Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / drivers / net / ethernet / micrel / ksz884x.c
blob27418d31a09f52e27615c3a9051edb8a87386a8f
1 /**
2 * drivers/net/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
4 * Copyright (c) 2009-2010 Micrel, Inc.
5 * Tristram Ha <Tristram.Ha@micrel.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/pci.h>
25 #include <linux/proc_fs.h>
26 #include <linux/mii.h>
27 #include <linux/platform_device.h>
28 #include <linux/ethtool.h>
29 #include <linux/etherdevice.h>
30 #include <linux/in.h>
31 #include <linux/ip.h>
32 #include <linux/if_vlan.h>
33 #include <linux/crc32.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
38 /* DMA Registers */
40 #define KS_DMA_TX_CTRL 0x0000
41 #define DMA_TX_ENABLE 0x00000001
42 #define DMA_TX_CRC_ENABLE 0x00000002
43 #define DMA_TX_PAD_ENABLE 0x00000004
44 #define DMA_TX_LOOPBACK 0x00000100
45 #define DMA_TX_FLOW_ENABLE 0x00000200
46 #define DMA_TX_CSUM_IP 0x00010000
47 #define DMA_TX_CSUM_TCP 0x00020000
48 #define DMA_TX_CSUM_UDP 0x00040000
49 #define DMA_TX_BURST_SIZE 0x3F000000
51 #define KS_DMA_RX_CTRL 0x0004
52 #define DMA_RX_ENABLE 0x00000001
53 #define KS884X_DMA_RX_MULTICAST 0x00000002
54 #define DMA_RX_PROMISCUOUS 0x00000004
55 #define DMA_RX_ERROR 0x00000008
56 #define DMA_RX_UNICAST 0x00000010
57 #define DMA_RX_ALL_MULTICAST 0x00000020
58 #define DMA_RX_BROADCAST 0x00000040
59 #define DMA_RX_FLOW_ENABLE 0x00000200
60 #define DMA_RX_CSUM_IP 0x00010000
61 #define DMA_RX_CSUM_TCP 0x00020000
62 #define DMA_RX_CSUM_UDP 0x00040000
63 #define DMA_RX_BURST_SIZE 0x3F000000
65 #define DMA_BURST_SHIFT 24
66 #define DMA_BURST_DEFAULT 8
68 #define KS_DMA_TX_START 0x0008
69 #define KS_DMA_RX_START 0x000C
70 #define DMA_START 0x00000001
72 #define KS_DMA_TX_ADDR 0x0010
73 #define KS_DMA_RX_ADDR 0x0014
75 #define DMA_ADDR_LIST_MASK 0xFFFFFFFC
76 #define DMA_ADDR_LIST_SHIFT 2
78 /* MTR0 */
79 #define KS884X_MULTICAST_0_OFFSET 0x0020
80 #define KS884X_MULTICAST_1_OFFSET 0x0021
81 #define KS884X_MULTICAST_2_OFFSET 0x0022
82 #define KS884x_MULTICAST_3_OFFSET 0x0023
83 /* MTR1 */
84 #define KS884X_MULTICAST_4_OFFSET 0x0024
85 #define KS884X_MULTICAST_5_OFFSET 0x0025
86 #define KS884X_MULTICAST_6_OFFSET 0x0026
87 #define KS884X_MULTICAST_7_OFFSET 0x0027
89 /* Interrupt Registers */
91 /* INTEN */
92 #define KS884X_INTERRUPTS_ENABLE 0x0028
93 /* INTST */
94 #define KS884X_INTERRUPTS_STATUS 0x002C
96 #define KS884X_INT_RX_STOPPED 0x02000000
97 #define KS884X_INT_TX_STOPPED 0x04000000
98 #define KS884X_INT_RX_OVERRUN 0x08000000
99 #define KS884X_INT_TX_EMPTY 0x10000000
100 #define KS884X_INT_RX 0x20000000
101 #define KS884X_INT_TX 0x40000000
102 #define KS884X_INT_PHY 0x80000000
104 #define KS884X_INT_RX_MASK \
105 (KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
106 #define KS884X_INT_TX_MASK \
107 (KS884X_INT_TX | KS884X_INT_TX_EMPTY)
108 #define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
110 /* MAC Additional Station Address */
112 /* MAAL0 */
113 #define KS_ADD_ADDR_0_LO 0x0080
114 /* MAAH0 */
115 #define KS_ADD_ADDR_0_HI 0x0084
116 /* MAAL1 */
117 #define KS_ADD_ADDR_1_LO 0x0088
118 /* MAAH1 */
119 #define KS_ADD_ADDR_1_HI 0x008C
120 /* MAAL2 */
121 #define KS_ADD_ADDR_2_LO 0x0090
122 /* MAAH2 */
123 #define KS_ADD_ADDR_2_HI 0x0094
124 /* MAAL3 */
125 #define KS_ADD_ADDR_3_LO 0x0098
126 /* MAAH3 */
127 #define KS_ADD_ADDR_3_HI 0x009C
128 /* MAAL4 */
129 #define KS_ADD_ADDR_4_LO 0x00A0
130 /* MAAH4 */
131 #define KS_ADD_ADDR_4_HI 0x00A4
132 /* MAAL5 */
133 #define KS_ADD_ADDR_5_LO 0x00A8
134 /* MAAH5 */
135 #define KS_ADD_ADDR_5_HI 0x00AC
136 /* MAAL6 */
137 #define KS_ADD_ADDR_6_LO 0x00B0
138 /* MAAH6 */
139 #define KS_ADD_ADDR_6_HI 0x00B4
140 /* MAAL7 */
141 #define KS_ADD_ADDR_7_LO 0x00B8
142 /* MAAH7 */
143 #define KS_ADD_ADDR_7_HI 0x00BC
144 /* MAAL8 */
145 #define KS_ADD_ADDR_8_LO 0x00C0
146 /* MAAH8 */
147 #define KS_ADD_ADDR_8_HI 0x00C4
148 /* MAAL9 */
149 #define KS_ADD_ADDR_9_LO 0x00C8
150 /* MAAH9 */
151 #define KS_ADD_ADDR_9_HI 0x00CC
152 /* MAAL10 */
153 #define KS_ADD_ADDR_A_LO 0x00D0
154 /* MAAH10 */
155 #define KS_ADD_ADDR_A_HI 0x00D4
156 /* MAAL11 */
157 #define KS_ADD_ADDR_B_LO 0x00D8
158 /* MAAH11 */
159 #define KS_ADD_ADDR_B_HI 0x00DC
160 /* MAAL12 */
161 #define KS_ADD_ADDR_C_LO 0x00E0
162 /* MAAH12 */
163 #define KS_ADD_ADDR_C_HI 0x00E4
164 /* MAAL13 */
165 #define KS_ADD_ADDR_D_LO 0x00E8
166 /* MAAH13 */
167 #define KS_ADD_ADDR_D_HI 0x00EC
168 /* MAAL14 */
169 #define KS_ADD_ADDR_E_LO 0x00F0
170 /* MAAH14 */
171 #define KS_ADD_ADDR_E_HI 0x00F4
172 /* MAAL15 */
173 #define KS_ADD_ADDR_F_LO 0x00F8
174 /* MAAH15 */
175 #define KS_ADD_ADDR_F_HI 0x00FC
177 #define ADD_ADDR_HI_MASK 0x0000FFFF
178 #define ADD_ADDR_ENABLE 0x80000000
179 #define ADD_ADDR_INCR 8
181 /* Miscellaneous Registers */
183 /* MARL */
184 #define KS884X_ADDR_0_OFFSET 0x0200
185 #define KS884X_ADDR_1_OFFSET 0x0201
186 /* MARM */
187 #define KS884X_ADDR_2_OFFSET 0x0202
188 #define KS884X_ADDR_3_OFFSET 0x0203
189 /* MARH */
190 #define KS884X_ADDR_4_OFFSET 0x0204
191 #define KS884X_ADDR_5_OFFSET 0x0205
193 /* OBCR */
194 #define KS884X_BUS_CTRL_OFFSET 0x0210
196 #define BUS_SPEED_125_MHZ 0x0000
197 #define BUS_SPEED_62_5_MHZ 0x0001
198 #define BUS_SPEED_41_66_MHZ 0x0002
199 #define BUS_SPEED_25_MHZ 0x0003
201 /* EEPCR */
202 #define KS884X_EEPROM_CTRL_OFFSET 0x0212
204 #define EEPROM_CHIP_SELECT 0x0001
205 #define EEPROM_SERIAL_CLOCK 0x0002
206 #define EEPROM_DATA_OUT 0x0004
207 #define EEPROM_DATA_IN 0x0008
208 #define EEPROM_ACCESS_ENABLE 0x0010
210 /* MBIR */
211 #define KS884X_MEM_INFO_OFFSET 0x0214
213 #define RX_MEM_TEST_FAILED 0x0008
214 #define RX_MEM_TEST_FINISHED 0x0010
215 #define TX_MEM_TEST_FAILED 0x0800
216 #define TX_MEM_TEST_FINISHED 0x1000
218 /* GCR */
219 #define KS884X_GLOBAL_CTRL_OFFSET 0x0216
220 #define GLOBAL_SOFTWARE_RESET 0x0001
222 #define KS8841_POWER_MANAGE_OFFSET 0x0218
224 /* WFCR */
225 #define KS8841_WOL_CTRL_OFFSET 0x021A
226 #define KS8841_WOL_MAGIC_ENABLE 0x0080
227 #define KS8841_WOL_FRAME3_ENABLE 0x0008
228 #define KS8841_WOL_FRAME2_ENABLE 0x0004
229 #define KS8841_WOL_FRAME1_ENABLE 0x0002
230 #define KS8841_WOL_FRAME0_ENABLE 0x0001
232 /* WF0 */
233 #define KS8841_WOL_FRAME_CRC_OFFSET 0x0220
234 #define KS8841_WOL_FRAME_BYTE0_OFFSET 0x0224
235 #define KS8841_WOL_FRAME_BYTE2_OFFSET 0x0228
237 /* IACR */
238 #define KS884X_IACR_P 0x04A0
239 #define KS884X_IACR_OFFSET KS884X_IACR_P
241 /* IADR1 */
242 #define KS884X_IADR1_P 0x04A2
243 #define KS884X_IADR2_P 0x04A4
244 #define KS884X_IADR3_P 0x04A6
245 #define KS884X_IADR4_P 0x04A8
246 #define KS884X_IADR5_P 0x04AA
248 #define KS884X_ACC_CTRL_SEL_OFFSET KS884X_IACR_P
249 #define KS884X_ACC_CTRL_INDEX_OFFSET (KS884X_ACC_CTRL_SEL_OFFSET + 1)
251 #define KS884X_ACC_DATA_0_OFFSET KS884X_IADR4_P
252 #define KS884X_ACC_DATA_1_OFFSET (KS884X_ACC_DATA_0_OFFSET + 1)
253 #define KS884X_ACC_DATA_2_OFFSET KS884X_IADR5_P
254 #define KS884X_ACC_DATA_3_OFFSET (KS884X_ACC_DATA_2_OFFSET + 1)
255 #define KS884X_ACC_DATA_4_OFFSET KS884X_IADR2_P
256 #define KS884X_ACC_DATA_5_OFFSET (KS884X_ACC_DATA_4_OFFSET + 1)
257 #define KS884X_ACC_DATA_6_OFFSET KS884X_IADR3_P
258 #define KS884X_ACC_DATA_7_OFFSET (KS884X_ACC_DATA_6_OFFSET + 1)
259 #define KS884X_ACC_DATA_8_OFFSET KS884X_IADR1_P
261 /* P1MBCR */
262 #define KS884X_P1MBCR_P 0x04D0
263 #define KS884X_P1MBSR_P 0x04D2
264 #define KS884X_PHY1ILR_P 0x04D4
265 #define KS884X_PHY1IHR_P 0x04D6
266 #define KS884X_P1ANAR_P 0x04D8
267 #define KS884X_P1ANLPR_P 0x04DA
269 /* P2MBCR */
270 #define KS884X_P2MBCR_P 0x04E0
271 #define KS884X_P2MBSR_P 0x04E2
272 #define KS884X_PHY2ILR_P 0x04E4
273 #define KS884X_PHY2IHR_P 0x04E6
274 #define KS884X_P2ANAR_P 0x04E8
275 #define KS884X_P2ANLPR_P 0x04EA
277 #define KS884X_PHY_1_CTRL_OFFSET KS884X_P1MBCR_P
278 #define PHY_CTRL_INTERVAL (KS884X_P2MBCR_P - KS884X_P1MBCR_P)
280 #define KS884X_PHY_CTRL_OFFSET 0x00
282 /* Mode Control Register */
283 #define PHY_REG_CTRL 0
285 #define PHY_RESET 0x8000
286 #define PHY_LOOPBACK 0x4000
287 #define PHY_SPEED_100MBIT 0x2000
288 #define PHY_AUTO_NEG_ENABLE 0x1000
289 #define PHY_POWER_DOWN 0x0800
290 #define PHY_MII_DISABLE 0x0400
291 #define PHY_AUTO_NEG_RESTART 0x0200
292 #define PHY_FULL_DUPLEX 0x0100
293 #define PHY_COLLISION_TEST 0x0080
294 #define PHY_HP_MDIX 0x0020
295 #define PHY_FORCE_MDIX 0x0010
296 #define PHY_AUTO_MDIX_DISABLE 0x0008
297 #define PHY_REMOTE_FAULT_DISABLE 0x0004
298 #define PHY_TRANSMIT_DISABLE 0x0002
299 #define PHY_LED_DISABLE 0x0001
301 #define KS884X_PHY_STATUS_OFFSET 0x02
303 /* Mode Status Register */
304 #define PHY_REG_STATUS 1
306 #define PHY_100BT4_CAPABLE 0x8000
307 #define PHY_100BTX_FD_CAPABLE 0x4000
308 #define PHY_100BTX_CAPABLE 0x2000
309 #define PHY_10BT_FD_CAPABLE 0x1000
310 #define PHY_10BT_CAPABLE 0x0800
311 #define PHY_MII_SUPPRESS_CAPABLE 0x0040
312 #define PHY_AUTO_NEG_ACKNOWLEDGE 0x0020
313 #define PHY_REMOTE_FAULT 0x0010
314 #define PHY_AUTO_NEG_CAPABLE 0x0008
315 #define PHY_LINK_STATUS 0x0004
316 #define PHY_JABBER_DETECT 0x0002
317 #define PHY_EXTENDED_CAPABILITY 0x0001
319 #define KS884X_PHY_ID_1_OFFSET 0x04
320 #define KS884X_PHY_ID_2_OFFSET 0x06
322 /* PHY Identifier Registers */
323 #define PHY_REG_ID_1 2
324 #define PHY_REG_ID_2 3
326 #define KS884X_PHY_AUTO_NEG_OFFSET 0x08
328 /* Auto-Negotiation Advertisement Register */
329 #define PHY_REG_AUTO_NEGOTIATION 4
331 #define PHY_AUTO_NEG_NEXT_PAGE 0x8000
332 #define PHY_AUTO_NEG_REMOTE_FAULT 0x2000
333 /* Not supported. */
334 #define PHY_AUTO_NEG_ASYM_PAUSE 0x0800
335 #define PHY_AUTO_NEG_SYM_PAUSE 0x0400
336 #define PHY_AUTO_NEG_100BT4 0x0200
337 #define PHY_AUTO_NEG_100BTX_FD 0x0100
338 #define PHY_AUTO_NEG_100BTX 0x0080
339 #define PHY_AUTO_NEG_10BT_FD 0x0040
340 #define PHY_AUTO_NEG_10BT 0x0020
341 #define PHY_AUTO_NEG_SELECTOR 0x001F
342 #define PHY_AUTO_NEG_802_3 0x0001
344 #define PHY_AUTO_NEG_PAUSE (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
346 #define KS884X_PHY_REMOTE_CAP_OFFSET 0x0A
348 /* Auto-Negotiation Link Partner Ability Register */
349 #define PHY_REG_REMOTE_CAPABILITY 5
351 #define PHY_REMOTE_NEXT_PAGE 0x8000
352 #define PHY_REMOTE_ACKNOWLEDGE 0x4000
353 #define PHY_REMOTE_REMOTE_FAULT 0x2000
354 #define PHY_REMOTE_SYM_PAUSE 0x0400
355 #define PHY_REMOTE_100BTX_FD 0x0100
356 #define PHY_REMOTE_100BTX 0x0080
357 #define PHY_REMOTE_10BT_FD 0x0040
358 #define PHY_REMOTE_10BT 0x0020
360 /* P1VCT */
361 #define KS884X_P1VCT_P 0x04F0
362 #define KS884X_P1PHYCTRL_P 0x04F2
364 /* P2VCT */
365 #define KS884X_P2VCT_P 0x04F4
366 #define KS884X_P2PHYCTRL_P 0x04F6
368 #define KS884X_PHY_SPECIAL_OFFSET KS884X_P1VCT_P
369 #define PHY_SPECIAL_INTERVAL (KS884X_P2VCT_P - KS884X_P1VCT_P)
371 #define KS884X_PHY_LINK_MD_OFFSET 0x00
373 #define PHY_START_CABLE_DIAG 0x8000
374 #define PHY_CABLE_DIAG_RESULT 0x6000
375 #define PHY_CABLE_STAT_NORMAL 0x0000
376 #define PHY_CABLE_STAT_OPEN 0x2000
377 #define PHY_CABLE_STAT_SHORT 0x4000
378 #define PHY_CABLE_STAT_FAILED 0x6000
379 #define PHY_CABLE_10M_SHORT 0x1000
380 #define PHY_CABLE_FAULT_COUNTER 0x01FF
382 #define KS884X_PHY_PHY_CTRL_OFFSET 0x02
384 #define PHY_STAT_REVERSED_POLARITY 0x0020
385 #define PHY_STAT_MDIX 0x0010
386 #define PHY_FORCE_LINK 0x0008
387 #define PHY_POWER_SAVING_DISABLE 0x0004
388 #define PHY_REMOTE_LOOPBACK 0x0002
390 /* SIDER */
391 #define KS884X_SIDER_P 0x0400
392 #define KS884X_CHIP_ID_OFFSET KS884X_SIDER_P
393 #define KS884X_FAMILY_ID_OFFSET (KS884X_CHIP_ID_OFFSET + 1)
395 #define REG_FAMILY_ID 0x88
397 #define REG_CHIP_ID_41 0x8810
398 #define REG_CHIP_ID_42 0x8800
400 #define KS884X_CHIP_ID_MASK_41 0xFF10
401 #define KS884X_CHIP_ID_MASK 0xFFF0
402 #define KS884X_CHIP_ID_SHIFT 4
403 #define KS884X_REVISION_MASK 0x000E
404 #define KS884X_REVISION_SHIFT 1
405 #define KS8842_START 0x0001
407 #define CHIP_IP_41_M 0x8810
408 #define CHIP_IP_42_M 0x8800
409 #define CHIP_IP_61_M 0x8890
410 #define CHIP_IP_62_M 0x8880
412 #define CHIP_IP_41_P 0x8850
413 #define CHIP_IP_42_P 0x8840
414 #define CHIP_IP_61_P 0x88D0
415 #define CHIP_IP_62_P 0x88C0
417 /* SGCR1 */
418 #define KS8842_SGCR1_P 0x0402
419 #define KS8842_SWITCH_CTRL_1_OFFSET KS8842_SGCR1_P
421 #define SWITCH_PASS_ALL 0x8000
422 #define SWITCH_TX_FLOW_CTRL 0x2000
423 #define SWITCH_RX_FLOW_CTRL 0x1000
424 #define SWITCH_CHECK_LENGTH 0x0800
425 #define SWITCH_AGING_ENABLE 0x0400
426 #define SWITCH_FAST_AGING 0x0200
427 #define SWITCH_AGGR_BACKOFF 0x0100
428 #define SWITCH_PASS_PAUSE 0x0008
429 #define SWITCH_LINK_AUTO_AGING 0x0001
431 /* SGCR2 */
432 #define KS8842_SGCR2_P 0x0404
433 #define KS8842_SWITCH_CTRL_2_OFFSET KS8842_SGCR2_P
435 #define SWITCH_VLAN_ENABLE 0x8000
436 #define SWITCH_IGMP_SNOOP 0x4000
437 #define IPV6_MLD_SNOOP_ENABLE 0x2000
438 #define IPV6_MLD_SNOOP_OPTION 0x1000
439 #define PRIORITY_SCHEME_SELECT 0x0800
440 #define SWITCH_MIRROR_RX_TX 0x0100
441 #define UNICAST_VLAN_BOUNDARY 0x0080
442 #define MULTICAST_STORM_DISABLE 0x0040
443 #define SWITCH_BACK_PRESSURE 0x0020
444 #define FAIR_FLOW_CTRL 0x0010
445 #define NO_EXC_COLLISION_DROP 0x0008
446 #define SWITCH_HUGE_PACKET 0x0004
447 #define SWITCH_LEGAL_PACKET 0x0002
448 #define SWITCH_BUF_RESERVE 0x0001
450 /* SGCR3 */
451 #define KS8842_SGCR3_P 0x0406
452 #define KS8842_SWITCH_CTRL_3_OFFSET KS8842_SGCR3_P
454 #define BROADCAST_STORM_RATE_LO 0xFF00
455 #define SWITCH_REPEATER 0x0080
456 #define SWITCH_HALF_DUPLEX 0x0040
457 #define SWITCH_FLOW_CTRL 0x0020
458 #define SWITCH_10_MBIT 0x0010
459 #define SWITCH_REPLACE_NULL_VID 0x0008
460 #define BROADCAST_STORM_RATE_HI 0x0007
462 #define BROADCAST_STORM_RATE 0x07FF
464 /* SGCR4 */
465 #define KS8842_SGCR4_P 0x0408
467 /* SGCR5 */
468 #define KS8842_SGCR5_P 0x040A
469 #define KS8842_SWITCH_CTRL_5_OFFSET KS8842_SGCR5_P
471 #define LED_MODE 0x8200
472 #define LED_SPEED_DUPLEX_ACT 0x0000
473 #define LED_SPEED_DUPLEX_LINK_ACT 0x8000
474 #define LED_DUPLEX_10_100 0x0200
476 /* SGCR6 */
477 #define KS8842_SGCR6_P 0x0410
478 #define KS8842_SWITCH_CTRL_6_OFFSET KS8842_SGCR6_P
480 #define KS8842_PRIORITY_MASK 3
481 #define KS8842_PRIORITY_SHIFT 2
483 /* SGCR7 */
484 #define KS8842_SGCR7_P 0x0412
485 #define KS8842_SWITCH_CTRL_7_OFFSET KS8842_SGCR7_P
487 #define SWITCH_UNK_DEF_PORT_ENABLE 0x0008
488 #define SWITCH_UNK_DEF_PORT_3 0x0004
489 #define SWITCH_UNK_DEF_PORT_2 0x0002
490 #define SWITCH_UNK_DEF_PORT_1 0x0001
492 /* MACAR1 */
493 #define KS8842_MACAR1_P 0x0470
494 #define KS8842_MACAR2_P 0x0472
495 #define KS8842_MACAR3_P 0x0474
496 #define KS8842_MAC_ADDR_1_OFFSET KS8842_MACAR1_P
497 #define KS8842_MAC_ADDR_0_OFFSET (KS8842_MAC_ADDR_1_OFFSET + 1)
498 #define KS8842_MAC_ADDR_3_OFFSET KS8842_MACAR2_P
499 #define KS8842_MAC_ADDR_2_OFFSET (KS8842_MAC_ADDR_3_OFFSET + 1)
500 #define KS8842_MAC_ADDR_5_OFFSET KS8842_MACAR3_P
501 #define KS8842_MAC_ADDR_4_OFFSET (KS8842_MAC_ADDR_5_OFFSET + 1)
503 /* TOSR1 */
504 #define KS8842_TOSR1_P 0x0480
505 #define KS8842_TOSR2_P 0x0482
506 #define KS8842_TOSR3_P 0x0484
507 #define KS8842_TOSR4_P 0x0486
508 #define KS8842_TOSR5_P 0x0488
509 #define KS8842_TOSR6_P 0x048A
510 #define KS8842_TOSR7_P 0x0490
511 #define KS8842_TOSR8_P 0x0492
512 #define KS8842_TOS_1_OFFSET KS8842_TOSR1_P
513 #define KS8842_TOS_2_OFFSET KS8842_TOSR2_P
514 #define KS8842_TOS_3_OFFSET KS8842_TOSR3_P
515 #define KS8842_TOS_4_OFFSET KS8842_TOSR4_P
516 #define KS8842_TOS_5_OFFSET KS8842_TOSR5_P
517 #define KS8842_TOS_6_OFFSET KS8842_TOSR6_P
519 #define KS8842_TOS_7_OFFSET KS8842_TOSR7_P
520 #define KS8842_TOS_8_OFFSET KS8842_TOSR8_P
522 /* P1CR1 */
523 #define KS8842_P1CR1_P 0x0500
524 #define KS8842_P1CR2_P 0x0502
525 #define KS8842_P1VIDR_P 0x0504
526 #define KS8842_P1CR3_P 0x0506
527 #define KS8842_P1IRCR_P 0x0508
528 #define KS8842_P1ERCR_P 0x050A
529 #define KS884X_P1SCSLMD_P 0x0510
530 #define KS884X_P1CR4_P 0x0512
531 #define KS884X_P1SR_P 0x0514
533 /* P2CR1 */
534 #define KS8842_P2CR1_P 0x0520
535 #define KS8842_P2CR2_P 0x0522
536 #define KS8842_P2VIDR_P 0x0524
537 #define KS8842_P2CR3_P 0x0526
538 #define KS8842_P2IRCR_P 0x0528
539 #define KS8842_P2ERCR_P 0x052A
540 #define KS884X_P2SCSLMD_P 0x0530
541 #define KS884X_P2CR4_P 0x0532
542 #define KS884X_P2SR_P 0x0534
544 /* P3CR1 */
545 #define KS8842_P3CR1_P 0x0540
546 #define KS8842_P3CR2_P 0x0542
547 #define KS8842_P3VIDR_P 0x0544
548 #define KS8842_P3CR3_P 0x0546
549 #define KS8842_P3IRCR_P 0x0548
550 #define KS8842_P3ERCR_P 0x054A
552 #define KS8842_PORT_1_CTRL_1 KS8842_P1CR1_P
553 #define KS8842_PORT_2_CTRL_1 KS8842_P2CR1_P
554 #define KS8842_PORT_3_CTRL_1 KS8842_P3CR1_P
556 #define PORT_CTRL_ADDR(port, addr) \
557 (addr = KS8842_PORT_1_CTRL_1 + (port) * \
558 (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
560 #define KS8842_PORT_CTRL_1_OFFSET 0x00
562 #define PORT_BROADCAST_STORM 0x0080
563 #define PORT_DIFFSERV_ENABLE 0x0040
564 #define PORT_802_1P_ENABLE 0x0020
565 #define PORT_BASED_PRIORITY_MASK 0x0018
566 #define PORT_BASED_PRIORITY_BASE 0x0003
567 #define PORT_BASED_PRIORITY_SHIFT 3
568 #define PORT_BASED_PRIORITY_0 0x0000
569 #define PORT_BASED_PRIORITY_1 0x0008
570 #define PORT_BASED_PRIORITY_2 0x0010
571 #define PORT_BASED_PRIORITY_3 0x0018
572 #define PORT_INSERT_TAG 0x0004
573 #define PORT_REMOVE_TAG 0x0002
574 #define PORT_PRIO_QUEUE_ENABLE 0x0001
576 #define KS8842_PORT_CTRL_2_OFFSET 0x02
578 #define PORT_INGRESS_VLAN_FILTER 0x4000
579 #define PORT_DISCARD_NON_VID 0x2000
580 #define PORT_FORCE_FLOW_CTRL 0x1000
581 #define PORT_BACK_PRESSURE 0x0800
582 #define PORT_TX_ENABLE 0x0400
583 #define PORT_RX_ENABLE 0x0200
584 #define PORT_LEARN_DISABLE 0x0100
585 #define PORT_MIRROR_SNIFFER 0x0080
586 #define PORT_MIRROR_RX 0x0040
587 #define PORT_MIRROR_TX 0x0020
588 #define PORT_USER_PRIORITY_CEILING 0x0008
589 #define PORT_VLAN_MEMBERSHIP 0x0007
591 #define KS8842_PORT_CTRL_VID_OFFSET 0x04
593 #define PORT_DEFAULT_VID 0x0001
595 #define KS8842_PORT_CTRL_3_OFFSET 0x06
597 #define PORT_INGRESS_LIMIT_MODE 0x000C
598 #define PORT_INGRESS_ALL 0x0000
599 #define PORT_INGRESS_UNICAST 0x0004
600 #define PORT_INGRESS_MULTICAST 0x0008
601 #define PORT_INGRESS_BROADCAST 0x000C
602 #define PORT_COUNT_IFG 0x0002
603 #define PORT_COUNT_PREAMBLE 0x0001
605 #define KS8842_PORT_IN_RATE_OFFSET 0x08
606 #define KS8842_PORT_OUT_RATE_OFFSET 0x0A
608 #define PORT_PRIORITY_RATE 0x0F
609 #define PORT_PRIORITY_RATE_SHIFT 4
611 #define KS884X_PORT_LINK_MD 0x10
613 #define PORT_CABLE_10M_SHORT 0x8000
614 #define PORT_CABLE_DIAG_RESULT 0x6000
615 #define PORT_CABLE_STAT_NORMAL 0x0000
616 #define PORT_CABLE_STAT_OPEN 0x2000
617 #define PORT_CABLE_STAT_SHORT 0x4000
618 #define PORT_CABLE_STAT_FAILED 0x6000
619 #define PORT_START_CABLE_DIAG 0x1000
620 #define PORT_FORCE_LINK 0x0800
621 #define PORT_POWER_SAVING_DISABLE 0x0400
622 #define PORT_PHY_REMOTE_LOOPBACK 0x0200
623 #define PORT_CABLE_FAULT_COUNTER 0x01FF
625 #define KS884X_PORT_CTRL_4_OFFSET 0x12
627 #define PORT_LED_OFF 0x8000
628 #define PORT_TX_DISABLE 0x4000
629 #define PORT_AUTO_NEG_RESTART 0x2000
630 #define PORT_REMOTE_FAULT_DISABLE 0x1000
631 #define PORT_POWER_DOWN 0x0800
632 #define PORT_AUTO_MDIX_DISABLE 0x0400
633 #define PORT_FORCE_MDIX 0x0200
634 #define PORT_LOOPBACK 0x0100
635 #define PORT_AUTO_NEG_ENABLE 0x0080
636 #define PORT_FORCE_100_MBIT 0x0040
637 #define PORT_FORCE_FULL_DUPLEX 0x0020
638 #define PORT_AUTO_NEG_SYM_PAUSE 0x0010
639 #define PORT_AUTO_NEG_100BTX_FD 0x0008
640 #define PORT_AUTO_NEG_100BTX 0x0004
641 #define PORT_AUTO_NEG_10BT_FD 0x0002
642 #define PORT_AUTO_NEG_10BT 0x0001
644 #define KS884X_PORT_STATUS_OFFSET 0x14
646 #define PORT_HP_MDIX 0x8000
647 #define PORT_REVERSED_POLARITY 0x2000
648 #define PORT_RX_FLOW_CTRL 0x0800
649 #define PORT_TX_FLOW_CTRL 0x1000
650 #define PORT_STATUS_SPEED_100MBIT 0x0400
651 #define PORT_STATUS_FULL_DUPLEX 0x0200
652 #define PORT_REMOTE_FAULT 0x0100
653 #define PORT_MDIX_STATUS 0x0080
654 #define PORT_AUTO_NEG_COMPLETE 0x0040
655 #define PORT_STATUS_LINK_GOOD 0x0020
656 #define PORT_REMOTE_SYM_PAUSE 0x0010
657 #define PORT_REMOTE_100BTX_FD 0x0008
658 #define PORT_REMOTE_100BTX 0x0004
659 #define PORT_REMOTE_10BT_FD 0x0002
660 #define PORT_REMOTE_10BT 0x0001
663 #define STATIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
664 #define STATIC_MAC_TABLE_FWD_PORTS 00-00070000-00000000
665 #define STATIC_MAC_TABLE_VALID 00-00080000-00000000
666 #define STATIC_MAC_TABLE_OVERRIDE 00-00100000-00000000
667 #define STATIC_MAC_TABLE_USE_FID 00-00200000-00000000
668 #define STATIC_MAC_TABLE_FID 00-03C00000-00000000
671 #define STATIC_MAC_TABLE_ADDR 0x0000FFFF
672 #define STATIC_MAC_TABLE_FWD_PORTS 0x00070000
673 #define STATIC_MAC_TABLE_VALID 0x00080000
674 #define STATIC_MAC_TABLE_OVERRIDE 0x00100000
675 #define STATIC_MAC_TABLE_USE_FID 0x00200000
676 #define STATIC_MAC_TABLE_FID 0x03C00000
678 #define STATIC_MAC_FWD_PORTS_SHIFT 16
679 #define STATIC_MAC_FID_SHIFT 22
682 #define VLAN_TABLE_VID 00-00000000-00000FFF
683 #define VLAN_TABLE_FID 00-00000000-0000F000
684 #define VLAN_TABLE_MEMBERSHIP 00-00000000-00070000
685 #define VLAN_TABLE_VALID 00-00000000-00080000
688 #define VLAN_TABLE_VID 0x00000FFF
689 #define VLAN_TABLE_FID 0x0000F000
690 #define VLAN_TABLE_MEMBERSHIP 0x00070000
691 #define VLAN_TABLE_VALID 0x00080000
693 #define VLAN_TABLE_FID_SHIFT 12
694 #define VLAN_TABLE_MEMBERSHIP_SHIFT 16
697 #define DYNAMIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
698 #define DYNAMIC_MAC_TABLE_FID 00-000F0000-00000000
699 #define DYNAMIC_MAC_TABLE_SRC_PORT 00-00300000-00000000
700 #define DYNAMIC_MAC_TABLE_TIMESTAMP 00-00C00000-00000000
701 #define DYNAMIC_MAC_TABLE_ENTRIES 03-FF000000-00000000
702 #define DYNAMIC_MAC_TABLE_MAC_EMPTY 04-00000000-00000000
703 #define DYNAMIC_MAC_TABLE_RESERVED 78-00000000-00000000
704 #define DYNAMIC_MAC_TABLE_NOT_READY 80-00000000-00000000
707 #define DYNAMIC_MAC_TABLE_ADDR 0x0000FFFF
708 #define DYNAMIC_MAC_TABLE_FID 0x000F0000
709 #define DYNAMIC_MAC_TABLE_SRC_PORT 0x00300000
710 #define DYNAMIC_MAC_TABLE_TIMESTAMP 0x00C00000
711 #define DYNAMIC_MAC_TABLE_ENTRIES 0xFF000000
713 #define DYNAMIC_MAC_TABLE_ENTRIES_H 0x03
714 #define DYNAMIC_MAC_TABLE_MAC_EMPTY 0x04
715 #define DYNAMIC_MAC_TABLE_RESERVED 0x78
716 #define DYNAMIC_MAC_TABLE_NOT_READY 0x80
718 #define DYNAMIC_MAC_FID_SHIFT 16
719 #define DYNAMIC_MAC_SRC_PORT_SHIFT 20
720 #define DYNAMIC_MAC_TIMESTAMP_SHIFT 22
721 #define DYNAMIC_MAC_ENTRIES_SHIFT 24
722 #define DYNAMIC_MAC_ENTRIES_H_SHIFT 8
725 #define MIB_COUNTER_VALUE 00-00000000-3FFFFFFF
726 #define MIB_COUNTER_VALID 00-00000000-40000000
727 #define MIB_COUNTER_OVERFLOW 00-00000000-80000000
730 #define MIB_COUNTER_VALUE 0x3FFFFFFF
731 #define MIB_COUNTER_VALID 0x40000000
732 #define MIB_COUNTER_OVERFLOW 0x80000000
734 #define MIB_PACKET_DROPPED 0x0000FFFF
736 #define KS_MIB_PACKET_DROPPED_TX_0 0x100
737 #define KS_MIB_PACKET_DROPPED_TX_1 0x101
738 #define KS_MIB_PACKET_DROPPED_TX 0x102
739 #define KS_MIB_PACKET_DROPPED_RX_0 0x103
740 #define KS_MIB_PACKET_DROPPED_RX_1 0x104
741 #define KS_MIB_PACKET_DROPPED_RX 0x105
743 /* Change default LED mode. */
744 #define SET_DEFAULT_LED LED_SPEED_DUPLEX_ACT
746 #define MAC_ADDR_LEN 6
747 #define MAC_ADDR_ORDER(i) (MAC_ADDR_LEN - 1 - (i))
749 #define MAX_ETHERNET_BODY_SIZE 1500
750 #define ETHERNET_HEADER_SIZE 14
752 #define MAX_ETHERNET_PACKET_SIZE \
753 (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
755 #define REGULAR_RX_BUF_SIZE (MAX_ETHERNET_PACKET_SIZE + 4)
756 #define MAX_RX_BUF_SIZE (1912 + 4)
758 #define ADDITIONAL_ENTRIES 16
759 #define MAX_MULTICAST_LIST 32
761 #define HW_MULTICAST_SIZE 8
763 #define HW_TO_DEV_PORT(port) (port - 1)
765 enum {
766 media_connected,
767 media_disconnected
770 enum {
771 OID_COUNTER_UNKOWN,
773 OID_COUNTER_FIRST,
775 /* total transmit errors */
776 OID_COUNTER_XMIT_ERROR,
778 /* total receive errors */
779 OID_COUNTER_RCV_ERROR,
781 OID_COUNTER_LAST
785 * Hardware descriptor definitions
788 #define DESC_ALIGNMENT 16
789 #define BUFFER_ALIGNMENT 8
791 #define NUM_OF_RX_DESC 64
792 #define NUM_OF_TX_DESC 64
794 #define KS_DESC_RX_FRAME_LEN 0x000007FF
795 #define KS_DESC_RX_FRAME_TYPE 0x00008000
796 #define KS_DESC_RX_ERROR_CRC 0x00010000
797 #define KS_DESC_RX_ERROR_RUNT 0x00020000
798 #define KS_DESC_RX_ERROR_TOO_LONG 0x00040000
799 #define KS_DESC_RX_ERROR_PHY 0x00080000
800 #define KS884X_DESC_RX_PORT_MASK 0x00300000
801 #define KS_DESC_RX_MULTICAST 0x01000000
802 #define KS_DESC_RX_ERROR 0x02000000
803 #define KS_DESC_RX_ERROR_CSUM_UDP 0x04000000
804 #define KS_DESC_RX_ERROR_CSUM_TCP 0x08000000
805 #define KS_DESC_RX_ERROR_CSUM_IP 0x10000000
806 #define KS_DESC_RX_LAST 0x20000000
807 #define KS_DESC_RX_FIRST 0x40000000
808 #define KS_DESC_RX_ERROR_COND \
809 (KS_DESC_RX_ERROR_CRC | \
810 KS_DESC_RX_ERROR_RUNT | \
811 KS_DESC_RX_ERROR_PHY | \
812 KS_DESC_RX_ERROR_TOO_LONG)
814 #define KS_DESC_HW_OWNED 0x80000000
816 #define KS_DESC_BUF_SIZE 0x000007FF
817 #define KS884X_DESC_TX_PORT_MASK 0x00300000
818 #define KS_DESC_END_OF_RING 0x02000000
819 #define KS_DESC_TX_CSUM_GEN_UDP 0x04000000
820 #define KS_DESC_TX_CSUM_GEN_TCP 0x08000000
821 #define KS_DESC_TX_CSUM_GEN_IP 0x10000000
822 #define KS_DESC_TX_LAST 0x20000000
823 #define KS_DESC_TX_FIRST 0x40000000
824 #define KS_DESC_TX_INTERRUPT 0x80000000
826 #define KS_DESC_PORT_SHIFT 20
828 #define KS_DESC_RX_MASK (KS_DESC_BUF_SIZE)
830 #define KS_DESC_TX_MASK \
831 (KS_DESC_TX_INTERRUPT | \
832 KS_DESC_TX_FIRST | \
833 KS_DESC_TX_LAST | \
834 KS_DESC_TX_CSUM_GEN_IP | \
835 KS_DESC_TX_CSUM_GEN_TCP | \
836 KS_DESC_TX_CSUM_GEN_UDP | \
837 KS_DESC_BUF_SIZE)
839 struct ksz_desc_rx_stat {
840 #ifdef __BIG_ENDIAN_BITFIELD
841 u32 hw_owned:1;
842 u32 first_desc:1;
843 u32 last_desc:1;
844 u32 csum_err_ip:1;
845 u32 csum_err_tcp:1;
846 u32 csum_err_udp:1;
847 u32 error:1;
848 u32 multicast:1;
849 u32 src_port:4;
850 u32 err_phy:1;
851 u32 err_too_long:1;
852 u32 err_runt:1;
853 u32 err_crc:1;
854 u32 frame_type:1;
855 u32 reserved1:4;
856 u32 frame_len:11;
857 #else
858 u32 frame_len:11;
859 u32 reserved1:4;
860 u32 frame_type:1;
861 u32 err_crc:1;
862 u32 err_runt:1;
863 u32 err_too_long:1;
864 u32 err_phy:1;
865 u32 src_port:4;
866 u32 multicast:1;
867 u32 error:1;
868 u32 csum_err_udp:1;
869 u32 csum_err_tcp:1;
870 u32 csum_err_ip:1;
871 u32 last_desc:1;
872 u32 first_desc:1;
873 u32 hw_owned:1;
874 #endif
877 struct ksz_desc_tx_stat {
878 #ifdef __BIG_ENDIAN_BITFIELD
879 u32 hw_owned:1;
880 u32 reserved1:31;
881 #else
882 u32 reserved1:31;
883 u32 hw_owned:1;
884 #endif
887 struct ksz_desc_rx_buf {
888 #ifdef __BIG_ENDIAN_BITFIELD
889 u32 reserved4:6;
890 u32 end_of_ring:1;
891 u32 reserved3:14;
892 u32 buf_size:11;
893 #else
894 u32 buf_size:11;
895 u32 reserved3:14;
896 u32 end_of_ring:1;
897 u32 reserved4:6;
898 #endif
901 struct ksz_desc_tx_buf {
902 #ifdef __BIG_ENDIAN_BITFIELD
903 u32 intr:1;
904 u32 first_seg:1;
905 u32 last_seg:1;
906 u32 csum_gen_ip:1;
907 u32 csum_gen_tcp:1;
908 u32 csum_gen_udp:1;
909 u32 end_of_ring:1;
910 u32 reserved4:1;
911 u32 dest_port:4;
912 u32 reserved3:9;
913 u32 buf_size:11;
914 #else
915 u32 buf_size:11;
916 u32 reserved3:9;
917 u32 dest_port:4;
918 u32 reserved4:1;
919 u32 end_of_ring:1;
920 u32 csum_gen_udp:1;
921 u32 csum_gen_tcp:1;
922 u32 csum_gen_ip:1;
923 u32 last_seg:1;
924 u32 first_seg:1;
925 u32 intr:1;
926 #endif
929 union desc_stat {
930 struct ksz_desc_rx_stat rx;
931 struct ksz_desc_tx_stat tx;
932 u32 data;
935 union desc_buf {
936 struct ksz_desc_rx_buf rx;
937 struct ksz_desc_tx_buf tx;
938 u32 data;
942 * struct ksz_hw_desc - Hardware descriptor data structure
943 * @ctrl: Descriptor control value.
944 * @buf: Descriptor buffer value.
945 * @addr: Physical address of memory buffer.
946 * @next: Pointer to next hardware descriptor.
948 struct ksz_hw_desc {
949 union desc_stat ctrl;
950 union desc_buf buf;
951 u32 addr;
952 u32 next;
956 * struct ksz_sw_desc - Software descriptor data structure
957 * @ctrl: Descriptor control value.
958 * @buf: Descriptor buffer value.
959 * @buf_size: Current buffers size value in hardware descriptor.
961 struct ksz_sw_desc {
962 union desc_stat ctrl;
963 union desc_buf buf;
964 u32 buf_size;
968 * struct ksz_dma_buf - OS dependent DMA buffer data structure
969 * @skb: Associated socket buffer.
970 * @dma: Associated physical DMA address.
971 * len: Actual len used.
973 struct ksz_dma_buf {
974 struct sk_buff *skb;
975 dma_addr_t dma;
976 int len;
980 * struct ksz_desc - Descriptor structure
981 * @phw: Hardware descriptor pointer to uncached physical memory.
982 * @sw: Cached memory to hold hardware descriptor values for
983 * manipulation.
984 * @dma_buf: Operating system dependent data structure to hold physical
985 * memory buffer allocation information.
987 struct ksz_desc {
988 struct ksz_hw_desc *phw;
989 struct ksz_sw_desc sw;
990 struct ksz_dma_buf dma_buf;
993 #define DMA_BUFFER(desc) ((struct ksz_dma_buf *)(&(desc)->dma_buf))
996 * struct ksz_desc_info - Descriptor information data structure
997 * @ring: First descriptor in the ring.
998 * @cur: Current descriptor being manipulated.
999 * @ring_virt: First hardware descriptor in the ring.
1000 * @ring_phys: The physical address of the first descriptor of the ring.
1001 * @size: Size of hardware descriptor.
1002 * @alloc: Number of descriptors allocated.
1003 * @avail: Number of descriptors available for use.
1004 * @last: Index for last descriptor released to hardware.
1005 * @next: Index for next descriptor available for use.
1006 * @mask: Mask for index wrapping.
1008 struct ksz_desc_info {
1009 struct ksz_desc *ring;
1010 struct ksz_desc *cur;
1011 struct ksz_hw_desc *ring_virt;
1012 u32 ring_phys;
1013 int size;
1014 int alloc;
1015 int avail;
1016 int last;
1017 int next;
1018 int mask;
1022 * KSZ8842 switch definitions
1025 enum {
1026 TABLE_STATIC_MAC = 0,
1027 TABLE_VLAN,
1028 TABLE_DYNAMIC_MAC,
1029 TABLE_MIB
1032 #define LEARNED_MAC_TABLE_ENTRIES 1024
1033 #define STATIC_MAC_TABLE_ENTRIES 8
1036 * struct ksz_mac_table - Static MAC table data structure
1037 * @mac_addr: MAC address to filter.
1038 * @vid: VID value.
1039 * @fid: FID value.
1040 * @ports: Port membership.
1041 * @override: Override setting.
1042 * @use_fid: FID use setting.
1043 * @valid: Valid setting indicating the entry is being used.
1045 struct ksz_mac_table {
1046 u8 mac_addr[MAC_ADDR_LEN];
1047 u16 vid;
1048 u8 fid;
1049 u8 ports;
1050 u8 override:1;
1051 u8 use_fid:1;
1052 u8 valid:1;
1055 #define VLAN_TABLE_ENTRIES 16
1058 * struct ksz_vlan_table - VLAN table data structure
1059 * @vid: VID value.
1060 * @fid: FID value.
1061 * @member: Port membership.
1063 struct ksz_vlan_table {
1064 u16 vid;
1065 u8 fid;
1066 u8 member;
1069 #define DIFFSERV_ENTRIES 64
1070 #define PRIO_802_1P_ENTRIES 8
1071 #define PRIO_QUEUES 4
1073 #define SWITCH_PORT_NUM 2
1074 #define TOTAL_PORT_NUM (SWITCH_PORT_NUM + 1)
1075 #define HOST_MASK (1 << SWITCH_PORT_NUM)
1076 #define PORT_MASK 7
1078 #define MAIN_PORT 0
1079 #define OTHER_PORT 1
1080 #define HOST_PORT SWITCH_PORT_NUM
1082 #define PORT_COUNTER_NUM 0x20
1083 #define TOTAL_PORT_COUNTER_NUM (PORT_COUNTER_NUM + 2)
1085 #define MIB_COUNTER_RX_LO_PRIORITY 0x00
1086 #define MIB_COUNTER_RX_HI_PRIORITY 0x01
1087 #define MIB_COUNTER_RX_UNDERSIZE 0x02
1088 #define MIB_COUNTER_RX_FRAGMENT 0x03
1089 #define MIB_COUNTER_RX_OVERSIZE 0x04
1090 #define MIB_COUNTER_RX_JABBER 0x05
1091 #define MIB_COUNTER_RX_SYMBOL_ERR 0x06
1092 #define MIB_COUNTER_RX_CRC_ERR 0x07
1093 #define MIB_COUNTER_RX_ALIGNMENT_ERR 0x08
1094 #define MIB_COUNTER_RX_CTRL_8808 0x09
1095 #define MIB_COUNTER_RX_PAUSE 0x0A
1096 #define MIB_COUNTER_RX_BROADCAST 0x0B
1097 #define MIB_COUNTER_RX_MULTICAST 0x0C
1098 #define MIB_COUNTER_RX_UNICAST 0x0D
1099 #define MIB_COUNTER_RX_OCTET_64 0x0E
1100 #define MIB_COUNTER_RX_OCTET_65_127 0x0F
1101 #define MIB_COUNTER_RX_OCTET_128_255 0x10
1102 #define MIB_COUNTER_RX_OCTET_256_511 0x11
1103 #define MIB_COUNTER_RX_OCTET_512_1023 0x12
1104 #define MIB_COUNTER_RX_OCTET_1024_1522 0x13
1105 #define MIB_COUNTER_TX_LO_PRIORITY 0x14
1106 #define MIB_COUNTER_TX_HI_PRIORITY 0x15
1107 #define MIB_COUNTER_TX_LATE_COLLISION 0x16
1108 #define MIB_COUNTER_TX_PAUSE 0x17
1109 #define MIB_COUNTER_TX_BROADCAST 0x18
1110 #define MIB_COUNTER_TX_MULTICAST 0x19
1111 #define MIB_COUNTER_TX_UNICAST 0x1A
1112 #define MIB_COUNTER_TX_DEFERRED 0x1B
1113 #define MIB_COUNTER_TX_TOTAL_COLLISION 0x1C
1114 #define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D
1115 #define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E
1116 #define MIB_COUNTER_TX_MULTI_COLLISION 0x1F
1118 #define MIB_COUNTER_RX_DROPPED_PACKET 0x20
1119 #define MIB_COUNTER_TX_DROPPED_PACKET 0x21
1122 * struct ksz_port_mib - Port MIB data structure
1123 * @cnt_ptr: Current pointer to MIB counter index.
1124 * @link_down: Indication the link has just gone down.
1125 * @state: Connection status of the port.
1126 * @mib_start: The starting counter index. Some ports do not start at 0.
1127 * @counter: 64-bit MIB counter value.
1128 * @dropped: Temporary buffer to remember last read packet dropped values.
1130 * MIB counters needs to be read periodically so that counters do not get
1131 * overflowed and give incorrect values. A right balance is needed to
1132 * satisfy this condition and not waste too much CPU time.
1134 * It is pointless to read MIB counters when the port is disconnected. The
1135 * @state provides the connection status so that MIB counters are read only
1136 * when the port is connected. The @link_down indicates the port is just
1137 * disconnected so that all MIB counters are read one last time to update the
1138 * information.
1140 struct ksz_port_mib {
1141 u8 cnt_ptr;
1142 u8 link_down;
1143 u8 state;
1144 u8 mib_start;
1146 u64 counter[TOTAL_PORT_COUNTER_NUM];
1147 u32 dropped[2];
1151 * struct ksz_port_cfg - Port configuration data structure
1152 * @vid: VID value.
1153 * @member: Port membership.
1154 * @port_prio: Port priority.
1155 * @rx_rate: Receive priority rate.
1156 * @tx_rate: Transmit priority rate.
1157 * @stp_state: Current Spanning Tree Protocol state.
1159 struct ksz_port_cfg {
1160 u16 vid;
1161 u8 member;
1162 u8 port_prio;
1163 u32 rx_rate[PRIO_QUEUES];
1164 u32 tx_rate[PRIO_QUEUES];
1165 int stp_state;
1169 * struct ksz_switch - KSZ8842 switch data structure
1170 * @mac_table: MAC table entries information.
1171 * @vlan_table: VLAN table entries information.
1172 * @port_cfg: Port configuration information.
1173 * @diffserv: DiffServ priority settings. Possible values from 6-bit of ToS
1174 * (bit7 ~ bit2) field.
1175 * @p_802_1p: 802.1P priority settings. Possible values from 3-bit of 802.1p
1176 * Tag priority field.
1177 * @br_addr: Bridge address. Used for STP.
1178 * @other_addr: Other MAC address. Used for multiple network device mode.
1179 * @broad_per: Broadcast storm percentage.
1180 * @member: Current port membership. Used for STP.
1182 struct ksz_switch {
1183 struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1184 struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1185 struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1187 u8 diffserv[DIFFSERV_ENTRIES];
1188 u8 p_802_1p[PRIO_802_1P_ENTRIES];
1190 u8 br_addr[MAC_ADDR_LEN];
1191 u8 other_addr[MAC_ADDR_LEN];
1193 u8 broad_per;
1194 u8 member;
1197 #define TX_RATE_UNIT 10000
1200 * struct ksz_port_info - Port information data structure
1201 * @state: Connection status of the port.
1202 * @tx_rate: Transmit rate divided by 10000 to get Mbit.
1203 * @duplex: Duplex mode.
1204 * @advertised: Advertised auto-negotiation setting. Used to determine link.
1205 * @partner: Auto-negotiation partner setting. Used to determine link.
1206 * @port_id: Port index to access actual hardware register.
1207 * @pdev: Pointer to OS dependent network device.
1209 struct ksz_port_info {
1210 uint state;
1211 uint tx_rate;
1212 u8 duplex;
1213 u8 advertised;
1214 u8 partner;
1215 u8 port_id;
1216 void *pdev;
1219 #define MAX_TX_HELD_SIZE 52000
1221 /* Hardware features and bug fixes. */
1222 #define LINK_INT_WORKING (1 << 0)
1223 #define SMALL_PACKET_TX_BUG (1 << 1)
1224 #define HALF_DUPLEX_SIGNAL_BUG (1 << 2)
1225 #define RX_HUGE_FRAME (1 << 4)
1226 #define STP_SUPPORT (1 << 8)
1228 /* Software overrides. */
1229 #define PAUSE_FLOW_CTRL (1 << 0)
1230 #define FAST_AGING (1 << 1)
1233 * struct ksz_hw - KSZ884X hardware data structure
1234 * @io: Virtual address assigned.
1235 * @ksz_switch: Pointer to KSZ8842 switch.
1236 * @port_info: Port information.
1237 * @port_mib: Port MIB information.
1238 * @dev_count: Number of network devices this hardware supports.
1239 * @dst_ports: Destination ports in switch for transmission.
1240 * @id: Hardware ID. Used for display only.
1241 * @mib_cnt: Number of MIB counters this hardware has.
1242 * @mib_port_cnt: Number of ports with MIB counters.
1243 * @tx_cfg: Cached transmit control settings.
1244 * @rx_cfg: Cached receive control settings.
1245 * @intr_mask: Current interrupt mask.
1246 * @intr_set: Current interrup set.
1247 * @intr_blocked: Interrupt blocked.
1248 * @rx_desc_info: Receive descriptor information.
1249 * @tx_desc_info: Transmit descriptor information.
1250 * @tx_int_cnt: Transmit interrupt count. Used for TX optimization.
1251 * @tx_int_mask: Transmit interrupt mask. Used for TX optimization.
1252 * @tx_size: Transmit data size. Used for TX optimization.
1253 * The maximum is defined by MAX_TX_HELD_SIZE.
1254 * @perm_addr: Permanent MAC address.
1255 * @override_addr: Overrided MAC address.
1256 * @address: Additional MAC address entries.
1257 * @addr_list_size: Additional MAC address list size.
1258 * @mac_override: Indication of MAC address overrided.
1259 * @promiscuous: Counter to keep track of promiscuous mode set.
1260 * @all_multi: Counter to keep track of all multicast mode set.
1261 * @multi_list: Multicast address entries.
1262 * @multi_bits: Cached multicast hash table settings.
1263 * @multi_list_size: Multicast address list size.
1264 * @enabled: Indication of hardware enabled.
1265 * @rx_stop: Indication of receive process stop.
1266 * @features: Hardware features to enable.
1267 * @overrides: Hardware features to override.
1268 * @parent: Pointer to parent, network device private structure.
1270 struct ksz_hw {
1271 void __iomem *io;
1273 struct ksz_switch *ksz_switch;
1274 struct ksz_port_info port_info[SWITCH_PORT_NUM];
1275 struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1276 int dev_count;
1277 int dst_ports;
1278 int id;
1279 int mib_cnt;
1280 int mib_port_cnt;
1282 u32 tx_cfg;
1283 u32 rx_cfg;
1284 u32 intr_mask;
1285 u32 intr_set;
1286 uint intr_blocked;
1288 struct ksz_desc_info rx_desc_info;
1289 struct ksz_desc_info tx_desc_info;
1291 int tx_int_cnt;
1292 int tx_int_mask;
1293 int tx_size;
1295 u8 perm_addr[MAC_ADDR_LEN];
1296 u8 override_addr[MAC_ADDR_LEN];
1297 u8 address[ADDITIONAL_ENTRIES][MAC_ADDR_LEN];
1298 u8 addr_list_size;
1299 u8 mac_override;
1300 u8 promiscuous;
1301 u8 all_multi;
1302 u8 multi_list[MAX_MULTICAST_LIST][MAC_ADDR_LEN];
1303 u8 multi_bits[HW_MULTICAST_SIZE];
1304 u8 multi_list_size;
1306 u8 enabled;
1307 u8 rx_stop;
1308 u8 reserved2[1];
1310 uint features;
1311 uint overrides;
1313 void *parent;
1316 enum {
1317 PHY_NO_FLOW_CTRL,
1318 PHY_FLOW_CTRL,
1319 PHY_TX_ONLY,
1320 PHY_RX_ONLY
1324 * struct ksz_port - Virtual port data structure
1325 * @duplex: Duplex mode setting. 1 for half duplex, 2 for full
1326 * duplex, and 0 for auto, which normally results in full
1327 * duplex.
1328 * @speed: Speed setting. 10 for 10 Mbit, 100 for 100 Mbit, and
1329 * 0 for auto, which normally results in 100 Mbit.
1330 * @force_link: Force link setting. 0 for auto-negotiation, and 1 for
1331 * force.
1332 * @flow_ctrl: Flow control setting. PHY_NO_FLOW_CTRL for no flow
1333 * control, and PHY_FLOW_CTRL for flow control.
1334 * PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1335 * Mbit PHY.
1336 * @first_port: Index of first port this port supports.
1337 * @mib_port_cnt: Number of ports with MIB counters.
1338 * @port_cnt: Number of ports this port supports.
1339 * @counter: Port statistics counter.
1340 * @hw: Pointer to hardware structure.
1341 * @linked: Pointer to port information linked to this port.
1343 struct ksz_port {
1344 u8 duplex;
1345 u8 speed;
1346 u8 force_link;
1347 u8 flow_ctrl;
1349 int first_port;
1350 int mib_port_cnt;
1351 int port_cnt;
1352 u64 counter[OID_COUNTER_LAST];
1354 struct ksz_hw *hw;
1355 struct ksz_port_info *linked;
1359 * struct ksz_timer_info - Timer information data structure
1360 * @timer: Kernel timer.
1361 * @cnt: Running timer counter.
1362 * @max: Number of times to run timer; -1 for infinity.
1363 * @period: Timer period in jiffies.
1365 struct ksz_timer_info {
1366 struct timer_list timer;
1367 int cnt;
1368 int max;
1369 int period;
1373 * struct ksz_shared_mem - OS dependent shared memory data structure
1374 * @dma_addr: Physical DMA address allocated.
1375 * @alloc_size: Allocation size.
1376 * @phys: Actual physical address used.
1377 * @alloc_virt: Virtual address allocated.
1378 * @virt: Actual virtual address used.
1380 struct ksz_shared_mem {
1381 dma_addr_t dma_addr;
1382 uint alloc_size;
1383 uint phys;
1384 u8 *alloc_virt;
1385 u8 *virt;
1389 * struct ksz_counter_info - OS dependent counter information data structure
1390 * @counter: Wait queue to wakeup after counters are read.
1391 * @time: Next time in jiffies to read counter.
1392 * @read: Indication of counters read in full or not.
1394 struct ksz_counter_info {
1395 wait_queue_head_t counter;
1396 unsigned long time;
1397 int read;
1401 * struct dev_info - Network device information data structure
1402 * @dev: Pointer to network device.
1403 * @pdev: Pointer to PCI device.
1404 * @hw: Hardware structure.
1405 * @desc_pool: Physical memory used for descriptor pool.
1406 * @hwlock: Spinlock to prevent hardware from accessing.
1407 * @lock: Mutex lock to prevent device from accessing.
1408 * @dev_rcv: Receive process function used.
1409 * @last_skb: Socket buffer allocated for descriptor rx fragments.
1410 * @skb_index: Buffer index for receiving fragments.
1411 * @skb_len: Buffer length for receiving fragments.
1412 * @mib_read: Workqueue to read MIB counters.
1413 * @mib_timer_info: Timer to read MIB counters.
1414 * @counter: Used for MIB reading.
1415 * @mtu: Current MTU used. The default is REGULAR_RX_BUF_SIZE;
1416 * the maximum is MAX_RX_BUF_SIZE.
1417 * @opened: Counter to keep track of device open.
1418 * @rx_tasklet: Receive processing tasklet.
1419 * @tx_tasklet: Transmit processing tasklet.
1420 * @wol_enable: Wake-on-LAN enable set by ethtool.
1421 * @wol_support: Wake-on-LAN support used by ethtool.
1422 * @pme_wait: Used for KSZ8841 power management.
1424 struct dev_info {
1425 struct net_device *dev;
1426 struct pci_dev *pdev;
1428 struct ksz_hw hw;
1429 struct ksz_shared_mem desc_pool;
1431 spinlock_t hwlock;
1432 struct mutex lock;
1434 int (*dev_rcv)(struct dev_info *);
1436 struct sk_buff *last_skb;
1437 int skb_index;
1438 int skb_len;
1440 struct work_struct mib_read;
1441 struct ksz_timer_info mib_timer_info;
1442 struct ksz_counter_info counter[TOTAL_PORT_NUM];
1444 int mtu;
1445 int opened;
1447 struct tasklet_struct rx_tasklet;
1448 struct tasklet_struct tx_tasklet;
1450 int wol_enable;
1451 int wol_support;
1452 unsigned long pme_wait;
1456 * struct dev_priv - Network device private data structure
1457 * @adapter: Adapter device information.
1458 * @port: Port information.
1459 * @monitor_time_info: Timer to monitor ports.
1460 * @proc_sem: Semaphore for proc accessing.
1461 * @id: Device ID.
1462 * @mii_if: MII interface information.
1463 * @advertising: Temporary variable to store advertised settings.
1464 * @msg_enable: The message flags controlling driver output.
1465 * @media_state: The connection status of the device.
1466 * @multicast: The all multicast state of the device.
1467 * @promiscuous: The promiscuous state of the device.
1469 struct dev_priv {
1470 struct dev_info *adapter;
1471 struct ksz_port port;
1472 struct ksz_timer_info monitor_timer_info;
1474 struct semaphore proc_sem;
1475 int id;
1477 struct mii_if_info mii_if;
1478 u32 advertising;
1480 u32 msg_enable;
1481 int media_state;
1482 int multicast;
1483 int promiscuous;
1486 #define DRV_NAME "KSZ884X PCI"
1487 #define DEVICE_NAME "KSZ884x PCI"
1488 #define DRV_VERSION "1.0.0"
1489 #define DRV_RELDATE "Feb 8, 2010"
1491 static char version[] __devinitdata =
1492 "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1494 static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1497 * Interrupt processing primary routines
1500 static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1502 writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1505 static inline void hw_dis_intr(struct ksz_hw *hw)
1507 hw->intr_blocked = hw->intr_mask;
1508 writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1509 hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1512 static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1514 hw->intr_set = interrupt;
1515 writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1518 static inline void hw_ena_intr(struct ksz_hw *hw)
1520 hw->intr_blocked = 0;
1521 hw_set_intr(hw, hw->intr_mask);
1524 static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1526 hw->intr_mask &= ~(bit);
1529 static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1531 u32 read_intr;
1533 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1534 hw->intr_set = read_intr & ~interrupt;
1535 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1536 hw_dis_intr_bit(hw, interrupt);
1540 * hw_turn_on_intr - turn on specified interrupts
1541 * @hw: The hardware instance.
1542 * @bit: The interrupt bits to be on.
1544 * This routine turns on the specified interrupts in the interrupt mask so that
1545 * those interrupts will be enabled.
1547 static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1549 hw->intr_mask |= bit;
1551 if (!hw->intr_blocked)
1552 hw_set_intr(hw, hw->intr_mask);
1555 static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1557 u32 read_intr;
1559 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1560 hw->intr_set = read_intr | interrupt;
1561 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1564 static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1566 *status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1567 *status = *status & hw->intr_set;
1570 static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1572 if (interrupt)
1573 hw_ena_intr(hw);
1577 * hw_block_intr - block hardware interrupts
1579 * This function blocks all interrupts of the hardware and returns the current
1580 * interrupt enable mask so that interrupts can be restored later.
1582 * Return the current interrupt enable mask.
1584 static uint hw_block_intr(struct ksz_hw *hw)
1586 uint interrupt = 0;
1588 if (!hw->intr_blocked) {
1589 hw_dis_intr(hw);
1590 interrupt = hw->intr_blocked;
1592 return interrupt;
1596 * Hardware descriptor routines
1599 static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1601 status.rx.hw_owned = 0;
1602 desc->phw->ctrl.data = cpu_to_le32(status.data);
1605 static inline void release_desc(struct ksz_desc *desc)
1607 desc->sw.ctrl.tx.hw_owned = 1;
1608 if (desc->sw.buf_size != desc->sw.buf.data) {
1609 desc->sw.buf_size = desc->sw.buf.data;
1610 desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1612 desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1615 static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1617 *desc = &info->ring[info->last];
1618 info->last++;
1619 info->last &= info->mask;
1620 info->avail--;
1621 (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1624 static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1626 desc->phw->addr = cpu_to_le32(addr);
1629 static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1631 desc->sw.buf.rx.buf_size = len;
1634 static inline void get_tx_pkt(struct ksz_desc_info *info,
1635 struct ksz_desc **desc)
1637 *desc = &info->ring[info->next];
1638 info->next++;
1639 info->next &= info->mask;
1640 info->avail--;
1641 (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1644 static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1646 desc->phw->addr = cpu_to_le32(addr);
1649 static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1651 desc->sw.buf.tx.buf_size = len;
1654 /* Switch functions */
1656 #define TABLE_READ 0x10
1657 #define TABLE_SEL_SHIFT 2
1659 #define HW_DELAY(hw, reg) \
1660 do { \
1661 u16 dummy; \
1662 dummy = readw(hw->io + reg); \
1663 } while (0)
1666 * sw_r_table - read 4 bytes of data from switch table
1667 * @hw: The hardware instance.
1668 * @table: The table selector.
1669 * @addr: The address of the table entry.
1670 * @data: Buffer to store the read data.
1672 * This routine reads 4 bytes of data from the table of the switch.
1673 * Hardware interrupts are disabled to minimize corruption of read data.
1675 static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1677 u16 ctrl_addr;
1678 uint interrupt;
1680 ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1682 interrupt = hw_block_intr(hw);
1684 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1685 HW_DELAY(hw, KS884X_IACR_OFFSET);
1686 *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1688 hw_restore_intr(hw, interrupt);
1692 * sw_w_table_64 - write 8 bytes of data to the switch table
1693 * @hw: The hardware instance.
1694 * @table: The table selector.
1695 * @addr: The address of the table entry.
1696 * @data_hi: The high part of data to be written (bit63 ~ bit32).
1697 * @data_lo: The low part of data to be written (bit31 ~ bit0).
1699 * This routine writes 8 bytes of data to the table of the switch.
1700 * Hardware interrupts are disabled to minimize corruption of written data.
1702 static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1703 u32 data_lo)
1705 u16 ctrl_addr;
1706 uint interrupt;
1708 ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1710 interrupt = hw_block_intr(hw);
1712 writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1713 writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1715 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1716 HW_DELAY(hw, KS884X_IACR_OFFSET);
1718 hw_restore_intr(hw, interrupt);
1722 * sw_w_sta_mac_table - write to the static MAC table
1723 * @hw: The hardware instance.
1724 * @addr: The address of the table entry.
1725 * @mac_addr: The MAC address.
1726 * @ports: The port members.
1727 * @override: The flag to override the port receive/transmit settings.
1728 * @valid: The flag to indicate entry is valid.
1729 * @use_fid: The flag to indicate the FID is valid.
1730 * @fid: The FID value.
1732 * This routine writes an entry of the static MAC table of the switch. It
1733 * calls sw_w_table_64() to write the data.
1735 static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1736 u8 ports, int override, int valid, int use_fid, u8 fid)
1738 u32 data_hi;
1739 u32 data_lo;
1741 data_lo = ((u32) mac_addr[2] << 24) |
1742 ((u32) mac_addr[3] << 16) |
1743 ((u32) mac_addr[4] << 8) | mac_addr[5];
1744 data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1745 data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1747 if (override)
1748 data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1749 if (use_fid) {
1750 data_hi |= STATIC_MAC_TABLE_USE_FID;
1751 data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1753 if (valid)
1754 data_hi |= STATIC_MAC_TABLE_VALID;
1756 sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1760 * sw_r_vlan_table - read from the VLAN table
1761 * @hw: The hardware instance.
1762 * @addr: The address of the table entry.
1763 * @vid: Buffer to store the VID.
1764 * @fid: Buffer to store the VID.
1765 * @member: Buffer to store the port membership.
1767 * This function reads an entry of the VLAN table of the switch. It calls
1768 * sw_r_table() to get the data.
1770 * Return 0 if the entry is valid; otherwise -1.
1772 static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1773 u8 *member)
1775 u32 data;
1777 sw_r_table(hw, TABLE_VLAN, addr, &data);
1778 if (data & VLAN_TABLE_VALID) {
1779 *vid = (u16)(data & VLAN_TABLE_VID);
1780 *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1781 *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1782 VLAN_TABLE_MEMBERSHIP_SHIFT);
1783 return 0;
1785 return -1;
1789 * port_r_mib_cnt - read MIB counter
1790 * @hw: The hardware instance.
1791 * @port: The port index.
1792 * @addr: The address of the counter.
1793 * @cnt: Buffer to store the counter.
1795 * This routine reads a MIB counter of the port.
1796 * Hardware interrupts are disabled to minimize corruption of read data.
1798 static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1800 u32 data;
1801 u16 ctrl_addr;
1802 uint interrupt;
1803 int timeout;
1805 ctrl_addr = addr + PORT_COUNTER_NUM * port;
1807 interrupt = hw_block_intr(hw);
1809 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1810 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1811 HW_DELAY(hw, KS884X_IACR_OFFSET);
1813 for (timeout = 100; timeout > 0; timeout--) {
1814 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1816 if (data & MIB_COUNTER_VALID) {
1817 if (data & MIB_COUNTER_OVERFLOW)
1818 *cnt += MIB_COUNTER_VALUE + 1;
1819 *cnt += data & MIB_COUNTER_VALUE;
1820 break;
1824 hw_restore_intr(hw, interrupt);
1828 * port_r_mib_pkt - read dropped packet counts
1829 * @hw: The hardware instance.
1830 * @port: The port index.
1831 * @cnt: Buffer to store the receive and transmit dropped packet counts.
1833 * This routine reads the dropped packet counts of the port.
1834 * Hardware interrupts are disabled to minimize corruption of read data.
1836 static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1838 u32 cur;
1839 u32 data;
1840 u16 ctrl_addr;
1841 uint interrupt;
1842 int index;
1844 index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1845 do {
1846 interrupt = hw_block_intr(hw);
1848 ctrl_addr = (u16) index;
1849 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1850 << 8);
1851 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1852 HW_DELAY(hw, KS884X_IACR_OFFSET);
1853 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1855 hw_restore_intr(hw, interrupt);
1857 data &= MIB_PACKET_DROPPED;
1858 cur = *last;
1859 if (data != cur) {
1860 *last = data;
1861 if (data < cur)
1862 data += MIB_PACKET_DROPPED + 1;
1863 data -= cur;
1864 *cnt += data;
1866 ++last;
1867 ++cnt;
1868 index -= KS_MIB_PACKET_DROPPED_TX -
1869 KS_MIB_PACKET_DROPPED_TX_0 + 1;
1870 } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1874 * port_r_cnt - read MIB counters periodically
1875 * @hw: The hardware instance.
1876 * @port: The port index.
1878 * This routine is used to read the counters of the port periodically to avoid
1879 * counter overflow. The hardware should be acquired first before calling this
1880 * routine.
1882 * Return non-zero when not all counters not read.
1884 static int port_r_cnt(struct ksz_hw *hw, int port)
1886 struct ksz_port_mib *mib = &hw->port_mib[port];
1888 if (mib->mib_start < PORT_COUNTER_NUM)
1889 while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1890 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1891 &mib->counter[mib->cnt_ptr]);
1892 ++mib->cnt_ptr;
1894 if (hw->mib_cnt > PORT_COUNTER_NUM)
1895 port_r_mib_pkt(hw, port, mib->dropped,
1896 &mib->counter[PORT_COUNTER_NUM]);
1897 mib->cnt_ptr = 0;
1898 return 0;
1902 * port_init_cnt - initialize MIB counter values
1903 * @hw: The hardware instance.
1904 * @port: The port index.
1906 * This routine is used to initialize all counters to zero if the hardware
1907 * cannot do it after reset.
1909 static void port_init_cnt(struct ksz_hw *hw, int port)
1911 struct ksz_port_mib *mib = &hw->port_mib[port];
1913 mib->cnt_ptr = 0;
1914 if (mib->mib_start < PORT_COUNTER_NUM)
1915 do {
1916 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1917 &mib->counter[mib->cnt_ptr]);
1918 ++mib->cnt_ptr;
1919 } while (mib->cnt_ptr < PORT_COUNTER_NUM);
1920 if (hw->mib_cnt > PORT_COUNTER_NUM)
1921 port_r_mib_pkt(hw, port, mib->dropped,
1922 &mib->counter[PORT_COUNTER_NUM]);
1923 memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1924 mib->cnt_ptr = 0;
1928 * Port functions
1932 * port_chk - check port register bits
1933 * @hw: The hardware instance.
1934 * @port: The port index.
1935 * @offset: The offset of the port register.
1936 * @bits: The data bits to check.
1938 * This function checks whether the specified bits of the port register are set
1939 * or not.
1941 * Return 0 if the bits are not set.
1943 static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1945 u32 addr;
1946 u16 data;
1948 PORT_CTRL_ADDR(port, addr);
1949 addr += offset;
1950 data = readw(hw->io + addr);
1951 return (data & bits) == bits;
1955 * port_cfg - set port register bits
1956 * @hw: The hardware instance.
1957 * @port: The port index.
1958 * @offset: The offset of the port register.
1959 * @bits: The data bits to set.
1960 * @set: The flag indicating whether the bits are to be set or not.
1962 * This routine sets or resets the specified bits of the port register.
1964 static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1965 int set)
1967 u32 addr;
1968 u16 data;
1970 PORT_CTRL_ADDR(port, addr);
1971 addr += offset;
1972 data = readw(hw->io + addr);
1973 if (set)
1974 data |= bits;
1975 else
1976 data &= ~bits;
1977 writew(data, hw->io + addr);
1981 * port_chk_shift - check port bit
1982 * @hw: The hardware instance.
1983 * @port: The port index.
1984 * @offset: The offset of the register.
1985 * @shift: Number of bits to shift.
1987 * This function checks whether the specified port is set in the register or
1988 * not.
1990 * Return 0 if the port is not set.
1992 static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1994 u16 data;
1995 u16 bit = 1 << port;
1997 data = readw(hw->io + addr);
1998 data >>= shift;
1999 return (data & bit) == bit;
2003 * port_cfg_shift - set port bit
2004 * @hw: The hardware instance.
2005 * @port: The port index.
2006 * @offset: The offset of the register.
2007 * @shift: Number of bits to shift.
2008 * @set: The flag indicating whether the port is to be set or not.
2010 * This routine sets or resets the specified port in the register.
2012 static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2013 int set)
2015 u16 data;
2016 u16 bits = 1 << port;
2018 data = readw(hw->io + addr);
2019 bits <<= shift;
2020 if (set)
2021 data |= bits;
2022 else
2023 data &= ~bits;
2024 writew(data, hw->io + addr);
2028 * port_r8 - read byte from port register
2029 * @hw: The hardware instance.
2030 * @port: The port index.
2031 * @offset: The offset of the port register.
2032 * @data: Buffer to store the data.
2034 * This routine reads a byte from the port register.
2036 static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2038 u32 addr;
2040 PORT_CTRL_ADDR(port, addr);
2041 addr += offset;
2042 *data = readb(hw->io + addr);
2046 * port_r16 - read word from port register.
2047 * @hw: The hardware instance.
2048 * @port: The port index.
2049 * @offset: The offset of the port register.
2050 * @data: Buffer to store the data.
2052 * This routine reads a word from the port register.
2054 static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2056 u32 addr;
2058 PORT_CTRL_ADDR(port, addr);
2059 addr += offset;
2060 *data = readw(hw->io + addr);
2064 * port_w16 - write word to port register.
2065 * @hw: The hardware instance.
2066 * @port: The port index.
2067 * @offset: The offset of the port register.
2068 * @data: Data to write.
2070 * This routine writes a word to the port register.
2072 static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2074 u32 addr;
2076 PORT_CTRL_ADDR(port, addr);
2077 addr += offset;
2078 writew(data, hw->io + addr);
2082 * sw_chk - check switch register bits
2083 * @hw: The hardware instance.
2084 * @addr: The address of the switch register.
2085 * @bits: The data bits to check.
2087 * This function checks whether the specified bits of the switch register are
2088 * set or not.
2090 * Return 0 if the bits are not set.
2092 static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2094 u16 data;
2096 data = readw(hw->io + addr);
2097 return (data & bits) == bits;
2101 * sw_cfg - set switch register bits
2102 * @hw: The hardware instance.
2103 * @addr: The address of the switch register.
2104 * @bits: The data bits to set.
2105 * @set: The flag indicating whether the bits are to be set or not.
2107 * This function sets or resets the specified bits of the switch register.
2109 static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2111 u16 data;
2113 data = readw(hw->io + addr);
2114 if (set)
2115 data |= bits;
2116 else
2117 data &= ~bits;
2118 writew(data, hw->io + addr);
2121 /* Bandwidth */
2123 static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2125 port_cfg(hw, p,
2126 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2129 static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2131 return port_chk(hw, p,
2132 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2135 /* Driver set switch broadcast storm protection at 10% rate. */
2136 #define BROADCAST_STORM_PROTECTION_RATE 10
2138 /* 148,800 frames * 67 ms / 100 */
2139 #define BROADCAST_STORM_VALUE 9969
2142 * sw_cfg_broad_storm - configure broadcast storm threshold
2143 * @hw: The hardware instance.
2144 * @percent: Broadcast storm threshold in percent of transmit rate.
2146 * This routine configures the broadcast storm threshold of the switch.
2148 static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2150 u16 data;
2151 u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2153 if (value > BROADCAST_STORM_RATE)
2154 value = BROADCAST_STORM_RATE;
2156 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2157 data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2158 data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2159 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2163 * sw_get_board_storm - get broadcast storm threshold
2164 * @hw: The hardware instance.
2165 * @percent: Buffer to store the broadcast storm threshold percentage.
2167 * This routine retrieves the broadcast storm threshold of the switch.
2169 static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2171 int num;
2172 u16 data;
2174 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2175 num = (data & BROADCAST_STORM_RATE_HI);
2176 num <<= 8;
2177 num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2178 num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2179 *percent = (u8) num;
2183 * sw_dis_broad_storm - disable broadstorm
2184 * @hw: The hardware instance.
2185 * @port: The port index.
2187 * This routine disables the broadcast storm limit function of the switch.
2189 static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2191 port_cfg_broad_storm(hw, port, 0);
2195 * sw_ena_broad_storm - enable broadcast storm
2196 * @hw: The hardware instance.
2197 * @port: The port index.
2199 * This routine enables the broadcast storm limit function of the switch.
2201 static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2203 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2204 port_cfg_broad_storm(hw, port, 1);
2208 * sw_init_broad_storm - initialize broadcast storm
2209 * @hw: The hardware instance.
2211 * This routine initializes the broadcast storm limit function of the switch.
2213 static void sw_init_broad_storm(struct ksz_hw *hw)
2215 int port;
2217 hw->ksz_switch->broad_per = 1;
2218 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2219 for (port = 0; port < TOTAL_PORT_NUM; port++)
2220 sw_dis_broad_storm(hw, port);
2221 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2225 * hw_cfg_broad_storm - configure broadcast storm
2226 * @hw: The hardware instance.
2227 * @percent: Broadcast storm threshold in percent of transmit rate.
2229 * This routine configures the broadcast storm threshold of the switch.
2230 * It is called by user functions. The hardware should be acquired first.
2232 static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2234 if (percent > 100)
2235 percent = 100;
2237 sw_cfg_broad_storm(hw, percent);
2238 sw_get_broad_storm(hw, &percent);
2239 hw->ksz_switch->broad_per = percent;
2243 * sw_dis_prio_rate - disable switch priority rate
2244 * @hw: The hardware instance.
2245 * @port: The port index.
2247 * This routine disables the priority rate function of the switch.
2249 static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2251 u32 addr;
2253 PORT_CTRL_ADDR(port, addr);
2254 addr += KS8842_PORT_IN_RATE_OFFSET;
2255 writel(0, hw->io + addr);
2259 * sw_init_prio_rate - initialize switch prioirty rate
2260 * @hw: The hardware instance.
2262 * This routine initializes the priority rate function of the switch.
2264 static void sw_init_prio_rate(struct ksz_hw *hw)
2266 int port;
2267 int prio;
2268 struct ksz_switch *sw = hw->ksz_switch;
2270 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2271 for (prio = 0; prio < PRIO_QUEUES; prio++) {
2272 sw->port_cfg[port].rx_rate[prio] =
2273 sw->port_cfg[port].tx_rate[prio] = 0;
2275 sw_dis_prio_rate(hw, port);
2279 /* Communication */
2281 static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2283 port_cfg(hw, p,
2284 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2287 static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2289 port_cfg(hw, p,
2290 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2293 static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2295 return port_chk(hw, p,
2296 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2299 static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2301 return port_chk(hw, p,
2302 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2305 /* Spanning Tree */
2307 static inline void port_cfg_dis_learn(struct ksz_hw *hw, int p, int set)
2309 port_cfg(hw, p,
2310 KS8842_PORT_CTRL_2_OFFSET, PORT_LEARN_DISABLE, set);
2313 static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2315 port_cfg(hw, p,
2316 KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2319 static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2321 port_cfg(hw, p,
2322 KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2325 static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2327 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2330 static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2332 if (!(hw->overrides & FAST_AGING)) {
2333 sw_cfg_fast_aging(hw, 1);
2334 mdelay(1);
2335 sw_cfg_fast_aging(hw, 0);
2339 /* VLAN */
2341 static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2343 port_cfg(hw, p,
2344 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2347 static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2349 port_cfg(hw, p,
2350 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2353 static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2355 return port_chk(hw, p,
2356 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2359 static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2361 return port_chk(hw, p,
2362 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2365 static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2367 port_cfg(hw, p,
2368 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2371 static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2373 port_cfg(hw, p,
2374 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2377 static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2379 return port_chk(hw, p,
2380 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2383 static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2385 return port_chk(hw, p,
2386 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2389 /* Mirroring */
2391 static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2393 port_cfg(hw, p,
2394 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2397 static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2399 port_cfg(hw, p,
2400 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2403 static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2405 port_cfg(hw, p,
2406 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2409 static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2411 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2414 static void sw_init_mirror(struct ksz_hw *hw)
2416 int port;
2418 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2419 port_cfg_mirror_sniffer(hw, port, 0);
2420 port_cfg_mirror_rx(hw, port, 0);
2421 port_cfg_mirror_tx(hw, port, 0);
2423 sw_cfg_mirror_rx_tx(hw, 0);
2426 static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2428 sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2429 SWITCH_UNK_DEF_PORT_ENABLE, set);
2432 static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2434 return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2435 SWITCH_UNK_DEF_PORT_ENABLE);
2438 static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2440 port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2443 static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2445 return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2448 /* Priority */
2450 static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2452 port_cfg(hw, p,
2453 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2456 static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2458 port_cfg(hw, p,
2459 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2462 static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2464 port_cfg(hw, p,
2465 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2468 static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2470 port_cfg(hw, p,
2471 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2474 static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2476 return port_chk(hw, p,
2477 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2480 static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2482 return port_chk(hw, p,
2483 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2486 static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2488 return port_chk(hw, p,
2489 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2492 static inline int port_chk_prio(struct ksz_hw *hw, int p)
2494 return port_chk(hw, p,
2495 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2499 * sw_dis_diffserv - disable switch DiffServ priority
2500 * @hw: The hardware instance.
2501 * @port: The port index.
2503 * This routine disables the DiffServ priority function of the switch.
2505 static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2507 port_cfg_diffserv(hw, port, 0);
2511 * sw_dis_802_1p - disable switch 802.1p priority
2512 * @hw: The hardware instance.
2513 * @port: The port index.
2515 * This routine disables the 802.1p priority function of the switch.
2517 static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2519 port_cfg_802_1p(hw, port, 0);
2523 * sw_cfg_replace_null_vid -
2524 * @hw: The hardware instance.
2525 * @set: The flag to disable or enable.
2528 static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2530 sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2534 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2535 * @hw: The hardware instance.
2536 * @port: The port index.
2537 * @set: The flag to disable or enable.
2539 * This routine enables the 802.1p priority re-mapping function of the switch.
2540 * That allows 802.1p priority field to be replaced with the port's default
2541 * tag's priority value if the ingress packet's 802.1p priority has a higher
2542 * priority than port's default tag's priority.
2544 static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2546 port_cfg_replace_vid(hw, port, set);
2550 * sw_cfg_port_based - configure switch port based priority
2551 * @hw: The hardware instance.
2552 * @port: The port index.
2553 * @prio: The priority to set.
2555 * This routine configures the port based priority of the switch.
2557 static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2559 u16 data;
2561 if (prio > PORT_BASED_PRIORITY_BASE)
2562 prio = PORT_BASED_PRIORITY_BASE;
2564 hw->ksz_switch->port_cfg[port].port_prio = prio;
2566 port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2567 data &= ~PORT_BASED_PRIORITY_MASK;
2568 data |= prio << PORT_BASED_PRIORITY_SHIFT;
2569 port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2573 * sw_dis_multi_queue - disable transmit multiple queues
2574 * @hw: The hardware instance.
2575 * @port: The port index.
2577 * This routine disables the transmit multiple queues selection of the switch
2578 * port. Only single transmit queue on the port.
2580 static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2582 port_cfg_prio(hw, port, 0);
2586 * sw_init_prio - initialize switch priority
2587 * @hw: The hardware instance.
2589 * This routine initializes the switch QoS priority functions.
2591 static void sw_init_prio(struct ksz_hw *hw)
2593 int port;
2594 int tos;
2595 struct ksz_switch *sw = hw->ksz_switch;
2598 * Init all the 802.1p tag priority value to be assigned to different
2599 * priority queue.
2601 sw->p_802_1p[0] = 0;
2602 sw->p_802_1p[1] = 0;
2603 sw->p_802_1p[2] = 1;
2604 sw->p_802_1p[3] = 1;
2605 sw->p_802_1p[4] = 2;
2606 sw->p_802_1p[5] = 2;
2607 sw->p_802_1p[6] = 3;
2608 sw->p_802_1p[7] = 3;
2611 * Init all the DiffServ priority value to be assigned to priority
2612 * queue 0.
2614 for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2615 sw->diffserv[tos] = 0;
2617 /* All QoS functions disabled. */
2618 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2619 sw_dis_multi_queue(hw, port);
2620 sw_dis_diffserv(hw, port);
2621 sw_dis_802_1p(hw, port);
2622 sw_cfg_replace_vid(hw, port, 0);
2624 sw->port_cfg[port].port_prio = 0;
2625 sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2627 sw_cfg_replace_null_vid(hw, 0);
2631 * port_get_def_vid - get port default VID.
2632 * @hw: The hardware instance.
2633 * @port: The port index.
2634 * @vid: Buffer to store the VID.
2636 * This routine retrieves the default VID of the port.
2638 static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2640 u32 addr;
2642 PORT_CTRL_ADDR(port, addr);
2643 addr += KS8842_PORT_CTRL_VID_OFFSET;
2644 *vid = readw(hw->io + addr);
2648 * sw_init_vlan - initialize switch VLAN
2649 * @hw: The hardware instance.
2651 * This routine initializes the VLAN function of the switch.
2653 static void sw_init_vlan(struct ksz_hw *hw)
2655 int port;
2656 int entry;
2657 struct ksz_switch *sw = hw->ksz_switch;
2659 /* Read 16 VLAN entries from device's VLAN table. */
2660 for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2661 sw_r_vlan_table(hw, entry,
2662 &sw->vlan_table[entry].vid,
2663 &sw->vlan_table[entry].fid,
2664 &sw->vlan_table[entry].member);
2667 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2668 port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2669 sw->port_cfg[port].member = PORT_MASK;
2674 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2675 * @hw: The hardware instance.
2676 * @port: The port index.
2677 * @member: The port-based VLAN membership.
2679 * This routine configures the port-based VLAN membership of the port.
2681 static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2683 u32 addr;
2684 u8 data;
2686 PORT_CTRL_ADDR(port, addr);
2687 addr += KS8842_PORT_CTRL_2_OFFSET;
2689 data = readb(hw->io + addr);
2690 data &= ~PORT_VLAN_MEMBERSHIP;
2691 data |= (member & PORT_MASK);
2692 writeb(data, hw->io + addr);
2694 hw->ksz_switch->port_cfg[port].member = member;
2698 * sw_get_addr - get the switch MAC address.
2699 * @hw: The hardware instance.
2700 * @mac_addr: Buffer to store the MAC address.
2702 * This function retrieves the MAC address of the switch.
2704 static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2706 int i;
2708 for (i = 0; i < 6; i += 2) {
2709 mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2710 mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2715 * sw_set_addr - configure switch MAC address
2716 * @hw: The hardware instance.
2717 * @mac_addr: The MAC address.
2719 * This function configures the MAC address of the switch.
2721 static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2723 int i;
2725 for (i = 0; i < 6; i += 2) {
2726 writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2727 writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2732 * sw_set_global_ctrl - set switch global control
2733 * @hw: The hardware instance.
2735 * This routine sets the global control of the switch function.
2737 static void sw_set_global_ctrl(struct ksz_hw *hw)
2739 u16 data;
2741 /* Enable switch MII flow control. */
2742 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2743 data |= SWITCH_FLOW_CTRL;
2744 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2746 data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2748 /* Enable aggressive back off algorithm in half duplex mode. */
2749 data |= SWITCH_AGGR_BACKOFF;
2751 /* Enable automatic fast aging when link changed detected. */
2752 data |= SWITCH_AGING_ENABLE;
2753 data |= SWITCH_LINK_AUTO_AGING;
2755 if (hw->overrides & FAST_AGING)
2756 data |= SWITCH_FAST_AGING;
2757 else
2758 data &= ~SWITCH_FAST_AGING;
2759 writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2761 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2763 /* Enable no excessive collision drop. */
2764 data |= NO_EXC_COLLISION_DROP;
2765 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2768 enum {
2769 STP_STATE_DISABLED = 0,
2770 STP_STATE_LISTENING,
2771 STP_STATE_LEARNING,
2772 STP_STATE_FORWARDING,
2773 STP_STATE_BLOCKED,
2774 STP_STATE_SIMPLE
2778 * port_set_stp_state - configure port spanning tree state
2779 * @hw: The hardware instance.
2780 * @port: The port index.
2781 * @state: The spanning tree state.
2783 * This routine configures the spanning tree state of the port.
2785 static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2787 u16 data;
2789 port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2790 switch (state) {
2791 case STP_STATE_DISABLED:
2792 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2793 data |= PORT_LEARN_DISABLE;
2794 break;
2795 case STP_STATE_LISTENING:
2797 * No need to turn on transmit because of port direct mode.
2798 * Turning on receive is required if static MAC table is not setup.
2800 data &= ~PORT_TX_ENABLE;
2801 data |= PORT_RX_ENABLE;
2802 data |= PORT_LEARN_DISABLE;
2803 break;
2804 case STP_STATE_LEARNING:
2805 data &= ~PORT_TX_ENABLE;
2806 data |= PORT_RX_ENABLE;
2807 data &= ~PORT_LEARN_DISABLE;
2808 break;
2809 case STP_STATE_FORWARDING:
2810 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2811 data &= ~PORT_LEARN_DISABLE;
2812 break;
2813 case STP_STATE_BLOCKED:
2815 * Need to setup static MAC table with override to keep receiving BPDU
2816 * messages. See sw_init_stp routine.
2818 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2819 data |= PORT_LEARN_DISABLE;
2820 break;
2821 case STP_STATE_SIMPLE:
2822 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2823 data |= PORT_LEARN_DISABLE;
2824 break;
2826 port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2827 hw->ksz_switch->port_cfg[port].stp_state = state;
2830 #define STP_ENTRY 0
2831 #define BROADCAST_ENTRY 1
2832 #define BRIDGE_ADDR_ENTRY 2
2833 #define IPV6_ADDR_ENTRY 3
2836 * sw_clr_sta_mac_table - clear static MAC table
2837 * @hw: The hardware instance.
2839 * This routine clears the static MAC table.
2841 static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2843 struct ksz_mac_table *entry;
2844 int i;
2846 for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2847 entry = &hw->ksz_switch->mac_table[i];
2848 sw_w_sta_mac_table(hw, i,
2849 entry->mac_addr, entry->ports,
2850 entry->override, 0,
2851 entry->use_fid, entry->fid);
2856 * sw_init_stp - initialize switch spanning tree support
2857 * @hw: The hardware instance.
2859 * This routine initializes the spanning tree support of the switch.
2861 static void sw_init_stp(struct ksz_hw *hw)
2863 struct ksz_mac_table *entry;
2865 entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2866 entry->mac_addr[0] = 0x01;
2867 entry->mac_addr[1] = 0x80;
2868 entry->mac_addr[2] = 0xC2;
2869 entry->mac_addr[3] = 0x00;
2870 entry->mac_addr[4] = 0x00;
2871 entry->mac_addr[5] = 0x00;
2872 entry->ports = HOST_MASK;
2873 entry->override = 1;
2874 entry->valid = 1;
2875 sw_w_sta_mac_table(hw, STP_ENTRY,
2876 entry->mac_addr, entry->ports,
2877 entry->override, entry->valid,
2878 entry->use_fid, entry->fid);
2882 * sw_block_addr - block certain packets from the host port
2883 * @hw: The hardware instance.
2885 * This routine blocks certain packets from reaching to the host port.
2887 static void sw_block_addr(struct ksz_hw *hw)
2889 struct ksz_mac_table *entry;
2890 int i;
2892 for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2893 entry = &hw->ksz_switch->mac_table[i];
2894 entry->valid = 0;
2895 sw_w_sta_mac_table(hw, i,
2896 entry->mac_addr, entry->ports,
2897 entry->override, entry->valid,
2898 entry->use_fid, entry->fid);
2902 #define PHY_LINK_SUPPORT \
2903 (PHY_AUTO_NEG_ASYM_PAUSE | \
2904 PHY_AUTO_NEG_SYM_PAUSE | \
2905 PHY_AUTO_NEG_100BT4 | \
2906 PHY_AUTO_NEG_100BTX_FD | \
2907 PHY_AUTO_NEG_100BTX | \
2908 PHY_AUTO_NEG_10BT_FD | \
2909 PHY_AUTO_NEG_10BT)
2911 static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2913 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2916 static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2918 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2921 static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2923 *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2926 static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2928 *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2931 static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2933 writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2936 static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2938 *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2941 static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2943 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2946 static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2948 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2951 static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2953 *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2956 static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2958 writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2961 static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2963 *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2966 static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2968 writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2972 * hw_r_phy - read data from PHY register
2973 * @hw: The hardware instance.
2974 * @port: Port to read.
2975 * @reg: PHY register to read.
2976 * @val: Buffer to store the read data.
2978 * This routine reads data from the PHY register.
2980 static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2982 int phy;
2984 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2985 *val = readw(hw->io + phy);
2989 * port_w_phy - write data to PHY register
2990 * @hw: The hardware instance.
2991 * @port: Port to write.
2992 * @reg: PHY register to write.
2993 * @val: Word data to write.
2995 * This routine writes data to the PHY register.
2997 static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2999 int phy;
3001 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
3002 writew(val, hw->io + phy);
3006 * EEPROM access functions
3009 #define AT93C_CODE 0
3010 #define AT93C_WR_OFF 0x00
3011 #define AT93C_WR_ALL 0x10
3012 #define AT93C_ER_ALL 0x20
3013 #define AT93C_WR_ON 0x30
3015 #define AT93C_WRITE 1
3016 #define AT93C_READ 2
3017 #define AT93C_ERASE 3
3019 #define EEPROM_DELAY 4
3021 static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3023 u16 data;
3025 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3026 data &= ~gpio;
3027 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3030 static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3032 u16 data;
3034 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3035 data |= gpio;
3036 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3039 static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3041 u16 data;
3043 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3044 return (u8)(data & gpio);
3047 static void eeprom_clk(struct ksz_hw *hw)
3049 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3050 udelay(EEPROM_DELAY);
3051 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3052 udelay(EEPROM_DELAY);
3055 static u16 spi_r(struct ksz_hw *hw)
3057 int i;
3058 u16 temp = 0;
3060 for (i = 15; i >= 0; i--) {
3061 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3062 udelay(EEPROM_DELAY);
3064 temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3066 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3067 udelay(EEPROM_DELAY);
3069 return temp;
3072 static void spi_w(struct ksz_hw *hw, u16 data)
3074 int i;
3076 for (i = 15; i >= 0; i--) {
3077 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3078 drop_gpio(hw, EEPROM_DATA_OUT);
3079 eeprom_clk(hw);
3083 static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3085 int i;
3087 /* Initial start bit */
3088 raise_gpio(hw, EEPROM_DATA_OUT);
3089 eeprom_clk(hw);
3091 /* AT93C operation */
3092 for (i = 1; i >= 0; i--) {
3093 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3094 drop_gpio(hw, EEPROM_DATA_OUT);
3095 eeprom_clk(hw);
3098 /* Address location */
3099 for (i = 5; i >= 0; i--) {
3100 (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3101 drop_gpio(hw, EEPROM_DATA_OUT);
3102 eeprom_clk(hw);
3106 #define EEPROM_DATA_RESERVED 0
3107 #define EEPROM_DATA_MAC_ADDR_0 1
3108 #define EEPROM_DATA_MAC_ADDR_1 2
3109 #define EEPROM_DATA_MAC_ADDR_2 3
3110 #define EEPROM_DATA_SUBSYS_ID 4
3111 #define EEPROM_DATA_SUBSYS_VEN_ID 5
3112 #define EEPROM_DATA_PM_CAP 6
3114 /* User defined EEPROM data */
3115 #define EEPROM_DATA_OTHER_MAC_ADDR 9
3118 * eeprom_read - read from AT93C46 EEPROM
3119 * @hw: The hardware instance.
3120 * @reg: The register offset.
3122 * This function reads a word from the AT93C46 EEPROM.
3124 * Return the data value.
3126 static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3128 u16 data;
3130 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3132 spi_reg(hw, AT93C_READ, reg);
3133 data = spi_r(hw);
3135 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3137 return data;
3141 * eeprom_write - write to AT93C46 EEPROM
3142 * @hw: The hardware instance.
3143 * @reg: The register offset.
3144 * @data: The data value.
3146 * This procedure writes a word to the AT93C46 EEPROM.
3148 static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3150 int timeout;
3152 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3154 /* Enable write. */
3155 spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3156 drop_gpio(hw, EEPROM_CHIP_SELECT);
3157 udelay(1);
3159 /* Erase the register. */
3160 raise_gpio(hw, EEPROM_CHIP_SELECT);
3161 spi_reg(hw, AT93C_ERASE, reg);
3162 drop_gpio(hw, EEPROM_CHIP_SELECT);
3163 udelay(1);
3165 /* Check operation complete. */
3166 raise_gpio(hw, EEPROM_CHIP_SELECT);
3167 timeout = 8;
3168 mdelay(2);
3169 do {
3170 mdelay(1);
3171 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3172 drop_gpio(hw, EEPROM_CHIP_SELECT);
3173 udelay(1);
3175 /* Write the register. */
3176 raise_gpio(hw, EEPROM_CHIP_SELECT);
3177 spi_reg(hw, AT93C_WRITE, reg);
3178 spi_w(hw, data);
3179 drop_gpio(hw, EEPROM_CHIP_SELECT);
3180 udelay(1);
3182 /* Check operation complete. */
3183 raise_gpio(hw, EEPROM_CHIP_SELECT);
3184 timeout = 8;
3185 mdelay(2);
3186 do {
3187 mdelay(1);
3188 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3189 drop_gpio(hw, EEPROM_CHIP_SELECT);
3190 udelay(1);
3192 /* Disable write. */
3193 raise_gpio(hw, EEPROM_CHIP_SELECT);
3194 spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3196 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3200 * Link detection routines
3203 static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3205 ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3206 switch (port->flow_ctrl) {
3207 case PHY_FLOW_CTRL:
3208 ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3209 break;
3210 /* Not supported. */
3211 case PHY_TX_ONLY:
3212 case PHY_RX_ONLY:
3213 default:
3214 break;
3216 return ctrl;
3219 static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3221 u32 rx_cfg;
3222 u32 tx_cfg;
3224 rx_cfg = hw->rx_cfg;
3225 tx_cfg = hw->tx_cfg;
3226 if (rx)
3227 hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3228 else
3229 hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3230 if (tx)
3231 hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3232 else
3233 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3234 if (hw->enabled) {
3235 if (rx_cfg != hw->rx_cfg)
3236 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3237 if (tx_cfg != hw->tx_cfg)
3238 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3242 static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3243 u16 local, u16 remote)
3245 int rx;
3246 int tx;
3248 if (hw->overrides & PAUSE_FLOW_CTRL)
3249 return;
3251 rx = tx = 0;
3252 if (port->force_link)
3253 rx = tx = 1;
3254 if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3255 if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3256 rx = tx = 1;
3257 } else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3258 (local & PHY_AUTO_NEG_PAUSE) ==
3259 PHY_AUTO_NEG_ASYM_PAUSE) {
3260 tx = 1;
3262 } else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3263 if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3264 rx = 1;
3266 if (!hw->ksz_switch)
3267 set_flow_ctrl(hw, rx, tx);
3270 static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3271 struct ksz_port_info *info, u16 link_status)
3273 if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3274 !(hw->overrides & PAUSE_FLOW_CTRL)) {
3275 u32 cfg = hw->tx_cfg;
3277 /* Disable flow control in the half duplex mode. */
3278 if (1 == info->duplex)
3279 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3280 if (hw->enabled && cfg != hw->tx_cfg)
3281 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3286 * port_get_link_speed - get current link status
3287 * @port: The port instance.
3289 * This routine reads PHY registers to determine the current link status of the
3290 * switch ports.
3292 static void port_get_link_speed(struct ksz_port *port)
3294 uint interrupt;
3295 struct ksz_port_info *info;
3296 struct ksz_port_info *linked = NULL;
3297 struct ksz_hw *hw = port->hw;
3298 u16 data;
3299 u16 status;
3300 u8 local;
3301 u8 remote;
3302 int i;
3303 int p;
3304 int change = 0;
3306 interrupt = hw_block_intr(hw);
3308 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3309 info = &hw->port_info[p];
3310 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3311 port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3314 * Link status is changing all the time even when there is no
3315 * cable connection!
3317 remote = status & (PORT_AUTO_NEG_COMPLETE |
3318 PORT_STATUS_LINK_GOOD);
3319 local = (u8) data;
3321 /* No change to status. */
3322 if (local == info->advertised && remote == info->partner)
3323 continue;
3325 info->advertised = local;
3326 info->partner = remote;
3327 if (status & PORT_STATUS_LINK_GOOD) {
3329 /* Remember the first linked port. */
3330 if (!linked)
3331 linked = info;
3333 info->tx_rate = 10 * TX_RATE_UNIT;
3334 if (status & PORT_STATUS_SPEED_100MBIT)
3335 info->tx_rate = 100 * TX_RATE_UNIT;
3337 info->duplex = 1;
3338 if (status & PORT_STATUS_FULL_DUPLEX)
3339 info->duplex = 2;
3341 if (media_connected != info->state) {
3342 hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3343 &data);
3344 hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3345 &status);
3346 determine_flow_ctrl(hw, port, data, status);
3347 if (hw->ksz_switch) {
3348 port_cfg_back_pressure(hw, p,
3349 (1 == info->duplex));
3351 change |= 1 << i;
3352 port_cfg_change(hw, port, info, status);
3354 info->state = media_connected;
3355 } else {
3356 if (media_disconnected != info->state) {
3357 change |= 1 << i;
3359 /* Indicate the link just goes down. */
3360 hw->port_mib[p].link_down = 1;
3362 info->state = media_disconnected;
3364 hw->port_mib[p].state = (u8) info->state;
3367 if (linked && media_disconnected == port->linked->state)
3368 port->linked = linked;
3370 hw_restore_intr(hw, interrupt);
3373 #define PHY_RESET_TIMEOUT 10
3376 * port_set_link_speed - set port speed
3377 * @port: The port instance.
3379 * This routine sets the link speed of the switch ports.
3381 static void port_set_link_speed(struct ksz_port *port)
3383 struct ksz_port_info *info;
3384 struct ksz_hw *hw = port->hw;
3385 u16 data;
3386 u16 cfg;
3387 u8 status;
3388 int i;
3389 int p;
3391 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3392 info = &hw->port_info[p];
3394 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3395 port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3397 cfg = 0;
3398 if (status & PORT_STATUS_LINK_GOOD)
3399 cfg = data;
3401 data |= PORT_AUTO_NEG_ENABLE;
3402 data = advertised_flow_ctrl(port, data);
3404 data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3405 PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3407 /* Check if manual configuration is specified by the user. */
3408 if (port->speed || port->duplex) {
3409 if (10 == port->speed)
3410 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3411 PORT_AUTO_NEG_100BTX);
3412 else if (100 == port->speed)
3413 data &= ~(PORT_AUTO_NEG_10BT_FD |
3414 PORT_AUTO_NEG_10BT);
3415 if (1 == port->duplex)
3416 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3417 PORT_AUTO_NEG_10BT_FD);
3418 else if (2 == port->duplex)
3419 data &= ~(PORT_AUTO_NEG_100BTX |
3420 PORT_AUTO_NEG_10BT);
3422 if (data != cfg) {
3423 data |= PORT_AUTO_NEG_RESTART;
3424 port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3430 * port_force_link_speed - force port speed
3431 * @port: The port instance.
3433 * This routine forces the link speed of the switch ports.
3435 static void port_force_link_speed(struct ksz_port *port)
3437 struct ksz_hw *hw = port->hw;
3438 u16 data;
3439 int i;
3440 int phy;
3441 int p;
3443 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3444 phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3445 hw_r_phy_ctrl(hw, phy, &data);
3447 data &= ~PHY_AUTO_NEG_ENABLE;
3449 if (10 == port->speed)
3450 data &= ~PHY_SPEED_100MBIT;
3451 else if (100 == port->speed)
3452 data |= PHY_SPEED_100MBIT;
3453 if (1 == port->duplex)
3454 data &= ~PHY_FULL_DUPLEX;
3455 else if (2 == port->duplex)
3456 data |= PHY_FULL_DUPLEX;
3457 hw_w_phy_ctrl(hw, phy, data);
3461 static void port_set_power_saving(struct ksz_port *port, int enable)
3463 struct ksz_hw *hw = port->hw;
3464 int i;
3465 int p;
3467 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3468 port_cfg(hw, p,
3469 KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3473 * KSZ8841 power management functions
3477 * hw_chk_wol_pme_status - check PMEN pin
3478 * @hw: The hardware instance.
3480 * This function is used to check PMEN pin is asserted.
3482 * Return 1 if PMEN pin is asserted; otherwise, 0.
3484 static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3486 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3487 struct pci_dev *pdev = hw_priv->pdev;
3488 u16 data;
3490 if (!pdev->pm_cap)
3491 return 0;
3492 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3493 return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3497 * hw_clr_wol_pme_status - clear PMEN pin
3498 * @hw: The hardware instance.
3500 * This routine is used to clear PME_Status to deassert PMEN pin.
3502 static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3504 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3505 struct pci_dev *pdev = hw_priv->pdev;
3506 u16 data;
3508 if (!pdev->pm_cap)
3509 return;
3511 /* Clear PME_Status to deassert PMEN pin. */
3512 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3513 data |= PCI_PM_CTRL_PME_STATUS;
3514 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3518 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3519 * @hw: The hardware instance.
3520 * @set: The flag indicating whether to enable or disable.
3522 * This routine is used to enable or disable Wake-on-LAN.
3524 static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3526 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3527 struct pci_dev *pdev = hw_priv->pdev;
3528 u16 data;
3530 if (!pdev->pm_cap)
3531 return;
3532 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3533 data &= ~PCI_PM_CTRL_STATE_MASK;
3534 if (set)
3535 data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3536 else
3537 data &= ~PCI_PM_CTRL_PME_ENABLE;
3538 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3542 * hw_cfg_wol - configure Wake-on-LAN features
3543 * @hw: The hardware instance.
3544 * @frame: The pattern frame bit.
3545 * @set: The flag indicating whether to enable or disable.
3547 * This routine is used to enable or disable certain Wake-on-LAN features.
3549 static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3551 u16 data;
3553 data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3554 if (set)
3555 data |= frame;
3556 else
3557 data &= ~frame;
3558 writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3562 * hw_set_wol_frame - program Wake-on-LAN pattern
3563 * @hw: The hardware instance.
3564 * @i: The frame index.
3565 * @mask_size: The size of the mask.
3566 * @mask: Mask to ignore certain bytes in the pattern.
3567 * @frame_size: The size of the frame.
3568 * @pattern: The frame data.
3570 * This routine is used to program Wake-on-LAN pattern.
3572 static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3573 const u8 *mask, uint frame_size, const u8 *pattern)
3575 int bits;
3576 int from;
3577 int len;
3578 int to;
3579 u32 crc;
3580 u8 data[64];
3581 u8 val = 0;
3583 if (frame_size > mask_size * 8)
3584 frame_size = mask_size * 8;
3585 if (frame_size > 64)
3586 frame_size = 64;
3588 i *= 0x10;
3589 writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3590 writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3592 bits = len = from = to = 0;
3593 do {
3594 if (bits) {
3595 if ((val & 1))
3596 data[to++] = pattern[from];
3597 val >>= 1;
3598 ++from;
3599 --bits;
3600 } else {
3601 val = mask[len];
3602 writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3603 + len);
3604 ++len;
3605 if (val)
3606 bits = 8;
3607 else
3608 from += 8;
3610 } while (from < (int) frame_size);
3611 if (val) {
3612 bits = mask[len - 1];
3613 val <<= (from % 8);
3614 bits &= ~val;
3615 writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3618 crc = ether_crc(to, data);
3619 writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3623 * hw_add_wol_arp - add ARP pattern
3624 * @hw: The hardware instance.
3625 * @ip_addr: The IPv4 address assigned to the device.
3627 * This routine is used to add ARP pattern for waking up the host.
3629 static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3631 static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3632 u8 pattern[42] = {
3633 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3634 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3635 0x08, 0x06,
3636 0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3637 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3638 0x00, 0x00, 0x00, 0x00,
3639 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3640 0x00, 0x00, 0x00, 0x00 };
3642 memcpy(&pattern[38], ip_addr, 4);
3643 hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3647 * hw_add_wol_bcast - add broadcast pattern
3648 * @hw: The hardware instance.
3650 * This routine is used to add broadcast pattern for waking up the host.
3652 static void hw_add_wol_bcast(struct ksz_hw *hw)
3654 static const u8 mask[] = { 0x3F };
3655 static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3657 hw_set_wol_frame(hw, 2, 1, mask, MAC_ADDR_LEN, pattern);
3661 * hw_add_wol_mcast - add multicast pattern
3662 * @hw: The hardware instance.
3664 * This routine is used to add multicast pattern for waking up the host.
3666 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3667 * by IPv6 ping command. Note that multicast packets are filtred through the
3668 * multicast hash table, so not all multicast packets can wake up the host.
3670 static void hw_add_wol_mcast(struct ksz_hw *hw)
3672 static const u8 mask[] = { 0x3F };
3673 u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3675 memcpy(&pattern[3], &hw->override_addr[3], 3);
3676 hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3680 * hw_add_wol_ucast - add unicast pattern
3681 * @hw: The hardware instance.
3683 * This routine is used to add unicast pattern to wakeup the host.
3685 * It is assumed the unicast packet is directed to the device, as the hardware
3686 * can only receive them in normal case.
3688 static void hw_add_wol_ucast(struct ksz_hw *hw)
3690 static const u8 mask[] = { 0x3F };
3692 hw_set_wol_frame(hw, 0, 1, mask, MAC_ADDR_LEN, hw->override_addr);
3696 * hw_enable_wol - enable Wake-on-LAN
3697 * @hw: The hardware instance.
3698 * @wol_enable: The Wake-on-LAN settings.
3699 * @net_addr: The IPv4 address assigned to the device.
3701 * This routine is used to enable Wake-on-LAN depending on driver settings.
3703 static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3705 hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3706 hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3707 hw_add_wol_ucast(hw);
3708 hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3709 hw_add_wol_mcast(hw);
3710 hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3711 hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3712 hw_add_wol_arp(hw, net_addr);
3716 * hw_init - check driver is correct for the hardware
3717 * @hw: The hardware instance.
3719 * This function checks the hardware is correct for this driver and sets the
3720 * hardware up for proper initialization.
3722 * Return number of ports or 0 if not right.
3724 static int hw_init(struct ksz_hw *hw)
3726 int rc = 0;
3727 u16 data;
3728 u16 revision;
3730 /* Set bus speed to 125MHz. */
3731 writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3733 /* Check KSZ884x chip ID. */
3734 data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3736 revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3737 data &= KS884X_CHIP_ID_MASK_41;
3738 if (REG_CHIP_ID_41 == data)
3739 rc = 1;
3740 else if (REG_CHIP_ID_42 == data)
3741 rc = 2;
3742 else
3743 return 0;
3745 /* Setup hardware features or bug workarounds. */
3746 if (revision <= 1) {
3747 hw->features |= SMALL_PACKET_TX_BUG;
3748 if (1 == rc)
3749 hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3751 return rc;
3755 * hw_reset - reset the hardware
3756 * @hw: The hardware instance.
3758 * This routine resets the hardware.
3760 static void hw_reset(struct ksz_hw *hw)
3762 writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3764 /* Wait for device to reset. */
3765 mdelay(10);
3767 /* Write 0 to clear device reset. */
3768 writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3772 * hw_setup - setup the hardware
3773 * @hw: The hardware instance.
3775 * This routine setup the hardware for proper operation.
3777 static void hw_setup(struct ksz_hw *hw)
3779 #if SET_DEFAULT_LED
3780 u16 data;
3782 /* Change default LED mode. */
3783 data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3784 data &= ~LED_MODE;
3785 data |= SET_DEFAULT_LED;
3786 writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3787 #endif
3789 /* Setup transmit control. */
3790 hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3791 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3793 /* Setup receive control. */
3794 hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3795 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3796 hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3798 /* Hardware cannot handle UDP packet in IP fragments. */
3799 hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3801 if (hw->all_multi)
3802 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3803 if (hw->promiscuous)
3804 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3808 * hw_setup_intr - setup interrupt mask
3809 * @hw: The hardware instance.
3811 * This routine setup the interrupt mask for proper operation.
3813 static void hw_setup_intr(struct ksz_hw *hw)
3815 hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3818 static void ksz_check_desc_num(struct ksz_desc_info *info)
3820 #define MIN_DESC_SHIFT 2
3822 int alloc = info->alloc;
3823 int shift;
3825 shift = 0;
3826 while (!(alloc & 1)) {
3827 shift++;
3828 alloc >>= 1;
3830 if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3831 pr_alert("Hardware descriptor numbers not right!\n");
3832 while (alloc) {
3833 shift++;
3834 alloc >>= 1;
3836 if (shift < MIN_DESC_SHIFT)
3837 shift = MIN_DESC_SHIFT;
3838 alloc = 1 << shift;
3839 info->alloc = alloc;
3841 info->mask = info->alloc - 1;
3844 static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3846 int i;
3847 u32 phys = desc_info->ring_phys;
3848 struct ksz_hw_desc *desc = desc_info->ring_virt;
3849 struct ksz_desc *cur = desc_info->ring;
3850 struct ksz_desc *previous = NULL;
3852 for (i = 0; i < desc_info->alloc; i++) {
3853 cur->phw = desc++;
3854 phys += desc_info->size;
3855 previous = cur++;
3856 previous->phw->next = cpu_to_le32(phys);
3858 previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3859 previous->sw.buf.rx.end_of_ring = 1;
3860 previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3862 desc_info->avail = desc_info->alloc;
3863 desc_info->last = desc_info->next = 0;
3865 desc_info->cur = desc_info->ring;
3869 * hw_set_desc_base - set descriptor base addresses
3870 * @hw: The hardware instance.
3871 * @tx_addr: The transmit descriptor base.
3872 * @rx_addr: The receive descriptor base.
3874 * This routine programs the descriptor base addresses after reset.
3876 static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3878 /* Set base address of Tx/Rx descriptors. */
3879 writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3880 writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3883 static void hw_reset_pkts(struct ksz_desc_info *info)
3885 info->cur = info->ring;
3886 info->avail = info->alloc;
3887 info->last = info->next = 0;
3890 static inline void hw_resume_rx(struct ksz_hw *hw)
3892 writel(DMA_START, hw->io + KS_DMA_RX_START);
3896 * hw_start_rx - start receiving
3897 * @hw: The hardware instance.
3899 * This routine starts the receive function of the hardware.
3901 static void hw_start_rx(struct ksz_hw *hw)
3903 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3905 /* Notify when the receive stops. */
3906 hw->intr_mask |= KS884X_INT_RX_STOPPED;
3908 writel(DMA_START, hw->io + KS_DMA_RX_START);
3909 hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3910 hw->rx_stop++;
3912 /* Variable overflows. */
3913 if (0 == hw->rx_stop)
3914 hw->rx_stop = 2;
3918 * hw_stop_rx - stop receiving
3919 * @hw: The hardware instance.
3921 * This routine stops the receive function of the hardware.
3923 static void hw_stop_rx(struct ksz_hw *hw)
3925 hw->rx_stop = 0;
3926 hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3927 writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3931 * hw_start_tx - start transmitting
3932 * @hw: The hardware instance.
3934 * This routine starts the transmit function of the hardware.
3936 static void hw_start_tx(struct ksz_hw *hw)
3938 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3942 * hw_stop_tx - stop transmitting
3943 * @hw: The hardware instance.
3945 * This routine stops the transmit function of the hardware.
3947 static void hw_stop_tx(struct ksz_hw *hw)
3949 writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3953 * hw_disable - disable hardware
3954 * @hw: The hardware instance.
3956 * This routine disables the hardware.
3958 static void hw_disable(struct ksz_hw *hw)
3960 hw_stop_rx(hw);
3961 hw_stop_tx(hw);
3962 hw->enabled = 0;
3966 * hw_enable - enable hardware
3967 * @hw: The hardware instance.
3969 * This routine enables the hardware.
3971 static void hw_enable(struct ksz_hw *hw)
3973 hw_start_tx(hw);
3974 hw_start_rx(hw);
3975 hw->enabled = 1;
3979 * hw_alloc_pkt - allocate enough descriptors for transmission
3980 * @hw: The hardware instance.
3981 * @length: The length of the packet.
3982 * @physical: Number of descriptors required.
3984 * This function allocates descriptors for transmission.
3986 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3988 static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3990 /* Always leave one descriptor free. */
3991 if (hw->tx_desc_info.avail <= 1)
3992 return 0;
3994 /* Allocate a descriptor for transmission and mark it current. */
3995 get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3996 hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3998 /* Keep track of number of transmit descriptors used so far. */
3999 ++hw->tx_int_cnt;
4000 hw->tx_size += length;
4002 /* Cannot hold on too much data. */
4003 if (hw->tx_size >= MAX_TX_HELD_SIZE)
4004 hw->tx_int_cnt = hw->tx_int_mask + 1;
4006 if (physical > hw->tx_desc_info.avail)
4007 return 1;
4009 return hw->tx_desc_info.avail;
4013 * hw_send_pkt - mark packet for transmission
4014 * @hw: The hardware instance.
4016 * This routine marks the packet for transmission in PCI version.
4018 static void hw_send_pkt(struct ksz_hw *hw)
4020 struct ksz_desc *cur = hw->tx_desc_info.cur;
4022 cur->sw.buf.tx.last_seg = 1;
4024 /* Interrupt only after specified number of descriptors used. */
4025 if (hw->tx_int_cnt > hw->tx_int_mask) {
4026 cur->sw.buf.tx.intr = 1;
4027 hw->tx_int_cnt = 0;
4028 hw->tx_size = 0;
4031 /* KSZ8842 supports port directed transmission. */
4032 cur->sw.buf.tx.dest_port = hw->dst_ports;
4034 release_desc(cur);
4036 writel(0, hw->io + KS_DMA_TX_START);
4039 static int empty_addr(u8 *addr)
4041 u32 *addr1 = (u32 *) addr;
4042 u16 *addr2 = (u16 *) &addr[4];
4044 return 0 == *addr1 && 0 == *addr2;
4048 * hw_set_addr - set MAC address
4049 * @hw: The hardware instance.
4051 * This routine programs the MAC address of the hardware when the address is
4052 * overrided.
4054 static void hw_set_addr(struct ksz_hw *hw)
4056 int i;
4058 for (i = 0; i < MAC_ADDR_LEN; i++)
4059 writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4060 hw->io + KS884X_ADDR_0_OFFSET + i);
4062 sw_set_addr(hw, hw->override_addr);
4066 * hw_read_addr - read MAC address
4067 * @hw: The hardware instance.
4069 * This routine retrieves the MAC address of the hardware.
4071 static void hw_read_addr(struct ksz_hw *hw)
4073 int i;
4075 for (i = 0; i < MAC_ADDR_LEN; i++)
4076 hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4077 KS884X_ADDR_0_OFFSET + i);
4079 if (!hw->mac_override) {
4080 memcpy(hw->override_addr, hw->perm_addr, MAC_ADDR_LEN);
4081 if (empty_addr(hw->override_addr)) {
4082 memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS,
4083 MAC_ADDR_LEN);
4084 memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4085 MAC_ADDR_LEN);
4086 hw->override_addr[5] += hw->id;
4087 hw_set_addr(hw);
4092 static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4094 int i;
4095 u32 mac_addr_lo;
4096 u32 mac_addr_hi;
4098 mac_addr_hi = 0;
4099 for (i = 0; i < 2; i++) {
4100 mac_addr_hi <<= 8;
4101 mac_addr_hi |= mac_addr[i];
4103 mac_addr_hi |= ADD_ADDR_ENABLE;
4104 mac_addr_lo = 0;
4105 for (i = 2; i < 6; i++) {
4106 mac_addr_lo <<= 8;
4107 mac_addr_lo |= mac_addr[i];
4109 index *= ADD_ADDR_INCR;
4111 writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4112 writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4115 static void hw_set_add_addr(struct ksz_hw *hw)
4117 int i;
4119 for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4120 if (empty_addr(hw->address[i]))
4121 writel(0, hw->io + ADD_ADDR_INCR * i +
4122 KS_ADD_ADDR_0_HI);
4123 else
4124 hw_ena_add_addr(hw, i, hw->address[i]);
4128 static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4130 int i;
4131 int j = ADDITIONAL_ENTRIES;
4133 if (!memcmp(hw->override_addr, mac_addr, MAC_ADDR_LEN))
4134 return 0;
4135 for (i = 0; i < hw->addr_list_size; i++) {
4136 if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN))
4137 return 0;
4138 if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4139 j = i;
4141 if (j < ADDITIONAL_ENTRIES) {
4142 memcpy(hw->address[j], mac_addr, MAC_ADDR_LEN);
4143 hw_ena_add_addr(hw, j, hw->address[j]);
4144 return 0;
4146 return -1;
4149 static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4151 int i;
4153 for (i = 0; i < hw->addr_list_size; i++) {
4154 if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN)) {
4155 memset(hw->address[i], 0, MAC_ADDR_LEN);
4156 writel(0, hw->io + ADD_ADDR_INCR * i +
4157 KS_ADD_ADDR_0_HI);
4158 return 0;
4161 return -1;
4165 * hw_clr_multicast - clear multicast addresses
4166 * @hw: The hardware instance.
4168 * This routine removes all multicast addresses set in the hardware.
4170 static void hw_clr_multicast(struct ksz_hw *hw)
4172 int i;
4174 for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4175 hw->multi_bits[i] = 0;
4177 writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4182 * hw_set_grp_addr - set multicast addresses
4183 * @hw: The hardware instance.
4185 * This routine programs multicast addresses for the hardware to accept those
4186 * addresses.
4188 static void hw_set_grp_addr(struct ksz_hw *hw)
4190 int i;
4191 int index;
4192 int position;
4193 int value;
4195 memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4197 for (i = 0; i < hw->multi_list_size; i++) {
4198 position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4199 index = position >> 3;
4200 value = 1 << (position & 7);
4201 hw->multi_bits[index] |= (u8) value;
4204 for (i = 0; i < HW_MULTICAST_SIZE; i++)
4205 writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4210 * hw_set_multicast - enable or disable all multicast receiving
4211 * @hw: The hardware instance.
4212 * @multicast: To turn on or off the all multicast feature.
4214 * This routine enables/disables the hardware to accept all multicast packets.
4216 static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4218 /* Stop receiving for reconfiguration. */
4219 hw_stop_rx(hw);
4221 if (multicast)
4222 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4223 else
4224 hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4226 if (hw->enabled)
4227 hw_start_rx(hw);
4231 * hw_set_promiscuous - enable or disable promiscuous receiving
4232 * @hw: The hardware instance.
4233 * @prom: To turn on or off the promiscuous feature.
4235 * This routine enables/disables the hardware to accept all packets.
4237 static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4239 /* Stop receiving for reconfiguration. */
4240 hw_stop_rx(hw);
4242 if (prom)
4243 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4244 else
4245 hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4247 if (hw->enabled)
4248 hw_start_rx(hw);
4252 * sw_enable - enable the switch
4253 * @hw: The hardware instance.
4254 * @enable: The flag to enable or disable the switch
4256 * This routine is used to enable/disable the switch in KSZ8842.
4258 static void sw_enable(struct ksz_hw *hw, int enable)
4260 int port;
4262 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4263 if (hw->dev_count > 1) {
4264 /* Set port-base vlan membership with host port. */
4265 sw_cfg_port_base_vlan(hw, port,
4266 HOST_MASK | (1 << port));
4267 port_set_stp_state(hw, port, STP_STATE_DISABLED);
4268 } else {
4269 sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4270 port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4273 if (hw->dev_count > 1)
4274 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4275 else
4276 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4278 if (enable)
4279 enable = KS8842_START;
4280 writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4284 * sw_setup - setup the switch
4285 * @hw: The hardware instance.
4287 * This routine setup the hardware switch engine for default operation.
4289 static void sw_setup(struct ksz_hw *hw)
4291 int port;
4293 sw_set_global_ctrl(hw);
4295 /* Enable switch broadcast storm protection at 10% percent rate. */
4296 sw_init_broad_storm(hw);
4297 hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4298 for (port = 0; port < SWITCH_PORT_NUM; port++)
4299 sw_ena_broad_storm(hw, port);
4301 sw_init_prio(hw);
4303 sw_init_mirror(hw);
4305 sw_init_prio_rate(hw);
4307 sw_init_vlan(hw);
4309 if (hw->features & STP_SUPPORT)
4310 sw_init_stp(hw);
4311 if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4312 SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4313 hw->overrides |= PAUSE_FLOW_CTRL;
4314 sw_enable(hw, 1);
4318 * ksz_start_timer - start kernel timer
4319 * @info: Kernel timer information.
4320 * @time: The time tick.
4322 * This routine starts the kernel timer after the specified time tick.
4324 static void ksz_start_timer(struct ksz_timer_info *info, int time)
4326 info->cnt = 0;
4327 info->timer.expires = jiffies + time;
4328 add_timer(&info->timer);
4330 /* infinity */
4331 info->max = -1;
4335 * ksz_stop_timer - stop kernel timer
4336 * @info: Kernel timer information.
4338 * This routine stops the kernel timer.
4340 static void ksz_stop_timer(struct ksz_timer_info *info)
4342 if (info->max) {
4343 info->max = 0;
4344 del_timer_sync(&info->timer);
4348 static void ksz_init_timer(struct ksz_timer_info *info, int period,
4349 void (*function)(unsigned long), void *data)
4351 info->max = 0;
4352 info->period = period;
4353 init_timer(&info->timer);
4354 info->timer.function = function;
4355 info->timer.data = (unsigned long) data;
4358 static void ksz_update_timer(struct ksz_timer_info *info)
4360 ++info->cnt;
4361 if (info->max > 0) {
4362 if (info->cnt < info->max) {
4363 info->timer.expires = jiffies + info->period;
4364 add_timer(&info->timer);
4365 } else
4366 info->max = 0;
4367 } else if (info->max < 0) {
4368 info->timer.expires = jiffies + info->period;
4369 add_timer(&info->timer);
4374 * ksz_alloc_soft_desc - allocate software descriptors
4375 * @desc_info: Descriptor information structure.
4376 * @transmit: Indication that descriptors are for transmit.
4378 * This local function allocates software descriptors for manipulation in
4379 * memory.
4381 * Return 0 if successful.
4383 static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4385 desc_info->ring = kmalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4386 GFP_KERNEL);
4387 if (!desc_info->ring)
4388 return 1;
4389 memset((void *) desc_info->ring, 0,
4390 sizeof(struct ksz_desc) * desc_info->alloc);
4391 hw_init_desc(desc_info, transmit);
4392 return 0;
4396 * ksz_alloc_desc - allocate hardware descriptors
4397 * @adapter: Adapter information structure.
4399 * This local function allocates hardware descriptors for receiving and
4400 * transmitting.
4402 * Return 0 if successful.
4404 static int ksz_alloc_desc(struct dev_info *adapter)
4406 struct ksz_hw *hw = &adapter->hw;
4407 int offset;
4409 /* Allocate memory for RX & TX descriptors. */
4410 adapter->desc_pool.alloc_size =
4411 hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4412 hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4413 DESC_ALIGNMENT;
4415 adapter->desc_pool.alloc_virt =
4416 pci_alloc_consistent(
4417 adapter->pdev, adapter->desc_pool.alloc_size,
4418 &adapter->desc_pool.dma_addr);
4419 if (adapter->desc_pool.alloc_virt == NULL) {
4420 adapter->desc_pool.alloc_size = 0;
4421 return 1;
4423 memset(adapter->desc_pool.alloc_virt, 0, adapter->desc_pool.alloc_size);
4425 /* Align to the next cache line boundary. */
4426 offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4427 (DESC_ALIGNMENT -
4428 ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4429 adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4430 adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4432 /* Allocate receive/transmit descriptors. */
4433 hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4434 adapter->desc_pool.virt;
4435 hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4436 offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4437 hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4438 (adapter->desc_pool.virt + offset);
4439 hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4441 if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4442 return 1;
4443 if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4444 return 1;
4446 return 0;
4450 * free_dma_buf - release DMA buffer resources
4451 * @adapter: Adapter information structure.
4453 * This routine is just a helper function to release the DMA buffer resources.
4455 static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4456 int direction)
4458 pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4459 dev_kfree_skb(dma_buf->skb);
4460 dma_buf->skb = NULL;
4461 dma_buf->dma = 0;
4465 * ksz_init_rx_buffers - initialize receive descriptors
4466 * @adapter: Adapter information structure.
4468 * This routine initializes DMA buffers for receiving.
4470 static void ksz_init_rx_buffers(struct dev_info *adapter)
4472 int i;
4473 struct ksz_desc *desc;
4474 struct ksz_dma_buf *dma_buf;
4475 struct ksz_hw *hw = &adapter->hw;
4476 struct ksz_desc_info *info = &hw->rx_desc_info;
4478 for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4479 get_rx_pkt(info, &desc);
4481 dma_buf = DMA_BUFFER(desc);
4482 if (dma_buf->skb && dma_buf->len != adapter->mtu)
4483 free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4484 dma_buf->len = adapter->mtu;
4485 if (!dma_buf->skb)
4486 dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4487 if (dma_buf->skb && !dma_buf->dma) {
4488 dma_buf->skb->dev = adapter->dev;
4489 dma_buf->dma = pci_map_single(
4490 adapter->pdev,
4491 skb_tail_pointer(dma_buf->skb),
4492 dma_buf->len,
4493 PCI_DMA_FROMDEVICE);
4496 /* Set descriptor. */
4497 set_rx_buf(desc, dma_buf->dma);
4498 set_rx_len(desc, dma_buf->len);
4499 release_desc(desc);
4504 * ksz_alloc_mem - allocate memory for hardware descriptors
4505 * @adapter: Adapter information structure.
4507 * This function allocates memory for use by hardware descriptors for receiving
4508 * and transmitting.
4510 * Return 0 if successful.
4512 static int ksz_alloc_mem(struct dev_info *adapter)
4514 struct ksz_hw *hw = &adapter->hw;
4516 /* Determine the number of receive and transmit descriptors. */
4517 hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4518 hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4520 /* Determine how many descriptors to skip transmit interrupt. */
4521 hw->tx_int_cnt = 0;
4522 hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4523 if (hw->tx_int_mask > 8)
4524 hw->tx_int_mask = 8;
4525 while (hw->tx_int_mask) {
4526 hw->tx_int_cnt++;
4527 hw->tx_int_mask >>= 1;
4529 if (hw->tx_int_cnt) {
4530 hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4531 hw->tx_int_cnt = 0;
4534 /* Determine the descriptor size. */
4535 hw->rx_desc_info.size =
4536 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4537 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4538 hw->tx_desc_info.size =
4539 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4540 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4541 if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4542 pr_alert("Hardware descriptor size not right!\n");
4543 ksz_check_desc_num(&hw->rx_desc_info);
4544 ksz_check_desc_num(&hw->tx_desc_info);
4546 /* Allocate descriptors. */
4547 if (ksz_alloc_desc(adapter))
4548 return 1;
4550 return 0;
4554 * ksz_free_desc - free software and hardware descriptors
4555 * @adapter: Adapter information structure.
4557 * This local routine frees the software and hardware descriptors allocated by
4558 * ksz_alloc_desc().
4560 static void ksz_free_desc(struct dev_info *adapter)
4562 struct ksz_hw *hw = &adapter->hw;
4564 /* Reset descriptor. */
4565 hw->rx_desc_info.ring_virt = NULL;
4566 hw->tx_desc_info.ring_virt = NULL;
4567 hw->rx_desc_info.ring_phys = 0;
4568 hw->tx_desc_info.ring_phys = 0;
4570 /* Free memory. */
4571 if (adapter->desc_pool.alloc_virt)
4572 pci_free_consistent(
4573 adapter->pdev,
4574 adapter->desc_pool.alloc_size,
4575 adapter->desc_pool.alloc_virt,
4576 adapter->desc_pool.dma_addr);
4578 /* Reset resource pool. */
4579 adapter->desc_pool.alloc_size = 0;
4580 adapter->desc_pool.alloc_virt = NULL;
4582 kfree(hw->rx_desc_info.ring);
4583 hw->rx_desc_info.ring = NULL;
4584 kfree(hw->tx_desc_info.ring);
4585 hw->tx_desc_info.ring = NULL;
4589 * ksz_free_buffers - free buffers used in the descriptors
4590 * @adapter: Adapter information structure.
4591 * @desc_info: Descriptor information structure.
4593 * This local routine frees buffers used in the DMA buffers.
4595 static void ksz_free_buffers(struct dev_info *adapter,
4596 struct ksz_desc_info *desc_info, int direction)
4598 int i;
4599 struct ksz_dma_buf *dma_buf;
4600 struct ksz_desc *desc = desc_info->ring;
4602 for (i = 0; i < desc_info->alloc; i++) {
4603 dma_buf = DMA_BUFFER(desc);
4604 if (dma_buf->skb)
4605 free_dma_buf(adapter, dma_buf, direction);
4606 desc++;
4611 * ksz_free_mem - free all resources used by descriptors
4612 * @adapter: Adapter information structure.
4614 * This local routine frees all the resources allocated by ksz_alloc_mem().
4616 static void ksz_free_mem(struct dev_info *adapter)
4618 /* Free transmit buffers. */
4619 ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4620 PCI_DMA_TODEVICE);
4622 /* Free receive buffers. */
4623 ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4624 PCI_DMA_FROMDEVICE);
4626 /* Free descriptors. */
4627 ksz_free_desc(adapter);
4630 static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4631 u64 *counter)
4633 int i;
4634 int mib;
4635 int port;
4636 struct ksz_port_mib *port_mib;
4638 memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4639 for (i = 0, port = first; i < cnt; i++, port++) {
4640 port_mib = &hw->port_mib[port];
4641 for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4642 counter[mib] += port_mib->counter[mib];
4647 * send_packet - send packet
4648 * @skb: Socket buffer.
4649 * @dev: Network device.
4651 * This routine is used to send a packet out to the network.
4653 static void send_packet(struct sk_buff *skb, struct net_device *dev)
4655 struct ksz_desc *desc;
4656 struct ksz_desc *first;
4657 struct dev_priv *priv = netdev_priv(dev);
4658 struct dev_info *hw_priv = priv->adapter;
4659 struct ksz_hw *hw = &hw_priv->hw;
4660 struct ksz_desc_info *info = &hw->tx_desc_info;
4661 struct ksz_dma_buf *dma_buf;
4662 int len;
4663 int last_frag = skb_shinfo(skb)->nr_frags;
4666 * KSZ8842 with multiple device interfaces needs to be told which port
4667 * to send.
4669 if (hw->dev_count > 1)
4670 hw->dst_ports = 1 << priv->port.first_port;
4672 /* Hardware will pad the length to 60. */
4673 len = skb->len;
4675 /* Remember the very first descriptor. */
4676 first = info->cur;
4677 desc = first;
4679 dma_buf = DMA_BUFFER(desc);
4680 if (last_frag) {
4681 int frag;
4682 skb_frag_t *this_frag;
4684 dma_buf->len = skb_headlen(skb);
4686 dma_buf->dma = pci_map_single(
4687 hw_priv->pdev, skb->data, dma_buf->len,
4688 PCI_DMA_TODEVICE);
4689 set_tx_buf(desc, dma_buf->dma);
4690 set_tx_len(desc, dma_buf->len);
4692 frag = 0;
4693 do {
4694 this_frag = &skb_shinfo(skb)->frags[frag];
4696 /* Get a new descriptor. */
4697 get_tx_pkt(info, &desc);
4699 /* Keep track of descriptors used so far. */
4700 ++hw->tx_int_cnt;
4702 dma_buf = DMA_BUFFER(desc);
4703 dma_buf->len = this_frag->size;
4705 dma_buf->dma = pci_map_single(
4706 hw_priv->pdev,
4707 page_address(this_frag->page) +
4708 this_frag->page_offset,
4709 dma_buf->len,
4710 PCI_DMA_TODEVICE);
4711 set_tx_buf(desc, dma_buf->dma);
4712 set_tx_len(desc, dma_buf->len);
4714 frag++;
4715 if (frag == last_frag)
4716 break;
4718 /* Do not release the last descriptor here. */
4719 release_desc(desc);
4720 } while (1);
4722 /* current points to the last descriptor. */
4723 info->cur = desc;
4725 /* Release the first descriptor. */
4726 release_desc(first);
4727 } else {
4728 dma_buf->len = len;
4730 dma_buf->dma = pci_map_single(
4731 hw_priv->pdev, skb->data, dma_buf->len,
4732 PCI_DMA_TODEVICE);
4733 set_tx_buf(desc, dma_buf->dma);
4734 set_tx_len(desc, dma_buf->len);
4737 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4738 (desc)->sw.buf.tx.csum_gen_tcp = 1;
4739 (desc)->sw.buf.tx.csum_gen_udp = 1;
4743 * The last descriptor holds the packet so that it can be returned to
4744 * network subsystem after all descriptors are transmitted.
4746 dma_buf->skb = skb;
4748 hw_send_pkt(hw);
4750 /* Update transmit statistics. */
4751 dev->stats.tx_packets++;
4752 dev->stats.tx_bytes += len;
4756 * transmit_cleanup - clean up transmit descriptors
4757 * @dev: Network device.
4759 * This routine is called to clean up the transmitted buffers.
4761 static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4763 int last;
4764 union desc_stat status;
4765 struct ksz_hw *hw = &hw_priv->hw;
4766 struct ksz_desc_info *info = &hw->tx_desc_info;
4767 struct ksz_desc *desc;
4768 struct ksz_dma_buf *dma_buf;
4769 struct net_device *dev = NULL;
4771 spin_lock(&hw_priv->hwlock);
4772 last = info->last;
4774 while (info->avail < info->alloc) {
4775 /* Get next descriptor which is not hardware owned. */
4776 desc = &info->ring[last];
4777 status.data = le32_to_cpu(desc->phw->ctrl.data);
4778 if (status.tx.hw_owned) {
4779 if (normal)
4780 break;
4781 else
4782 reset_desc(desc, status);
4785 dma_buf = DMA_BUFFER(desc);
4786 pci_unmap_single(
4787 hw_priv->pdev, dma_buf->dma, dma_buf->len,
4788 PCI_DMA_TODEVICE);
4790 /* This descriptor contains the last buffer in the packet. */
4791 if (dma_buf->skb) {
4792 dev = dma_buf->skb->dev;
4794 /* Release the packet back to network subsystem. */
4795 dev_kfree_skb_irq(dma_buf->skb);
4796 dma_buf->skb = NULL;
4799 /* Free the transmitted descriptor. */
4800 last++;
4801 last &= info->mask;
4802 info->avail++;
4804 info->last = last;
4805 spin_unlock(&hw_priv->hwlock);
4807 /* Notify the network subsystem that the packet has been sent. */
4808 if (dev)
4809 dev->trans_start = jiffies;
4813 * transmit_done - transmit done processing
4814 * @dev: Network device.
4816 * This routine is called when the transmit interrupt is triggered, indicating
4817 * either a packet is sent successfully or there are transmit errors.
4819 static void tx_done(struct dev_info *hw_priv)
4821 struct ksz_hw *hw = &hw_priv->hw;
4822 int port;
4824 transmit_cleanup(hw_priv, 1);
4826 for (port = 0; port < hw->dev_count; port++) {
4827 struct net_device *dev = hw->port_info[port].pdev;
4829 if (netif_running(dev) && netif_queue_stopped(dev))
4830 netif_wake_queue(dev);
4834 static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4836 skb->dev = old->dev;
4837 skb->protocol = old->protocol;
4838 skb->ip_summed = old->ip_summed;
4839 skb->csum = old->csum;
4840 skb_set_network_header(skb, ETH_HLEN);
4842 dev_kfree_skb(old);
4846 * netdev_tx - send out packet
4847 * @skb: Socket buffer.
4848 * @dev: Network device.
4850 * This function is used by the upper network layer to send out a packet.
4852 * Return 0 if successful; otherwise an error code indicating failure.
4854 static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4856 struct dev_priv *priv = netdev_priv(dev);
4857 struct dev_info *hw_priv = priv->adapter;
4858 struct ksz_hw *hw = &hw_priv->hw;
4859 int left;
4860 int num = 1;
4861 int rc = 0;
4863 if (hw->features & SMALL_PACKET_TX_BUG) {
4864 struct sk_buff *org_skb = skb;
4866 if (skb->len <= 48) {
4867 if (skb_end_pointer(skb) - skb->data >= 50) {
4868 memset(&skb->data[skb->len], 0, 50 - skb->len);
4869 skb->len = 50;
4870 } else {
4871 skb = dev_alloc_skb(50);
4872 if (!skb)
4873 return NETDEV_TX_BUSY;
4874 memcpy(skb->data, org_skb->data, org_skb->len);
4875 memset(&skb->data[org_skb->len], 0,
4876 50 - org_skb->len);
4877 skb->len = 50;
4878 copy_old_skb(org_skb, skb);
4883 spin_lock_irq(&hw_priv->hwlock);
4885 num = skb_shinfo(skb)->nr_frags + 1;
4886 left = hw_alloc_pkt(hw, skb->len, num);
4887 if (left) {
4888 if (left < num ||
4889 ((CHECKSUM_PARTIAL == skb->ip_summed) &&
4890 (ETH_P_IPV6 == htons(skb->protocol)))) {
4891 struct sk_buff *org_skb = skb;
4893 skb = dev_alloc_skb(org_skb->len);
4894 if (!skb) {
4895 rc = NETDEV_TX_BUSY;
4896 goto unlock;
4898 skb_copy_and_csum_dev(org_skb, skb->data);
4899 org_skb->ip_summed = CHECKSUM_NONE;
4900 skb->len = org_skb->len;
4901 copy_old_skb(org_skb, skb);
4903 send_packet(skb, dev);
4904 if (left <= num)
4905 netif_stop_queue(dev);
4906 } else {
4907 /* Stop the transmit queue until packet is allocated. */
4908 netif_stop_queue(dev);
4909 rc = NETDEV_TX_BUSY;
4911 unlock:
4912 spin_unlock_irq(&hw_priv->hwlock);
4914 return rc;
4918 * netdev_tx_timeout - transmit timeout processing
4919 * @dev: Network device.
4921 * This routine is called when the transmit timer expires. That indicates the
4922 * hardware is not running correctly because transmit interrupts are not
4923 * triggered to free up resources so that the transmit routine can continue
4924 * sending out packets. The hardware is reset to correct the problem.
4926 static void netdev_tx_timeout(struct net_device *dev)
4928 static unsigned long last_reset;
4930 struct dev_priv *priv = netdev_priv(dev);
4931 struct dev_info *hw_priv = priv->adapter;
4932 struct ksz_hw *hw = &hw_priv->hw;
4933 int port;
4935 if (hw->dev_count > 1) {
4937 * Only reset the hardware if time between calls is long
4938 * enough.
4940 if (jiffies - last_reset <= dev->watchdog_timeo)
4941 hw_priv = NULL;
4944 last_reset = jiffies;
4945 if (hw_priv) {
4946 hw_dis_intr(hw);
4947 hw_disable(hw);
4949 transmit_cleanup(hw_priv, 0);
4950 hw_reset_pkts(&hw->rx_desc_info);
4951 hw_reset_pkts(&hw->tx_desc_info);
4952 ksz_init_rx_buffers(hw_priv);
4954 hw_reset(hw);
4956 hw_set_desc_base(hw,
4957 hw->tx_desc_info.ring_phys,
4958 hw->rx_desc_info.ring_phys);
4959 hw_set_addr(hw);
4960 if (hw->all_multi)
4961 hw_set_multicast(hw, hw->all_multi);
4962 else if (hw->multi_list_size)
4963 hw_set_grp_addr(hw);
4965 if (hw->dev_count > 1) {
4966 hw_set_add_addr(hw);
4967 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4968 struct net_device *port_dev;
4970 port_set_stp_state(hw, port,
4971 STP_STATE_DISABLED);
4973 port_dev = hw->port_info[port].pdev;
4974 if (netif_running(port_dev))
4975 port_set_stp_state(hw, port,
4976 STP_STATE_SIMPLE);
4980 hw_enable(hw);
4981 hw_ena_intr(hw);
4984 dev->trans_start = jiffies;
4985 netif_wake_queue(dev);
4988 static inline void csum_verified(struct sk_buff *skb)
4990 unsigned short protocol;
4991 struct iphdr *iph;
4993 protocol = skb->protocol;
4994 skb_reset_network_header(skb);
4995 iph = (struct iphdr *) skb_network_header(skb);
4996 if (protocol == htons(ETH_P_8021Q)) {
4997 protocol = iph->tot_len;
4998 skb_set_network_header(skb, VLAN_HLEN);
4999 iph = (struct iphdr *) skb_network_header(skb);
5001 if (protocol == htons(ETH_P_IP)) {
5002 if (iph->protocol == IPPROTO_TCP)
5003 skb->ip_summed = CHECKSUM_UNNECESSARY;
5007 static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
5008 struct ksz_desc *desc, union desc_stat status)
5010 int packet_len;
5011 struct dev_priv *priv = netdev_priv(dev);
5012 struct dev_info *hw_priv = priv->adapter;
5013 struct ksz_dma_buf *dma_buf;
5014 struct sk_buff *skb;
5015 int rx_status;
5017 /* Received length includes 4-byte CRC. */
5018 packet_len = status.rx.frame_len - 4;
5020 dma_buf = DMA_BUFFER(desc);
5021 pci_dma_sync_single_for_cpu(
5022 hw_priv->pdev, dma_buf->dma, packet_len + 4,
5023 PCI_DMA_FROMDEVICE);
5025 do {
5026 /* skb->data != skb->head */
5027 skb = dev_alloc_skb(packet_len + 2);
5028 if (!skb) {
5029 dev->stats.rx_dropped++;
5030 return -ENOMEM;
5034 * Align socket buffer in 4-byte boundary for better
5035 * performance.
5037 skb_reserve(skb, 2);
5039 memcpy(skb_put(skb, packet_len),
5040 dma_buf->skb->data, packet_len);
5041 } while (0);
5043 skb->protocol = eth_type_trans(skb, dev);
5045 if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5046 csum_verified(skb);
5048 /* Update receive statistics. */
5049 dev->stats.rx_packets++;
5050 dev->stats.rx_bytes += packet_len;
5052 /* Notify upper layer for received packet. */
5053 rx_status = netif_rx(skb);
5055 return 0;
5058 static int dev_rcv_packets(struct dev_info *hw_priv)
5060 int next;
5061 union desc_stat status;
5062 struct ksz_hw *hw = &hw_priv->hw;
5063 struct net_device *dev = hw->port_info[0].pdev;
5064 struct ksz_desc_info *info = &hw->rx_desc_info;
5065 int left = info->alloc;
5066 struct ksz_desc *desc;
5067 int received = 0;
5069 next = info->next;
5070 while (left--) {
5071 /* Get next descriptor which is not hardware owned. */
5072 desc = &info->ring[next];
5073 status.data = le32_to_cpu(desc->phw->ctrl.data);
5074 if (status.rx.hw_owned)
5075 break;
5077 /* Status valid only when last descriptor bit is set. */
5078 if (status.rx.last_desc && status.rx.first_desc) {
5079 if (rx_proc(dev, hw, desc, status))
5080 goto release_packet;
5081 received++;
5084 release_packet:
5085 release_desc(desc);
5086 next++;
5087 next &= info->mask;
5089 info->next = next;
5091 return received;
5094 static int port_rcv_packets(struct dev_info *hw_priv)
5096 int next;
5097 union desc_stat status;
5098 struct ksz_hw *hw = &hw_priv->hw;
5099 struct net_device *dev = hw->port_info[0].pdev;
5100 struct ksz_desc_info *info = &hw->rx_desc_info;
5101 int left = info->alloc;
5102 struct ksz_desc *desc;
5103 int received = 0;
5105 next = info->next;
5106 while (left--) {
5107 /* Get next descriptor which is not hardware owned. */
5108 desc = &info->ring[next];
5109 status.data = le32_to_cpu(desc->phw->ctrl.data);
5110 if (status.rx.hw_owned)
5111 break;
5113 if (hw->dev_count > 1) {
5114 /* Get received port number. */
5115 int p = HW_TO_DEV_PORT(status.rx.src_port);
5117 dev = hw->port_info[p].pdev;
5118 if (!netif_running(dev))
5119 goto release_packet;
5122 /* Status valid only when last descriptor bit is set. */
5123 if (status.rx.last_desc && status.rx.first_desc) {
5124 if (rx_proc(dev, hw, desc, status))
5125 goto release_packet;
5126 received++;
5129 release_packet:
5130 release_desc(desc);
5131 next++;
5132 next &= info->mask;
5134 info->next = next;
5136 return received;
5139 static int dev_rcv_special(struct dev_info *hw_priv)
5141 int next;
5142 union desc_stat status;
5143 struct ksz_hw *hw = &hw_priv->hw;
5144 struct net_device *dev = hw->port_info[0].pdev;
5145 struct ksz_desc_info *info = &hw->rx_desc_info;
5146 int left = info->alloc;
5147 struct ksz_desc *desc;
5148 int received = 0;
5150 next = info->next;
5151 while (left--) {
5152 /* Get next descriptor which is not hardware owned. */
5153 desc = &info->ring[next];
5154 status.data = le32_to_cpu(desc->phw->ctrl.data);
5155 if (status.rx.hw_owned)
5156 break;
5158 if (hw->dev_count > 1) {
5159 /* Get received port number. */
5160 int p = HW_TO_DEV_PORT(status.rx.src_port);
5162 dev = hw->port_info[p].pdev;
5163 if (!netif_running(dev))
5164 goto release_packet;
5167 /* Status valid only when last descriptor bit is set. */
5168 if (status.rx.last_desc && status.rx.first_desc) {
5170 * Receive without error. With receive errors
5171 * disabled, packets with receive errors will be
5172 * dropped, so no need to check the error bit.
5174 if (!status.rx.error || (status.data &
5175 KS_DESC_RX_ERROR_COND) ==
5176 KS_DESC_RX_ERROR_TOO_LONG) {
5177 if (rx_proc(dev, hw, desc, status))
5178 goto release_packet;
5179 received++;
5180 } else {
5181 struct dev_priv *priv = netdev_priv(dev);
5183 /* Update receive error statistics. */
5184 priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5188 release_packet:
5189 release_desc(desc);
5190 next++;
5191 next &= info->mask;
5193 info->next = next;
5195 return received;
5198 static void rx_proc_task(unsigned long data)
5200 struct dev_info *hw_priv = (struct dev_info *) data;
5201 struct ksz_hw *hw = &hw_priv->hw;
5203 if (!hw->enabled)
5204 return;
5205 if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5207 /* In case receive process is suspended because of overrun. */
5208 hw_resume_rx(hw);
5210 /* tasklets are interruptible. */
5211 spin_lock_irq(&hw_priv->hwlock);
5212 hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5213 spin_unlock_irq(&hw_priv->hwlock);
5214 } else {
5215 hw_ack_intr(hw, KS884X_INT_RX);
5216 tasklet_schedule(&hw_priv->rx_tasklet);
5220 static void tx_proc_task(unsigned long data)
5222 struct dev_info *hw_priv = (struct dev_info *) data;
5223 struct ksz_hw *hw = &hw_priv->hw;
5225 hw_ack_intr(hw, KS884X_INT_TX_MASK);
5227 tx_done(hw_priv);
5229 /* tasklets are interruptible. */
5230 spin_lock_irq(&hw_priv->hwlock);
5231 hw_turn_on_intr(hw, KS884X_INT_TX);
5232 spin_unlock_irq(&hw_priv->hwlock);
5235 static inline void handle_rx_stop(struct ksz_hw *hw)
5237 /* Receive just has been stopped. */
5238 if (0 == hw->rx_stop)
5239 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5240 else if (hw->rx_stop > 1) {
5241 if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5242 hw_start_rx(hw);
5243 } else {
5244 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5245 hw->rx_stop = 0;
5247 } else
5248 /* Receive just has been started. */
5249 hw->rx_stop++;
5253 * netdev_intr - interrupt handling
5254 * @irq: Interrupt number.
5255 * @dev_id: Network device.
5257 * This function is called by upper network layer to signal interrupt.
5259 * Return IRQ_HANDLED if interrupt is handled.
5261 static irqreturn_t netdev_intr(int irq, void *dev_id)
5263 uint int_enable = 0;
5264 struct net_device *dev = (struct net_device *) dev_id;
5265 struct dev_priv *priv = netdev_priv(dev);
5266 struct dev_info *hw_priv = priv->adapter;
5267 struct ksz_hw *hw = &hw_priv->hw;
5269 hw_read_intr(hw, &int_enable);
5271 /* Not our interrupt! */
5272 if (!int_enable)
5273 return IRQ_NONE;
5275 do {
5276 hw_ack_intr(hw, int_enable);
5277 int_enable &= hw->intr_mask;
5279 if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5280 hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5281 tasklet_schedule(&hw_priv->tx_tasklet);
5284 if (likely(int_enable & KS884X_INT_RX)) {
5285 hw_dis_intr_bit(hw, KS884X_INT_RX);
5286 tasklet_schedule(&hw_priv->rx_tasklet);
5289 if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5290 dev->stats.rx_fifo_errors++;
5291 hw_resume_rx(hw);
5294 if (unlikely(int_enable & KS884X_INT_PHY)) {
5295 struct ksz_port *port = &priv->port;
5297 hw->features |= LINK_INT_WORKING;
5298 port_get_link_speed(port);
5301 if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5302 handle_rx_stop(hw);
5303 break;
5306 if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5307 u32 data;
5309 hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5310 pr_info("Tx stopped\n");
5311 data = readl(hw->io + KS_DMA_TX_CTRL);
5312 if (!(data & DMA_TX_ENABLE))
5313 pr_info("Tx disabled\n");
5314 break;
5316 } while (0);
5318 hw_ena_intr(hw);
5320 return IRQ_HANDLED;
5324 * Linux network device functions
5327 static unsigned long next_jiffies;
5329 #ifdef CONFIG_NET_POLL_CONTROLLER
5330 static void netdev_netpoll(struct net_device *dev)
5332 struct dev_priv *priv = netdev_priv(dev);
5333 struct dev_info *hw_priv = priv->adapter;
5335 hw_dis_intr(&hw_priv->hw);
5336 netdev_intr(dev->irq, dev);
5338 #endif
5340 static void bridge_change(struct ksz_hw *hw)
5342 int port;
5343 u8 member;
5344 struct ksz_switch *sw = hw->ksz_switch;
5346 /* No ports in forwarding state. */
5347 if (!sw->member) {
5348 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5349 sw_block_addr(hw);
5351 for (port = 0; port < SWITCH_PORT_NUM; port++) {
5352 if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5353 member = HOST_MASK | sw->member;
5354 else
5355 member = HOST_MASK | (1 << port);
5356 if (member != sw->port_cfg[port].member)
5357 sw_cfg_port_base_vlan(hw, port, member);
5362 * netdev_close - close network device
5363 * @dev: Network device.
5365 * This function process the close operation of network device. This is caused
5366 * by the user command "ifconfig ethX down."
5368 * Return 0 if successful; otherwise an error code indicating failure.
5370 static int netdev_close(struct net_device *dev)
5372 struct dev_priv *priv = netdev_priv(dev);
5373 struct dev_info *hw_priv = priv->adapter;
5374 struct ksz_port *port = &priv->port;
5375 struct ksz_hw *hw = &hw_priv->hw;
5376 int pi;
5378 netif_stop_queue(dev);
5380 ksz_stop_timer(&priv->monitor_timer_info);
5382 /* Need to shut the port manually in multiple device interfaces mode. */
5383 if (hw->dev_count > 1) {
5384 port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5386 /* Port is closed. Need to change bridge setting. */
5387 if (hw->features & STP_SUPPORT) {
5388 pi = 1 << port->first_port;
5389 if (hw->ksz_switch->member & pi) {
5390 hw->ksz_switch->member &= ~pi;
5391 bridge_change(hw);
5395 if (port->first_port > 0)
5396 hw_del_addr(hw, dev->dev_addr);
5397 if (!hw_priv->wol_enable)
5398 port_set_power_saving(port, true);
5400 if (priv->multicast)
5401 --hw->all_multi;
5402 if (priv->promiscuous)
5403 --hw->promiscuous;
5405 hw_priv->opened--;
5406 if (!(hw_priv->opened)) {
5407 ksz_stop_timer(&hw_priv->mib_timer_info);
5408 flush_work(&hw_priv->mib_read);
5410 hw_dis_intr(hw);
5411 hw_disable(hw);
5412 hw_clr_multicast(hw);
5414 /* Delay for receive task to stop scheduling itself. */
5415 msleep(2000 / HZ);
5417 tasklet_disable(&hw_priv->rx_tasklet);
5418 tasklet_disable(&hw_priv->tx_tasklet);
5419 free_irq(dev->irq, hw_priv->dev);
5421 transmit_cleanup(hw_priv, 0);
5422 hw_reset_pkts(&hw->rx_desc_info);
5423 hw_reset_pkts(&hw->tx_desc_info);
5425 /* Clean out static MAC table when the switch is shutdown. */
5426 if (hw->features & STP_SUPPORT)
5427 sw_clr_sta_mac_table(hw);
5430 return 0;
5433 static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5435 if (hw->ksz_switch) {
5436 u32 data;
5438 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5439 if (hw->features & RX_HUGE_FRAME)
5440 data |= SWITCH_HUGE_PACKET;
5441 else
5442 data &= ~SWITCH_HUGE_PACKET;
5443 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5445 if (hw->features & RX_HUGE_FRAME) {
5446 hw->rx_cfg |= DMA_RX_ERROR;
5447 hw_priv->dev_rcv = dev_rcv_special;
5448 } else {
5449 hw->rx_cfg &= ~DMA_RX_ERROR;
5450 if (hw->dev_count > 1)
5451 hw_priv->dev_rcv = port_rcv_packets;
5452 else
5453 hw_priv->dev_rcv = dev_rcv_packets;
5457 static int prepare_hardware(struct net_device *dev)
5459 struct dev_priv *priv = netdev_priv(dev);
5460 struct dev_info *hw_priv = priv->adapter;
5461 struct ksz_hw *hw = &hw_priv->hw;
5462 int rc = 0;
5464 /* Remember the network device that requests interrupts. */
5465 hw_priv->dev = dev;
5466 rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5467 if (rc)
5468 return rc;
5469 tasklet_enable(&hw_priv->rx_tasklet);
5470 tasklet_enable(&hw_priv->tx_tasklet);
5472 hw->promiscuous = 0;
5473 hw->all_multi = 0;
5474 hw->multi_list_size = 0;
5476 hw_reset(hw);
5478 hw_set_desc_base(hw,
5479 hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5480 hw_set_addr(hw);
5481 hw_cfg_huge_frame(hw_priv, hw);
5482 ksz_init_rx_buffers(hw_priv);
5483 return 0;
5486 static void set_media_state(struct net_device *dev, int media_state)
5488 struct dev_priv *priv = netdev_priv(dev);
5490 if (media_state == priv->media_state)
5491 netif_carrier_on(dev);
5492 else
5493 netif_carrier_off(dev);
5494 netif_info(priv, link, dev, "link %s\n",
5495 media_state == priv->media_state ? "on" : "off");
5499 * netdev_open - open network device
5500 * @dev: Network device.
5502 * This function process the open operation of network device. This is caused
5503 * by the user command "ifconfig ethX up."
5505 * Return 0 if successful; otherwise an error code indicating failure.
5507 static int netdev_open(struct net_device *dev)
5509 struct dev_priv *priv = netdev_priv(dev);
5510 struct dev_info *hw_priv = priv->adapter;
5511 struct ksz_hw *hw = &hw_priv->hw;
5512 struct ksz_port *port = &priv->port;
5513 int i;
5514 int p;
5515 int rc = 0;
5517 priv->multicast = 0;
5518 priv->promiscuous = 0;
5520 /* Reset device statistics. */
5521 memset(&dev->stats, 0, sizeof(struct net_device_stats));
5522 memset((void *) port->counter, 0,
5523 (sizeof(u64) * OID_COUNTER_LAST));
5525 if (!(hw_priv->opened)) {
5526 rc = prepare_hardware(dev);
5527 if (rc)
5528 return rc;
5529 for (i = 0; i < hw->mib_port_cnt; i++) {
5530 if (next_jiffies < jiffies)
5531 next_jiffies = jiffies + HZ * 2;
5532 else
5533 next_jiffies += HZ * 1;
5534 hw_priv->counter[i].time = next_jiffies;
5535 hw->port_mib[i].state = media_disconnected;
5536 port_init_cnt(hw, i);
5538 if (hw->ksz_switch)
5539 hw->port_mib[HOST_PORT].state = media_connected;
5540 else {
5541 hw_add_wol_bcast(hw);
5542 hw_cfg_wol_pme(hw, 0);
5543 hw_clr_wol_pme_status(&hw_priv->hw);
5546 port_set_power_saving(port, false);
5548 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5550 * Initialize to invalid value so that link detection
5551 * is done.
5553 hw->port_info[p].partner = 0xFF;
5554 hw->port_info[p].state = media_disconnected;
5557 /* Need to open the port in multiple device interfaces mode. */
5558 if (hw->dev_count > 1) {
5559 port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5560 if (port->first_port > 0)
5561 hw_add_addr(hw, dev->dev_addr);
5564 port_get_link_speed(port);
5565 if (port->force_link)
5566 port_force_link_speed(port);
5567 else
5568 port_set_link_speed(port);
5570 if (!(hw_priv->opened)) {
5571 hw_setup_intr(hw);
5572 hw_enable(hw);
5573 hw_ena_intr(hw);
5575 if (hw->mib_port_cnt)
5576 ksz_start_timer(&hw_priv->mib_timer_info,
5577 hw_priv->mib_timer_info.period);
5580 hw_priv->opened++;
5582 ksz_start_timer(&priv->monitor_timer_info,
5583 priv->monitor_timer_info.period);
5585 priv->media_state = port->linked->state;
5587 set_media_state(dev, media_connected);
5588 netif_start_queue(dev);
5590 return 0;
5593 /* RX errors = rx_errors */
5594 /* RX dropped = rx_dropped */
5595 /* RX overruns = rx_fifo_errors */
5596 /* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5597 /* TX errors = tx_errors */
5598 /* TX dropped = tx_dropped */
5599 /* TX overruns = tx_fifo_errors */
5600 /* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5601 /* collisions = collisions */
5604 * netdev_query_statistics - query network device statistics
5605 * @dev: Network device.
5607 * This function returns the statistics of the network device. The device
5608 * needs not be opened.
5610 * Return network device statistics.
5612 static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5614 struct dev_priv *priv = netdev_priv(dev);
5615 struct ksz_port *port = &priv->port;
5616 struct ksz_hw *hw = &priv->adapter->hw;
5617 struct ksz_port_mib *mib;
5618 int i;
5619 int p;
5621 dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5622 dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5624 /* Reset to zero to add count later. */
5625 dev->stats.multicast = 0;
5626 dev->stats.collisions = 0;
5627 dev->stats.rx_length_errors = 0;
5628 dev->stats.rx_crc_errors = 0;
5629 dev->stats.rx_frame_errors = 0;
5630 dev->stats.tx_window_errors = 0;
5632 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5633 mib = &hw->port_mib[p];
5635 dev->stats.multicast += (unsigned long)
5636 mib->counter[MIB_COUNTER_RX_MULTICAST];
5638 dev->stats.collisions += (unsigned long)
5639 mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5641 dev->stats.rx_length_errors += (unsigned long)(
5642 mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5643 mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5644 mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5645 mib->counter[MIB_COUNTER_RX_JABBER]);
5646 dev->stats.rx_crc_errors += (unsigned long)
5647 mib->counter[MIB_COUNTER_RX_CRC_ERR];
5648 dev->stats.rx_frame_errors += (unsigned long)(
5649 mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5650 mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5652 dev->stats.tx_window_errors += (unsigned long)
5653 mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5656 return &dev->stats;
5660 * netdev_set_mac_address - set network device MAC address
5661 * @dev: Network device.
5662 * @addr: Buffer of MAC address.
5664 * This function is used to set the MAC address of the network device.
5666 * Return 0 to indicate success.
5668 static int netdev_set_mac_address(struct net_device *dev, void *addr)
5670 struct dev_priv *priv = netdev_priv(dev);
5671 struct dev_info *hw_priv = priv->adapter;
5672 struct ksz_hw *hw = &hw_priv->hw;
5673 struct sockaddr *mac = addr;
5674 uint interrupt;
5676 if (priv->port.first_port > 0)
5677 hw_del_addr(hw, dev->dev_addr);
5678 else {
5679 hw->mac_override = 1;
5680 memcpy(hw->override_addr, mac->sa_data, MAC_ADDR_LEN);
5683 memcpy(dev->dev_addr, mac->sa_data, MAX_ADDR_LEN);
5685 interrupt = hw_block_intr(hw);
5687 if (priv->port.first_port > 0)
5688 hw_add_addr(hw, dev->dev_addr);
5689 else
5690 hw_set_addr(hw);
5691 hw_restore_intr(hw, interrupt);
5693 return 0;
5696 static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5697 struct ksz_hw *hw, int promiscuous)
5699 if (promiscuous != priv->promiscuous) {
5700 u8 prev_state = hw->promiscuous;
5702 if (promiscuous)
5703 ++hw->promiscuous;
5704 else
5705 --hw->promiscuous;
5706 priv->promiscuous = promiscuous;
5708 /* Turn on/off promiscuous mode. */
5709 if (hw->promiscuous <= 1 && prev_state <= 1)
5710 hw_set_promiscuous(hw, hw->promiscuous);
5713 * Port is not in promiscuous mode, meaning it is released
5714 * from the bridge.
5716 if ((hw->features & STP_SUPPORT) && !promiscuous &&
5717 (dev->priv_flags & IFF_BRIDGE_PORT)) {
5718 struct ksz_switch *sw = hw->ksz_switch;
5719 int port = priv->port.first_port;
5721 port_set_stp_state(hw, port, STP_STATE_DISABLED);
5722 port = 1 << port;
5723 if (sw->member & port) {
5724 sw->member &= ~port;
5725 bridge_change(hw);
5731 static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5732 int multicast)
5734 if (multicast != priv->multicast) {
5735 u8 all_multi = hw->all_multi;
5737 if (multicast)
5738 ++hw->all_multi;
5739 else
5740 --hw->all_multi;
5741 priv->multicast = multicast;
5743 /* Turn on/off all multicast mode. */
5744 if (hw->all_multi <= 1 && all_multi <= 1)
5745 hw_set_multicast(hw, hw->all_multi);
5750 * netdev_set_rx_mode
5751 * @dev: Network device.
5753 * This routine is used to set multicast addresses or put the network device
5754 * into promiscuous mode.
5756 static void netdev_set_rx_mode(struct net_device *dev)
5758 struct dev_priv *priv = netdev_priv(dev);
5759 struct dev_info *hw_priv = priv->adapter;
5760 struct ksz_hw *hw = &hw_priv->hw;
5761 struct netdev_hw_addr *ha;
5762 int multicast = (dev->flags & IFF_ALLMULTI);
5764 dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5766 if (hw_priv->hw.dev_count > 1)
5767 multicast |= (dev->flags & IFF_MULTICAST);
5768 dev_set_multicast(priv, hw, multicast);
5770 /* Cannot use different hashes in multiple device interfaces mode. */
5771 if (hw_priv->hw.dev_count > 1)
5772 return;
5774 if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5775 int i = 0;
5777 /* List too big to support so turn on all multicast mode. */
5778 if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5779 if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5780 hw->multi_list_size = MAX_MULTICAST_LIST;
5781 ++hw->all_multi;
5782 hw_set_multicast(hw, hw->all_multi);
5784 return;
5787 netdev_for_each_mc_addr(ha, dev) {
5788 if (i >= MAX_MULTICAST_LIST)
5789 break;
5790 memcpy(hw->multi_list[i++], ha->addr, MAC_ADDR_LEN);
5792 hw->multi_list_size = (u8) i;
5793 hw_set_grp_addr(hw);
5794 } else {
5795 if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5796 --hw->all_multi;
5797 hw_set_multicast(hw, hw->all_multi);
5799 hw->multi_list_size = 0;
5800 hw_clr_multicast(hw);
5804 static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5806 struct dev_priv *priv = netdev_priv(dev);
5807 struct dev_info *hw_priv = priv->adapter;
5808 struct ksz_hw *hw = &hw_priv->hw;
5809 int hw_mtu;
5811 if (netif_running(dev))
5812 return -EBUSY;
5814 /* Cannot use different MTU in multiple device interfaces mode. */
5815 if (hw->dev_count > 1)
5816 if (dev != hw_priv->dev)
5817 return 0;
5818 if (new_mtu < 60)
5819 return -EINVAL;
5821 if (dev->mtu != new_mtu) {
5822 hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5823 if (hw_mtu > MAX_RX_BUF_SIZE)
5824 return -EINVAL;
5825 if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5826 hw->features |= RX_HUGE_FRAME;
5827 hw_mtu = MAX_RX_BUF_SIZE;
5828 } else {
5829 hw->features &= ~RX_HUGE_FRAME;
5830 hw_mtu = REGULAR_RX_BUF_SIZE;
5832 hw_mtu = (hw_mtu + 3) & ~3;
5833 hw_priv->mtu = hw_mtu;
5834 dev->mtu = new_mtu;
5836 return 0;
5840 * netdev_ioctl - I/O control processing
5841 * @dev: Network device.
5842 * @ifr: Interface request structure.
5843 * @cmd: I/O control code.
5845 * This function is used to process I/O control calls.
5847 * Return 0 to indicate success.
5849 static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5851 struct dev_priv *priv = netdev_priv(dev);
5852 struct dev_info *hw_priv = priv->adapter;
5853 struct ksz_hw *hw = &hw_priv->hw;
5854 struct ksz_port *port = &priv->port;
5855 int rc;
5856 int result = 0;
5857 struct mii_ioctl_data *data = if_mii(ifr);
5859 if (down_interruptible(&priv->proc_sem))
5860 return -ERESTARTSYS;
5862 /* assume success */
5863 rc = 0;
5864 switch (cmd) {
5865 /* Get address of MII PHY in use. */
5866 case SIOCGMIIPHY:
5867 data->phy_id = priv->id;
5869 /* Fallthrough... */
5871 /* Read MII PHY register. */
5872 case SIOCGMIIREG:
5873 if (data->phy_id != priv->id || data->reg_num >= 6)
5874 result = -EIO;
5875 else
5876 hw_r_phy(hw, port->linked->port_id, data->reg_num,
5877 &data->val_out);
5878 break;
5880 /* Write MII PHY register. */
5881 case SIOCSMIIREG:
5882 if (!capable(CAP_NET_ADMIN))
5883 result = -EPERM;
5884 else if (data->phy_id != priv->id || data->reg_num >= 6)
5885 result = -EIO;
5886 else
5887 hw_w_phy(hw, port->linked->port_id, data->reg_num,
5888 data->val_in);
5889 break;
5891 default:
5892 result = -EOPNOTSUPP;
5895 up(&priv->proc_sem);
5897 return result;
5901 * MII support
5905 * mdio_read - read PHY register
5906 * @dev: Network device.
5907 * @phy_id: The PHY id.
5908 * @reg_num: The register number.
5910 * This function returns the PHY register value.
5912 * Return the register value.
5914 static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5916 struct dev_priv *priv = netdev_priv(dev);
5917 struct ksz_port *port = &priv->port;
5918 struct ksz_hw *hw = port->hw;
5919 u16 val_out;
5921 hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5922 return val_out;
5926 * mdio_write - set PHY register
5927 * @dev: Network device.
5928 * @phy_id: The PHY id.
5929 * @reg_num: The register number.
5930 * @val: The register value.
5932 * This procedure sets the PHY register value.
5934 static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5936 struct dev_priv *priv = netdev_priv(dev);
5937 struct ksz_port *port = &priv->port;
5938 struct ksz_hw *hw = port->hw;
5939 int i;
5940 int pi;
5942 for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5943 hw_w_phy(hw, pi, reg_num << 1, val);
5947 * ethtool support
5950 #define EEPROM_SIZE 0x40
5952 static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5954 #define ADVERTISED_ALL \
5955 (ADVERTISED_10baseT_Half | \
5956 ADVERTISED_10baseT_Full | \
5957 ADVERTISED_100baseT_Half | \
5958 ADVERTISED_100baseT_Full)
5960 /* These functions use the MII functions in mii.c. */
5963 * netdev_get_settings - get network device settings
5964 * @dev: Network device.
5965 * @cmd: Ethtool command.
5967 * This function queries the PHY and returns its state in the ethtool command.
5969 * Return 0 if successful; otherwise an error code.
5971 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5973 struct dev_priv *priv = netdev_priv(dev);
5974 struct dev_info *hw_priv = priv->adapter;
5976 mutex_lock(&hw_priv->lock);
5977 mii_ethtool_gset(&priv->mii_if, cmd);
5978 cmd->advertising |= SUPPORTED_TP;
5979 mutex_unlock(&hw_priv->lock);
5981 /* Save advertised settings for workaround in next function. */
5982 priv->advertising = cmd->advertising;
5983 return 0;
5987 * netdev_set_settings - set network device settings
5988 * @dev: Network device.
5989 * @cmd: Ethtool command.
5991 * This function sets the PHY according to the ethtool command.
5993 * Return 0 if successful; otherwise an error code.
5995 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5997 struct dev_priv *priv = netdev_priv(dev);
5998 struct dev_info *hw_priv = priv->adapter;
5999 struct ksz_port *port = &priv->port;
6000 u32 speed = ethtool_cmd_speed(cmd);
6001 int rc;
6004 * ethtool utility does not change advertised setting if auto
6005 * negotiation is not specified explicitly.
6007 if (cmd->autoneg && priv->advertising == cmd->advertising) {
6008 cmd->advertising |= ADVERTISED_ALL;
6009 if (10 == speed)
6010 cmd->advertising &=
6011 ~(ADVERTISED_100baseT_Full |
6012 ADVERTISED_100baseT_Half);
6013 else if (100 == speed)
6014 cmd->advertising &=
6015 ~(ADVERTISED_10baseT_Full |
6016 ADVERTISED_10baseT_Half);
6017 if (0 == cmd->duplex)
6018 cmd->advertising &=
6019 ~(ADVERTISED_100baseT_Full |
6020 ADVERTISED_10baseT_Full);
6021 else if (1 == cmd->duplex)
6022 cmd->advertising &=
6023 ~(ADVERTISED_100baseT_Half |
6024 ADVERTISED_10baseT_Half);
6026 mutex_lock(&hw_priv->lock);
6027 if (cmd->autoneg &&
6028 (cmd->advertising & ADVERTISED_ALL) ==
6029 ADVERTISED_ALL) {
6030 port->duplex = 0;
6031 port->speed = 0;
6032 port->force_link = 0;
6033 } else {
6034 port->duplex = cmd->duplex + 1;
6035 if (1000 != speed)
6036 port->speed = speed;
6037 if (cmd->autoneg)
6038 port->force_link = 0;
6039 else
6040 port->force_link = 1;
6042 rc = mii_ethtool_sset(&priv->mii_if, cmd);
6043 mutex_unlock(&hw_priv->lock);
6044 return rc;
6048 * netdev_nway_reset - restart auto-negotiation
6049 * @dev: Network device.
6051 * This function restarts the PHY for auto-negotiation.
6053 * Return 0 if successful; otherwise an error code.
6055 static int netdev_nway_reset(struct net_device *dev)
6057 struct dev_priv *priv = netdev_priv(dev);
6058 struct dev_info *hw_priv = priv->adapter;
6059 int rc;
6061 mutex_lock(&hw_priv->lock);
6062 rc = mii_nway_restart(&priv->mii_if);
6063 mutex_unlock(&hw_priv->lock);
6064 return rc;
6068 * netdev_get_link - get network device link status
6069 * @dev: Network device.
6071 * This function gets the link status from the PHY.
6073 * Return true if PHY is linked and false otherwise.
6075 static u32 netdev_get_link(struct net_device *dev)
6077 struct dev_priv *priv = netdev_priv(dev);
6078 int rc;
6080 rc = mii_link_ok(&priv->mii_if);
6081 return rc;
6085 * netdev_get_drvinfo - get network driver information
6086 * @dev: Network device.
6087 * @info: Ethtool driver info data structure.
6089 * This procedure returns the driver information.
6091 static void netdev_get_drvinfo(struct net_device *dev,
6092 struct ethtool_drvinfo *info)
6094 struct dev_priv *priv = netdev_priv(dev);
6095 struct dev_info *hw_priv = priv->adapter;
6097 strcpy(info->driver, DRV_NAME);
6098 strcpy(info->version, DRV_VERSION);
6099 strcpy(info->bus_info, pci_name(hw_priv->pdev));
6103 * netdev_get_regs_len - get length of register dump
6104 * @dev: Network device.
6106 * This function returns the length of the register dump.
6108 * Return length of the register dump.
6110 static struct hw_regs {
6111 int start;
6112 int end;
6113 } hw_regs_range[] = {
6114 { KS_DMA_TX_CTRL, KS884X_INTERRUPTS_STATUS },
6115 { KS_ADD_ADDR_0_LO, KS_ADD_ADDR_F_HI },
6116 { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET },
6117 { KS884X_SIDER_P, KS8842_SGCR7_P },
6118 { KS8842_MACAR1_P, KS8842_TOSR8_P },
6119 { KS884X_P1MBCR_P, KS8842_P3ERCR_P },
6120 { 0, 0 }
6123 static int netdev_get_regs_len(struct net_device *dev)
6125 struct hw_regs *range = hw_regs_range;
6126 int regs_len = 0x10 * sizeof(u32);
6128 while (range->end > range->start) {
6129 regs_len += (range->end - range->start + 3) / 4 * 4;
6130 range++;
6132 return regs_len;
6136 * netdev_get_regs - get register dump
6137 * @dev: Network device.
6138 * @regs: Ethtool registers data structure.
6139 * @ptr: Buffer to store the register values.
6141 * This procedure dumps the register values in the provided buffer.
6143 static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6144 void *ptr)
6146 struct dev_priv *priv = netdev_priv(dev);
6147 struct dev_info *hw_priv = priv->adapter;
6148 struct ksz_hw *hw = &hw_priv->hw;
6149 int *buf = (int *) ptr;
6150 struct hw_regs *range = hw_regs_range;
6151 int len;
6153 mutex_lock(&hw_priv->lock);
6154 regs->version = 0;
6155 for (len = 0; len < 0x40; len += 4) {
6156 pci_read_config_dword(hw_priv->pdev, len, buf);
6157 buf++;
6159 while (range->end > range->start) {
6160 for (len = range->start; len < range->end; len += 4) {
6161 *buf = readl(hw->io + len);
6162 buf++;
6164 range++;
6166 mutex_unlock(&hw_priv->lock);
6169 #define WOL_SUPPORT \
6170 (WAKE_PHY | WAKE_MAGIC | \
6171 WAKE_UCAST | WAKE_MCAST | \
6172 WAKE_BCAST | WAKE_ARP)
6175 * netdev_get_wol - get Wake-on-LAN support
6176 * @dev: Network device.
6177 * @wol: Ethtool Wake-on-LAN data structure.
6179 * This procedure returns Wake-on-LAN support.
6181 static void netdev_get_wol(struct net_device *dev,
6182 struct ethtool_wolinfo *wol)
6184 struct dev_priv *priv = netdev_priv(dev);
6185 struct dev_info *hw_priv = priv->adapter;
6187 wol->supported = hw_priv->wol_support;
6188 wol->wolopts = hw_priv->wol_enable;
6189 memset(&wol->sopass, 0, sizeof(wol->sopass));
6193 * netdev_set_wol - set Wake-on-LAN support
6194 * @dev: Network device.
6195 * @wol: Ethtool Wake-on-LAN data structure.
6197 * This function sets Wake-on-LAN support.
6199 * Return 0 if successful; otherwise an error code.
6201 static int netdev_set_wol(struct net_device *dev,
6202 struct ethtool_wolinfo *wol)
6204 struct dev_priv *priv = netdev_priv(dev);
6205 struct dev_info *hw_priv = priv->adapter;
6207 /* Need to find a way to retrieve the device IP address. */
6208 static const u8 net_addr[] = { 192, 168, 1, 1 };
6210 if (wol->wolopts & ~hw_priv->wol_support)
6211 return -EINVAL;
6213 hw_priv->wol_enable = wol->wolopts;
6215 /* Link wakeup cannot really be disabled. */
6216 if (wol->wolopts)
6217 hw_priv->wol_enable |= WAKE_PHY;
6218 hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6219 return 0;
6223 * netdev_get_msglevel - get debug message level
6224 * @dev: Network device.
6226 * This function returns current debug message level.
6228 * Return current debug message flags.
6230 static u32 netdev_get_msglevel(struct net_device *dev)
6232 struct dev_priv *priv = netdev_priv(dev);
6234 return priv->msg_enable;
6238 * netdev_set_msglevel - set debug message level
6239 * @dev: Network device.
6240 * @value: Debug message flags.
6242 * This procedure sets debug message level.
6244 static void netdev_set_msglevel(struct net_device *dev, u32 value)
6246 struct dev_priv *priv = netdev_priv(dev);
6248 priv->msg_enable = value;
6252 * netdev_get_eeprom_len - get EEPROM length
6253 * @dev: Network device.
6255 * This function returns the length of the EEPROM.
6257 * Return length of the EEPROM.
6259 static int netdev_get_eeprom_len(struct net_device *dev)
6261 return EEPROM_SIZE * 2;
6265 * netdev_get_eeprom - get EEPROM data
6266 * @dev: Network device.
6267 * @eeprom: Ethtool EEPROM data structure.
6268 * @data: Buffer to store the EEPROM data.
6270 * This function dumps the EEPROM data in the provided buffer.
6272 * Return 0 if successful; otherwise an error code.
6274 #define EEPROM_MAGIC 0x10A18842
6276 static int netdev_get_eeprom(struct net_device *dev,
6277 struct ethtool_eeprom *eeprom, u8 *data)
6279 struct dev_priv *priv = netdev_priv(dev);
6280 struct dev_info *hw_priv = priv->adapter;
6281 u8 *eeprom_byte = (u8 *) eeprom_data;
6282 int i;
6283 int len;
6285 len = (eeprom->offset + eeprom->len + 1) / 2;
6286 for (i = eeprom->offset / 2; i < len; i++)
6287 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6288 eeprom->magic = EEPROM_MAGIC;
6289 memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6291 return 0;
6295 * netdev_set_eeprom - write EEPROM data
6296 * @dev: Network device.
6297 * @eeprom: Ethtool EEPROM data structure.
6298 * @data: Data buffer.
6300 * This function modifies the EEPROM data one byte at a time.
6302 * Return 0 if successful; otherwise an error code.
6304 static int netdev_set_eeprom(struct net_device *dev,
6305 struct ethtool_eeprom *eeprom, u8 *data)
6307 struct dev_priv *priv = netdev_priv(dev);
6308 struct dev_info *hw_priv = priv->adapter;
6309 u16 eeprom_word[EEPROM_SIZE];
6310 u8 *eeprom_byte = (u8 *) eeprom_word;
6311 int i;
6312 int len;
6314 if (eeprom->magic != EEPROM_MAGIC)
6315 return -EINVAL;
6317 len = (eeprom->offset + eeprom->len + 1) / 2;
6318 for (i = eeprom->offset / 2; i < len; i++)
6319 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6320 memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6321 memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6322 for (i = 0; i < EEPROM_SIZE; i++)
6323 if (eeprom_word[i] != eeprom_data[i]) {
6324 eeprom_data[i] = eeprom_word[i];
6325 eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6328 return 0;
6332 * netdev_get_pauseparam - get flow control parameters
6333 * @dev: Network device.
6334 * @pause: Ethtool PAUSE settings data structure.
6336 * This procedure returns the PAUSE control flow settings.
6338 static void netdev_get_pauseparam(struct net_device *dev,
6339 struct ethtool_pauseparam *pause)
6341 struct dev_priv *priv = netdev_priv(dev);
6342 struct dev_info *hw_priv = priv->adapter;
6343 struct ksz_hw *hw = &hw_priv->hw;
6345 pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6346 if (!hw->ksz_switch) {
6347 pause->rx_pause =
6348 (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6349 pause->tx_pause =
6350 (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6351 } else {
6352 pause->rx_pause =
6353 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6354 SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6355 pause->tx_pause =
6356 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6357 SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6362 * netdev_set_pauseparam - set flow control parameters
6363 * @dev: Network device.
6364 * @pause: Ethtool PAUSE settings data structure.
6366 * This function sets the PAUSE control flow settings.
6367 * Not implemented yet.
6369 * Return 0 if successful; otherwise an error code.
6371 static int netdev_set_pauseparam(struct net_device *dev,
6372 struct ethtool_pauseparam *pause)
6374 struct dev_priv *priv = netdev_priv(dev);
6375 struct dev_info *hw_priv = priv->adapter;
6376 struct ksz_hw *hw = &hw_priv->hw;
6377 struct ksz_port *port = &priv->port;
6379 mutex_lock(&hw_priv->lock);
6380 if (pause->autoneg) {
6381 if (!pause->rx_pause && !pause->tx_pause)
6382 port->flow_ctrl = PHY_NO_FLOW_CTRL;
6383 else
6384 port->flow_ctrl = PHY_FLOW_CTRL;
6385 hw->overrides &= ~PAUSE_FLOW_CTRL;
6386 port->force_link = 0;
6387 if (hw->ksz_switch) {
6388 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6389 SWITCH_RX_FLOW_CTRL, 1);
6390 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6391 SWITCH_TX_FLOW_CTRL, 1);
6393 port_set_link_speed(port);
6394 } else {
6395 hw->overrides |= PAUSE_FLOW_CTRL;
6396 if (hw->ksz_switch) {
6397 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6398 SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6399 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6400 SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6401 } else
6402 set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6404 mutex_unlock(&hw_priv->lock);
6406 return 0;
6410 * netdev_get_ringparam - get tx/rx ring parameters
6411 * @dev: Network device.
6412 * @pause: Ethtool RING settings data structure.
6414 * This procedure returns the TX/RX ring settings.
6416 static void netdev_get_ringparam(struct net_device *dev,
6417 struct ethtool_ringparam *ring)
6419 struct dev_priv *priv = netdev_priv(dev);
6420 struct dev_info *hw_priv = priv->adapter;
6421 struct ksz_hw *hw = &hw_priv->hw;
6423 ring->tx_max_pending = (1 << 9);
6424 ring->tx_pending = hw->tx_desc_info.alloc;
6425 ring->rx_max_pending = (1 << 9);
6426 ring->rx_pending = hw->rx_desc_info.alloc;
6429 #define STATS_LEN (TOTAL_PORT_COUNTER_NUM)
6431 static struct {
6432 char string[ETH_GSTRING_LEN];
6433 } ethtool_stats_keys[STATS_LEN] = {
6434 { "rx_lo_priority_octets" },
6435 { "rx_hi_priority_octets" },
6436 { "rx_undersize_packets" },
6437 { "rx_fragments" },
6438 { "rx_oversize_packets" },
6439 { "rx_jabbers" },
6440 { "rx_symbol_errors" },
6441 { "rx_crc_errors" },
6442 { "rx_align_errors" },
6443 { "rx_mac_ctrl_packets" },
6444 { "rx_pause_packets" },
6445 { "rx_bcast_packets" },
6446 { "rx_mcast_packets" },
6447 { "rx_ucast_packets" },
6448 { "rx_64_or_less_octet_packets" },
6449 { "rx_65_to_127_octet_packets" },
6450 { "rx_128_to_255_octet_packets" },
6451 { "rx_256_to_511_octet_packets" },
6452 { "rx_512_to_1023_octet_packets" },
6453 { "rx_1024_to_1522_octet_packets" },
6455 { "tx_lo_priority_octets" },
6456 { "tx_hi_priority_octets" },
6457 { "tx_late_collisions" },
6458 { "tx_pause_packets" },
6459 { "tx_bcast_packets" },
6460 { "tx_mcast_packets" },
6461 { "tx_ucast_packets" },
6462 { "tx_deferred" },
6463 { "tx_total_collisions" },
6464 { "tx_excessive_collisions" },
6465 { "tx_single_collisions" },
6466 { "tx_mult_collisions" },
6468 { "rx_discards" },
6469 { "tx_discards" },
6473 * netdev_get_strings - get statistics identity strings
6474 * @dev: Network device.
6475 * @stringset: String set identifier.
6476 * @buf: Buffer to store the strings.
6478 * This procedure returns the strings used to identify the statistics.
6480 static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6482 struct dev_priv *priv = netdev_priv(dev);
6483 struct dev_info *hw_priv = priv->adapter;
6484 struct ksz_hw *hw = &hw_priv->hw;
6486 if (ETH_SS_STATS == stringset)
6487 memcpy(buf, &ethtool_stats_keys,
6488 ETH_GSTRING_LEN * hw->mib_cnt);
6492 * netdev_get_sset_count - get statistics size
6493 * @dev: Network device.
6494 * @sset: The statistics set number.
6496 * This function returns the size of the statistics to be reported.
6498 * Return size of the statistics to be reported.
6500 static int netdev_get_sset_count(struct net_device *dev, int sset)
6502 struct dev_priv *priv = netdev_priv(dev);
6503 struct dev_info *hw_priv = priv->adapter;
6504 struct ksz_hw *hw = &hw_priv->hw;
6506 switch (sset) {
6507 case ETH_SS_STATS:
6508 return hw->mib_cnt;
6509 default:
6510 return -EOPNOTSUPP;
6515 * netdev_get_ethtool_stats - get network device statistics
6516 * @dev: Network device.
6517 * @stats: Ethtool statistics data structure.
6518 * @data: Buffer to store the statistics.
6520 * This procedure returns the statistics.
6522 static void netdev_get_ethtool_stats(struct net_device *dev,
6523 struct ethtool_stats *stats, u64 *data)
6525 struct dev_priv *priv = netdev_priv(dev);
6526 struct dev_info *hw_priv = priv->adapter;
6527 struct ksz_hw *hw = &hw_priv->hw;
6528 struct ksz_port *port = &priv->port;
6529 int n_stats = stats->n_stats;
6530 int i;
6531 int n;
6532 int p;
6533 int rc;
6534 u64 counter[TOTAL_PORT_COUNTER_NUM];
6536 mutex_lock(&hw_priv->lock);
6537 n = SWITCH_PORT_NUM;
6538 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6539 if (media_connected == hw->port_mib[p].state) {
6540 hw_priv->counter[p].read = 1;
6542 /* Remember first port that requests read. */
6543 if (n == SWITCH_PORT_NUM)
6544 n = p;
6547 mutex_unlock(&hw_priv->lock);
6549 if (n < SWITCH_PORT_NUM)
6550 schedule_work(&hw_priv->mib_read);
6552 if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6553 p = n;
6554 rc = wait_event_interruptible_timeout(
6555 hw_priv->counter[p].counter,
6556 2 == hw_priv->counter[p].read,
6557 HZ * 1);
6558 } else
6559 for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6560 if (0 == i) {
6561 rc = wait_event_interruptible_timeout(
6562 hw_priv->counter[p].counter,
6563 2 == hw_priv->counter[p].read,
6564 HZ * 2);
6565 } else if (hw->port_mib[p].cnt_ptr) {
6566 rc = wait_event_interruptible_timeout(
6567 hw_priv->counter[p].counter,
6568 2 == hw_priv->counter[p].read,
6569 HZ * 1);
6573 get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6574 n = hw->mib_cnt;
6575 if (n > n_stats)
6576 n = n_stats;
6577 n_stats -= n;
6578 for (i = 0; i < n; i++)
6579 *data++ = counter[i];
6583 * netdev_set_features - set receive checksum support
6584 * @dev: Network device.
6585 * @features: New device features (offloads).
6587 * This function sets receive checksum support setting.
6589 * Return 0 if successful; otherwise an error code.
6591 static int netdev_set_features(struct net_device *dev, u32 features)
6593 struct dev_priv *priv = netdev_priv(dev);
6594 struct dev_info *hw_priv = priv->adapter;
6595 struct ksz_hw *hw = &hw_priv->hw;
6597 mutex_lock(&hw_priv->lock);
6599 /* see note in hw_setup() */
6600 if (features & NETIF_F_RXCSUM)
6601 hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6602 else
6603 hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6605 if (hw->enabled)
6606 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6608 mutex_unlock(&hw_priv->lock);
6610 return 0;
6613 static struct ethtool_ops netdev_ethtool_ops = {
6614 .get_settings = netdev_get_settings,
6615 .set_settings = netdev_set_settings,
6616 .nway_reset = netdev_nway_reset,
6617 .get_link = netdev_get_link,
6618 .get_drvinfo = netdev_get_drvinfo,
6619 .get_regs_len = netdev_get_regs_len,
6620 .get_regs = netdev_get_regs,
6621 .get_wol = netdev_get_wol,
6622 .set_wol = netdev_set_wol,
6623 .get_msglevel = netdev_get_msglevel,
6624 .set_msglevel = netdev_set_msglevel,
6625 .get_eeprom_len = netdev_get_eeprom_len,
6626 .get_eeprom = netdev_get_eeprom,
6627 .set_eeprom = netdev_set_eeprom,
6628 .get_pauseparam = netdev_get_pauseparam,
6629 .set_pauseparam = netdev_set_pauseparam,
6630 .get_ringparam = netdev_get_ringparam,
6631 .get_strings = netdev_get_strings,
6632 .get_sset_count = netdev_get_sset_count,
6633 .get_ethtool_stats = netdev_get_ethtool_stats,
6637 * Hardware monitoring
6640 static void update_link(struct net_device *dev, struct dev_priv *priv,
6641 struct ksz_port *port)
6643 if (priv->media_state != port->linked->state) {
6644 priv->media_state = port->linked->state;
6645 if (netif_running(dev))
6646 set_media_state(dev, media_connected);
6650 static void mib_read_work(struct work_struct *work)
6652 struct dev_info *hw_priv =
6653 container_of(work, struct dev_info, mib_read);
6654 struct ksz_hw *hw = &hw_priv->hw;
6655 struct ksz_port_mib *mib;
6656 int i;
6658 next_jiffies = jiffies;
6659 for (i = 0; i < hw->mib_port_cnt; i++) {
6660 mib = &hw->port_mib[i];
6662 /* Reading MIB counters or requested to read. */
6663 if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6665 /* Need to process receive interrupt. */
6666 if (port_r_cnt(hw, i))
6667 break;
6668 hw_priv->counter[i].read = 0;
6670 /* Finish reading counters. */
6671 if (0 == mib->cnt_ptr) {
6672 hw_priv->counter[i].read = 2;
6673 wake_up_interruptible(
6674 &hw_priv->counter[i].counter);
6676 } else if (jiffies >= hw_priv->counter[i].time) {
6677 /* Only read MIB counters when the port is connected. */
6678 if (media_connected == mib->state)
6679 hw_priv->counter[i].read = 1;
6680 next_jiffies += HZ * 1 * hw->mib_port_cnt;
6681 hw_priv->counter[i].time = next_jiffies;
6683 /* Port is just disconnected. */
6684 } else if (mib->link_down) {
6685 mib->link_down = 0;
6687 /* Read counters one last time after link is lost. */
6688 hw_priv->counter[i].read = 1;
6693 static void mib_monitor(unsigned long ptr)
6695 struct dev_info *hw_priv = (struct dev_info *) ptr;
6697 mib_read_work(&hw_priv->mib_read);
6699 /* This is used to verify Wake-on-LAN is working. */
6700 if (hw_priv->pme_wait) {
6701 if (hw_priv->pme_wait <= jiffies) {
6702 hw_clr_wol_pme_status(&hw_priv->hw);
6703 hw_priv->pme_wait = 0;
6705 } else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6707 /* PME is asserted. Wait 2 seconds to clear it. */
6708 hw_priv->pme_wait = jiffies + HZ * 2;
6711 ksz_update_timer(&hw_priv->mib_timer_info);
6715 * dev_monitor - periodic monitoring
6716 * @ptr: Network device pointer.
6718 * This routine is run in a kernel timer to monitor the network device.
6720 static void dev_monitor(unsigned long ptr)
6722 struct net_device *dev = (struct net_device *) ptr;
6723 struct dev_priv *priv = netdev_priv(dev);
6724 struct dev_info *hw_priv = priv->adapter;
6725 struct ksz_hw *hw = &hw_priv->hw;
6726 struct ksz_port *port = &priv->port;
6728 if (!(hw->features & LINK_INT_WORKING))
6729 port_get_link_speed(port);
6730 update_link(dev, priv, port);
6732 ksz_update_timer(&priv->monitor_timer_info);
6736 * Linux network device interface functions
6739 /* Driver exported variables */
6741 static int msg_enable;
6743 static char *macaddr = ":";
6744 static char *mac1addr = ":";
6747 * This enables multiple network device mode for KSZ8842, which contains a
6748 * switch with two physical ports. Some users like to take control of the
6749 * ports for running Spanning Tree Protocol. The driver will create an
6750 * additional eth? device for the other port.
6752 * Some limitations are the network devices cannot have different MTU and
6753 * multicast hash tables.
6755 static int multi_dev;
6758 * As most users select multiple network device mode to use Spanning Tree
6759 * Protocol, this enables a feature in which most unicast and multicast packets
6760 * are forwarded inside the switch and not passed to the host. Only packets
6761 * that need the host's attention are passed to it. This prevents the host
6762 * wasting CPU time to examine each and every incoming packets and do the
6763 * forwarding itself.
6765 * As the hack requires the private bridge header, the driver cannot compile
6766 * with just the kernel headers.
6768 * Enabling STP support also turns on multiple network device mode.
6770 static int stp;
6773 * This enables fast aging in the KSZ8842 switch. Not sure what situation
6774 * needs that. However, fast aging is used to flush the dynamic MAC table when
6775 * STP suport is enabled.
6777 static int fast_aging;
6780 * netdev_init - initialize network device.
6781 * @dev: Network device.
6783 * This function initializes the network device.
6785 * Return 0 if successful; otherwise an error code indicating failure.
6787 static int __init netdev_init(struct net_device *dev)
6789 struct dev_priv *priv = netdev_priv(dev);
6791 /* 500 ms timeout */
6792 ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6793 dev_monitor, dev);
6795 /* 500 ms timeout */
6796 dev->watchdog_timeo = HZ / 2;
6798 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6801 * Hardware does not really support IPv6 checksum generation, but
6802 * driver actually runs faster with this on.
6804 dev->hw_features |= NETIF_F_IPV6_CSUM;
6806 dev->features |= dev->hw_features;
6808 sema_init(&priv->proc_sem, 1);
6810 priv->mii_if.phy_id_mask = 0x1;
6811 priv->mii_if.reg_num_mask = 0x7;
6812 priv->mii_if.dev = dev;
6813 priv->mii_if.mdio_read = mdio_read;
6814 priv->mii_if.mdio_write = mdio_write;
6815 priv->mii_if.phy_id = priv->port.first_port + 1;
6817 priv->msg_enable = netif_msg_init(msg_enable,
6818 (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6820 return 0;
6823 static const struct net_device_ops netdev_ops = {
6824 .ndo_init = netdev_init,
6825 .ndo_open = netdev_open,
6826 .ndo_stop = netdev_close,
6827 .ndo_get_stats = netdev_query_statistics,
6828 .ndo_start_xmit = netdev_tx,
6829 .ndo_tx_timeout = netdev_tx_timeout,
6830 .ndo_change_mtu = netdev_change_mtu,
6831 .ndo_set_features = netdev_set_features,
6832 .ndo_set_mac_address = netdev_set_mac_address,
6833 .ndo_validate_addr = eth_validate_addr,
6834 .ndo_do_ioctl = netdev_ioctl,
6835 .ndo_set_rx_mode = netdev_set_rx_mode,
6836 #ifdef CONFIG_NET_POLL_CONTROLLER
6837 .ndo_poll_controller = netdev_netpoll,
6838 #endif
6841 static void netdev_free(struct net_device *dev)
6843 if (dev->watchdog_timeo)
6844 unregister_netdev(dev);
6846 free_netdev(dev);
6849 struct platform_info {
6850 struct dev_info dev_info;
6851 struct net_device *netdev[SWITCH_PORT_NUM];
6854 static int net_device_present;
6856 static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6858 int i;
6859 int j;
6860 int got_num;
6861 int num;
6863 i = j = num = got_num = 0;
6864 while (j < MAC_ADDR_LEN) {
6865 if (macaddr[i]) {
6866 int digit;
6868 got_num = 1;
6869 digit = hex_to_bin(macaddr[i]);
6870 if (digit >= 0)
6871 num = num * 16 + digit;
6872 else if (':' == macaddr[i])
6873 got_num = 2;
6874 else
6875 break;
6876 } else if (got_num)
6877 got_num = 2;
6878 else
6879 break;
6880 if (2 == got_num) {
6881 if (MAIN_PORT == port) {
6882 hw_priv->hw.override_addr[j++] = (u8) num;
6883 hw_priv->hw.override_addr[5] +=
6884 hw_priv->hw.id;
6885 } else {
6886 hw_priv->hw.ksz_switch->other_addr[j++] =
6887 (u8) num;
6888 hw_priv->hw.ksz_switch->other_addr[5] +=
6889 hw_priv->hw.id;
6891 num = got_num = 0;
6893 i++;
6895 if (MAC_ADDR_LEN == j) {
6896 if (MAIN_PORT == port)
6897 hw_priv->hw.mac_override = 1;
6901 #define KS884X_DMA_MASK (~0x0UL)
6903 static void read_other_addr(struct ksz_hw *hw)
6905 int i;
6906 u16 data[3];
6907 struct ksz_switch *sw = hw->ksz_switch;
6909 for (i = 0; i < 3; i++)
6910 data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6911 if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6912 sw->other_addr[5] = (u8) data[0];
6913 sw->other_addr[4] = (u8)(data[0] >> 8);
6914 sw->other_addr[3] = (u8) data[1];
6915 sw->other_addr[2] = (u8)(data[1] >> 8);
6916 sw->other_addr[1] = (u8) data[2];
6917 sw->other_addr[0] = (u8)(data[2] >> 8);
6921 #ifndef PCI_VENDOR_ID_MICREL_KS
6922 #define PCI_VENDOR_ID_MICREL_KS 0x16c6
6923 #endif
6925 static int __devinit pcidev_init(struct pci_dev *pdev,
6926 const struct pci_device_id *id)
6928 struct net_device *dev;
6929 struct dev_priv *priv;
6930 struct dev_info *hw_priv;
6931 struct ksz_hw *hw;
6932 struct platform_info *info;
6933 struct ksz_port *port;
6934 unsigned long reg_base;
6935 unsigned long reg_len;
6936 int cnt;
6937 int i;
6938 int mib_port_count;
6939 int pi;
6940 int port_count;
6941 int result;
6942 char banner[sizeof(version)];
6943 struct ksz_switch *sw = NULL;
6945 result = pci_enable_device(pdev);
6946 if (result)
6947 return result;
6949 result = -ENODEV;
6951 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6952 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6953 return result;
6955 reg_base = pci_resource_start(pdev, 0);
6956 reg_len = pci_resource_len(pdev, 0);
6957 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6958 return result;
6960 if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6961 return result;
6962 pci_set_master(pdev);
6964 result = -ENOMEM;
6966 info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6967 if (!info)
6968 goto pcidev_init_dev_err;
6970 hw_priv = &info->dev_info;
6971 hw_priv->pdev = pdev;
6973 hw = &hw_priv->hw;
6975 hw->io = ioremap(reg_base, reg_len);
6976 if (!hw->io)
6977 goto pcidev_init_io_err;
6979 cnt = hw_init(hw);
6980 if (!cnt) {
6981 if (msg_enable & NETIF_MSG_PROBE)
6982 pr_alert("chip not detected\n");
6983 result = -ENODEV;
6984 goto pcidev_init_alloc_err;
6987 snprintf(banner, sizeof(banner), "%s", version);
6988 banner[13] = cnt + '0'; /* Replace x in "Micrel KSZ884x" */
6989 dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6990 dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6992 /* Assume device is KSZ8841. */
6993 hw->dev_count = 1;
6994 port_count = 1;
6995 mib_port_count = 1;
6996 hw->addr_list_size = 0;
6997 hw->mib_cnt = PORT_COUNTER_NUM;
6998 hw->mib_port_cnt = 1;
7000 /* KSZ8842 has a switch with multiple ports. */
7001 if (2 == cnt) {
7002 if (fast_aging)
7003 hw->overrides |= FAST_AGING;
7005 hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
7007 /* Multiple network device interfaces are required. */
7008 if (multi_dev) {
7009 hw->dev_count = SWITCH_PORT_NUM;
7010 hw->addr_list_size = SWITCH_PORT_NUM - 1;
7013 /* Single network device has multiple ports. */
7014 if (1 == hw->dev_count) {
7015 port_count = SWITCH_PORT_NUM;
7016 mib_port_count = SWITCH_PORT_NUM;
7018 hw->mib_port_cnt = TOTAL_PORT_NUM;
7019 hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7020 if (!hw->ksz_switch)
7021 goto pcidev_init_alloc_err;
7023 sw = hw->ksz_switch;
7025 for (i = 0; i < hw->mib_port_cnt; i++)
7026 hw->port_mib[i].mib_start = 0;
7028 hw->parent = hw_priv;
7030 /* Default MTU is 1500. */
7031 hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7033 if (ksz_alloc_mem(hw_priv))
7034 goto pcidev_init_mem_err;
7036 hw_priv->hw.id = net_device_present;
7038 spin_lock_init(&hw_priv->hwlock);
7039 mutex_init(&hw_priv->lock);
7041 /* tasklet is enabled. */
7042 tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
7043 (unsigned long) hw_priv);
7044 tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
7045 (unsigned long) hw_priv);
7047 /* tasklet_enable will decrement the atomic counter. */
7048 tasklet_disable(&hw_priv->rx_tasklet);
7049 tasklet_disable(&hw_priv->tx_tasklet);
7051 for (i = 0; i < TOTAL_PORT_NUM; i++)
7052 init_waitqueue_head(&hw_priv->counter[i].counter);
7054 if (macaddr[0] != ':')
7055 get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7057 /* Read MAC address and initialize override address if not overrided. */
7058 hw_read_addr(hw);
7060 /* Multiple device interfaces mode requires a second MAC address. */
7061 if (hw->dev_count > 1) {
7062 memcpy(sw->other_addr, hw->override_addr, MAC_ADDR_LEN);
7063 read_other_addr(hw);
7064 if (mac1addr[0] != ':')
7065 get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7068 hw_setup(hw);
7069 if (hw->ksz_switch)
7070 sw_setup(hw);
7071 else {
7072 hw_priv->wol_support = WOL_SUPPORT;
7073 hw_priv->wol_enable = 0;
7076 INIT_WORK(&hw_priv->mib_read, mib_read_work);
7078 /* 500 ms timeout */
7079 ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7080 mib_monitor, hw_priv);
7082 for (i = 0; i < hw->dev_count; i++) {
7083 dev = alloc_etherdev(sizeof(struct dev_priv));
7084 if (!dev)
7085 goto pcidev_init_reg_err;
7086 info->netdev[i] = dev;
7088 priv = netdev_priv(dev);
7089 priv->adapter = hw_priv;
7090 priv->id = net_device_present++;
7092 port = &priv->port;
7093 port->port_cnt = port_count;
7094 port->mib_port_cnt = mib_port_count;
7095 port->first_port = i;
7096 port->flow_ctrl = PHY_FLOW_CTRL;
7098 port->hw = hw;
7099 port->linked = &hw->port_info[port->first_port];
7101 for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7102 hw->port_info[pi].port_id = pi;
7103 hw->port_info[pi].pdev = dev;
7104 hw->port_info[pi].state = media_disconnected;
7107 dev->mem_start = (unsigned long) hw->io;
7108 dev->mem_end = dev->mem_start + reg_len - 1;
7109 dev->irq = pdev->irq;
7110 if (MAIN_PORT == i)
7111 memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7112 MAC_ADDR_LEN);
7113 else {
7114 memcpy(dev->dev_addr, sw->other_addr,
7115 MAC_ADDR_LEN);
7116 if (!memcmp(sw->other_addr, hw->override_addr,
7117 MAC_ADDR_LEN))
7118 dev->dev_addr[5] += port->first_port;
7121 dev->netdev_ops = &netdev_ops;
7122 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7123 if (register_netdev(dev))
7124 goto pcidev_init_reg_err;
7125 port_set_power_saving(port, true);
7128 pci_dev_get(hw_priv->pdev);
7129 pci_set_drvdata(pdev, info);
7130 return 0;
7132 pcidev_init_reg_err:
7133 for (i = 0; i < hw->dev_count; i++) {
7134 if (info->netdev[i]) {
7135 netdev_free(info->netdev[i]);
7136 info->netdev[i] = NULL;
7140 pcidev_init_mem_err:
7141 ksz_free_mem(hw_priv);
7142 kfree(hw->ksz_switch);
7144 pcidev_init_alloc_err:
7145 iounmap(hw->io);
7147 pcidev_init_io_err:
7148 kfree(info);
7150 pcidev_init_dev_err:
7151 release_mem_region(reg_base, reg_len);
7153 return result;
7156 static void pcidev_exit(struct pci_dev *pdev)
7158 int i;
7159 struct platform_info *info = pci_get_drvdata(pdev);
7160 struct dev_info *hw_priv = &info->dev_info;
7162 pci_set_drvdata(pdev, NULL);
7164 release_mem_region(pci_resource_start(pdev, 0),
7165 pci_resource_len(pdev, 0));
7166 for (i = 0; i < hw_priv->hw.dev_count; i++) {
7167 if (info->netdev[i])
7168 netdev_free(info->netdev[i]);
7170 if (hw_priv->hw.io)
7171 iounmap(hw_priv->hw.io);
7172 ksz_free_mem(hw_priv);
7173 kfree(hw_priv->hw.ksz_switch);
7174 pci_dev_put(hw_priv->pdev);
7175 kfree(info);
7178 #ifdef CONFIG_PM
7179 static int pcidev_resume(struct pci_dev *pdev)
7181 int i;
7182 struct platform_info *info = pci_get_drvdata(pdev);
7183 struct dev_info *hw_priv = &info->dev_info;
7184 struct ksz_hw *hw = &hw_priv->hw;
7186 pci_set_power_state(pdev, PCI_D0);
7187 pci_restore_state(pdev);
7188 pci_enable_wake(pdev, PCI_D0, 0);
7190 if (hw_priv->wol_enable)
7191 hw_cfg_wol_pme(hw, 0);
7192 for (i = 0; i < hw->dev_count; i++) {
7193 if (info->netdev[i]) {
7194 struct net_device *dev = info->netdev[i];
7196 if (netif_running(dev)) {
7197 netdev_open(dev);
7198 netif_device_attach(dev);
7202 return 0;
7205 static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7207 int i;
7208 struct platform_info *info = pci_get_drvdata(pdev);
7209 struct dev_info *hw_priv = &info->dev_info;
7210 struct ksz_hw *hw = &hw_priv->hw;
7212 /* Need to find a way to retrieve the device IP address. */
7213 static const u8 net_addr[] = { 192, 168, 1, 1 };
7215 for (i = 0; i < hw->dev_count; i++) {
7216 if (info->netdev[i]) {
7217 struct net_device *dev = info->netdev[i];
7219 if (netif_running(dev)) {
7220 netif_device_detach(dev);
7221 netdev_close(dev);
7225 if (hw_priv->wol_enable) {
7226 hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7227 hw_cfg_wol_pme(hw, 1);
7230 pci_save_state(pdev);
7231 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7232 pci_set_power_state(pdev, pci_choose_state(pdev, state));
7233 return 0;
7235 #endif
7237 static char pcidev_name[] = "ksz884xp";
7239 static struct pci_device_id pcidev_table[] = {
7240 { PCI_VENDOR_ID_MICREL_KS, 0x8841,
7241 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7242 { PCI_VENDOR_ID_MICREL_KS, 0x8842,
7243 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7244 { 0 }
7247 MODULE_DEVICE_TABLE(pci, pcidev_table);
7249 static struct pci_driver pci_device_driver = {
7250 #ifdef CONFIG_PM
7251 .suspend = pcidev_suspend,
7252 .resume = pcidev_resume,
7253 #endif
7254 .name = pcidev_name,
7255 .id_table = pcidev_table,
7256 .probe = pcidev_init,
7257 .remove = pcidev_exit
7260 static int __init ksz884x_init_module(void)
7262 return pci_register_driver(&pci_device_driver);
7265 static void __exit ksz884x_cleanup_module(void)
7267 pci_unregister_driver(&pci_device_driver);
7270 module_init(ksz884x_init_module);
7271 module_exit(ksz884x_cleanup_module);
7273 MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7274 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7275 MODULE_LICENSE("GPL");
7277 module_param_named(message, msg_enable, int, 0);
7278 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7280 module_param(macaddr, charp, 0);
7281 module_param(mac1addr, charp, 0);
7282 module_param(fast_aging, int, 0);
7283 module_param(multi_dev, int, 0);
7284 module_param(stp, int, 0);
7285 MODULE_PARM_DESC(macaddr, "MAC address");
7286 MODULE_PARM_DESC(mac1addr, "Second MAC address");
7287 MODULE_PARM_DESC(fast_aging, "Fast aging");
7288 MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7289 MODULE_PARM_DESC(stp, "STP support");