1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31 #include <linux/netdevice.h>
34 #include "ixgbe_common.h"
35 #include "ixgbe_phy.h"
37 static s32
ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
);
38 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
);
39 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
);
40 static s32
ixgbe_ready_eeprom(struct ixgbe_hw
*hw
);
41 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
);
42 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
44 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
);
45 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
46 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
47 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
);
49 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
);
50 static s32
ixgbe_fc_autoneg_fiber(struct ixgbe_hw
*hw
);
51 static s32
ixgbe_fc_autoneg_backplane(struct ixgbe_hw
*hw
);
52 static s32
ixgbe_fc_autoneg_copper(struct ixgbe_hw
*hw
);
53 static s32
ixgbe_device_supports_autoneg_fc(struct ixgbe_hw
*hw
);
54 static s32
ixgbe_negotiate_fc(struct ixgbe_hw
*hw
, u32 adv_reg
, u32 lp_reg
,
55 u32 adv_sym
, u32 adv_asm
, u32 lp_sym
, u32 lp_asm
);
56 static s32
ixgbe_setup_fc(struct ixgbe_hw
*hw
, s32 packetbuf_num
);
57 static s32
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw
*hw
, u32 ee_reg
);
58 static s32
ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
59 u16 words
, u16
*data
);
60 static s32
ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
61 u16 words
, u16
*data
);
62 static s32
ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw
*hw
,
66 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
67 * @hw: pointer to hardware structure
69 * Starts the hardware by filling the bus info structure and media type, clears
70 * all on chip counters, initializes receive address registers, multicast
71 * table, VLAN filter table, calls routine to set up link and flow control
72 * settings, and leaves transmit and receive units disabled and uninitialized
74 s32
ixgbe_start_hw_generic(struct ixgbe_hw
*hw
)
78 /* Set the media type */
79 hw
->phy
.media_type
= hw
->mac
.ops
.get_media_type(hw
);
81 /* Identify the PHY */
82 hw
->phy
.ops
.identify(hw
);
84 /* Clear the VLAN filter table */
85 hw
->mac
.ops
.clear_vfta(hw
);
87 /* Clear statistics registers */
88 hw
->mac
.ops
.clear_hw_cntrs(hw
);
90 /* Set No Snoop Disable */
91 ctrl_ext
= IXGBE_READ_REG(hw
, IXGBE_CTRL_EXT
);
92 ctrl_ext
|= IXGBE_CTRL_EXT_NS_DIS
;
93 IXGBE_WRITE_REG(hw
, IXGBE_CTRL_EXT
, ctrl_ext
);
94 IXGBE_WRITE_FLUSH(hw
);
96 /* Setup flow control */
97 ixgbe_setup_fc(hw
, 0);
99 /* Clear adapter stopped flag */
100 hw
->adapter_stopped
= false;
106 * ixgbe_start_hw_gen2 - Init sequence for common device family
107 * @hw: pointer to hw structure
109 * Performs the init sequence common to the second generation
111 * Devices in the second generation:
115 s32
ixgbe_start_hw_gen2(struct ixgbe_hw
*hw
)
120 /* Clear the rate limiters */
121 for (i
= 0; i
< hw
->mac
.max_tx_queues
; i
++) {
122 IXGBE_WRITE_REG(hw
, IXGBE_RTTDQSEL
, i
);
123 IXGBE_WRITE_REG(hw
, IXGBE_RTTBCNRC
, 0);
125 IXGBE_WRITE_FLUSH(hw
);
127 /* Disable relaxed ordering */
128 for (i
= 0; i
< hw
->mac
.max_tx_queues
; i
++) {
129 regval
= IXGBE_READ_REG(hw
, IXGBE_DCA_TXCTRL_82599(i
));
130 regval
&= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN
;
131 IXGBE_WRITE_REG(hw
, IXGBE_DCA_TXCTRL_82599(i
), regval
);
134 for (i
= 0; i
< hw
->mac
.max_rx_queues
; i
++) {
135 regval
= IXGBE_READ_REG(hw
, IXGBE_DCA_RXCTRL(i
));
136 regval
&= ~(IXGBE_DCA_RXCTRL_DESC_WRO_EN
|
137 IXGBE_DCA_RXCTRL_DESC_HSRO_EN
);
138 IXGBE_WRITE_REG(hw
, IXGBE_DCA_RXCTRL(i
), regval
);
145 * ixgbe_init_hw_generic - Generic hardware initialization
146 * @hw: pointer to hardware structure
148 * Initialize the hardware by resetting the hardware, filling the bus info
149 * structure and media type, clears all on chip counters, initializes receive
150 * address registers, multicast table, VLAN filter table, calls routine to set
151 * up link and flow control settings, and leaves transmit and receive units
152 * disabled and uninitialized
154 s32
ixgbe_init_hw_generic(struct ixgbe_hw
*hw
)
158 /* Reset the hardware */
159 status
= hw
->mac
.ops
.reset_hw(hw
);
163 status
= hw
->mac
.ops
.start_hw(hw
);
170 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
171 * @hw: pointer to hardware structure
173 * Clears all hardware statistics counters by reading them from the hardware
174 * Statistics counters are clear on read.
176 s32
ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw
*hw
)
180 IXGBE_READ_REG(hw
, IXGBE_CRCERRS
);
181 IXGBE_READ_REG(hw
, IXGBE_ILLERRC
);
182 IXGBE_READ_REG(hw
, IXGBE_ERRBC
);
183 IXGBE_READ_REG(hw
, IXGBE_MSPDC
);
184 for (i
= 0; i
< 8; i
++)
185 IXGBE_READ_REG(hw
, IXGBE_MPC(i
));
187 IXGBE_READ_REG(hw
, IXGBE_MLFC
);
188 IXGBE_READ_REG(hw
, IXGBE_MRFC
);
189 IXGBE_READ_REG(hw
, IXGBE_RLEC
);
190 IXGBE_READ_REG(hw
, IXGBE_LXONTXC
);
191 IXGBE_READ_REG(hw
, IXGBE_LXOFFTXC
);
192 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
193 IXGBE_READ_REG(hw
, IXGBE_LXONRXCNT
);
194 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXCNT
);
196 IXGBE_READ_REG(hw
, IXGBE_LXONRXC
);
197 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXC
);
200 for (i
= 0; i
< 8; i
++) {
201 IXGBE_READ_REG(hw
, IXGBE_PXONTXC(i
));
202 IXGBE_READ_REG(hw
, IXGBE_PXOFFTXC(i
));
203 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
204 IXGBE_READ_REG(hw
, IXGBE_PXONRXCNT(i
));
205 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXCNT(i
));
207 IXGBE_READ_REG(hw
, IXGBE_PXONRXC(i
));
208 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXC(i
));
211 if (hw
->mac
.type
>= ixgbe_mac_82599EB
)
212 for (i
= 0; i
< 8; i
++)
213 IXGBE_READ_REG(hw
, IXGBE_PXON2OFFCNT(i
));
214 IXGBE_READ_REG(hw
, IXGBE_PRC64
);
215 IXGBE_READ_REG(hw
, IXGBE_PRC127
);
216 IXGBE_READ_REG(hw
, IXGBE_PRC255
);
217 IXGBE_READ_REG(hw
, IXGBE_PRC511
);
218 IXGBE_READ_REG(hw
, IXGBE_PRC1023
);
219 IXGBE_READ_REG(hw
, IXGBE_PRC1522
);
220 IXGBE_READ_REG(hw
, IXGBE_GPRC
);
221 IXGBE_READ_REG(hw
, IXGBE_BPRC
);
222 IXGBE_READ_REG(hw
, IXGBE_MPRC
);
223 IXGBE_READ_REG(hw
, IXGBE_GPTC
);
224 IXGBE_READ_REG(hw
, IXGBE_GORCL
);
225 IXGBE_READ_REG(hw
, IXGBE_GORCH
);
226 IXGBE_READ_REG(hw
, IXGBE_GOTCL
);
227 IXGBE_READ_REG(hw
, IXGBE_GOTCH
);
228 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
229 for (i
= 0; i
< 8; i
++)
230 IXGBE_READ_REG(hw
, IXGBE_RNBC(i
));
231 IXGBE_READ_REG(hw
, IXGBE_RUC
);
232 IXGBE_READ_REG(hw
, IXGBE_RFC
);
233 IXGBE_READ_REG(hw
, IXGBE_ROC
);
234 IXGBE_READ_REG(hw
, IXGBE_RJC
);
235 IXGBE_READ_REG(hw
, IXGBE_MNGPRC
);
236 IXGBE_READ_REG(hw
, IXGBE_MNGPDC
);
237 IXGBE_READ_REG(hw
, IXGBE_MNGPTC
);
238 IXGBE_READ_REG(hw
, IXGBE_TORL
);
239 IXGBE_READ_REG(hw
, IXGBE_TORH
);
240 IXGBE_READ_REG(hw
, IXGBE_TPR
);
241 IXGBE_READ_REG(hw
, IXGBE_TPT
);
242 IXGBE_READ_REG(hw
, IXGBE_PTC64
);
243 IXGBE_READ_REG(hw
, IXGBE_PTC127
);
244 IXGBE_READ_REG(hw
, IXGBE_PTC255
);
245 IXGBE_READ_REG(hw
, IXGBE_PTC511
);
246 IXGBE_READ_REG(hw
, IXGBE_PTC1023
);
247 IXGBE_READ_REG(hw
, IXGBE_PTC1522
);
248 IXGBE_READ_REG(hw
, IXGBE_MPTC
);
249 IXGBE_READ_REG(hw
, IXGBE_BPTC
);
250 for (i
= 0; i
< 16; i
++) {
251 IXGBE_READ_REG(hw
, IXGBE_QPRC(i
));
252 IXGBE_READ_REG(hw
, IXGBE_QPTC(i
));
253 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
254 IXGBE_READ_REG(hw
, IXGBE_QBRC_L(i
));
255 IXGBE_READ_REG(hw
, IXGBE_QBRC_H(i
));
256 IXGBE_READ_REG(hw
, IXGBE_QBTC_L(i
));
257 IXGBE_READ_REG(hw
, IXGBE_QBTC_H(i
));
258 IXGBE_READ_REG(hw
, IXGBE_QPRDC(i
));
260 IXGBE_READ_REG(hw
, IXGBE_QBRC(i
));
261 IXGBE_READ_REG(hw
, IXGBE_QBTC(i
));
265 if (hw
->mac
.type
== ixgbe_mac_X540
) {
267 hw
->phy
.ops
.identify(hw
);
268 hw
->phy
.ops
.read_reg(hw
, 0x3, IXGBE_PCRC8ECL
, &i
);
269 hw
->phy
.ops
.read_reg(hw
, 0x3, IXGBE_PCRC8ECH
, &i
);
270 hw
->phy
.ops
.read_reg(hw
, 0x3, IXGBE_LDPCECL
, &i
);
271 hw
->phy
.ops
.read_reg(hw
, 0x3, IXGBE_LDPCECH
, &i
);
278 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
279 * @hw: pointer to hardware structure
280 * @pba_num: stores the part number string from the EEPROM
281 * @pba_num_size: part number string buffer length
283 * Reads the part number string from the EEPROM.
285 s32
ixgbe_read_pba_string_generic(struct ixgbe_hw
*hw
, u8
*pba_num
,
294 if (pba_num
== NULL
) {
295 hw_dbg(hw
, "PBA string buffer was null\n");
296 return IXGBE_ERR_INVALID_ARGUMENT
;
299 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM0_PTR
, &data
);
301 hw_dbg(hw
, "NVM Read Error\n");
305 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM1_PTR
, &pba_ptr
);
307 hw_dbg(hw
, "NVM Read Error\n");
312 * if data is not ptr guard the PBA must be in legacy format which
313 * means pba_ptr is actually our second data word for the PBA number
314 * and we can decode it into an ascii string
316 if (data
!= IXGBE_PBANUM_PTR_GUARD
) {
317 hw_dbg(hw
, "NVM PBA number is not stored as string\n");
319 /* we will need 11 characters to store the PBA */
320 if (pba_num_size
< 11) {
321 hw_dbg(hw
, "PBA string buffer too small\n");
322 return IXGBE_ERR_NO_SPACE
;
325 /* extract hex string from data and pba_ptr */
326 pba_num
[0] = (data
>> 12) & 0xF;
327 pba_num
[1] = (data
>> 8) & 0xF;
328 pba_num
[2] = (data
>> 4) & 0xF;
329 pba_num
[3] = data
& 0xF;
330 pba_num
[4] = (pba_ptr
>> 12) & 0xF;
331 pba_num
[5] = (pba_ptr
>> 8) & 0xF;
334 pba_num
[8] = (pba_ptr
>> 4) & 0xF;
335 pba_num
[9] = pba_ptr
& 0xF;
337 /* put a null character on the end of our string */
340 /* switch all the data but the '-' to hex char */
341 for (offset
= 0; offset
< 10; offset
++) {
342 if (pba_num
[offset
] < 0xA)
343 pba_num
[offset
] += '0';
344 else if (pba_num
[offset
] < 0x10)
345 pba_num
[offset
] += 'A' - 0xA;
351 ret_val
= hw
->eeprom
.ops
.read(hw
, pba_ptr
, &length
);
353 hw_dbg(hw
, "NVM Read Error\n");
357 if (length
== 0xFFFF || length
== 0) {
358 hw_dbg(hw
, "NVM PBA number section invalid length\n");
359 return IXGBE_ERR_PBA_SECTION
;
362 /* check if pba_num buffer is big enough */
363 if (pba_num_size
< (((u32
)length
* 2) - 1)) {
364 hw_dbg(hw
, "PBA string buffer too small\n");
365 return IXGBE_ERR_NO_SPACE
;
368 /* trim pba length from start of string */
372 for (offset
= 0; offset
< length
; offset
++) {
373 ret_val
= hw
->eeprom
.ops
.read(hw
, pba_ptr
+ offset
, &data
);
375 hw_dbg(hw
, "NVM Read Error\n");
378 pba_num
[offset
* 2] = (u8
)(data
>> 8);
379 pba_num
[(offset
* 2) + 1] = (u8
)(data
& 0xFF);
381 pba_num
[offset
* 2] = '\0';
387 * ixgbe_get_mac_addr_generic - Generic get MAC address
388 * @hw: pointer to hardware structure
389 * @mac_addr: Adapter MAC address
391 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
392 * A reset of the adapter must be performed prior to calling this function
393 * in order for the MAC address to have been loaded from the EEPROM into RAR0
395 s32
ixgbe_get_mac_addr_generic(struct ixgbe_hw
*hw
, u8
*mac_addr
)
401 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(0));
402 rar_low
= IXGBE_READ_REG(hw
, IXGBE_RAL(0));
404 for (i
= 0; i
< 4; i
++)
405 mac_addr
[i
] = (u8
)(rar_low
>> (i
*8));
407 for (i
= 0; i
< 2; i
++)
408 mac_addr
[i
+4] = (u8
)(rar_high
>> (i
*8));
414 * ixgbe_get_bus_info_generic - Generic set PCI bus info
415 * @hw: pointer to hardware structure
417 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
419 s32
ixgbe_get_bus_info_generic(struct ixgbe_hw
*hw
)
421 struct ixgbe_adapter
*adapter
= hw
->back
;
422 struct ixgbe_mac_info
*mac
= &hw
->mac
;
425 hw
->bus
.type
= ixgbe_bus_type_pci_express
;
427 /* Get the negotiated link width and speed from PCI config space */
428 pci_read_config_word(adapter
->pdev
, IXGBE_PCI_LINK_STATUS
,
431 switch (link_status
& IXGBE_PCI_LINK_WIDTH
) {
432 case IXGBE_PCI_LINK_WIDTH_1
:
433 hw
->bus
.width
= ixgbe_bus_width_pcie_x1
;
435 case IXGBE_PCI_LINK_WIDTH_2
:
436 hw
->bus
.width
= ixgbe_bus_width_pcie_x2
;
438 case IXGBE_PCI_LINK_WIDTH_4
:
439 hw
->bus
.width
= ixgbe_bus_width_pcie_x4
;
441 case IXGBE_PCI_LINK_WIDTH_8
:
442 hw
->bus
.width
= ixgbe_bus_width_pcie_x8
;
445 hw
->bus
.width
= ixgbe_bus_width_unknown
;
449 switch (link_status
& IXGBE_PCI_LINK_SPEED
) {
450 case IXGBE_PCI_LINK_SPEED_2500
:
451 hw
->bus
.speed
= ixgbe_bus_speed_2500
;
453 case IXGBE_PCI_LINK_SPEED_5000
:
454 hw
->bus
.speed
= ixgbe_bus_speed_5000
;
457 hw
->bus
.speed
= ixgbe_bus_speed_unknown
;
461 mac
->ops
.set_lan_id(hw
);
467 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
468 * @hw: pointer to the HW structure
470 * Determines the LAN function id by reading memory-mapped registers
471 * and swaps the port value if requested.
473 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw
*hw
)
475 struct ixgbe_bus_info
*bus
= &hw
->bus
;
478 reg
= IXGBE_READ_REG(hw
, IXGBE_STATUS
);
479 bus
->func
= (reg
& IXGBE_STATUS_LAN_ID
) >> IXGBE_STATUS_LAN_ID_SHIFT
;
480 bus
->lan_id
= bus
->func
;
482 /* check for a port swap */
483 reg
= IXGBE_READ_REG(hw
, IXGBE_FACTPS
);
484 if (reg
& IXGBE_FACTPS_LFS
)
489 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
490 * @hw: pointer to hardware structure
492 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
493 * disables transmit and receive units. The adapter_stopped flag is used by
494 * the shared code and drivers to determine if the adapter is in a stopped
495 * state and should not touch the hardware.
497 s32
ixgbe_stop_adapter_generic(struct ixgbe_hw
*hw
)
499 u32 number_of_queues
;
504 * Set the adapter_stopped flag so other driver functions stop touching
507 hw
->adapter_stopped
= true;
509 /* Disable the receive unit */
510 reg_val
= IXGBE_READ_REG(hw
, IXGBE_RXCTRL
);
511 reg_val
&= ~(IXGBE_RXCTRL_RXEN
);
512 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, reg_val
);
513 IXGBE_WRITE_FLUSH(hw
);
514 usleep_range(2000, 4000);
516 /* Clear interrupt mask to stop from interrupts being generated */
517 IXGBE_WRITE_REG(hw
, IXGBE_EIMC
, IXGBE_IRQ_CLEAR_MASK
);
519 /* Clear any pending interrupts */
520 IXGBE_READ_REG(hw
, IXGBE_EICR
);
522 /* Disable the transmit unit. Each queue must be disabled. */
523 number_of_queues
= hw
->mac
.max_tx_queues
;
524 for (i
= 0; i
< number_of_queues
; i
++) {
525 reg_val
= IXGBE_READ_REG(hw
, IXGBE_TXDCTL(i
));
526 if (reg_val
& IXGBE_TXDCTL_ENABLE
) {
527 reg_val
&= ~IXGBE_TXDCTL_ENABLE
;
528 IXGBE_WRITE_REG(hw
, IXGBE_TXDCTL(i
), reg_val
);
533 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
534 * access and verify no pending requests
536 ixgbe_disable_pcie_master(hw
);
542 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
543 * @hw: pointer to hardware structure
544 * @index: led number to turn on
546 s32
ixgbe_led_on_generic(struct ixgbe_hw
*hw
, u32 index
)
548 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
550 /* To turn on the LED, set mode to ON. */
551 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
552 led_reg
|= IXGBE_LED_ON
<< IXGBE_LED_MODE_SHIFT(index
);
553 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
554 IXGBE_WRITE_FLUSH(hw
);
560 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
561 * @hw: pointer to hardware structure
562 * @index: led number to turn off
564 s32
ixgbe_led_off_generic(struct ixgbe_hw
*hw
, u32 index
)
566 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
568 /* To turn off the LED, set mode to OFF. */
569 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
570 led_reg
|= IXGBE_LED_OFF
<< IXGBE_LED_MODE_SHIFT(index
);
571 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
572 IXGBE_WRITE_FLUSH(hw
);
578 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
579 * @hw: pointer to hardware structure
581 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
582 * ixgbe_hw struct in order to set up EEPROM access.
584 s32
ixgbe_init_eeprom_params_generic(struct ixgbe_hw
*hw
)
586 struct ixgbe_eeprom_info
*eeprom
= &hw
->eeprom
;
590 if (eeprom
->type
== ixgbe_eeprom_uninitialized
) {
591 eeprom
->type
= ixgbe_eeprom_none
;
592 /* Set default semaphore delay to 10ms which is a well
594 eeprom
->semaphore_delay
= 10;
595 /* Clear EEPROM page size, it will be initialized as needed */
596 eeprom
->word_page_size
= 0;
599 * Check for EEPROM present first.
600 * If not present leave as none
602 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
603 if (eec
& IXGBE_EEC_PRES
) {
604 eeprom
->type
= ixgbe_eeprom_spi
;
607 * SPI EEPROM is assumed here. This code would need to
608 * change if a future EEPROM is not SPI.
610 eeprom_size
= (u16
)((eec
& IXGBE_EEC_SIZE
) >>
611 IXGBE_EEC_SIZE_SHIFT
);
612 eeprom
->word_size
= 1 << (eeprom_size
+
613 IXGBE_EEPROM_WORD_SIZE_SHIFT
);
616 if (eec
& IXGBE_EEC_ADDR_SIZE
)
617 eeprom
->address_bits
= 16;
619 eeprom
->address_bits
= 8;
620 hw_dbg(hw
, "Eeprom params: type = %d, size = %d, address bits: "
621 "%d\n", eeprom
->type
, eeprom
->word_size
,
622 eeprom
->address_bits
);
629 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
630 * @hw: pointer to hardware structure
631 * @offset: offset within the EEPROM to write
632 * @words: number of words
633 * @data: 16 bit word(s) to write to EEPROM
635 * Reads 16 bit word(s) from EEPROM through bit-bang method
637 s32
ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
638 u16 words
, u16
*data
)
643 hw
->eeprom
.ops
.init_params(hw
);
646 status
= IXGBE_ERR_INVALID_ARGUMENT
;
650 if (offset
+ words
> hw
->eeprom
.word_size
) {
651 status
= IXGBE_ERR_EEPROM
;
656 * The EEPROM page size cannot be queried from the chip. We do lazy
657 * initialization. It is worth to do that when we write large buffer.
659 if ((hw
->eeprom
.word_page_size
== 0) &&
660 (words
> IXGBE_EEPROM_PAGE_SIZE_MAX
))
661 ixgbe_detect_eeprom_page_size_generic(hw
, offset
);
664 * We cannot hold synchronization semaphores for too long
665 * to avoid other entity starvation. However it is more efficient
666 * to read in bursts than synchronizing access for each word.
668 for (i
= 0; i
< words
; i
+= IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
) {
669 count
= (words
- i
) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
> 0 ?
670 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
: (words
- i
);
671 status
= ixgbe_write_eeprom_buffer_bit_bang(hw
, offset
+ i
,
683 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
684 * @hw: pointer to hardware structure
685 * @offset: offset within the EEPROM to be written to
686 * @words: number of word(s)
687 * @data: 16 bit word(s) to be written to the EEPROM
689 * If ixgbe_eeprom_update_checksum is not called after this function, the
690 * EEPROM will most likely contain an invalid checksum.
692 static s32
ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
693 u16 words
, u16
*data
)
699 u8 write_opcode
= IXGBE_EEPROM_WRITE_OPCODE_SPI
;
701 /* Prepare the EEPROM for writing */
702 status
= ixgbe_acquire_eeprom(hw
);
705 if (ixgbe_ready_eeprom(hw
) != 0) {
706 ixgbe_release_eeprom(hw
);
707 status
= IXGBE_ERR_EEPROM
;
712 for (i
= 0; i
< words
; i
++) {
713 ixgbe_standby_eeprom(hw
);
715 /* Send the WRITE ENABLE command (8 bit opcode ) */
716 ixgbe_shift_out_eeprom_bits(hw
,
717 IXGBE_EEPROM_WREN_OPCODE_SPI
,
718 IXGBE_EEPROM_OPCODE_BITS
);
720 ixgbe_standby_eeprom(hw
);
723 * Some SPI eeproms use the 8th address bit embedded
726 if ((hw
->eeprom
.address_bits
== 8) &&
727 ((offset
+ i
) >= 128))
728 write_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
730 /* Send the Write command (8-bit opcode + addr) */
731 ixgbe_shift_out_eeprom_bits(hw
, write_opcode
,
732 IXGBE_EEPROM_OPCODE_BITS
);
733 ixgbe_shift_out_eeprom_bits(hw
, (u16
)((offset
+ i
) * 2),
734 hw
->eeprom
.address_bits
);
736 page_size
= hw
->eeprom
.word_page_size
;
738 /* Send the data in burst via SPI*/
741 word
= (word
>> 8) | (word
<< 8);
742 ixgbe_shift_out_eeprom_bits(hw
, word
, 16);
747 /* do not wrap around page */
748 if (((offset
+ i
) & (page_size
- 1)) ==
751 } while (++i
< words
);
753 ixgbe_standby_eeprom(hw
);
754 usleep_range(10000, 20000);
756 /* Done with writing - release the EEPROM */
757 ixgbe_release_eeprom(hw
);
764 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
765 * @hw: pointer to hardware structure
766 * @offset: offset within the EEPROM to be written to
767 * @data: 16 bit word to be written to the EEPROM
769 * If ixgbe_eeprom_update_checksum is not called after this function, the
770 * EEPROM will most likely contain an invalid checksum.
772 s32
ixgbe_write_eeprom_generic(struct ixgbe_hw
*hw
, u16 offset
, u16 data
)
776 hw
->eeprom
.ops
.init_params(hw
);
778 if (offset
>= hw
->eeprom
.word_size
) {
779 status
= IXGBE_ERR_EEPROM
;
783 status
= ixgbe_write_eeprom_buffer_bit_bang(hw
, offset
, 1, &data
);
790 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
791 * @hw: pointer to hardware structure
792 * @offset: offset within the EEPROM to be read
793 * @words: number of word(s)
794 * @data: read 16 bit words(s) from EEPROM
796 * Reads 16 bit word(s) from EEPROM through bit-bang method
798 s32
ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
799 u16 words
, u16
*data
)
804 hw
->eeprom
.ops
.init_params(hw
);
807 status
= IXGBE_ERR_INVALID_ARGUMENT
;
811 if (offset
+ words
> hw
->eeprom
.word_size
) {
812 status
= IXGBE_ERR_EEPROM
;
817 * We cannot hold synchronization semaphores for too long
818 * to avoid other entity starvation. However it is more efficient
819 * to read in bursts than synchronizing access for each word.
821 for (i
= 0; i
< words
; i
+= IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
) {
822 count
= (words
- i
) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
> 0 ?
823 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
: (words
- i
);
825 status
= ixgbe_read_eeprom_buffer_bit_bang(hw
, offset
+ i
,
837 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
838 * @hw: pointer to hardware structure
839 * @offset: offset within the EEPROM to be read
840 * @words: number of word(s)
841 * @data: read 16 bit word(s) from EEPROM
843 * Reads 16 bit word(s) from EEPROM through bit-bang method
845 static s32
ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
846 u16 words
, u16
*data
)
850 u8 read_opcode
= IXGBE_EEPROM_READ_OPCODE_SPI
;
853 /* Prepare the EEPROM for reading */
854 status
= ixgbe_acquire_eeprom(hw
);
857 if (ixgbe_ready_eeprom(hw
) != 0) {
858 ixgbe_release_eeprom(hw
);
859 status
= IXGBE_ERR_EEPROM
;
864 for (i
= 0; i
< words
; i
++) {
865 ixgbe_standby_eeprom(hw
);
867 * Some SPI eeproms use the 8th address bit embedded
870 if ((hw
->eeprom
.address_bits
== 8) &&
871 ((offset
+ i
) >= 128))
872 read_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
874 /* Send the READ command (opcode + addr) */
875 ixgbe_shift_out_eeprom_bits(hw
, read_opcode
,
876 IXGBE_EEPROM_OPCODE_BITS
);
877 ixgbe_shift_out_eeprom_bits(hw
, (u16
)((offset
+ i
) * 2),
878 hw
->eeprom
.address_bits
);
881 word_in
= ixgbe_shift_in_eeprom_bits(hw
, 16);
882 data
[i
] = (word_in
>> 8) | (word_in
<< 8);
885 /* End this read operation */
886 ixgbe_release_eeprom(hw
);
893 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
894 * @hw: pointer to hardware structure
895 * @offset: offset within the EEPROM to be read
896 * @data: read 16 bit value from EEPROM
898 * Reads 16 bit value from EEPROM through bit-bang method
900 s32
ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
905 hw
->eeprom
.ops
.init_params(hw
);
907 if (offset
>= hw
->eeprom
.word_size
) {
908 status
= IXGBE_ERR_EEPROM
;
912 status
= ixgbe_read_eeprom_buffer_bit_bang(hw
, offset
, 1, data
);
919 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
920 * @hw: pointer to hardware structure
921 * @offset: offset of word in the EEPROM to read
922 * @words: number of word(s)
923 * @data: 16 bit word(s) from the EEPROM
925 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
927 s32
ixgbe_read_eerd_buffer_generic(struct ixgbe_hw
*hw
, u16 offset
,
928 u16 words
, u16
*data
)
934 hw
->eeprom
.ops
.init_params(hw
);
937 status
= IXGBE_ERR_INVALID_ARGUMENT
;
941 if (offset
>= hw
->eeprom
.word_size
) {
942 status
= IXGBE_ERR_EEPROM
;
946 for (i
= 0; i
< words
; i
++) {
947 eerd
= ((offset
+ i
) << IXGBE_EEPROM_RW_ADDR_SHIFT
) +
948 IXGBE_EEPROM_RW_REG_START
;
950 IXGBE_WRITE_REG(hw
, IXGBE_EERD
, eerd
);
951 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_READ
);
954 data
[i
] = (IXGBE_READ_REG(hw
, IXGBE_EERD
) >>
955 IXGBE_EEPROM_RW_REG_DATA
);
957 hw_dbg(hw
, "Eeprom read timed out\n");
966 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
967 * @hw: pointer to hardware structure
968 * @offset: offset within the EEPROM to be used as a scratch pad
970 * Discover EEPROM page size by writing marching data at given offset.
971 * This function is called only when we are writing a new large buffer
972 * at given offset so the data would be overwritten anyway.
974 static s32
ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw
*hw
,
977 u16 data
[IXGBE_EEPROM_PAGE_SIZE_MAX
];
981 for (i
= 0; i
< IXGBE_EEPROM_PAGE_SIZE_MAX
; i
++)
984 hw
->eeprom
.word_page_size
= IXGBE_EEPROM_PAGE_SIZE_MAX
;
985 status
= ixgbe_write_eeprom_buffer_bit_bang(hw
, offset
,
986 IXGBE_EEPROM_PAGE_SIZE_MAX
, data
);
987 hw
->eeprom
.word_page_size
= 0;
991 status
= ixgbe_read_eeprom_buffer_bit_bang(hw
, offset
, 1, data
);
996 * When writing in burst more than the actual page size
997 * EEPROM address wraps around current page.
999 hw
->eeprom
.word_page_size
= IXGBE_EEPROM_PAGE_SIZE_MAX
- data
[0];
1001 hw_dbg(hw
, "Detected EEPROM page size = %d words.",
1002 hw
->eeprom
.word_page_size
);
1008 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1009 * @hw: pointer to hardware structure
1010 * @offset: offset of word in the EEPROM to read
1011 * @data: word read from the EEPROM
1013 * Reads a 16 bit word from the EEPROM using the EERD register.
1015 s32
ixgbe_read_eerd_generic(struct ixgbe_hw
*hw
, u16 offset
, u16
*data
)
1017 return ixgbe_read_eerd_buffer_generic(hw
, offset
, 1, data
);
1021 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1022 * @hw: pointer to hardware structure
1023 * @offset: offset of word in the EEPROM to write
1024 * @words: number of words
1025 * @data: word(s) write to the EEPROM
1027 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1029 s32
ixgbe_write_eewr_buffer_generic(struct ixgbe_hw
*hw
, u16 offset
,
1030 u16 words
, u16
*data
)
1036 hw
->eeprom
.ops
.init_params(hw
);
1039 status
= IXGBE_ERR_INVALID_ARGUMENT
;
1043 if (offset
>= hw
->eeprom
.word_size
) {
1044 status
= IXGBE_ERR_EEPROM
;
1048 for (i
= 0; i
< words
; i
++) {
1049 eewr
= ((offset
+ i
) << IXGBE_EEPROM_RW_ADDR_SHIFT
) |
1050 (data
[i
] << IXGBE_EEPROM_RW_REG_DATA
) |
1051 IXGBE_EEPROM_RW_REG_START
;
1053 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_WRITE
);
1055 hw_dbg(hw
, "Eeprom write EEWR timed out\n");
1059 IXGBE_WRITE_REG(hw
, IXGBE_EEWR
, eewr
);
1061 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_WRITE
);
1063 hw_dbg(hw
, "Eeprom write EEWR timed out\n");
1073 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1074 * @hw: pointer to hardware structure
1075 * @offset: offset of word in the EEPROM to write
1076 * @data: word write to the EEPROM
1078 * Write a 16 bit word to the EEPROM using the EEWR register.
1080 s32
ixgbe_write_eewr_generic(struct ixgbe_hw
*hw
, u16 offset
, u16 data
)
1082 return ixgbe_write_eewr_buffer_generic(hw
, offset
, 1, &data
);
1086 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1087 * @hw: pointer to hardware structure
1088 * @ee_reg: EEPROM flag for polling
1090 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1091 * read or write is done respectively.
1093 static s32
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw
*hw
, u32 ee_reg
)
1097 s32 status
= IXGBE_ERR_EEPROM
;
1099 for (i
= 0; i
< IXGBE_EERD_EEWR_ATTEMPTS
; i
++) {
1100 if (ee_reg
== IXGBE_NVM_POLL_READ
)
1101 reg
= IXGBE_READ_REG(hw
, IXGBE_EERD
);
1103 reg
= IXGBE_READ_REG(hw
, IXGBE_EEWR
);
1105 if (reg
& IXGBE_EEPROM_RW_REG_DONE
) {
1115 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1116 * @hw: pointer to hardware structure
1118 * Prepares EEPROM for access using bit-bang method. This function should
1119 * be called before issuing a command to the EEPROM.
1121 static s32
ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
)
1127 if (hw
->mac
.ops
.acquire_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
) != 0)
1128 status
= IXGBE_ERR_SWFW_SYNC
;
1131 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1133 /* Request EEPROM Access */
1134 eec
|= IXGBE_EEC_REQ
;
1135 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1137 for (i
= 0; i
< IXGBE_EEPROM_GRANT_ATTEMPTS
; i
++) {
1138 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1139 if (eec
& IXGBE_EEC_GNT
)
1144 /* Release if grant not acquired */
1145 if (!(eec
& IXGBE_EEC_GNT
)) {
1146 eec
&= ~IXGBE_EEC_REQ
;
1147 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1148 hw_dbg(hw
, "Could not acquire EEPROM grant\n");
1150 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
1151 status
= IXGBE_ERR_EEPROM
;
1154 /* Setup EEPROM for Read/Write */
1156 /* Clear CS and SK */
1157 eec
&= ~(IXGBE_EEC_CS
| IXGBE_EEC_SK
);
1158 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1159 IXGBE_WRITE_FLUSH(hw
);
1167 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1168 * @hw: pointer to hardware structure
1170 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1172 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
)
1174 s32 status
= IXGBE_ERR_EEPROM
;
1179 /* Get SMBI software semaphore between device drivers first */
1180 for (i
= 0; i
< timeout
; i
++) {
1182 * If the SMBI bit is 0 when we read it, then the bit will be
1183 * set and we have the semaphore
1185 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
1186 if (!(swsm
& IXGBE_SWSM_SMBI
)) {
1194 hw_dbg(hw
, "Driver can't access the Eeprom - SMBI Semaphore "
1197 * this release is particularly important because our attempts
1198 * above to get the semaphore may have succeeded, and if there
1199 * was a timeout, we should unconditionally clear the semaphore
1200 * bits to free the driver to make progress
1202 ixgbe_release_eeprom_semaphore(hw
);
1207 * If the SMBI bit is 0 when we read it, then the bit will be
1208 * set and we have the semaphore
1210 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
1211 if (!(swsm
& IXGBE_SWSM_SMBI
))
1215 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1217 for (i
= 0; i
< timeout
; i
++) {
1218 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
1220 /* Set the SW EEPROM semaphore bit to request access */
1221 swsm
|= IXGBE_SWSM_SWESMBI
;
1222 IXGBE_WRITE_REG(hw
, IXGBE_SWSM
, swsm
);
1225 * If we set the bit successfully then we got the
1228 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
1229 if (swsm
& IXGBE_SWSM_SWESMBI
)
1236 * Release semaphores and return error if SW EEPROM semaphore
1237 * was not granted because we don't have access to the EEPROM
1240 hw_dbg(hw
, "SWESMBI Software EEPROM semaphore "
1242 ixgbe_release_eeprom_semaphore(hw
);
1243 status
= IXGBE_ERR_EEPROM
;
1246 hw_dbg(hw
, "Software semaphore SMBI between device drivers "
1254 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1255 * @hw: pointer to hardware structure
1257 * This function clears hardware semaphore bits.
1259 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
)
1263 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
1265 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1266 swsm
&= ~(IXGBE_SWSM_SWESMBI
| IXGBE_SWSM_SMBI
);
1267 IXGBE_WRITE_REG(hw
, IXGBE_SWSM
, swsm
);
1268 IXGBE_WRITE_FLUSH(hw
);
1272 * ixgbe_ready_eeprom - Polls for EEPROM ready
1273 * @hw: pointer to hardware structure
1275 static s32
ixgbe_ready_eeprom(struct ixgbe_hw
*hw
)
1282 * Read "Status Register" repeatedly until the LSB is cleared. The
1283 * EEPROM will signal that the command has been completed by clearing
1284 * bit 0 of the internal status register. If it's not cleared within
1285 * 5 milliseconds, then error out.
1287 for (i
= 0; i
< IXGBE_EEPROM_MAX_RETRY_SPI
; i
+= 5) {
1288 ixgbe_shift_out_eeprom_bits(hw
, IXGBE_EEPROM_RDSR_OPCODE_SPI
,
1289 IXGBE_EEPROM_OPCODE_BITS
);
1290 spi_stat_reg
= (u8
)ixgbe_shift_in_eeprom_bits(hw
, 8);
1291 if (!(spi_stat_reg
& IXGBE_EEPROM_STATUS_RDY_SPI
))
1295 ixgbe_standby_eeprom(hw
);
1299 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1300 * devices (and only 0-5mSec on 5V devices)
1302 if (i
>= IXGBE_EEPROM_MAX_RETRY_SPI
) {
1303 hw_dbg(hw
, "SPI EEPROM Status error\n");
1304 status
= IXGBE_ERR_EEPROM
;
1311 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1312 * @hw: pointer to hardware structure
1314 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
)
1318 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1320 /* Toggle CS to flush commands */
1321 eec
|= IXGBE_EEC_CS
;
1322 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1323 IXGBE_WRITE_FLUSH(hw
);
1325 eec
&= ~IXGBE_EEC_CS
;
1326 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1327 IXGBE_WRITE_FLUSH(hw
);
1332 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1333 * @hw: pointer to hardware structure
1334 * @data: data to send to the EEPROM
1335 * @count: number of bits to shift out
1337 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
1344 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1347 * Mask is used to shift "count" bits of "data" out to the EEPROM
1348 * one bit at a time. Determine the starting bit based on count
1350 mask
= 0x01 << (count
- 1);
1352 for (i
= 0; i
< count
; i
++) {
1354 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1355 * "1", and then raising and then lowering the clock (the SK
1356 * bit controls the clock input to the EEPROM). A "0" is
1357 * shifted out to the EEPROM by setting "DI" to "0" and then
1358 * raising and then lowering the clock.
1361 eec
|= IXGBE_EEC_DI
;
1363 eec
&= ~IXGBE_EEC_DI
;
1365 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1366 IXGBE_WRITE_FLUSH(hw
);
1370 ixgbe_raise_eeprom_clk(hw
, &eec
);
1371 ixgbe_lower_eeprom_clk(hw
, &eec
);
1374 * Shift mask to signify next bit of data to shift in to the
1380 /* We leave the "DI" bit set to "0" when we leave this routine. */
1381 eec
&= ~IXGBE_EEC_DI
;
1382 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1383 IXGBE_WRITE_FLUSH(hw
);
1387 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1388 * @hw: pointer to hardware structure
1390 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
)
1397 * In order to read a register from the EEPROM, we need to shift
1398 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1399 * the clock input to the EEPROM (setting the SK bit), and then reading
1400 * the value of the "DO" bit. During this "shifting in" process the
1401 * "DI" bit should always be clear.
1403 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1405 eec
&= ~(IXGBE_EEC_DO
| IXGBE_EEC_DI
);
1407 for (i
= 0; i
< count
; i
++) {
1409 ixgbe_raise_eeprom_clk(hw
, &eec
);
1411 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1413 eec
&= ~(IXGBE_EEC_DI
);
1414 if (eec
& IXGBE_EEC_DO
)
1417 ixgbe_lower_eeprom_clk(hw
, &eec
);
1424 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1425 * @hw: pointer to hardware structure
1426 * @eec: EEC register's current value
1428 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
1431 * Raise the clock input to the EEPROM
1432 * (setting the SK bit), then delay
1434 *eec
= *eec
| IXGBE_EEC_SK
;
1435 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, *eec
);
1436 IXGBE_WRITE_FLUSH(hw
);
1441 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1442 * @hw: pointer to hardware structure
1443 * @eecd: EECD's current value
1445 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
1448 * Lower the clock input to the EEPROM (clearing the SK bit), then
1451 *eec
= *eec
& ~IXGBE_EEC_SK
;
1452 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, *eec
);
1453 IXGBE_WRITE_FLUSH(hw
);
1458 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1459 * @hw: pointer to hardware structure
1461 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
)
1465 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1467 eec
|= IXGBE_EEC_CS
; /* Pull CS high */
1468 eec
&= ~IXGBE_EEC_SK
; /* Lower SCK */
1470 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1471 IXGBE_WRITE_FLUSH(hw
);
1475 /* Stop requesting EEPROM access */
1476 eec
&= ~IXGBE_EEC_REQ
;
1477 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1479 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
1482 * Delay before attempt to obtain semaphore again to allow FW
1483 * access. semaphore_delay is in ms we need us for usleep_range
1485 usleep_range(hw
->eeprom
.semaphore_delay
* 1000,
1486 hw
->eeprom
.semaphore_delay
* 2000);
1490 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1491 * @hw: pointer to hardware structure
1493 u16
ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw
*hw
)
1502 /* Include 0x0-0x3F in the checksum */
1503 for (i
= 0; i
< IXGBE_EEPROM_CHECKSUM
; i
++) {
1504 if (hw
->eeprom
.ops
.read(hw
, i
, &word
) != 0) {
1505 hw_dbg(hw
, "EEPROM read failed\n");
1511 /* Include all data from pointers except for the fw pointer */
1512 for (i
= IXGBE_PCIE_ANALOG_PTR
; i
< IXGBE_FW_PTR
; i
++) {
1513 hw
->eeprom
.ops
.read(hw
, i
, &pointer
);
1515 /* Make sure the pointer seems valid */
1516 if (pointer
!= 0xFFFF && pointer
!= 0) {
1517 hw
->eeprom
.ops
.read(hw
, pointer
, &length
);
1519 if (length
!= 0xFFFF && length
!= 0) {
1520 for (j
= pointer
+1; j
<= pointer
+length
; j
++) {
1521 hw
->eeprom
.ops
.read(hw
, j
, &word
);
1528 checksum
= (u16
)IXGBE_EEPROM_SUM
- checksum
;
1534 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1535 * @hw: pointer to hardware structure
1536 * @checksum_val: calculated checksum
1538 * Performs checksum calculation and validates the EEPROM checksum. If the
1539 * caller does not need checksum_val, the value can be NULL.
1541 s32
ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw
*hw
,
1546 u16 read_checksum
= 0;
1549 * Read the first word from the EEPROM. If this times out or fails, do
1550 * not continue or we could be in for a very long wait while every
1553 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1556 checksum
= hw
->eeprom
.ops
.calc_checksum(hw
);
1558 hw
->eeprom
.ops
.read(hw
, IXGBE_EEPROM_CHECKSUM
, &read_checksum
);
1561 * Verify read checksum from EEPROM is the same as
1562 * calculated checksum
1564 if (read_checksum
!= checksum
)
1565 status
= IXGBE_ERR_EEPROM_CHECKSUM
;
1567 /* If the user cares, return the calculated checksum */
1569 *checksum_val
= checksum
;
1571 hw_dbg(hw
, "EEPROM read failed\n");
1578 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1579 * @hw: pointer to hardware structure
1581 s32
ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw
*hw
)
1587 * Read the first word from the EEPROM. If this times out or fails, do
1588 * not continue or we could be in for a very long wait while every
1591 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1594 checksum
= hw
->eeprom
.ops
.calc_checksum(hw
);
1595 status
= hw
->eeprom
.ops
.write(hw
, IXGBE_EEPROM_CHECKSUM
,
1598 hw_dbg(hw
, "EEPROM read failed\n");
1605 * ixgbe_validate_mac_addr - Validate MAC address
1606 * @mac_addr: pointer to MAC address.
1608 * Tests a MAC address to ensure it is a valid Individual Address
1610 s32
ixgbe_validate_mac_addr(u8
*mac_addr
)
1614 /* Make sure it is not a multicast address */
1615 if (IXGBE_IS_MULTICAST(mac_addr
))
1616 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
1617 /* Not a broadcast address */
1618 else if (IXGBE_IS_BROADCAST(mac_addr
))
1619 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
1620 /* Reject the zero address */
1621 else if (mac_addr
[0] == 0 && mac_addr
[1] == 0 && mac_addr
[2] == 0 &&
1622 mac_addr
[3] == 0 && mac_addr
[4] == 0 && mac_addr
[5] == 0)
1623 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
1629 * ixgbe_set_rar_generic - Set Rx address register
1630 * @hw: pointer to hardware structure
1631 * @index: Receive address register to write
1632 * @addr: Address to put into receive address register
1633 * @vmdq: VMDq "set" or "pool" index
1634 * @enable_addr: set flag that address is active
1636 * Puts an ethernet address into a receive address register.
1638 s32
ixgbe_set_rar_generic(struct ixgbe_hw
*hw
, u32 index
, u8
*addr
, u32 vmdq
,
1641 u32 rar_low
, rar_high
;
1642 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1644 /* Make sure we are using a valid rar index range */
1645 if (index
>= rar_entries
) {
1646 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1647 return IXGBE_ERR_INVALID_ARGUMENT
;
1650 /* setup VMDq pool selection before this RAR gets enabled */
1651 hw
->mac
.ops
.set_vmdq(hw
, index
, vmdq
);
1654 * HW expects these in little endian so we reverse the byte
1655 * order from network order (big endian) to little endian
1657 rar_low
= ((u32
)addr
[0] |
1658 ((u32
)addr
[1] << 8) |
1659 ((u32
)addr
[2] << 16) |
1660 ((u32
)addr
[3] << 24));
1662 * Some parts put the VMDq setting in the extra RAH bits,
1663 * so save everything except the lower 16 bits that hold part
1664 * of the address and the address valid bit.
1666 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1667 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1668 rar_high
|= ((u32
)addr
[4] | ((u32
)addr
[5] << 8));
1670 if (enable_addr
!= 0)
1671 rar_high
|= IXGBE_RAH_AV
;
1673 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), rar_low
);
1674 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1680 * ixgbe_clear_rar_generic - Remove Rx address register
1681 * @hw: pointer to hardware structure
1682 * @index: Receive address register to write
1684 * Clears an ethernet address from a receive address register.
1686 s32
ixgbe_clear_rar_generic(struct ixgbe_hw
*hw
, u32 index
)
1689 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1691 /* Make sure we are using a valid rar index range */
1692 if (index
>= rar_entries
) {
1693 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1694 return IXGBE_ERR_INVALID_ARGUMENT
;
1698 * Some parts put the VMDq setting in the extra RAH bits,
1699 * so save everything except the lower 16 bits that hold part
1700 * of the address and the address valid bit.
1702 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1703 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1705 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), 0);
1706 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1708 /* clear VMDq pool/queue selection for this RAR */
1709 hw
->mac
.ops
.clear_vmdq(hw
, index
, IXGBE_CLEAR_VMDQ_ALL
);
1715 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1716 * @hw: pointer to hardware structure
1718 * Places the MAC address in receive address register 0 and clears the rest
1719 * of the receive address registers. Clears the multicast table. Assumes
1720 * the receiver is in reset when the routine is called.
1722 s32
ixgbe_init_rx_addrs_generic(struct ixgbe_hw
*hw
)
1725 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1728 * If the current mac address is valid, assume it is a software override
1729 * to the permanent address.
1730 * Otherwise, use the permanent address from the eeprom.
1732 if (ixgbe_validate_mac_addr(hw
->mac
.addr
) ==
1733 IXGBE_ERR_INVALID_MAC_ADDR
) {
1734 /* Get the MAC address from the RAR0 for later reference */
1735 hw
->mac
.ops
.get_mac_addr(hw
, hw
->mac
.addr
);
1737 hw_dbg(hw
, " Keeping Current RAR0 Addr =%pM\n", hw
->mac
.addr
);
1739 /* Setup the receive address. */
1740 hw_dbg(hw
, "Overriding MAC Address in RAR[0]\n");
1741 hw_dbg(hw
, " New MAC Addr =%pM\n", hw
->mac
.addr
);
1743 hw
->mac
.ops
.set_rar(hw
, 0, hw
->mac
.addr
, 0, IXGBE_RAH_AV
);
1745 /* clear VMDq pool/queue selection for RAR 0 */
1746 hw
->mac
.ops
.clear_vmdq(hw
, 0, IXGBE_CLEAR_VMDQ_ALL
);
1748 hw
->addr_ctrl
.overflow_promisc
= 0;
1750 hw
->addr_ctrl
.rar_used_count
= 1;
1752 /* Zero out the other receive addresses. */
1753 hw_dbg(hw
, "Clearing RAR[1-%d]\n", rar_entries
- 1);
1754 for (i
= 1; i
< rar_entries
; i
++) {
1755 IXGBE_WRITE_REG(hw
, IXGBE_RAL(i
), 0);
1756 IXGBE_WRITE_REG(hw
, IXGBE_RAH(i
), 0);
1760 hw
->addr_ctrl
.mta_in_use
= 0;
1761 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
1763 hw_dbg(hw
, " Clearing MTA\n");
1764 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
1765 IXGBE_WRITE_REG(hw
, IXGBE_MTA(i
), 0);
1767 if (hw
->mac
.ops
.init_uta_tables
)
1768 hw
->mac
.ops
.init_uta_tables(hw
);
1774 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1775 * @hw: pointer to hardware structure
1776 * @mc_addr: the multicast address
1778 * Extracts the 12 bits, from a multicast address, to determine which
1779 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1780 * incoming rx multicast addresses, to determine the bit-vector to check in
1781 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1782 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1783 * to mc_filter_type.
1785 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
)
1789 switch (hw
->mac
.mc_filter_type
) {
1790 case 0: /* use bits [47:36] of the address */
1791 vector
= ((mc_addr
[4] >> 4) | (((u16
)mc_addr
[5]) << 4));
1793 case 1: /* use bits [46:35] of the address */
1794 vector
= ((mc_addr
[4] >> 3) | (((u16
)mc_addr
[5]) << 5));
1796 case 2: /* use bits [45:34] of the address */
1797 vector
= ((mc_addr
[4] >> 2) | (((u16
)mc_addr
[5]) << 6));
1799 case 3: /* use bits [43:32] of the address */
1800 vector
= ((mc_addr
[4]) | (((u16
)mc_addr
[5]) << 8));
1802 default: /* Invalid mc_filter_type */
1803 hw_dbg(hw
, "MC filter type param set incorrectly\n");
1807 /* vector can only be 12-bits or boundary will be exceeded */
1813 * ixgbe_set_mta - Set bit-vector in multicast table
1814 * @hw: pointer to hardware structure
1815 * @hash_value: Multicast address hash value
1817 * Sets the bit-vector in the multicast table.
1819 static void ixgbe_set_mta(struct ixgbe_hw
*hw
, u8
*mc_addr
)
1825 hw
->addr_ctrl
.mta_in_use
++;
1827 vector
= ixgbe_mta_vector(hw
, mc_addr
);
1828 hw_dbg(hw
, " bit-vector = 0x%03X\n", vector
);
1831 * The MTA is a register array of 128 32-bit registers. It is treated
1832 * like an array of 4096 bits. We want to set bit
1833 * BitArray[vector_value]. So we figure out what register the bit is
1834 * in, read it, OR in the new bit, then write back the new value. The
1835 * register is determined by the upper 7 bits of the vector value and
1836 * the bit within that register are determined by the lower 5 bits of
1839 vector_reg
= (vector
>> 5) & 0x7F;
1840 vector_bit
= vector
& 0x1F;
1841 hw
->mac
.mta_shadow
[vector_reg
] |= (1 << vector_bit
);
1845 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1846 * @hw: pointer to hardware structure
1847 * @netdev: pointer to net device structure
1849 * The given list replaces any existing list. Clears the MC addrs from receive
1850 * address registers and the multicast table. Uses unused receive address
1851 * registers for the first multicast addresses, and hashes the rest into the
1854 s32
ixgbe_update_mc_addr_list_generic(struct ixgbe_hw
*hw
,
1855 struct net_device
*netdev
)
1857 struct netdev_hw_addr
*ha
;
1861 * Set the new number of MC addresses that we are being requested to
1864 hw
->addr_ctrl
.num_mc_addrs
= netdev_mc_count(netdev
);
1865 hw
->addr_ctrl
.mta_in_use
= 0;
1867 /* Clear mta_shadow */
1868 hw_dbg(hw
, " Clearing MTA\n");
1869 memset(&hw
->mac
.mta_shadow
, 0, sizeof(hw
->mac
.mta_shadow
));
1871 /* Update mta shadow */
1872 netdev_for_each_mc_addr(ha
, netdev
) {
1873 hw_dbg(hw
, " Adding the multicast addresses:\n");
1874 ixgbe_set_mta(hw
, ha
->addr
);
1878 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
1879 IXGBE_WRITE_REG_ARRAY(hw
, IXGBE_MTA(0), i
,
1880 hw
->mac
.mta_shadow
[i
]);
1882 if (hw
->addr_ctrl
.mta_in_use
> 0)
1883 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
,
1884 IXGBE_MCSTCTRL_MFE
| hw
->mac
.mc_filter_type
);
1886 hw_dbg(hw
, "ixgbe_update_mc_addr_list_generic Complete\n");
1891 * ixgbe_enable_mc_generic - Enable multicast address in RAR
1892 * @hw: pointer to hardware structure
1894 * Enables multicast address in RAR and the use of the multicast hash table.
1896 s32
ixgbe_enable_mc_generic(struct ixgbe_hw
*hw
)
1898 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
1900 if (a
->mta_in_use
> 0)
1901 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, IXGBE_MCSTCTRL_MFE
|
1902 hw
->mac
.mc_filter_type
);
1908 * ixgbe_disable_mc_generic - Disable multicast address in RAR
1909 * @hw: pointer to hardware structure
1911 * Disables multicast address in RAR and the use of the multicast hash table.
1913 s32
ixgbe_disable_mc_generic(struct ixgbe_hw
*hw
)
1915 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
1917 if (a
->mta_in_use
> 0)
1918 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
1924 * ixgbe_fc_enable_generic - Enable flow control
1925 * @hw: pointer to hardware structure
1926 * @packetbuf_num: packet buffer number (0-7)
1928 * Enable flow control according to the current settings.
1930 s32
ixgbe_fc_enable_generic(struct ixgbe_hw
*hw
, s32 packetbuf_num
)
1933 u32 mflcn_reg
, fccfg_reg
;
1939 if (hw
->fc
.requested_mode
== ixgbe_fc_pfc
)
1942 #endif /* CONFIG_DCB */
1943 /* Negotiate the fc mode to use */
1944 ret_val
= ixgbe_fc_autoneg(hw
);
1945 if (ret_val
== IXGBE_ERR_FLOW_CONTROL
)
1948 /* Disable any previous flow control settings */
1949 mflcn_reg
= IXGBE_READ_REG(hw
, IXGBE_MFLCN
);
1950 mflcn_reg
&= ~(IXGBE_MFLCN_RFCE
| IXGBE_MFLCN_RPFCE
);
1952 fccfg_reg
= IXGBE_READ_REG(hw
, IXGBE_FCCFG
);
1953 fccfg_reg
&= ~(IXGBE_FCCFG_TFCE_802_3X
| IXGBE_FCCFG_TFCE_PRIORITY
);
1956 * The possible values of fc.current_mode are:
1957 * 0: Flow control is completely disabled
1958 * 1: Rx flow control is enabled (we can receive pause frames,
1959 * but not send pause frames).
1960 * 2: Tx flow control is enabled (we can send pause frames but
1961 * we do not support receiving pause frames).
1962 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1964 * 4: Priority Flow Control is enabled.
1968 switch (hw
->fc
.current_mode
) {
1971 * Flow control is disabled by software override or autoneg.
1972 * The code below will actually disable it in the HW.
1975 case ixgbe_fc_rx_pause
:
1977 * Rx Flow control is enabled and Tx Flow control is
1978 * disabled by software override. Since there really
1979 * isn't a way to advertise that we are capable of RX
1980 * Pause ONLY, we will advertise that we support both
1981 * symmetric and asymmetric Rx PAUSE. Later, we will
1982 * disable the adapter's ability to send PAUSE frames.
1984 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
1986 case ixgbe_fc_tx_pause
:
1988 * Tx Flow control is enabled, and Rx Flow control is
1989 * disabled by software override.
1991 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
1994 /* Flow control (both Rx and Tx) is enabled by SW override. */
1995 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
1996 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
2002 #endif /* CONFIG_DCB */
2004 hw_dbg(hw
, "Flow control param set incorrectly\n");
2005 ret_val
= IXGBE_ERR_CONFIG
;
2010 /* Set 802.3x based flow control settings. */
2011 mflcn_reg
|= IXGBE_MFLCN_DPF
;
2012 IXGBE_WRITE_REG(hw
, IXGBE_MFLCN
, mflcn_reg
);
2013 IXGBE_WRITE_REG(hw
, IXGBE_FCCFG
, fccfg_reg
);
2015 rx_pba_size
= IXGBE_READ_REG(hw
, IXGBE_RXPBSIZE(packetbuf_num
));
2016 rx_pba_size
>>= IXGBE_RXPBSIZE_SHIFT
;
2018 fcrth
= (rx_pba_size
- hw
->fc
.high_water
) << 10;
2019 fcrtl
= (rx_pba_size
- hw
->fc
.low_water
) << 10;
2021 if (hw
->fc
.current_mode
& ixgbe_fc_tx_pause
) {
2022 fcrth
|= IXGBE_FCRTH_FCEN
;
2023 if (hw
->fc
.send_xon
)
2024 fcrtl
|= IXGBE_FCRTL_XONE
;
2027 IXGBE_WRITE_REG(hw
, IXGBE_FCRTH_82599(packetbuf_num
), fcrth
);
2028 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL_82599(packetbuf_num
), fcrtl
);
2030 /* Configure pause time (2 TCs per register) */
2031 reg
= IXGBE_READ_REG(hw
, IXGBE_FCTTV(packetbuf_num
/ 2));
2032 if ((packetbuf_num
& 1) == 0)
2033 reg
= (reg
& 0xFFFF0000) | hw
->fc
.pause_time
;
2035 reg
= (reg
& 0x0000FFFF) | (hw
->fc
.pause_time
<< 16);
2036 IXGBE_WRITE_REG(hw
, IXGBE_FCTTV(packetbuf_num
/ 2), reg
);
2038 IXGBE_WRITE_REG(hw
, IXGBE_FCRTV
, (hw
->fc
.pause_time
>> 1));
2045 * ixgbe_fc_autoneg - Configure flow control
2046 * @hw: pointer to hardware structure
2048 * Compares our advertised flow control capabilities to those advertised by
2049 * our link partner, and determines the proper flow control mode to use.
2051 s32
ixgbe_fc_autoneg(struct ixgbe_hw
*hw
)
2053 s32 ret_val
= IXGBE_ERR_FC_NOT_NEGOTIATED
;
2054 ixgbe_link_speed speed
;
2057 if (hw
->fc
.disable_fc_autoneg
)
2061 * AN should have completed when the cable was plugged in.
2062 * Look for reasons to bail out. Bail out if:
2063 * - FC autoneg is disabled, or if
2066 * Since we're being called from an LSC, link is already known to be up.
2067 * So use link_up_wait_to_complete=false.
2069 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
2071 ret_val
= IXGBE_ERR_FLOW_CONTROL
;
2075 switch (hw
->phy
.media_type
) {
2076 /* Autoneg flow control on fiber adapters */
2077 case ixgbe_media_type_fiber
:
2078 if (speed
== IXGBE_LINK_SPEED_1GB_FULL
)
2079 ret_val
= ixgbe_fc_autoneg_fiber(hw
);
2082 /* Autoneg flow control on backplane adapters */
2083 case ixgbe_media_type_backplane
:
2084 ret_val
= ixgbe_fc_autoneg_backplane(hw
);
2087 /* Autoneg flow control on copper adapters */
2088 case ixgbe_media_type_copper
:
2089 if (ixgbe_device_supports_autoneg_fc(hw
) == 0)
2090 ret_val
= ixgbe_fc_autoneg_copper(hw
);
2099 hw
->fc
.fc_was_autonegged
= true;
2101 hw
->fc
.fc_was_autonegged
= false;
2102 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
2108 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2109 * @hw: pointer to hardware structure
2111 * Enable flow control according on 1 gig fiber.
2113 static s32
ixgbe_fc_autoneg_fiber(struct ixgbe_hw
*hw
)
2115 u32 pcs_anadv_reg
, pcs_lpab_reg
, linkstat
;
2119 * On multispeed fiber at 1g, bail out if
2120 * - link is up but AN did not complete, or if
2121 * - link is up and AN completed but timed out
2124 linkstat
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLSTA
);
2125 if ((!!(linkstat
& IXGBE_PCS1GLSTA_AN_COMPLETE
) == 0) ||
2126 (!!(linkstat
& IXGBE_PCS1GLSTA_AN_TIMED_OUT
) == 1)) {
2127 ret_val
= IXGBE_ERR_FC_NOT_NEGOTIATED
;
2131 pcs_anadv_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
2132 pcs_lpab_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANLP
);
2134 ret_val
= ixgbe_negotiate_fc(hw
, pcs_anadv_reg
,
2135 pcs_lpab_reg
, IXGBE_PCS1GANA_SYM_PAUSE
,
2136 IXGBE_PCS1GANA_ASM_PAUSE
,
2137 IXGBE_PCS1GANA_SYM_PAUSE
,
2138 IXGBE_PCS1GANA_ASM_PAUSE
);
2145 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2146 * @hw: pointer to hardware structure
2148 * Enable flow control according to IEEE clause 37.
2150 static s32
ixgbe_fc_autoneg_backplane(struct ixgbe_hw
*hw
)
2152 u32 links2
, anlp1_reg
, autoc_reg
, links
;
2156 * On backplane, bail out if
2157 * - backplane autoneg was not completed, or if
2158 * - we are 82599 and link partner is not AN enabled
2160 links
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
2161 if ((links
& IXGBE_LINKS_KX_AN_COMP
) == 0) {
2162 hw
->fc
.fc_was_autonegged
= false;
2163 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
2164 ret_val
= IXGBE_ERR_FC_NOT_NEGOTIATED
;
2168 if (hw
->mac
.type
== ixgbe_mac_82599EB
) {
2169 links2
= IXGBE_READ_REG(hw
, IXGBE_LINKS2
);
2170 if ((links2
& IXGBE_LINKS2_AN_SUPPORTED
) == 0) {
2171 hw
->fc
.fc_was_autonegged
= false;
2172 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
2173 ret_val
= IXGBE_ERR_FC_NOT_NEGOTIATED
;
2178 * Read the 10g AN autoc and LP ability registers and resolve
2179 * local flow control settings accordingly
2181 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2182 anlp1_reg
= IXGBE_READ_REG(hw
, IXGBE_ANLP1
);
2184 ret_val
= ixgbe_negotiate_fc(hw
, autoc_reg
,
2185 anlp1_reg
, IXGBE_AUTOC_SYM_PAUSE
, IXGBE_AUTOC_ASM_PAUSE
,
2186 IXGBE_ANLP1_SYM_PAUSE
, IXGBE_ANLP1_ASM_PAUSE
);
2193 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2194 * @hw: pointer to hardware structure
2196 * Enable flow control according to IEEE clause 37.
2198 static s32
ixgbe_fc_autoneg_copper(struct ixgbe_hw
*hw
)
2200 u16 technology_ability_reg
= 0;
2201 u16 lp_technology_ability_reg
= 0;
2203 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_ADVERTISE
,
2205 &technology_ability_reg
);
2206 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_LPA
,
2208 &lp_technology_ability_reg
);
2210 return ixgbe_negotiate_fc(hw
, (u32
)technology_ability_reg
,
2211 (u32
)lp_technology_ability_reg
,
2212 IXGBE_TAF_SYM_PAUSE
, IXGBE_TAF_ASM_PAUSE
,
2213 IXGBE_TAF_SYM_PAUSE
, IXGBE_TAF_ASM_PAUSE
);
2217 * ixgbe_negotiate_fc - Negotiate flow control
2218 * @hw: pointer to hardware structure
2219 * @adv_reg: flow control advertised settings
2220 * @lp_reg: link partner's flow control settings
2221 * @adv_sym: symmetric pause bit in advertisement
2222 * @adv_asm: asymmetric pause bit in advertisement
2223 * @lp_sym: symmetric pause bit in link partner advertisement
2224 * @lp_asm: asymmetric pause bit in link partner advertisement
2226 * Find the intersection between advertised settings and link partner's
2227 * advertised settings
2229 static s32
ixgbe_negotiate_fc(struct ixgbe_hw
*hw
, u32 adv_reg
, u32 lp_reg
,
2230 u32 adv_sym
, u32 adv_asm
, u32 lp_sym
, u32 lp_asm
)
2232 if ((!(adv_reg
)) || (!(lp_reg
)))
2233 return IXGBE_ERR_FC_NOT_NEGOTIATED
;
2235 if ((adv_reg
& adv_sym
) && (lp_reg
& lp_sym
)) {
2237 * Now we need to check if the user selected Rx ONLY
2238 * of pause frames. In this case, we had to advertise
2239 * FULL flow control because we could not advertise RX
2240 * ONLY. Hence, we must now check to see if we need to
2241 * turn OFF the TRANSMISSION of PAUSE frames.
2243 if (hw
->fc
.requested_mode
== ixgbe_fc_full
) {
2244 hw
->fc
.current_mode
= ixgbe_fc_full
;
2245 hw_dbg(hw
, "Flow Control = FULL.\n");
2247 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
2248 hw_dbg(hw
, "Flow Control=RX PAUSE frames only\n");
2250 } else if (!(adv_reg
& adv_sym
) && (adv_reg
& adv_asm
) &&
2251 (lp_reg
& lp_sym
) && (lp_reg
& lp_asm
)) {
2252 hw
->fc
.current_mode
= ixgbe_fc_tx_pause
;
2253 hw_dbg(hw
, "Flow Control = TX PAUSE frames only.\n");
2254 } else if ((adv_reg
& adv_sym
) && (adv_reg
& adv_asm
) &&
2255 !(lp_reg
& lp_sym
) && (lp_reg
& lp_asm
)) {
2256 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
2257 hw_dbg(hw
, "Flow Control = RX PAUSE frames only.\n");
2259 hw
->fc
.current_mode
= ixgbe_fc_none
;
2260 hw_dbg(hw
, "Flow Control = NONE.\n");
2266 * ixgbe_setup_fc - Set up flow control
2267 * @hw: pointer to hardware structure
2269 * Called at init time to set up flow control.
2271 static s32
ixgbe_setup_fc(struct ixgbe_hw
*hw
, s32 packetbuf_num
)
2274 u32 reg
= 0, reg_bp
= 0;
2278 if (hw
->fc
.requested_mode
== ixgbe_fc_pfc
) {
2279 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
2283 #endif /* CONFIG_DCB */
2284 /* Validate the packetbuf configuration */
2285 if (packetbuf_num
< 0 || packetbuf_num
> 7) {
2286 hw_dbg(hw
, "Invalid packet buffer number [%d], expected range "
2287 "is 0-7\n", packetbuf_num
);
2288 ret_val
= IXGBE_ERR_INVALID_LINK_SETTINGS
;
2293 * Validate the water mark configuration. Zero water marks are invalid
2294 * because it causes the controller to just blast out fc packets.
2296 if (!hw
->fc
.low_water
|| !hw
->fc
.high_water
|| !hw
->fc
.pause_time
) {
2297 hw_dbg(hw
, "Invalid water mark configuration\n");
2298 ret_val
= IXGBE_ERR_INVALID_LINK_SETTINGS
;
2303 * Validate the requested mode. Strict IEEE mode does not allow
2304 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
2306 if (hw
->fc
.strict_ieee
&& hw
->fc
.requested_mode
== ixgbe_fc_rx_pause
) {
2307 hw_dbg(hw
, "ixgbe_fc_rx_pause not valid in strict "
2309 ret_val
= IXGBE_ERR_INVALID_LINK_SETTINGS
;
2314 * 10gig parts do not have a word in the EEPROM to determine the
2315 * default flow control setting, so we explicitly set it to full.
2317 if (hw
->fc
.requested_mode
== ixgbe_fc_default
)
2318 hw
->fc
.requested_mode
= ixgbe_fc_full
;
2321 * Set up the 1G and 10G flow control advertisement registers so the
2322 * HW will be able to do fc autoneg once the cable is plugged in. If
2323 * we link at 10G, the 1G advertisement is harmless and vice versa.
2326 switch (hw
->phy
.media_type
) {
2327 case ixgbe_media_type_fiber
:
2328 case ixgbe_media_type_backplane
:
2329 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
2330 reg_bp
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2333 case ixgbe_media_type_copper
:
2334 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_ADVERTISE
,
2335 MDIO_MMD_AN
, ®_cu
);
2343 * The possible values of fc.requested_mode are:
2344 * 0: Flow control is completely disabled
2345 * 1: Rx flow control is enabled (we can receive pause frames,
2346 * but not send pause frames).
2347 * 2: Tx flow control is enabled (we can send pause frames but
2348 * we do not support receiving pause frames).
2349 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2351 * 4: Priority Flow Control is enabled.
2355 switch (hw
->fc
.requested_mode
) {
2357 /* Flow control completely disabled by software override. */
2358 reg
&= ~(IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
2359 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
)
2360 reg_bp
&= ~(IXGBE_AUTOC_SYM_PAUSE
|
2361 IXGBE_AUTOC_ASM_PAUSE
);
2362 else if (hw
->phy
.media_type
== ixgbe_media_type_copper
)
2363 reg_cu
&= ~(IXGBE_TAF_SYM_PAUSE
| IXGBE_TAF_ASM_PAUSE
);
2365 case ixgbe_fc_rx_pause
:
2367 * Rx Flow control is enabled and Tx Flow control is
2368 * disabled by software override. Since there really
2369 * isn't a way to advertise that we are capable of RX
2370 * Pause ONLY, we will advertise that we support both
2371 * symmetric and asymmetric Rx PAUSE. Later, we will
2372 * disable the adapter's ability to send PAUSE frames.
2374 reg
|= (IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
2375 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
)
2376 reg_bp
|= (IXGBE_AUTOC_SYM_PAUSE
|
2377 IXGBE_AUTOC_ASM_PAUSE
);
2378 else if (hw
->phy
.media_type
== ixgbe_media_type_copper
)
2379 reg_cu
|= (IXGBE_TAF_SYM_PAUSE
| IXGBE_TAF_ASM_PAUSE
);
2381 case ixgbe_fc_tx_pause
:
2383 * Tx Flow control is enabled, and Rx Flow control is
2384 * disabled by software override.
2386 reg
|= (IXGBE_PCS1GANA_ASM_PAUSE
);
2387 reg
&= ~(IXGBE_PCS1GANA_SYM_PAUSE
);
2388 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
) {
2389 reg_bp
|= (IXGBE_AUTOC_ASM_PAUSE
);
2390 reg_bp
&= ~(IXGBE_AUTOC_SYM_PAUSE
);
2391 } else if (hw
->phy
.media_type
== ixgbe_media_type_copper
) {
2392 reg_cu
|= (IXGBE_TAF_ASM_PAUSE
);
2393 reg_cu
&= ~(IXGBE_TAF_SYM_PAUSE
);
2397 /* Flow control (both Rx and Tx) is enabled by SW override. */
2398 reg
|= (IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
2399 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
)
2400 reg_bp
|= (IXGBE_AUTOC_SYM_PAUSE
|
2401 IXGBE_AUTOC_ASM_PAUSE
);
2402 else if (hw
->phy
.media_type
== ixgbe_media_type_copper
)
2403 reg_cu
|= (IXGBE_TAF_SYM_PAUSE
| IXGBE_TAF_ASM_PAUSE
);
2409 #endif /* CONFIG_DCB */
2411 hw_dbg(hw
, "Flow control param set incorrectly\n");
2412 ret_val
= IXGBE_ERR_CONFIG
;
2417 if (hw
->mac
.type
!= ixgbe_mac_X540
) {
2419 * Enable auto-negotiation between the MAC & PHY;
2420 * the MAC will advertise clause 37 flow control.
2422 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GANA
, reg
);
2423 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLCTL
);
2425 /* Disable AN timeout */
2426 if (hw
->fc
.strict_ieee
)
2427 reg
&= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN
;
2429 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GLCTL
, reg
);
2430 hw_dbg(hw
, "Set up FC; PCS1GLCTL = 0x%08X\n", reg
);
2434 * AUTOC restart handles negotiation of 1G and 10G on backplane
2435 * and copper. There is no need to set the PCS1GCTL register.
2438 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
) {
2439 reg_bp
|= IXGBE_AUTOC_AN_RESTART
;
2440 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, reg_bp
);
2441 } else if ((hw
->phy
.media_type
== ixgbe_media_type_copper
) &&
2442 (ixgbe_device_supports_autoneg_fc(hw
) == 0)) {
2443 hw
->phy
.ops
.write_reg(hw
, MDIO_AN_ADVERTISE
,
2444 MDIO_MMD_AN
, reg_cu
);
2447 hw_dbg(hw
, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg
);
2453 * ixgbe_disable_pcie_master - Disable PCI-express master access
2454 * @hw: pointer to hardware structure
2456 * Disables PCI-Express master access and verifies there are no pending
2457 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2458 * bit hasn't caused the master requests to be disabled, else 0
2459 * is returned signifying master requests disabled.
2461 s32
ixgbe_disable_pcie_master(struct ixgbe_hw
*hw
)
2463 struct ixgbe_adapter
*adapter
= hw
->back
;
2466 u32 number_of_queues
;
2470 /* Just jump out if bus mastering is already disabled */
2471 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
))
2474 /* Disable the receive unit by stopping each queue */
2475 number_of_queues
= hw
->mac
.max_rx_queues
;
2476 for (i
= 0; i
< number_of_queues
; i
++) {
2477 reg_val
= IXGBE_READ_REG(hw
, IXGBE_RXDCTL(i
));
2478 if (reg_val
& IXGBE_RXDCTL_ENABLE
) {
2479 reg_val
&= ~IXGBE_RXDCTL_ENABLE
;
2480 IXGBE_WRITE_REG(hw
, IXGBE_RXDCTL(i
), reg_val
);
2484 reg_val
= IXGBE_READ_REG(hw
, IXGBE_CTRL
);
2485 reg_val
|= IXGBE_CTRL_GIO_DIS
;
2486 IXGBE_WRITE_REG(hw
, IXGBE_CTRL
, reg_val
);
2488 for (i
= 0; i
< IXGBE_PCI_MASTER_DISABLE_TIMEOUT
; i
++) {
2489 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
))
2490 goto check_device_status
;
2494 hw_dbg(hw
, "GIO Master Disable bit didn't clear - requesting resets\n");
2495 status
= IXGBE_ERR_MASTER_REQUESTS_PENDING
;
2498 * Before proceeding, make sure that the PCIe block does not have
2499 * transactions pending.
2501 check_device_status
:
2502 for (i
= 0; i
< IXGBE_PCI_MASTER_DISABLE_TIMEOUT
; i
++) {
2503 pci_read_config_word(adapter
->pdev
, IXGBE_PCI_DEVICE_STATUS
,
2505 if (!(dev_status
& IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING
))
2510 if (i
== IXGBE_PCI_MASTER_DISABLE_TIMEOUT
)
2511 hw_dbg(hw
, "PCIe transaction pending bit also did not clear.\n");
2516 * Two consecutive resets are required via CTRL.RST per datasheet
2517 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2518 * of this need. The first reset prevents new master requests from
2519 * being issued by our device. We then must wait 1usec for any
2520 * remaining completions from the PCIe bus to trickle in, and then reset
2521 * again to clear out any effects they may have had on our device.
2523 hw
->mac
.flags
|= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED
;
2531 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2532 * @hw: pointer to hardware structure
2533 * @mask: Mask to specify which semaphore to acquire
2535 * Acquires the SWFW semaphore through the GSSR register for the specified
2536 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2538 s32
ixgbe_acquire_swfw_sync(struct ixgbe_hw
*hw
, u16 mask
)
2542 u32 fwmask
= mask
<< 5;
2547 * SW EEPROM semaphore bit is used for access to all
2548 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2550 if (ixgbe_get_eeprom_semaphore(hw
))
2551 return IXGBE_ERR_SWFW_SYNC
;
2553 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2554 if (!(gssr
& (fwmask
| swmask
)))
2558 * Firmware currently using resource (fwmask) or other software
2559 * thread currently using resource (swmask)
2561 ixgbe_release_eeprom_semaphore(hw
);
2562 usleep_range(5000, 10000);
2567 hw_dbg(hw
, "Driver can't access resource, SW_FW_SYNC timeout.\n");
2568 return IXGBE_ERR_SWFW_SYNC
;
2572 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2574 ixgbe_release_eeprom_semaphore(hw
);
2579 * ixgbe_release_swfw_sync - Release SWFW semaphore
2580 * @hw: pointer to hardware structure
2581 * @mask: Mask to specify which semaphore to release
2583 * Releases the SWFW semaphore through the GSSR register for the specified
2584 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2586 void ixgbe_release_swfw_sync(struct ixgbe_hw
*hw
, u16 mask
)
2591 ixgbe_get_eeprom_semaphore(hw
);
2593 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2595 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2597 ixgbe_release_eeprom_semaphore(hw
);
2601 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2602 * @hw: pointer to hardware structure
2603 * @regval: register value to write to RXCTRL
2605 * Enables the Rx DMA unit
2607 s32
ixgbe_enable_rx_dma_generic(struct ixgbe_hw
*hw
, u32 regval
)
2609 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, regval
);
2615 * ixgbe_blink_led_start_generic - Blink LED based on index.
2616 * @hw: pointer to hardware structure
2617 * @index: led number to blink
2619 s32
ixgbe_blink_led_start_generic(struct ixgbe_hw
*hw
, u32 index
)
2621 ixgbe_link_speed speed
= 0;
2623 u32 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2624 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2627 * Link must be up to auto-blink the LEDs;
2628 * Force it if link is down.
2630 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
2633 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2634 autoc_reg
|= IXGBE_AUTOC_FLU
;
2635 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, autoc_reg
);
2636 IXGBE_WRITE_FLUSH(hw
);
2637 usleep_range(10000, 20000);
2640 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2641 led_reg
|= IXGBE_LED_BLINK(index
);
2642 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2643 IXGBE_WRITE_FLUSH(hw
);
2649 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2650 * @hw: pointer to hardware structure
2651 * @index: led number to stop blinking
2653 s32
ixgbe_blink_led_stop_generic(struct ixgbe_hw
*hw
, u32 index
)
2655 u32 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2656 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2658 autoc_reg
&= ~IXGBE_AUTOC_FLU
;
2659 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2660 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, autoc_reg
);
2662 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2663 led_reg
&= ~IXGBE_LED_BLINK(index
);
2664 led_reg
|= IXGBE_LED_LINK_ACTIVE
<< IXGBE_LED_MODE_SHIFT(index
);
2665 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2666 IXGBE_WRITE_FLUSH(hw
);
2672 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2673 * @hw: pointer to hardware structure
2674 * @san_mac_offset: SAN MAC address offset
2676 * This function will read the EEPROM location for the SAN MAC address
2677 * pointer, and returns the value at that location. This is used in both
2678 * get and set mac_addr routines.
2680 static s32
ixgbe_get_san_mac_addr_offset(struct ixgbe_hw
*hw
,
2681 u16
*san_mac_offset
)
2684 * First read the EEPROM pointer to see if the MAC addresses are
2687 hw
->eeprom
.ops
.read(hw
, IXGBE_SAN_MAC_ADDR_PTR
, san_mac_offset
);
2693 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2694 * @hw: pointer to hardware structure
2695 * @san_mac_addr: SAN MAC address
2697 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2698 * per-port, so set_lan_id() must be called before reading the addresses.
2699 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2700 * upon for non-SFP connections, so we must call it here.
2702 s32
ixgbe_get_san_mac_addr_generic(struct ixgbe_hw
*hw
, u8
*san_mac_addr
)
2704 u16 san_mac_data
, san_mac_offset
;
2708 * First read the EEPROM pointer to see if the MAC addresses are
2709 * available. If they're not, no point in calling set_lan_id() here.
2711 ixgbe_get_san_mac_addr_offset(hw
, &san_mac_offset
);
2713 if ((san_mac_offset
== 0) || (san_mac_offset
== 0xFFFF)) {
2715 * No addresses available in this EEPROM. It's not an
2716 * error though, so just wipe the local address and return.
2718 for (i
= 0; i
< 6; i
++)
2719 san_mac_addr
[i
] = 0xFF;
2721 goto san_mac_addr_out
;
2724 /* make sure we know which port we need to program */
2725 hw
->mac
.ops
.set_lan_id(hw
);
2726 /* apply the port offset to the address offset */
2727 (hw
->bus
.func
) ? (san_mac_offset
+= IXGBE_SAN_MAC_ADDR_PORT1_OFFSET
) :
2728 (san_mac_offset
+= IXGBE_SAN_MAC_ADDR_PORT0_OFFSET
);
2729 for (i
= 0; i
< 3; i
++) {
2730 hw
->eeprom
.ops
.read(hw
, san_mac_offset
, &san_mac_data
);
2731 san_mac_addr
[i
* 2] = (u8
)(san_mac_data
);
2732 san_mac_addr
[i
* 2 + 1] = (u8
)(san_mac_data
>> 8);
2741 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2742 * @hw: pointer to hardware structure
2744 * Read PCIe configuration space, and get the MSI-X vector count from
2745 * the capabilities table.
2747 u32
ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw
*hw
)
2749 struct ixgbe_adapter
*adapter
= hw
->back
;
2751 pci_read_config_word(adapter
->pdev
, IXGBE_PCIE_MSIX_82599_CAPS
,
2753 msix_count
&= IXGBE_PCIE_MSIX_TBL_SZ_MASK
;
2755 /* MSI-X count is zero-based in HW, so increment to give proper value */
2762 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2763 * @hw: pointer to hardware struct
2764 * @rar: receive address register index to disassociate
2765 * @vmdq: VMDq pool index to remove from the rar
2767 s32
ixgbe_clear_vmdq_generic(struct ixgbe_hw
*hw
, u32 rar
, u32 vmdq
)
2769 u32 mpsar_lo
, mpsar_hi
;
2770 u32 rar_entries
= hw
->mac
.num_rar_entries
;
2772 /* Make sure we are using a valid rar index range */
2773 if (rar
>= rar_entries
) {
2774 hw_dbg(hw
, "RAR index %d is out of range.\n", rar
);
2775 return IXGBE_ERR_INVALID_ARGUMENT
;
2778 mpsar_lo
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_LO(rar
));
2779 mpsar_hi
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_HI(rar
));
2781 if (!mpsar_lo
&& !mpsar_hi
)
2784 if (vmdq
== IXGBE_CLEAR_VMDQ_ALL
) {
2786 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), 0);
2790 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), 0);
2793 } else if (vmdq
< 32) {
2794 mpsar_lo
&= ~(1 << vmdq
);
2795 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), mpsar_lo
);
2797 mpsar_hi
&= ~(1 << (vmdq
- 32));
2798 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), mpsar_hi
);
2801 /* was that the last pool using this rar? */
2802 if (mpsar_lo
== 0 && mpsar_hi
== 0 && rar
!= 0)
2803 hw
->mac
.ops
.clear_rar(hw
, rar
);
2809 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2810 * @hw: pointer to hardware struct
2811 * @rar: receive address register index to associate with a VMDq index
2812 * @vmdq: VMDq pool index
2814 s32
ixgbe_set_vmdq_generic(struct ixgbe_hw
*hw
, u32 rar
, u32 vmdq
)
2817 u32 rar_entries
= hw
->mac
.num_rar_entries
;
2819 /* Make sure we are using a valid rar index range */
2820 if (rar
>= rar_entries
) {
2821 hw_dbg(hw
, "RAR index %d is out of range.\n", rar
);
2822 return IXGBE_ERR_INVALID_ARGUMENT
;
2826 mpsar
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_LO(rar
));
2828 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), mpsar
);
2830 mpsar
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_HI(rar
));
2831 mpsar
|= 1 << (vmdq
- 32);
2832 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), mpsar
);
2838 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2839 * @hw: pointer to hardware structure
2841 s32
ixgbe_init_uta_tables_generic(struct ixgbe_hw
*hw
)
2845 for (i
= 0; i
< 128; i
++)
2846 IXGBE_WRITE_REG(hw
, IXGBE_UTA(i
), 0);
2852 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2853 * @hw: pointer to hardware structure
2854 * @vlan: VLAN id to write to VLAN filter
2856 * return the VLVF index where this VLAN id should be placed
2859 static s32
ixgbe_find_vlvf_slot(struct ixgbe_hw
*hw
, u32 vlan
)
2862 u32 first_empty_slot
= 0;
2865 /* short cut the special case */
2870 * Search for the vlan id in the VLVF entries. Save off the first empty
2871 * slot found along the way
2873 for (regindex
= 1; regindex
< IXGBE_VLVF_ENTRIES
; regindex
++) {
2874 bits
= IXGBE_READ_REG(hw
, IXGBE_VLVF(regindex
));
2875 if (!bits
&& !(first_empty_slot
))
2876 first_empty_slot
= regindex
;
2877 else if ((bits
& 0x0FFF) == vlan
)
2882 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2883 * in the VLVF. Else use the first empty VLVF register for this
2886 if (regindex
>= IXGBE_VLVF_ENTRIES
) {
2887 if (first_empty_slot
)
2888 regindex
= first_empty_slot
;
2890 hw_dbg(hw
, "No space in VLVF.\n");
2891 regindex
= IXGBE_ERR_NO_SPACE
;
2899 * ixgbe_set_vfta_generic - Set VLAN filter table
2900 * @hw: pointer to hardware structure
2901 * @vlan: VLAN id to write to VLAN filter
2902 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2903 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2905 * Turn on/off specified VLAN in the VLAN filter table.
2907 s32
ixgbe_set_vfta_generic(struct ixgbe_hw
*hw
, u32 vlan
, u32 vind
,
2916 bool vfta_changed
= false;
2919 return IXGBE_ERR_PARAM
;
2922 * this is a 2 part operation - first the VFTA, then the
2923 * VLVF and VLVFB if VT Mode is set
2924 * We don't write the VFTA until we know the VLVF part succeeded.
2928 * The VFTA is a bitstring made up of 128 32-bit registers
2929 * that enable the particular VLAN id, much like the MTA:
2930 * bits[11-5]: which register
2931 * bits[4-0]: which bit in the register
2933 regindex
= (vlan
>> 5) & 0x7F;
2934 bitindex
= vlan
& 0x1F;
2935 targetbit
= (1 << bitindex
);
2936 vfta
= IXGBE_READ_REG(hw
, IXGBE_VFTA(regindex
));
2939 if (!(vfta
& targetbit
)) {
2941 vfta_changed
= true;
2944 if ((vfta
& targetbit
)) {
2946 vfta_changed
= true;
2953 * make sure the vlan is in VLVF
2954 * set the vind bit in the matching VLVFB
2956 * clear the pool bit and possibly the vind
2958 vt
= IXGBE_READ_REG(hw
, IXGBE_VT_CTL
);
2959 if (vt
& IXGBE_VT_CTL_VT_ENABLE
) {
2962 vlvf_index
= ixgbe_find_vlvf_slot(hw
, vlan
);
2967 /* set the pool bit */
2969 bits
= IXGBE_READ_REG(hw
,
2970 IXGBE_VLVFB(vlvf_index
*2));
2971 bits
|= (1 << vind
);
2973 IXGBE_VLVFB(vlvf_index
*2),
2976 bits
= IXGBE_READ_REG(hw
,
2977 IXGBE_VLVFB((vlvf_index
*2)+1));
2978 bits
|= (1 << (vind
-32));
2980 IXGBE_VLVFB((vlvf_index
*2)+1),
2984 /* clear the pool bit */
2986 bits
= IXGBE_READ_REG(hw
,
2987 IXGBE_VLVFB(vlvf_index
*2));
2988 bits
&= ~(1 << vind
);
2990 IXGBE_VLVFB(vlvf_index
*2),
2992 bits
|= IXGBE_READ_REG(hw
,
2993 IXGBE_VLVFB((vlvf_index
*2)+1));
2995 bits
= IXGBE_READ_REG(hw
,
2996 IXGBE_VLVFB((vlvf_index
*2)+1));
2997 bits
&= ~(1 << (vind
-32));
2999 IXGBE_VLVFB((vlvf_index
*2)+1),
3001 bits
|= IXGBE_READ_REG(hw
,
3002 IXGBE_VLVFB(vlvf_index
*2));
3007 * If there are still bits set in the VLVFB registers
3008 * for the VLAN ID indicated we need to see if the
3009 * caller is requesting that we clear the VFTA entry bit.
3010 * If the caller has requested that we clear the VFTA
3011 * entry bit but there are still pools/VFs using this VLAN
3012 * ID entry then ignore the request. We're not worried
3013 * about the case where we're turning the VFTA VLAN ID
3014 * entry bit on, only when requested to turn it off as
3015 * there may be multiple pools and/or VFs using the
3016 * VLAN ID entry. In that case we cannot clear the
3017 * VFTA bit until all pools/VFs using that VLAN ID have also
3018 * been cleared. This will be indicated by "bits" being
3022 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(vlvf_index
),
3023 (IXGBE_VLVF_VIEN
| vlan
));
3025 /* someone wants to clear the vfta entry
3026 * but some pools/VFs are still using it.
3028 vfta_changed
= false;
3032 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(vlvf_index
), 0);
3036 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(regindex
), vfta
);
3042 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3043 * @hw: pointer to hardware structure
3045 * Clears the VLAN filer table, and the VMDq index associated with the filter
3047 s32
ixgbe_clear_vfta_generic(struct ixgbe_hw
*hw
)
3051 for (offset
= 0; offset
< hw
->mac
.vft_size
; offset
++)
3052 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(offset
), 0);
3054 for (offset
= 0; offset
< IXGBE_VLVF_ENTRIES
; offset
++) {
3055 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(offset
), 0);
3056 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(offset
*2), 0);
3057 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB((offset
*2)+1), 0);
3064 * ixgbe_check_mac_link_generic - Determine link and speed status
3065 * @hw: pointer to hardware structure
3066 * @speed: pointer to link speed
3067 * @link_up: true when link is up
3068 * @link_up_wait_to_complete: bool used to wait for link up or not
3070 * Reads the links register to determine if link is up and the current speed
3072 s32
ixgbe_check_mac_link_generic(struct ixgbe_hw
*hw
, ixgbe_link_speed
*speed
,
3073 bool *link_up
, bool link_up_wait_to_complete
)
3075 u32 links_reg
, links_orig
;
3078 /* clear the old state */
3079 links_orig
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3081 links_reg
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3083 if (links_orig
!= links_reg
) {
3084 hw_dbg(hw
, "LINKS changed from %08X to %08X\n",
3085 links_orig
, links_reg
);
3088 if (link_up_wait_to_complete
) {
3089 for (i
= 0; i
< IXGBE_LINK_UP_TIME
; i
++) {
3090 if (links_reg
& IXGBE_LINKS_UP
) {
3097 links_reg
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3100 if (links_reg
& IXGBE_LINKS_UP
)
3106 if ((links_reg
& IXGBE_LINKS_SPEED_82599
) ==
3107 IXGBE_LINKS_SPEED_10G_82599
)
3108 *speed
= IXGBE_LINK_SPEED_10GB_FULL
;
3109 else if ((links_reg
& IXGBE_LINKS_SPEED_82599
) ==
3110 IXGBE_LINKS_SPEED_1G_82599
)
3111 *speed
= IXGBE_LINK_SPEED_1GB_FULL
;
3112 else if ((links_reg
& IXGBE_LINKS_SPEED_82599
) ==
3113 IXGBE_LINKS_SPEED_100_82599
)
3114 *speed
= IXGBE_LINK_SPEED_100_FULL
;
3116 *speed
= IXGBE_LINK_SPEED_UNKNOWN
;
3118 /* if link is down, zero out the current_mode */
3119 if (*link_up
== false) {
3120 hw
->fc
.current_mode
= ixgbe_fc_none
;
3121 hw
->fc
.fc_was_autonegged
= false;
3128 * ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from
3130 * @hw: pointer to hardware structure
3131 * @wwnn_prefix: the alternative WWNN prefix
3132 * @wwpn_prefix: the alternative WWPN prefix
3134 * This function will read the EEPROM from the alternative SAN MAC address
3135 * block to check the support for the alternative WWNN/WWPN prefix support.
3137 s32
ixgbe_get_wwn_prefix_generic(struct ixgbe_hw
*hw
, u16
*wwnn_prefix
,
3141 u16 alt_san_mac_blk_offset
;
3143 /* clear output first */
3144 *wwnn_prefix
= 0xFFFF;
3145 *wwpn_prefix
= 0xFFFF;
3147 /* check if alternative SAN MAC is supported */
3148 hw
->eeprom
.ops
.read(hw
, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR
,
3149 &alt_san_mac_blk_offset
);
3151 if ((alt_san_mac_blk_offset
== 0) ||
3152 (alt_san_mac_blk_offset
== 0xFFFF))
3153 goto wwn_prefix_out
;
3155 /* check capability in alternative san mac address block */
3156 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET
;
3157 hw
->eeprom
.ops
.read(hw
, offset
, &caps
);
3158 if (!(caps
& IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN
))
3159 goto wwn_prefix_out
;
3161 /* get the corresponding prefix for WWNN/WWPN */
3162 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET
;
3163 hw
->eeprom
.ops
.read(hw
, offset
, wwnn_prefix
);
3165 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET
;
3166 hw
->eeprom
.ops
.read(hw
, offset
, wwpn_prefix
);
3173 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
3175 * @hw: pointer to hardware structure
3177 * There are several phys that do not support autoneg flow control. This
3178 * function check the device id to see if the associated phy supports
3179 * autoneg flow control.
3181 static s32
ixgbe_device_supports_autoneg_fc(struct ixgbe_hw
*hw
)
3184 switch (hw
->device_id
) {
3185 case IXGBE_DEV_ID_X540T
:
3187 case IXGBE_DEV_ID_82599_T3_LOM
:
3190 return IXGBE_ERR_FC_NOT_SUPPORTED
;
3195 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3196 * @hw: pointer to hardware structure
3197 * @enable: enable or disable switch for anti-spoofing
3198 * @pf: Physical Function pool - do not enable anti-spoofing for the PF
3201 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw
*hw
, bool enable
, int pf
)
3204 int pf_target_reg
= pf
>> 3;
3205 int pf_target_shift
= pf
% 8;
3208 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
3212 pfvfspoof
= IXGBE_SPOOF_MACAS_MASK
;
3215 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3216 * MAC anti-spoof enables in each register array element.
3218 for (j
= 0; j
< IXGBE_PFVFSPOOF_REG_COUNT
; j
++)
3219 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(j
), pfvfspoof
);
3221 /* If not enabling anti-spoofing then done */
3226 * The PF should be allowed to spoof so that it can support
3227 * emulation mode NICs. Reset the bit assigned to the PF
3229 pfvfspoof
= IXGBE_READ_REG(hw
, IXGBE_PFVFSPOOF(pf_target_reg
));
3230 pfvfspoof
^= (1 << pf_target_shift
);
3231 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(pf_target_reg
), pfvfspoof
);
3235 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3236 * @hw: pointer to hardware structure
3237 * @enable: enable or disable switch for VLAN anti-spoofing
3238 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3241 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw
*hw
, bool enable
, int vf
)
3243 int vf_target_reg
= vf
>> 3;
3244 int vf_target_shift
= vf
% 8 + IXGBE_SPOOF_VLANAS_SHIFT
;
3247 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
3250 pfvfspoof
= IXGBE_READ_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
));
3252 pfvfspoof
|= (1 << vf_target_shift
);
3254 pfvfspoof
&= ~(1 << vf_target_shift
);
3255 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
), pfvfspoof
);
3259 * ixgbe_get_device_caps_generic - Get additional device capabilities
3260 * @hw: pointer to hardware structure
3261 * @device_caps: the EEPROM word with the extra device capabilities
3263 * This function will read the EEPROM location for the device capabilities,
3264 * and return the word through device_caps.
3266 s32
ixgbe_get_device_caps_generic(struct ixgbe_hw
*hw
, u16
*device_caps
)
3268 hw
->eeprom
.ops
.read(hw
, IXGBE_DEVICE_CAPS
, device_caps
);
3274 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3275 * @hw: pointer to hardware structure
3276 * @num_pb: number of packet buffers to allocate
3277 * @headroom: reserve n KB of headroom
3278 * @strategy: packet buffer allocation strategy
3280 void ixgbe_set_rxpba_generic(struct ixgbe_hw
*hw
,
3285 u32 pbsize
= hw
->mac
.rx_pb_size
;
3287 u32 rxpktsize
, txpktsize
, txpbthresh
;
3289 /* Reserve headroom */
3295 /* Divide remaining packet buffer space amongst the number
3296 * of packet buffers requested using supplied strategy.
3299 case (PBA_STRATEGY_WEIGHTED
):
3300 /* pba_80_48 strategy weight first half of packet buffer with
3301 * 5/8 of the packet buffer space.
3303 rxpktsize
= ((pbsize
* 5 * 2) / (num_pb
* 8));
3304 pbsize
-= rxpktsize
* (num_pb
/ 2);
3305 rxpktsize
<<= IXGBE_RXPBSIZE_SHIFT
;
3306 for (; i
< (num_pb
/ 2); i
++)
3307 IXGBE_WRITE_REG(hw
, IXGBE_RXPBSIZE(i
), rxpktsize
);
3308 /* Fall through to configure remaining packet buffers */
3309 case (PBA_STRATEGY_EQUAL
):
3310 /* Divide the remaining Rx packet buffer evenly among the TCs */
3311 rxpktsize
= (pbsize
/ (num_pb
- i
)) << IXGBE_RXPBSIZE_SHIFT
;
3312 for (; i
< num_pb
; i
++)
3313 IXGBE_WRITE_REG(hw
, IXGBE_RXPBSIZE(i
), rxpktsize
);
3320 * Setup Tx packet buffer and threshold equally for all TCs
3321 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3322 * 10 since the largest packet we support is just over 9K.
3324 txpktsize
= IXGBE_TXPBSIZE_MAX
/ num_pb
;
3325 txpbthresh
= (txpktsize
/ 1024) - IXGBE_TXPKT_SIZE_MAX
;
3326 for (i
= 0; i
< num_pb
; i
++) {
3327 IXGBE_WRITE_REG(hw
, IXGBE_TXPBSIZE(i
), txpktsize
);
3328 IXGBE_WRITE_REG(hw
, IXGBE_TXPBTHRESH(i
), txpbthresh
);
3331 /* Clear unused TCs, if any, to zero buffer size*/
3332 for (; i
< IXGBE_MAX_PB
; i
++) {
3333 IXGBE_WRITE_REG(hw
, IXGBE_RXPBSIZE(i
), 0);
3334 IXGBE_WRITE_REG(hw
, IXGBE_TXPBSIZE(i
), 0);
3335 IXGBE_WRITE_REG(hw
, IXGBE_TXPBTHRESH(i
), 0);
3340 * ixgbe_calculate_checksum - Calculate checksum for buffer
3341 * @buffer: pointer to EEPROM
3342 * @length: size of EEPROM to calculate a checksum for
3343 * Calculates the checksum for some buffer on a specified length. The
3344 * checksum calculated is returned.
3346 static u8
ixgbe_calculate_checksum(u8
*buffer
, u32 length
)
3354 for (i
= 0; i
< length
; i
++)
3357 return (u8
) (0 - sum
);
3361 * ixgbe_host_interface_command - Issue command to manageability block
3362 * @hw: pointer to the HW structure
3363 * @buffer: contains the command to write and where the return status will
3365 * @lenght: lenght of buffer, must be multiple of 4 bytes
3367 * Communicates with the manageability block. On success return 0
3368 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3370 static s32
ixgbe_host_interface_command(struct ixgbe_hw
*hw
, u8
*buffer
,
3374 u32 hdr_size
= sizeof(struct ixgbe_hic_hdr
);
3375 u8 buf_len
, dword_len
;
3379 if (length
== 0 || length
& 0x3 ||
3380 length
> IXGBE_HI_MAX_BLOCK_BYTE_LENGTH
) {
3381 hw_dbg(hw
, "Buffer length failure.\n");
3382 ret_val
= IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3386 /* Check that the host interface is enabled. */
3387 hicr
= IXGBE_READ_REG(hw
, IXGBE_HICR
);
3388 if ((hicr
& IXGBE_HICR_EN
) == 0) {
3389 hw_dbg(hw
, "IXGBE_HOST_EN bit disabled.\n");
3390 ret_val
= IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3394 /* Calculate length in DWORDs */
3395 dword_len
= length
>> 2;
3398 * The device driver writes the relevant command block
3399 * into the ram area.
3401 for (i
= 0; i
< dword_len
; i
++)
3402 IXGBE_WRITE_REG_ARRAY(hw
, IXGBE_FLEX_MNG
,
3403 i
, *((u32
*)buffer
+ i
));
3405 /* Setting this bit tells the ARC that a new command is pending. */
3406 IXGBE_WRITE_REG(hw
, IXGBE_HICR
, hicr
| IXGBE_HICR_C
);
3408 for (i
= 0; i
< IXGBE_HI_COMMAND_TIMEOUT
; i
++) {
3409 hicr
= IXGBE_READ_REG(hw
, IXGBE_HICR
);
3410 if (!(hicr
& IXGBE_HICR_C
))
3412 usleep_range(1000, 2000);
3415 /* Check command successful completion. */
3416 if (i
== IXGBE_HI_COMMAND_TIMEOUT
||
3417 (!(IXGBE_READ_REG(hw
, IXGBE_HICR
) & IXGBE_HICR_SV
))) {
3418 hw_dbg(hw
, "Command has failed with no status valid.\n");
3419 ret_val
= IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3423 /* Calculate length in DWORDs */
3424 dword_len
= hdr_size
>> 2;
3426 /* first pull in the header so we know the buffer length */
3427 for (i
= 0; i
< dword_len
; i
++)
3428 *((u32
*)buffer
+ i
) =
3429 IXGBE_READ_REG_ARRAY(hw
, IXGBE_FLEX_MNG
, i
);
3431 /* If there is any thing in data position pull it in */
3432 buf_len
= ((struct ixgbe_hic_hdr
*)buffer
)->buf_len
;
3436 if (length
< (buf_len
+ hdr_size
)) {
3437 hw_dbg(hw
, "Buffer not large enough for reply message.\n");
3438 ret_val
= IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3442 /* Calculate length in DWORDs, add one for odd lengths */
3443 dword_len
= (buf_len
+ 1) >> 2;
3445 /* Pull in the rest of the buffer (i is where we left off)*/
3446 for (; i
< buf_len
; i
++)
3447 *((u32
*)buffer
+ i
) =
3448 IXGBE_READ_REG_ARRAY(hw
, IXGBE_FLEX_MNG
, i
);
3455 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3456 * @hw: pointer to the HW structure
3457 * @maj: driver version major number
3458 * @min: driver version minor number
3459 * @build: driver version build number
3460 * @sub: driver version sub build number
3462 * Sends driver version number to firmware through the manageability
3463 * block. On success return 0
3464 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3465 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3467 s32
ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw
*hw
, u8 maj
, u8 min
,
3470 struct ixgbe_hic_drv_info fw_cmd
;
3474 if (hw
->mac
.ops
.acquire_swfw_sync(hw
, IXGBE_GSSR_SW_MNG_SM
) != 0) {
3475 ret_val
= IXGBE_ERR_SWFW_SYNC
;
3479 fw_cmd
.hdr
.cmd
= FW_CEM_CMD_DRIVER_INFO
;
3480 fw_cmd
.hdr
.buf_len
= FW_CEM_CMD_DRIVER_INFO_LEN
;
3481 fw_cmd
.hdr
.cmd_or_resp
.cmd_resv
= FW_CEM_CMD_RESERVED
;
3482 fw_cmd
.port_num
= (u8
)hw
->bus
.func
;
3483 fw_cmd
.ver_maj
= maj
;
3484 fw_cmd
.ver_min
= min
;
3485 fw_cmd
.ver_build
= build
;
3486 fw_cmd
.ver_sub
= sub
;
3487 fw_cmd
.hdr
.checksum
= 0;
3488 fw_cmd
.hdr
.checksum
= ixgbe_calculate_checksum((u8
*)&fw_cmd
,
3489 (FW_CEM_HDR_LEN
+ fw_cmd
.hdr
.buf_len
));
3493 for (i
= 0; i
<= FW_CEM_MAX_RETRIES
; i
++) {
3494 ret_val
= ixgbe_host_interface_command(hw
, (u8
*)&fw_cmd
,
3499 if (fw_cmd
.hdr
.cmd_or_resp
.ret_status
==
3500 FW_CEM_RESP_STATUS_SUCCESS
)
3503 ret_val
= IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3508 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_SW_MNG_SM
);