1) & 4)
3160 pull_size
= min((unsigned int)4, skb
->data_len
);
3161 if (!__pskb_pull_tail(skb
, pull_size
)) {
3162 e_err(drv
, "__pskb_pull_tail "
3164 dev_kfree_skb_any(skb
);
3165 return NETDEV_TX_OK
;
3167 len
= skb_headlen(skb
);
3176 /* reserve a descriptor for the offload context */
3177 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3181 /* Controller Erratum workaround */
3182 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
3185 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3187 if (adapter
->pcix_82544
)
3190 /* work-around for errata 10 and it applies to all controllers
3191 * in PCI-X mode, so add one more descriptor to the count
3193 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
3197 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3198 for (f
= 0; f
< nr_frags
; f
++)
3199 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3201 if (adapter
->pcix_82544
)
3204 /* need: count + 2 desc gap to keep tail from touching
3205 * head, otherwise try next time */
3206 if (unlikely(e1000_maybe_stop_tx(netdev
, tx_ring
, count
+ 2)))
3207 return NETDEV_TX_BUSY
;
3209 if (unlikely(hw
->mac_type
== e1000_82547
)) {
3210 if (unlikely(e1000_82547_fifo_workaround(adapter
, skb
))) {
3211 netif_stop_queue(netdev
);
3212 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3213 mod_timer(&adapter
->tx_fifo_stall_timer
,
3215 return NETDEV_TX_BUSY
;
3219 if (vlan_tx_tag_present(skb
)) {
3220 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3221 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3224 first
= tx_ring
->next_to_use
;
3226 tso
= e1000_tso(adapter
, tx_ring
, skb
);
3228 dev_kfree_skb_any(skb
);
3229 return NETDEV_TX_OK
;
3233 if (likely(hw
->mac_type
!= e1000_82544
))
3234 tx_ring
->last_tx_tso
= 1;
3235 tx_flags
|= E1000_TX_FLAGS_TSO
;
3236 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
3237 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3239 if (likely(skb
->protocol
== htons(ETH_P_IP
)))
3240 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3242 count
= e1000_tx_map(adapter
, tx_ring
, skb
, first
, max_per_txd
,
3246 e1000_tx_queue(adapter
, tx_ring
, tx_flags
, count
);
3247 /* Make sure there is space in the ring for the next send. */
3248 e1000_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 2);
3251 dev_kfree_skb_any(skb
);
3252 tx_ring
->buffer_info
[first
].time_stamp
= 0;
3253 tx_ring
->next_to_use
= first
;
3256 return NETDEV_TX_OK
;
3260 * e1000_tx_timeout - Respond to a Tx Hang
3261 * @netdev: network interface device structure
3264 static void e1000_tx_timeout(struct net_device
*netdev
)
3266 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3268 /* Do the reset outside of interrupt context */
3269 adapter
->tx_timeout_count
++;
3270 schedule_work(&adapter
->reset_task
);
3273 static void e1000_reset_task(struct work_struct
*work
)
3275 struct e1000_adapter
*adapter
=
3276 container_of(work
, struct e1000_adapter
, reset_task
);
3278 e1000_reinit_safe(adapter
);
3282 * e1000_get_stats - Get System Network Statistics
3283 * @netdev: network interface device structure
3285 * Returns the address of the device statistics structure.
3286 * The statistics are actually updated from the timer callback.
3289 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
3291 /* only return the current stats */
3292 return &netdev
->stats
;
3296 * e1000_change_mtu - Change the Maximum Transfer Unit
3297 * @netdev: network interface device structure
3298 * @new_mtu: new value for maximum frame size
3300 * Returns 0 on success, negative on failure
3303 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3305 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3306 struct e1000_hw
*hw
= &adapter
->hw
;
3307 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
3309 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
3310 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3311 e_err(probe
, "Invalid MTU setting\n");
3315 /* Adapter-specific max frame size limits. */
3316 switch (hw
->mac_type
) {
3317 case e1000_undefined
... e1000_82542_rev2_1
:
3318 if (max_frame
> (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
3319 e_err(probe
, "Jumbo Frames not supported.\n");
3324 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3328 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
3330 /* e1000_down has a dependency on max_frame_size */
3331 hw
->max_frame_size
= max_frame
;
3332 if (netif_running(netdev
))
3333 e1000_down(adapter
);
3335 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3336 * means we reserve 2 more, this pushes us to allocate from the next
3338 * i.e. RXBUFFER_2048 --> size-4096 slab
3339 * however with the new *_jumbo_rx* routines, jumbo receives will use
3340 * fragmented skbs */
3342 if (max_frame
<= E1000_RXBUFFER_2048
)
3343 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3345 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3346 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3347 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3348 adapter
->rx_buffer_len
= PAGE_SIZE
;
3351 /* adjust allocation if LPE protects us, and we aren't using SBP */
3352 if (!hw
->tbi_compatibility_on
&&
3353 ((max_frame
== (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) ||
3354 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3355 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3357 pr_info("%s changing MTU from %d to %d\n",
3358 netdev
->name
, netdev
->mtu
, new_mtu
);
3359 netdev
->mtu
= new_mtu
;
3361 if (netif_running(netdev
))
3364 e1000_reset(adapter
);
3366 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
3372 * e1000_update_stats - Update the board statistics counters
3373 * @adapter: board private structure
3376 void e1000_update_stats(struct e1000_adapter
*adapter
)
3378 struct net_device
*netdev
= adapter
->netdev
;
3379 struct e1000_hw
*hw
= &adapter
->hw
;
3380 struct pci_dev
*pdev
= adapter
->pdev
;
3381 unsigned long flags
;
3384 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3387 * Prevent stats update while adapter is being reset, or if the pci
3388 * connection is down.
3390 if (adapter
->link_speed
== 0)
3392 if (pci_channel_offline(pdev
))
3395 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3397 /* these counters are modified from e1000_tbi_adjust_stats,
3398 * called from the interrupt context, so they must only
3399 * be written while holding adapter->stats_lock
3402 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3403 adapter
->stats
.gprc
+= er32(GPRC
);
3404 adapter
->stats
.gorcl
+= er32(GORCL
);
3405 adapter
->stats
.gorch
+= er32(GORCH
);
3406 adapter
->stats
.bprc
+= er32(BPRC
);
3407 adapter
->stats
.mprc
+= er32(MPRC
);
3408 adapter
->stats
.roc
+= er32(ROC
);
3410 adapter
->stats
.prc64
+= er32(PRC64
);
3411 adapter
->stats
.prc127
+= er32(PRC127
);
3412 adapter
->stats
.prc255
+= er32(PRC255
);
3413 adapter
->stats
.prc511
+= er32(PRC511
);
3414 adapter
->stats
.prc1023
+= er32(PRC1023
);
3415 adapter
->stats
.prc1522
+= er32(PRC1522
);
3417 adapter
->stats
.symerrs
+= er32(SYMERRS
);
3418 adapter
->stats
.mpc
+= er32(MPC
);
3419 adapter
->stats
.scc
+= er32(SCC
);
3420 adapter
->stats
.ecol
+= er32(ECOL
);
3421 adapter
->stats
.mcc
+= er32(MCC
);
3422 adapter
->stats
.latecol
+= er32(LATECOL
);
3423 adapter
->stats
.dc
+= er32(DC
);
3424 adapter
->stats
.sec
+= er32(SEC
);
3425 adapter
->stats
.rlec
+= er32(RLEC
);
3426 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3427 adapter
->stats
.xontxc
+= er32(XONTXC
);
3428 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3429 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3430 adapter
->stats
.fcruc
+= er32(FCRUC
);
3431 adapter
->stats
.gptc
+= er32(GPTC
);
3432 adapter
->stats
.gotcl
+= er32(GOTCL
);
3433 adapter
->stats
.gotch
+= er32(GOTCH
);
3434 adapter
->stats
.rnbc
+= er32(RNBC
);
3435 adapter
->stats
.ruc
+= er32(RUC
);
3436 adapter
->stats
.rfc
+= er32(RFC
);
3437 adapter
->stats
.rjc
+= er32(RJC
);
3438 adapter
->stats
.torl
+= er32(TORL
);
3439 adapter
->stats
.torh
+= er32(TORH
);
3440 adapter
->stats
.totl
+= er32(TOTL
);
3441 adapter
->stats
.toth
+= er32(TOTH
);
3442 adapter
->stats
.tpr
+= er32(TPR
);
3444 adapter
->stats
.ptc64
+= er32(PTC64
);
3445 adapter
->stats
.ptc127
+= er32(PTC127
);
3446 adapter
->stats
.ptc255
+= er32(PTC255
);
3447 adapter
->stats
.ptc511
+= er32(PTC511
);
3448 adapter
->stats
.ptc1023
+= er32(PTC1023
);
3449 adapter
->stats
.ptc1522
+= er32(PTC1522
);
3451 adapter
->stats
.mptc
+= er32(MPTC
);
3452 adapter
->stats
.bptc
+= er32(BPTC
);
3454 /* used for adaptive IFS */
3456 hw
->tx_packet_delta
= er32(TPT
);
3457 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3458 hw
->collision_delta
= er32(COLC
);
3459 adapter
->stats
.colc
+= hw
->collision_delta
;
3461 if (hw
->mac_type
>= e1000_82543
) {
3462 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3463 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3464 adapter
->stats
.tncrs
+= er32(TNCRS
);
3465 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3466 adapter
->stats
.tsctc
+= er32(TSCTC
);
3467 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3470 /* Fill out the OS statistics structure */
3471 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
3472 netdev
->stats
.collisions
= adapter
->stats
.colc
;
3476 /* RLEC on some newer hardware can be incorrect so build
3477 * our own version based on RUC and ROC */
3478 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
3479 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3480 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3481 adapter
->stats
.cexterr
;
3482 adapter
->stats
.rlerrc
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
3483 netdev
->stats
.rx_length_errors
= adapter
->stats
.rlerrc
;
3484 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3485 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3486 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3489 adapter
->stats
.txerrc
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
3490 netdev
->stats
.tx_errors
= adapter
->stats
.txerrc
;
3491 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3492 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
3493 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3494 if (hw
->bad_tx_carr_stats_fd
&&
3495 adapter
->link_duplex
== FULL_DUPLEX
) {
3496 netdev
->stats
.tx_carrier_errors
= 0;
3497 adapter
->stats
.tncrs
= 0;
3500 /* Tx Dropped needs to be maintained elsewhere */
3503 if (hw
->media_type
== e1000_media_type_copper
) {
3504 if ((adapter
->link_speed
== SPEED_1000
) &&
3505 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3506 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3507 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3510 if ((hw
->mac_type
<= e1000_82546
) &&
3511 (hw
->phy_type
== e1000_phy_m88
) &&
3512 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3513 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3516 /* Management Stats */
3517 if (hw
->has_smbus
) {
3518 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3519 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3520 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3523 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3527 * e1000_intr - Interrupt Handler
3528 * @irq: interrupt number
3529 * @data: pointer to a network interface device structure
3532 static irqreturn_t
e1000_intr(int irq
, void *data
)
3534 struct net_device
*netdev
= data
;
3535 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3536 struct e1000_hw
*hw
= &adapter
->hw
;
3537 u32 icr
= er32(ICR
);
3539 if (unlikely((!icr
)))
3540 return IRQ_NONE
; /* Not our interrupt */
3543 * we might have caused the interrupt, but the above
3544 * read cleared it, and just in case the driver is
3545 * down there is nothing to do so return handled
3547 if (unlikely(test_bit(__E1000_DOWN
, &adapter
->flags
)))
3550 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3551 hw
->get_link_status
= 1;
3552 /* guard against interrupt when we're going down */
3553 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3554 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3557 /* disable interrupts, without the synchronize_irq bit */
3559 E1000_WRITE_FLUSH();
3561 if (likely(napi_schedule_prep(&adapter
->napi
))) {
3562 adapter
->total_tx_bytes
= 0;
3563 adapter
->total_tx_packets
= 0;
3564 adapter
->total_rx_bytes
= 0;
3565 adapter
->total_rx_packets
= 0;
3566 __napi_schedule(&adapter
->napi
);
3568 /* this really should not happen! if it does it is basically a
3569 * bug, but not a hard error, so enable ints and continue */
3570 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3571 e1000_irq_enable(adapter
);
3578 * e1000_clean - NAPI Rx polling callback
3579 * @adapter: board private structure
3581 static int e1000_clean(struct napi_struct
*napi
, int budget
)
3583 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
3584 int tx_clean_complete
= 0, work_done
= 0;
3586 tx_clean_complete
= e1000_clean_tx_irq(adapter
, &adapter
->tx_ring
[0]);
3588 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0], &work_done
, budget
);
3590 if (!tx_clean_complete
)
3593 /* If budget not fully consumed, exit the polling mode */
3594 if (work_done
< budget
) {
3595 if (likely(adapter
->itr_setting
& 3))
3596 e1000_set_itr(adapter
);
3597 napi_complete(napi
);
3598 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3599 e1000_irq_enable(adapter
);
3606 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3607 * @adapter: board private structure
3609 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3610 struct e1000_tx_ring
*tx_ring
)
3612 struct e1000_hw
*hw
= &adapter
->hw
;
3613 struct net_device
*netdev
= adapter
->netdev
;
3614 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3615 struct e1000_buffer
*buffer_info
;
3616 unsigned int i
, eop
;
3617 unsigned int count
= 0;
3618 unsigned int total_tx_bytes
=0, total_tx_packets
=0;
3620 i
= tx_ring
->next_to_clean
;
3621 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3622 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3624 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
3625 (count
< tx_ring
->count
)) {
3626 bool cleaned
= false;
3627 rmb(); /* read buffer_info after eop_desc */
3628 for ( ; !cleaned
; count
++) {
3629 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3630 buffer_info
= &tx_ring
->buffer_info
[i
];
3631 cleaned
= (i
== eop
);
3634 total_tx_packets
+= buffer_info
->segs
;
3635 total_tx_bytes
+= buffer_info
->bytecount
;
3637 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
3638 tx_desc
->upper
.data
= 0;
3640 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3643 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3644 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3647 tx_ring
->next_to_clean
= i
;
3649 #define TX_WAKE_THRESHOLD 32
3650 if (unlikely(count
&& netif_carrier_ok(netdev
) &&
3651 E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
3652 /* Make sure that anybody stopping the queue after this
3653 * sees the new next_to_clean.
3657 if (netif_queue_stopped(netdev
) &&
3658 !(test_bit(__E1000_DOWN
, &adapter
->flags
))) {
3659 netif_wake_queue(netdev
);
3660 ++adapter
->restart_queue
;
3664 if (adapter
->detect_tx_hung
) {
3665 /* Detect a transmit hang in hardware, this serializes the
3666 * check with the clearing of time_stamp and movement of i */
3667 adapter
->detect_tx_hung
= false;
3668 if (tx_ring
->buffer_info
[eop
].time_stamp
&&
3669 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
+
3670 (adapter
->tx_timeout_factor
* HZ
)) &&
3671 !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
3673 /* detected Tx unit hang */
3674 e_err(drv
, "Detected Tx Unit Hang\n"
3678 " next_to_use <%x>\n"
3679 " next_to_clean <%x>\n"
3680 "buffer_info[next_to_clean]\n"
3681 " time_stamp <%lx>\n"
3682 " next_to_watch <%x>\n"
3684 " next_to_watch.status <%x>\n",
3685 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3686 sizeof(struct e1000_tx_ring
)),
3687 readl(hw
->hw_addr
+ tx_ring
->tdh
),
3688 readl(hw
->hw_addr
+ tx_ring
->tdt
),
3689 tx_ring
->next_to_use
,
3690 tx_ring
->next_to_clean
,
3691 tx_ring
->buffer_info
[eop
].time_stamp
,
3694 eop_desc
->upper
.fields
.status
);
3695 netif_stop_queue(netdev
);
3698 adapter
->total_tx_bytes
+= total_tx_bytes
;
3699 adapter
->total_tx_packets
+= total_tx_packets
;
3700 netdev
->stats
.tx_bytes
+= total_tx_bytes
;
3701 netdev
->stats
.tx_packets
+= total_tx_packets
;
3702 return count
< tx_ring
->count
;
3706 * e1000_rx_checksum - Receive Checksum Offload for 82543
3707 * @adapter: board private structure
3708 * @status_err: receive descriptor status and error fields
3709 * @csum: receive descriptor csum field
3710 * @sk_buff: socket buffer with received data
3713 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
3714 u32 csum
, struct sk_buff
*skb
)
3716 struct e1000_hw
*hw
= &adapter
->hw
;
3717 u16 status
= (u16
)status_err
;
3718 u8 errors
= (u8
)(status_err
>> 24);
3720 skb_checksum_none_assert(skb
);
3722 /* 82543 or newer only */
3723 if (unlikely(hw
->mac_type
< e1000_82543
)) return;
3724 /* Ignore Checksum bit is set */
3725 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
3726 /* TCP/UDP checksum error bit is set */
3727 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
3728 /* let the stack verify checksum errors */
3729 adapter
->hw_csum_err
++;
3732 /* TCP/UDP Checksum has not been calculated */
3733 if (!(status
& E1000_RXD_STAT_TCPCS
))
3736 /* It must be a TCP or UDP packet with a valid checksum */
3737 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
3738 /* TCP checksum is good */
3739 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3741 adapter
->hw_csum_good
++;
3745 * e1000_consume_page - helper function
3747 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
3752 skb
->data_len
+= length
;
3753 skb
->truesize
+= length
;
3757 * e1000_receive_skb - helper function to handle rx indications
3758 * @adapter: board private structure
3759 * @status: descriptor status field as written by hardware
3760 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3761 * @skb: pointer to sk_buff to be indicated to stack
3763 static void e1000_receive_skb(struct e1000_adapter
*adapter
, u8 status
,
3764 __le16 vlan
, struct sk_buff
*skb
)
3766 skb
->protocol
= eth_type_trans(skb
, adapter
->netdev
);
3768 if (status
& E1000_RXD_STAT_VP
) {
3769 u16 vid
= le16_to_cpu(vlan
) & E1000_RXD_SPC_VLAN_MASK
;
3771 __vlan_hwaccel_put_tag(skb
, vid
);
3773 napi_gro_receive(&adapter
->napi
, skb
);
3777 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3778 * @adapter: board private structure
3779 * @rx_ring: ring to clean
3780 * @work_done: amount of napi work completed this call
3781 * @work_to_do: max amount of work allowed for this call to do
3783 * the return value indicates whether actual cleaning was done, there
3784 * is no guarantee that everything was cleaned
3786 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
3787 struct e1000_rx_ring
*rx_ring
,
3788 int *work_done
, int work_to_do
)
3790 struct e1000_hw
*hw
= &adapter
->hw
;
3791 struct net_device
*netdev
= adapter
->netdev
;
3792 struct pci_dev
*pdev
= adapter
->pdev
;
3793 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3794 struct e1000_buffer
*buffer_info
, *next_buffer
;
3795 unsigned long irq_flags
;
3798 int cleaned_count
= 0;
3799 bool cleaned
= false;
3800 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
3802 i
= rx_ring
->next_to_clean
;
3803 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3804 buffer_info
= &rx_ring
->buffer_info
[i
];
3806 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
3807 struct sk_buff
*skb
;
3810 if (*work_done
>= work_to_do
)
3813 rmb(); /* read descriptor and rx_buffer_info after status DD */
3815 status
= rx_desc
->status
;
3816 skb
= buffer_info
->skb
;
3817 buffer_info
->skb
= NULL
;
3819 if (++i
== rx_ring
->count
) i
= 0;
3820 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
3823 next_buffer
= &rx_ring
->buffer_info
[i
];
3827 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
3828 buffer_info
->length
, DMA_FROM_DEVICE
);
3829 buffer_info
->dma
= 0;
3831 length
= le16_to_cpu(rx_desc
->length
);
3833 /* errors is only valid for DD + EOP descriptors */
3834 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
3835 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
3836 u8 last_byte
= *(skb
->data
+ length
- 1);
3837 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
3839 spin_lock_irqsave(&adapter
->stats_lock
,
3841 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
3843 spin_unlock_irqrestore(&adapter
->stats_lock
,
3847 /* recycle both page and skb */
3848 buffer_info
->skb
= skb
;
3849 /* an error means any chain goes out the window
3851 if (rx_ring
->rx_skb_top
)
3852 dev_kfree_skb(rx_ring
->rx_skb_top
);
3853 rx_ring
->rx_skb_top
= NULL
;
3858 #define rxtop rx_ring->rx_skb_top
3859 if (!(status
& E1000_RXD_STAT_EOP
)) {
3860 /* this descriptor is only the beginning (or middle) */
3862 /* this is the beginning of a chain */
3864 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
3867 /* this is the middle of a chain */
3868 skb_fill_page_desc(rxtop
,
3869 skb_shinfo(rxtop
)->nr_frags
,
3870 buffer_info
->page
, 0, length
);
3871 /* re-use the skb, only consumed the page */
3872 buffer_info
->skb
= skb
;
3874 e1000_consume_page(buffer_info
, rxtop
, length
);
3878 /* end of the chain */
3879 skb_fill_page_desc(rxtop
,
3880 skb_shinfo(rxtop
)->nr_frags
,
3881 buffer_info
->page
, 0, length
);
3882 /* re-use the current skb, we only consumed the
3884 buffer_info
->skb
= skb
;
3887 e1000_consume_page(buffer_info
, skb
, length
);
3889 /* no chain, got EOP, this buf is the packet
3890 * copybreak to save the put_page/alloc_page */
3891 if (length
<= copybreak
&&
3892 skb_tailroom(skb
) >= length
) {
3894 vaddr
= kmap_atomic(buffer_info
->page
,
3895 KM_SKB_DATA_SOFTIRQ
);
3896 memcpy(skb_tail_pointer(skb
), vaddr
, length
);
3897 kunmap_atomic(vaddr
,
3898 KM_SKB_DATA_SOFTIRQ
);
3899 /* re-use the page, so don't erase
3900 * buffer_info->page */
3901 skb_put(skb
, length
);
3903 skb_fill_page_desc(skb
, 0,
3904 buffer_info
->page
, 0,
3906 e1000_consume_page(buffer_info
, skb
,
3912 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3913 e1000_rx_checksum(adapter
,
3915 ((u32
)(rx_desc
->errors
) << 24),
3916 le16_to_cpu(rx_desc
->csum
), skb
);
3918 pskb_trim(skb
, skb
->len
- 4);
3920 /* probably a little skewed due to removing CRC */
3921 total_rx_bytes
+= skb
->len
;
3924 /* eth type trans needs skb->data to point to something */
3925 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
3926 e_err(drv
, "pskb_may_pull failed.\n");
3931 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
3934 rx_desc
->status
= 0;
3936 /* return some buffers to hardware, one at a time is too slow */
3937 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
3938 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3942 /* use prefetched values */
3944 buffer_info
= next_buffer
;
3946 rx_ring
->next_to_clean
= i
;
3948 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
3950 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3952 adapter
->total_rx_packets
+= total_rx_packets
;
3953 adapter
->total_rx_bytes
+= total_rx_bytes
;
3954 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
3955 netdev
->stats
.rx_packets
+= total_rx_packets
;
3960 * this should improve performance for small packets with large amounts
3961 * of reassembly being done in the stack
3963 static void e1000_check_copybreak(struct net_device
*netdev
,
3964 struct e1000_buffer
*buffer_info
,
3965 u32 length
, struct sk_buff
**skb
)
3967 struct sk_buff
*new_skb
;
3969 if (length
> copybreak
)
3972 new_skb
= netdev_alloc_skb_ip_align(netdev
, length
);
3976 skb_copy_to_linear_data_offset(new_skb
, -NET_IP_ALIGN
,
3977 (*skb
)->data
- NET_IP_ALIGN
,
3978 length
+ NET_IP_ALIGN
);
3979 /* save the skb in buffer_info as good */
3980 buffer_info
->skb
= *skb
;
3985 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3986 * @adapter: board private structure
3987 * @rx_ring: ring to clean
3988 * @work_done: amount of napi work completed this call
3989 * @work_to_do: max amount of work allowed for this call to do
3991 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
3992 struct e1000_rx_ring
*rx_ring
,
3993 int *work_done
, int work_to_do
)
3995 struct e1000_hw
*hw
= &adapter
->hw
;
3996 struct net_device
*netdev
= adapter
->netdev
;
3997 struct pci_dev
*pdev
= adapter
->pdev
;
3998 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3999 struct e1000_buffer
*buffer_info
, *next_buffer
;
4000 unsigned long flags
;
4003 int cleaned_count
= 0;
4004 bool cleaned
= false;
4005 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
4007 i
= rx_ring
->next_to_clean
;
4008 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4009 buffer_info
= &rx_ring
->buffer_info
[i
];
4011 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
4012 struct sk_buff
*skb
;
4015 if (*work_done
>= work_to_do
)
4018 rmb(); /* read descriptor and rx_buffer_info after status DD */
4020 status
= rx_desc
->status
;
4021 skb
= buffer_info
->skb
;
4022 buffer_info
->skb
= NULL
;
4024 prefetch(skb
->data
- NET_IP_ALIGN
);
4026 if (++i
== rx_ring
->count
) i
= 0;
4027 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
4030 next_buffer
= &rx_ring
->buffer_info
[i
];
4034 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
4035 buffer_info
->length
, DMA_FROM_DEVICE
);
4036 buffer_info
->dma
= 0;
4038 length
= le16_to_cpu(rx_desc
->length
);
4039 /* !EOP means multiple descriptors were used to store a single
4040 * packet, if thats the case we need to toss it. In fact, we
4041 * to toss every packet with the EOP bit clear and the next
4042 * frame that _does_ have the EOP bit set, as it is by
4043 * definition only a frame fragment
4045 if (unlikely(!(status
& E1000_RXD_STAT_EOP
)))
4046 adapter
->discarding
= true;
4048 if (adapter
->discarding
) {
4049 /* All receives must fit into a single buffer */
4050 e_dbg("Receive packet consumed multiple buffers\n");
4052 buffer_info
->skb
= skb
;
4053 if (status
& E1000_RXD_STAT_EOP
)
4054 adapter
->discarding
= false;
4058 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
4059 u8 last_byte
= *(skb
->data
+ length
- 1);
4060 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
4062 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4063 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
4065 spin_unlock_irqrestore(&adapter
->stats_lock
,
4070 buffer_info
->skb
= skb
;
4075 /* adjust length to remove Ethernet CRC, this must be
4076 * done after the TBI_ACCEPT workaround above */
4079 /* probably a little skewed due to removing CRC */
4080 total_rx_bytes
+= length
;
4083 e1000_check_copybreak(netdev
, buffer_info
, length
, &skb
);
4085 skb_put(skb
, length
);
4087 /* Receive Checksum Offload */
4088 e1000_rx_checksum(adapter
,
4090 ((u32
)(rx_desc
->errors
) << 24),
4091 le16_to_cpu(rx_desc
->csum
), skb
);
4093 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
4096 rx_desc
->status
= 0;
4098 /* return some buffers to hardware, one at a time is too slow */
4099 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4100 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4104 /* use prefetched values */
4106 buffer_info
= next_buffer
;
4108 rx_ring
->next_to_clean
= i
;
4110 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4112 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4114 adapter
->total_rx_packets
+= total_rx_packets
;
4115 adapter
->total_rx_bytes
+= total_rx_bytes
;
4116 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
4117 netdev
->stats
.rx_packets
+= total_rx_packets
;
4122 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4123 * @adapter: address of board private structure
4124 * @rx_ring: pointer to receive ring structure
4125 * @cleaned_count: number of buffers to allocate this pass
4129 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
4130 struct e1000_rx_ring
*rx_ring
, int cleaned_count
)
4132 struct net_device
*netdev
= adapter
->netdev
;
4133 struct pci_dev
*pdev
= adapter
->pdev
;
4134 struct e1000_rx_desc
*rx_desc
;
4135 struct e1000_buffer
*buffer_info
;
4136 struct sk_buff
*skb
;
4138 unsigned int bufsz
= 256 - 16 /*for skb_reserve */ ;
4140 i
= rx_ring
->next_to_use
;
4141 buffer_info
= &rx_ring
->buffer_info
[i
];
4143 while (cleaned_count
--) {
4144 skb
= buffer_info
->skb
;
4150 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4151 if (unlikely(!skb
)) {
4152 /* Better luck next round */
4153 adapter
->alloc_rx_buff_failed
++;
4157 /* Fix for errata 23, can't cross 64kB boundary */
4158 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4159 struct sk_buff
*oldskb
= skb
;
4160 e_err(rx_err
, "skb align check failed: %u bytes at "
4161 "%p\n", bufsz
, skb
->data
);
4162 /* Try again, without freeing the previous */
4163 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4164 /* Failed allocation, critical failure */
4166 dev_kfree_skb(oldskb
);
4167 adapter
->alloc_rx_buff_failed
++;
4171 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4174 dev_kfree_skb(oldskb
);
4175 break; /* while (cleaned_count--) */
4178 /* Use new allocation */
4179 dev_kfree_skb(oldskb
);
4181 buffer_info
->skb
= skb
;
4182 buffer_info
->length
= adapter
->rx_buffer_len
;
4184 /* allocate a new page if necessary */
4185 if (!buffer_info
->page
) {
4186 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
4187 if (unlikely(!buffer_info
->page
)) {
4188 adapter
->alloc_rx_buff_failed
++;
4193 if (!buffer_info
->dma
) {
4194 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
4195 buffer_info
->page
, 0,
4196 buffer_info
->length
,
4198 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
4199 put_page(buffer_info
->page
);
4201 buffer_info
->page
= NULL
;
4202 buffer_info
->skb
= NULL
;
4203 buffer_info
->dma
= 0;
4204 adapter
->alloc_rx_buff_failed
++;
4205 break; /* while !buffer_info->skb */
4209 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4210 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4212 if (unlikely(++i
== rx_ring
->count
))
4214 buffer_info
= &rx_ring
->buffer_info
[i
];
4217 if (likely(rx_ring
->next_to_use
!= i
)) {
4218 rx_ring
->next_to_use
= i
;
4219 if (unlikely(i
-- == 0))
4220 i
= (rx_ring
->count
- 1);
4222 /* Force memory writes to complete before letting h/w
4223 * know there are new descriptors to fetch. (Only
4224 * applicable for weak-ordered memory model archs,
4225 * such as IA-64). */
4227 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4232 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4233 * @adapter: address of board private structure
4236 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
4237 struct e1000_rx_ring
*rx_ring
,
4240 struct e1000_hw
*hw
= &adapter
->hw
;
4241 struct net_device
*netdev
= adapter
->netdev
;
4242 struct pci_dev
*pdev
= adapter
->pdev
;
4243 struct e1000_rx_desc
*rx_desc
;
4244 struct e1000_buffer
*buffer_info
;
4245 struct sk_buff
*skb
;
4247 unsigned int bufsz
= adapter
->rx_buffer_len
;
4249 i
= rx_ring
->next_to_use
;
4250 buffer_info
= &rx_ring
->buffer_info
[i
];
4252 while (cleaned_count
--) {
4253 skb
= buffer_info
->skb
;
4259 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4260 if (unlikely(!skb
)) {
4261 /* Better luck next round */
4262 adapter
->alloc_rx_buff_failed
++;
4266 /* Fix for errata 23, can't cross 64kB boundary */
4267 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4268 struct sk_buff
*oldskb
= skb
;
4269 e_err(rx_err
, "skb align check failed: %u bytes at "
4270 "%p\n", bufsz
, skb
->data
);
4271 /* Try again, without freeing the previous */
4272 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4273 /* Failed allocation, critical failure */
4275 dev_kfree_skb(oldskb
);
4276 adapter
->alloc_rx_buff_failed
++;
4280 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4283 dev_kfree_skb(oldskb
);
4284 adapter
->alloc_rx_buff_failed
++;
4285 break; /* while !buffer_info->skb */
4288 /* Use new allocation */
4289 dev_kfree_skb(oldskb
);
4291 buffer_info
->skb
= skb
;
4292 buffer_info
->length
= adapter
->rx_buffer_len
;
4294 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
4296 buffer_info
->length
,
4298 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
4300 buffer_info
->skb
= NULL
;
4301 buffer_info
->dma
= 0;
4302 adapter
->alloc_rx_buff_failed
++;
4303 break; /* while !buffer_info->skb */
4307 * XXX if it was allocated cleanly it will never map to a
4311 /* Fix for errata 23, can't cross 64kB boundary */
4312 if (!e1000_check_64k_bound(adapter
,
4313 (void *)(unsigned long)buffer_info
->dma
,
4314 adapter
->rx_buffer_len
)) {
4315 e_err(rx_err
, "dma align check failed: %u bytes at "
4316 "%p\n", adapter
->rx_buffer_len
,
4317 (void *)(unsigned long)buffer_info
->dma
);
4319 buffer_info
->skb
= NULL
;
4321 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
4322 adapter
->rx_buffer_len
,
4324 buffer_info
->dma
= 0;
4326 adapter
->alloc_rx_buff_failed
++;
4327 break; /* while !buffer_info->skb */
4329 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4330 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4332 if (unlikely(++i
== rx_ring
->count
))
4334 buffer_info
= &rx_ring
->buffer_info
[i
];
4337 if (likely(rx_ring
->next_to_use
!= i
)) {
4338 rx_ring
->next_to_use
= i
;
4339 if (unlikely(i
-- == 0))
4340 i
= (rx_ring
->count
- 1);
4342 /* Force memory writes to complete before letting h/w
4343 * know there are new descriptors to fetch. (Only
4344 * applicable for weak-ordered memory model archs,
4345 * such as IA-64). */
4347 writel(i
, hw
->hw_addr
+ rx_ring
->rdt
);
4352 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4356 static void e1000_smartspeed(struct e1000_adapter
*adapter
)
4358 struct e1000_hw
*hw
= &adapter
->hw
;
4362 if ((hw
->phy_type
!= e1000_phy_igp
) || !hw
->autoneg
||
4363 !(hw
->autoneg_advertised
& ADVERTISE_1000_FULL
))
4366 if (adapter
->smartspeed
== 0) {
4367 /* If Master/Slave config fault is asserted twice,
4368 * we assume back-to-back */
4369 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4370 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4371 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4372 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4373 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4374 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4375 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4376 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
,
4378 adapter
->smartspeed
++;
4379 if (!e1000_phy_setup_autoneg(hw
) &&
4380 !e1000_read_phy_reg(hw
, PHY_CTRL
,
4382 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4383 MII_CR_RESTART_AUTO_NEG
);
4384 e1000_write_phy_reg(hw
, PHY_CTRL
,
4389 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4390 /* If still no link, perhaps using 2/3 pair cable */
4391 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4392 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4393 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
, phy_ctrl
);
4394 if (!e1000_phy_setup_autoneg(hw
) &&
4395 !e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_ctrl
)) {
4396 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4397 MII_CR_RESTART_AUTO_NEG
);
4398 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_ctrl
);
4401 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4402 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4403 adapter
->smartspeed
= 0;
4413 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4419 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4432 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
4435 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4436 struct e1000_hw
*hw
= &adapter
->hw
;
4437 struct mii_ioctl_data
*data
= if_mii(ifr
);
4440 unsigned long flags
;
4442 if (hw
->media_type
!= e1000_media_type_copper
)
4447 data
->phy_id
= hw
->phy_addr
;
4450 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4451 if (e1000_read_phy_reg(hw
, data
->reg_num
& 0x1F,
4453 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4456 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4459 if (data
->reg_num
& ~(0x1F))
4461 mii_reg
= data
->val_in
;
4462 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4463 if (e1000_write_phy_reg(hw
, data
->reg_num
,
4465 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4468 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4469 if (hw
->media_type
== e1000_media_type_copper
) {
4470 switch (data
->reg_num
) {
4472 if (mii_reg
& MII_CR_POWER_DOWN
)
4474 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4476 hw
->autoneg_advertised
= 0x2F;
4481 else if (mii_reg
& 0x2000)
4485 retval
= e1000_set_spd_dplx(
4493 if (netif_running(adapter
->netdev
))
4494 e1000_reinit_locked(adapter
);
4496 e1000_reset(adapter
);
4498 case M88E1000_PHY_SPEC_CTRL
:
4499 case M88E1000_EXT_PHY_SPEC_CTRL
:
4500 if (e1000_phy_reset(hw
))
4505 switch (data
->reg_num
) {
4507 if (mii_reg
& MII_CR_POWER_DOWN
)
4509 if (netif_running(adapter
->netdev
))
4510 e1000_reinit_locked(adapter
);
4512 e1000_reset(adapter
);
4520 return E1000_SUCCESS
;
4523 void e1000_pci_set_mwi(struct e1000_hw
*hw
)
4525 struct e1000_adapter
*adapter
= hw
->back
;
4526 int ret_val
= pci_set_mwi(adapter
->pdev
);
4529 e_err(probe
, "Error in setting MWI\n");
4532 void e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4534 struct e1000_adapter
*adapter
= hw
->back
;
4536 pci_clear_mwi(adapter
->pdev
);
4539 int e1000_pcix_get_mmrbc(struct e1000_hw
*hw
)
4541 struct e1000_adapter
*adapter
= hw
->back
;
4542 return pcix_get_mmrbc(adapter
->pdev
);
4545 void e1000_pcix_set_mmrbc(struct e1000_hw
*hw
, int mmrbc
)
4547 struct e1000_adapter
*adapter
= hw
->back
;
4548 pcix_set_mmrbc(adapter
->pdev
, mmrbc
);
4551 void e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, u32 value
)
4556 static bool e1000_vlan_used(struct e1000_adapter
*adapter
)
4560 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
4565 static void e1000_vlan_filter_on_off(struct e1000_adapter
*adapter
,
4568 struct e1000_hw
*hw
= &adapter
->hw
;
4571 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4572 e1000_irq_disable(adapter
);
4575 /* enable VLAN receive filtering */
4577 rctl
&= ~E1000_RCTL_CFIEN
;
4578 if (!(adapter
->netdev
->flags
& IFF_PROMISC
))
4579 rctl
|= E1000_RCTL_VFE
;
4581 e1000_update_mng_vlan(adapter
);
4583 /* disable VLAN receive filtering */
4585 rctl
&= ~E1000_RCTL_VFE
;
4589 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4590 e1000_irq_enable(adapter
);
4593 static void e1000_vlan_mode(struct net_device
*netdev
, u32 features
)
4595 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4596 struct e1000_hw
*hw
= &adapter
->hw
;
4599 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4600 e1000_irq_disable(adapter
);
4603 if (features
& NETIF_F_HW_VLAN_RX
) {
4604 /* enable VLAN tag insert/strip */
4605 ctrl
|= E1000_CTRL_VME
;
4607 /* disable VLAN tag insert/strip */
4608 ctrl
&= ~E1000_CTRL_VME
;
4612 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4613 e1000_irq_enable(adapter
);
4616 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
4618 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4619 struct e1000_hw
*hw
= &adapter
->hw
;
4622 if ((hw
->mng_cookie
.status
&
4623 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4624 (vid
== adapter
->mng_vlan_id
))
4627 if (!e1000_vlan_used(adapter
))
4628 e1000_vlan_filter_on_off(adapter
, true);
4630 /* add VID to filter table */
4631 index
= (vid
>> 5) & 0x7F;
4632 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4633 vfta
|= (1 << (vid
& 0x1F));
4634 e1000_write_vfta(hw
, index
, vfta
);
4636 set_bit(vid
, adapter
->active_vlans
);
4639 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
4641 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4642 struct e1000_hw
*hw
= &adapter
->hw
;
4645 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4646 e1000_irq_disable(adapter
);
4647 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4648 e1000_irq_enable(adapter
);
4650 /* remove VID from filter table */
4651 index
= (vid
>> 5) & 0x7F;
4652 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4653 vfta
&= ~(1 << (vid
& 0x1F));
4654 e1000_write_vfta(hw
, index
, vfta
);
4656 clear_bit(vid
, adapter
->active_vlans
);
4658 if (!e1000_vlan_used(adapter
))
4659 e1000_vlan_filter_on_off(adapter
, false);
4662 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
4666 if (!e1000_vlan_used(adapter
))
4669 e1000_vlan_filter_on_off(adapter
, true);
4670 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
4671 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
4674 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u32 spd
, u8 dplx
)
4676 struct e1000_hw
*hw
= &adapter
->hw
;
4680 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4681 * for the switch() below to work */
4682 if ((spd
& 1) || (dplx
& ~1))
4685 /* Fiber NICs only allow 1000 gbps Full duplex */
4686 if ((hw
->media_type
== e1000_media_type_fiber
) &&
4687 spd
!= SPEED_1000
&&
4688 dplx
!= DUPLEX_FULL
)
4691 switch (spd
+ dplx
) {
4692 case SPEED_10
+ DUPLEX_HALF
:
4693 hw
->forced_speed_duplex
= e1000_10_half
;
4695 case SPEED_10
+ DUPLEX_FULL
:
4696 hw
->forced_speed_duplex
= e1000_10_full
;
4698 case SPEED_100
+ DUPLEX_HALF
:
4699 hw
->forced_speed_duplex
= e1000_100_half
;
4701 case SPEED_100
+ DUPLEX_FULL
:
4702 hw
->forced_speed_duplex
= e1000_100_full
;
4704 case SPEED_1000
+ DUPLEX_FULL
:
4706 hw
->autoneg_advertised
= ADVERTISE_1000_FULL
;
4708 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4715 e_err(probe
, "Unsupported Speed/Duplex configuration\n");
4719 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
4721 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4722 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4723 struct e1000_hw
*hw
= &adapter
->hw
;
4724 u32 ctrl
, ctrl_ext
, rctl
, status
;
4725 u32 wufc
= adapter
->wol
;
4730 netif_device_detach(netdev
);
4732 if (netif_running(netdev
)) {
4733 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
4734 e1000_down(adapter
);
4738 retval
= pci_save_state(pdev
);
4743 status
= er32(STATUS
);
4744 if (status
& E1000_STATUS_LU
)
4745 wufc
&= ~E1000_WUFC_LNKC
;
4748 e1000_setup_rctl(adapter
);
4749 e1000_set_rx_mode(netdev
);
4751 /* turn on all-multi mode if wake on multicast is enabled */
4752 if (wufc
& E1000_WUFC_MC
) {
4754 rctl
|= E1000_RCTL_MPE
;
4758 if (hw
->mac_type
>= e1000_82540
) {
4760 /* advertise wake from D3Cold */
4761 #define E1000_CTRL_ADVD3WUC 0x00100000
4762 /* phy power management enable */
4763 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4764 ctrl
|= E1000_CTRL_ADVD3WUC
|
4765 E1000_CTRL_EN_PHY_PWR_MGMT
;
4769 if (hw
->media_type
== e1000_media_type_fiber
||
4770 hw
->media_type
== e1000_media_type_internal_serdes
) {
4771 /* keep the laser running in D3 */
4772 ctrl_ext
= er32(CTRL_EXT
);
4773 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
4774 ew32(CTRL_EXT
, ctrl_ext
);
4777 ew32(WUC
, E1000_WUC_PME_EN
);
4784 e1000_release_manageability(adapter
);
4786 *enable_wake
= !!wufc
;
4788 /* make sure adapter isn't asleep if manageability is enabled */
4789 if (adapter
->en_mng_pt
)
4790 *enable_wake
= true;
4792 if (netif_running(netdev
))
4793 e1000_free_irq(adapter
);
4795 pci_disable_device(pdev
);
4801 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4806 retval
= __e1000_shutdown(pdev
, &wake
);
4811 pci_prepare_to_sleep(pdev
);
4813 pci_wake_from_d3(pdev
, false);
4814 pci_set_power_state(pdev
, PCI_D3hot
);
4820 static int e1000_resume(struct pci_dev
*pdev
)
4822 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4823 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4824 struct e1000_hw
*hw
= &adapter
->hw
;
4827 pci_set_power_state(pdev
, PCI_D0
);
4828 pci_restore_state(pdev
);
4829 pci_save_state(pdev
);
4831 if (adapter
->need_ioport
)
4832 err
= pci_enable_device(pdev
);
4834 err
= pci_enable_device_mem(pdev
);
4836 pr_err("Cannot enable PCI device from suspend\n");
4839 pci_set_master(pdev
);
4841 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4842 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4844 if (netif_running(netdev
)) {
4845 err
= e1000_request_irq(adapter
);
4850 e1000_power_up_phy(adapter
);
4851 e1000_reset(adapter
);
4854 e1000_init_manageability(adapter
);
4856 if (netif_running(netdev
))
4859 netif_device_attach(netdev
);
4865 static void e1000_shutdown(struct pci_dev
*pdev
)
4869 __e1000_shutdown(pdev
, &wake
);
4871 if (system_state
== SYSTEM_POWER_OFF
) {
4872 pci_wake_from_d3(pdev
, wake
);
4873 pci_set_power_state(pdev
, PCI_D3hot
);
4877 #ifdef CONFIG_NET_POLL_CONTROLLER
4879 * Polling 'interrupt' - used by things like netconsole to send skbs
4880 * without having to re-enable interrupts. It's not called while
4881 * the interrupt routine is executing.
4883 static void e1000_netpoll(struct net_device
*netdev
)
4885 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4887 disable_irq(adapter
->pdev
->irq
);
4888 e1000_intr(adapter
->pdev
->irq
, netdev
);
4889 enable_irq(adapter
->pdev
->irq
);
4894 * e1000_io_error_detected - called when PCI error is detected
4895 * @pdev: Pointer to PCI device
4896 * @state: The current pci connection state
4898 * This function is called after a PCI bus error affecting
4899 * this device has been detected.
4901 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
4902 pci_channel_state_t state
)
4904 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4905 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4907 netif_device_detach(netdev
);
4909 if (state
== pci_channel_io_perm_failure
)
4910 return PCI_ERS_RESULT_DISCONNECT
;
4912 if (netif_running(netdev
))
4913 e1000_down(adapter
);
4914 pci_disable_device(pdev
);
4916 /* Request a slot slot reset. */
4917 return PCI_ERS_RESULT_NEED_RESET
;
4921 * e1000_io_slot_reset - called after the pci bus has been reset.
4922 * @pdev: Pointer to PCI device
4924 * Restart the card from scratch, as if from a cold-boot. Implementation
4925 * resembles the first-half of the e1000_resume routine.
4927 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
4929 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4930 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4931 struct e1000_hw
*hw
= &adapter
->hw
;
4934 if (adapter
->need_ioport
)
4935 err
= pci_enable_device(pdev
);
4937 err
= pci_enable_device_mem(pdev
);
4939 pr_err("Cannot re-enable PCI device after reset.\n");
4940 return PCI_ERS_RESULT_DISCONNECT
;
4942 pci_set_master(pdev
);
4944 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4945 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4947 e1000_reset(adapter
);
4950 return PCI_ERS_RESULT_RECOVERED
;
4954 * e1000_io_resume - called when traffic can start flowing again.
4955 * @pdev: Pointer to PCI device
4957 * This callback is called when the error recovery driver tells us that
4958 * its OK to resume normal operation. Implementation resembles the
4959 * second-half of the e1000_resume routine.
4961 static void e1000_io_resume(struct pci_dev
*pdev
)
4963 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4964 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4966 e1000_init_manageability(adapter
);
4968 if (netif_running(netdev
)) {
4969 if (e1000_up(adapter
)) {
4970 pr_info("can't bring device back up after reset\n");
4975 netif_device_attach(netdev
);