Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / drivers / platform / x86 / intel_ips.c
blob809a3ae943c6997f65a20328f8fe2fb02690cd6c
1 /*
2 * Copyright (c) 2009-2010 Intel Corporation
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 * The full GNU General Public License is included in this distribution in
18 * the file called "COPYING".
20 * Authors:
21 * Jesse Barnes <jbarnes@virtuousgeek.org>
25 * Some Intel Ibex Peak based platforms support so-called "intelligent
26 * power sharing", which allows the CPU and GPU to cooperate to maximize
27 * performance within a given TDP (thermal design point). This driver
28 * performs the coordination between the CPU and GPU, monitors thermal and
29 * power statistics in the platform, and initializes power monitoring
30 * hardware. It also provides a few tunables to control behavior. Its
31 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
32 * by tracking power and thermal budget; secondarily it can boost turbo
33 * performance by allocating more power or thermal budget to the CPU or GPU
34 * based on available headroom and activity.
36 * The basic algorithm is driven by a 5s moving average of tempurature. If
37 * thermal headroom is available, the CPU and/or GPU power clamps may be
38 * adjusted upwards. If we hit the thermal ceiling or a thermal trigger,
39 * we scale back the clamp. Aside from trigger events (when we're critically
40 * close or over our TDP) we don't adjust the clamps more than once every
41 * five seconds.
43 * The thermal device (device 31, function 6) has a set of registers that
44 * are updated by the ME firmware. The ME should also take the clamp values
45 * written to those registers and write them to the CPU, but we currently
46 * bypass that functionality and write the CPU MSR directly.
48 * UNSUPPORTED:
49 * - dual MCP configs
51 * TODO:
52 * - handle CPU hotplug
53 * - provide turbo enable/disable api
55 * Related documents:
56 * - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
57 * - CDI 401376 - Ibex Peak EDS
58 * - ref 26037, 26641 - IPS BIOS spec
59 * - ref 26489 - Nehalem BIOS writer's guide
60 * - ref 26921 - Ibex Peak BIOS Specification
63 #include <linux/debugfs.h>
64 #include <linux/delay.h>
65 #include <linux/interrupt.h>
66 #include <linux/kernel.h>
67 #include <linux/kthread.h>
68 #include <linux/module.h>
69 #include <linux/pci.h>
70 #include <linux/sched.h>
71 #include <linux/seq_file.h>
72 #include <linux/string.h>
73 #include <linux/tick.h>
74 #include <linux/timer.h>
75 #include <drm/i915_drm.h>
76 #include <asm/msr.h>
77 #include <asm/processor.h>
78 #include "intel_ips.h"
80 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
83 * Package level MSRs for monitor/control
85 #define PLATFORM_INFO 0xce
86 #define PLATFORM_TDP (1<<29)
87 #define PLATFORM_RATIO (1<<28)
89 #define IA32_MISC_ENABLE 0x1a0
90 #define IA32_MISC_TURBO_EN (1ULL<<38)
92 #define TURBO_POWER_CURRENT_LIMIT 0x1ac
93 #define TURBO_TDC_OVR_EN (1UL<<31)
94 #define TURBO_TDC_MASK (0x000000007fff0000UL)
95 #define TURBO_TDC_SHIFT (16)
96 #define TURBO_TDP_OVR_EN (1UL<<15)
97 #define TURBO_TDP_MASK (0x0000000000003fffUL)
100 * Core/thread MSRs for monitoring
102 #define IA32_PERF_CTL 0x199
103 #define IA32_PERF_TURBO_DIS (1ULL<<32)
106 * Thermal PCI device regs
108 #define THM_CFG_TBAR 0x10
109 #define THM_CFG_TBAR_HI 0x14
111 #define THM_TSIU 0x00
112 #define THM_TSE 0x01
113 #define TSE_EN 0xb8
114 #define THM_TSS 0x02
115 #define THM_TSTR 0x03
116 #define THM_TSTTP 0x04
117 #define THM_TSCO 0x08
118 #define THM_TSES 0x0c
119 #define THM_TSGPEN 0x0d
120 #define TSGPEN_HOT_LOHI (1<<1)
121 #define TSGPEN_CRIT_LOHI (1<<2)
122 #define THM_TSPC 0x0e
123 #define THM_PPEC 0x10
124 #define THM_CTA 0x12
125 #define THM_PTA 0x14
126 #define PTA_SLOPE_MASK (0xff00)
127 #define PTA_SLOPE_SHIFT 8
128 #define PTA_OFFSET_MASK (0x00ff)
129 #define THM_MGTA 0x16
130 #define MGTA_SLOPE_MASK (0xff00)
131 #define MGTA_SLOPE_SHIFT 8
132 #define MGTA_OFFSET_MASK (0x00ff)
133 #define THM_TRC 0x1a
134 #define TRC_CORE2_EN (1<<15)
135 #define TRC_THM_EN (1<<12)
136 #define TRC_C6_WAR (1<<8)
137 #define TRC_CORE1_EN (1<<7)
138 #define TRC_CORE_PWR (1<<6)
139 #define TRC_PCH_EN (1<<5)
140 #define TRC_MCH_EN (1<<4)
141 #define TRC_DIMM4 (1<<3)
142 #define TRC_DIMM3 (1<<2)
143 #define TRC_DIMM2 (1<<1)
144 #define TRC_DIMM1 (1<<0)
145 #define THM_TES 0x20
146 #define THM_TEN 0x21
147 #define TEN_UPDATE_EN 1
148 #define THM_PSC 0x24
149 #define PSC_NTG (1<<0) /* No GFX turbo support */
150 #define PSC_NTPC (1<<1) /* No CPU turbo support */
151 #define PSC_PP_DEF (0<<2) /* Perf policy up to driver */
152 #define PSP_PP_PC (1<<2) /* BIOS prefers CPU perf */
153 #define PSP_PP_BAL (2<<2) /* BIOS wants balanced perf */
154 #define PSP_PP_GFX (3<<2) /* BIOS prefers GFX perf */
155 #define PSP_PBRT (1<<4) /* BIOS run time support */
156 #define THM_CTV1 0x30
157 #define CTV_TEMP_ERROR (1<<15)
158 #define CTV_TEMP_MASK 0x3f
159 #define CTV_
160 #define THM_CTV2 0x32
161 #define THM_CEC 0x34 /* undocumented power accumulator in joules */
162 #define THM_AE 0x3f
163 #define THM_HTS 0x50 /* 32 bits */
164 #define HTS_PCPL_MASK (0x7fe00000)
165 #define HTS_PCPL_SHIFT 21
166 #define HTS_GPL_MASK (0x001ff000)
167 #define HTS_GPL_SHIFT 12
168 #define HTS_PP_MASK (0x00000c00)
169 #define HTS_PP_SHIFT 10
170 #define HTS_PP_DEF 0
171 #define HTS_PP_PROC 1
172 #define HTS_PP_BAL 2
173 #define HTS_PP_GFX 3
174 #define HTS_PCTD_DIS (1<<9)
175 #define HTS_GTD_DIS (1<<8)
176 #define HTS_PTL_MASK (0x000000fe)
177 #define HTS_PTL_SHIFT 1
178 #define HTS_NVV (1<<0)
179 #define THM_HTSHI 0x54 /* 16 bits */
180 #define HTS2_PPL_MASK (0x03ff)
181 #define HTS2_PRST_MASK (0x3c00)
182 #define HTS2_PRST_SHIFT 10
183 #define HTS2_PRST_UNLOADED 0
184 #define HTS2_PRST_RUNNING 1
185 #define HTS2_PRST_TDISOP 2 /* turbo disabled due to power */
186 #define HTS2_PRST_TDISHT 3 /* turbo disabled due to high temp */
187 #define HTS2_PRST_TDISUSR 4 /* user disabled turbo */
188 #define HTS2_PRST_TDISPLAT 5 /* platform disabled turbo */
189 #define HTS2_PRST_TDISPM 6 /* power management disabled turbo */
190 #define HTS2_PRST_TDISERR 7 /* some kind of error disabled turbo */
191 #define THM_PTL 0x56
192 #define THM_MGTV 0x58
193 #define TV_MASK 0x000000000000ff00
194 #define TV_SHIFT 8
195 #define THM_PTV 0x60
196 #define PTV_MASK 0x00ff
197 #define THM_MMGPC 0x64
198 #define THM_MPPC 0x66
199 #define THM_MPCPC 0x68
200 #define THM_TSPIEN 0x82
201 #define TSPIEN_AUX_LOHI (1<<0)
202 #define TSPIEN_HOT_LOHI (1<<1)
203 #define TSPIEN_CRIT_LOHI (1<<2)
204 #define TSPIEN_AUX2_LOHI (1<<3)
205 #define THM_TSLOCK 0x83
206 #define THM_ATR 0x84
207 #define THM_TOF 0x87
208 #define THM_STS 0x98
209 #define STS_PCPL_MASK (0x7fe00000)
210 #define STS_PCPL_SHIFT 21
211 #define STS_GPL_MASK (0x001ff000)
212 #define STS_GPL_SHIFT 12
213 #define STS_PP_MASK (0x00000c00)
214 #define STS_PP_SHIFT 10
215 #define STS_PP_DEF 0
216 #define STS_PP_PROC 1
217 #define STS_PP_BAL 2
218 #define STS_PP_GFX 3
219 #define STS_PCTD_DIS (1<<9)
220 #define STS_GTD_DIS (1<<8)
221 #define STS_PTL_MASK (0x000000fe)
222 #define STS_PTL_SHIFT 1
223 #define STS_NVV (1<<0)
224 #define THM_SEC 0x9c
225 #define SEC_ACK (1<<0)
226 #define THM_TC3 0xa4
227 #define THM_TC1 0xa8
228 #define STS_PPL_MASK (0x0003ff00)
229 #define STS_PPL_SHIFT 16
230 #define THM_TC2 0xac
231 #define THM_DTV 0xb0
232 #define THM_ITV 0xd8
233 #define ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
234 #define ITV_ME_SEQNO_SHIFT (16)
235 #define ITV_MCH_TEMP_MASK 0x0000ff00
236 #define ITV_MCH_TEMP_SHIFT (8)
237 #define ITV_PCH_TEMP_MASK 0x000000ff
239 #define thm_readb(off) readb(ips->regmap + (off))
240 #define thm_readw(off) readw(ips->regmap + (off))
241 #define thm_readl(off) readl(ips->regmap + (off))
242 #define thm_readq(off) readq(ips->regmap + (off))
244 #define thm_writeb(off, val) writeb((val), ips->regmap + (off))
245 #define thm_writew(off, val) writew((val), ips->regmap + (off))
246 #define thm_writel(off, val) writel((val), ips->regmap + (off))
248 static const int IPS_ADJUST_PERIOD = 5000; /* ms */
249 static bool late_i915_load = false;
251 /* For initial average collection */
252 static const int IPS_SAMPLE_PERIOD = 200; /* ms */
253 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
254 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
256 /* Per-SKU limits */
257 struct ips_mcp_limits {
258 int cpu_family;
259 int cpu_model; /* includes extended model... */
260 int mcp_power_limit; /* mW units */
261 int core_power_limit;
262 int mch_power_limit;
263 int core_temp_limit; /* degrees C */
264 int mch_temp_limit;
267 /* Max temps are -10 degrees C to avoid PROCHOT# */
269 struct ips_mcp_limits ips_sv_limits = {
270 .mcp_power_limit = 35000,
271 .core_power_limit = 29000,
272 .mch_power_limit = 20000,
273 .core_temp_limit = 95,
274 .mch_temp_limit = 90
277 struct ips_mcp_limits ips_lv_limits = {
278 .mcp_power_limit = 25000,
279 .core_power_limit = 21000,
280 .mch_power_limit = 13000,
281 .core_temp_limit = 95,
282 .mch_temp_limit = 90
285 struct ips_mcp_limits ips_ulv_limits = {
286 .mcp_power_limit = 18000,
287 .core_power_limit = 14000,
288 .mch_power_limit = 11000,
289 .core_temp_limit = 95,
290 .mch_temp_limit = 90
293 struct ips_driver {
294 struct pci_dev *dev;
295 void *regmap;
296 struct task_struct *monitor;
297 struct task_struct *adjust;
298 struct dentry *debug_root;
300 /* Average CPU core temps (all averages in .01 degrees C for precision) */
301 u16 ctv1_avg_temp;
302 u16 ctv2_avg_temp;
303 /* GMCH average */
304 u16 mch_avg_temp;
305 /* Average for the CPU (both cores?) */
306 u16 mcp_avg_temp;
307 /* Average power consumption (in mW) */
308 u32 cpu_avg_power;
309 u32 mch_avg_power;
311 /* Offset values */
312 u16 cta_val;
313 u16 pta_val;
314 u16 mgta_val;
316 /* Maximums & prefs, protected by turbo status lock */
317 spinlock_t turbo_status_lock;
318 u16 mcp_temp_limit;
319 u16 mcp_power_limit;
320 u16 core_power_limit;
321 u16 mch_power_limit;
322 bool cpu_turbo_enabled;
323 bool __cpu_turbo_on;
324 bool gpu_turbo_enabled;
325 bool __gpu_turbo_on;
326 bool gpu_preferred;
327 bool poll_turbo_status;
328 bool second_cpu;
329 bool turbo_toggle_allowed;
330 struct ips_mcp_limits *limits;
332 /* Optional MCH interfaces for if i915 is in use */
333 unsigned long (*read_mch_val)(void);
334 bool (*gpu_raise)(void);
335 bool (*gpu_lower)(void);
336 bool (*gpu_busy)(void);
337 bool (*gpu_turbo_disable)(void);
339 /* For restoration at unload */
340 u64 orig_turbo_limit;
341 u64 orig_turbo_ratios;
344 static bool
345 ips_gpu_turbo_enabled(struct ips_driver *ips);
347 #ifndef readq
348 static inline __u64 readq(const volatile void __iomem *addr)
350 const volatile u32 __iomem *p = addr;
351 u32 low, high;
353 low = readl(p);
354 high = readl(p + 1);
356 return low + ((u64)high << 32);
358 #endif
361 * ips_cpu_busy - is CPU busy?
362 * @ips: IPS driver struct
364 * Check CPU for load to see whether we should increase its thermal budget.
366 * RETURNS:
367 * True if the CPU could use more power, false otherwise.
369 static bool ips_cpu_busy(struct ips_driver *ips)
371 if ((avenrun[0] >> FSHIFT) > 1)
372 return true;
374 return false;
378 * ips_cpu_raise - raise CPU power clamp
379 * @ips: IPS driver struct
381 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
382 * this platform.
384 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
385 * long as we haven't hit the TDP limit for the SKU).
387 static void ips_cpu_raise(struct ips_driver *ips)
389 u64 turbo_override;
390 u16 cur_tdp_limit, new_tdp_limit;
392 if (!ips->cpu_turbo_enabled)
393 return;
395 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
397 cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
398 new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
400 /* Clamp to SKU TDP limit */
401 if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
402 new_tdp_limit = cur_tdp_limit;
404 thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
406 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
407 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
409 turbo_override &= ~TURBO_TDP_MASK;
410 turbo_override |= new_tdp_limit;
412 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
416 * ips_cpu_lower - lower CPU power clamp
417 * @ips: IPS driver struct
419 * Lower CPU power clamp b %IPS_CPU_STEP if possible.
421 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
422 * as low as the platform limits will allow (though we could go lower there
423 * wouldn't be much point).
425 static void ips_cpu_lower(struct ips_driver *ips)
427 u64 turbo_override;
428 u16 cur_limit, new_limit;
430 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
432 cur_limit = turbo_override & TURBO_TDP_MASK;
433 new_limit = cur_limit - 8; /* 1W decrease */
435 /* Clamp to SKU TDP limit */
436 if (new_limit < (ips->orig_turbo_limit & TURBO_TDP_MASK))
437 new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
439 thm_writew(THM_MPCPC, (new_limit * 10) / 8);
441 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
442 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
444 turbo_override &= ~TURBO_TDP_MASK;
445 turbo_override |= new_limit;
447 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
451 * do_enable_cpu_turbo - internal turbo enable function
452 * @data: unused
454 * Internal function for actually updating MSRs. When we enable/disable
455 * turbo, we need to do it on each CPU; this function is the one called
456 * by on_each_cpu() when needed.
458 static void do_enable_cpu_turbo(void *data)
460 u64 perf_ctl;
462 rdmsrl(IA32_PERF_CTL, perf_ctl);
463 if (perf_ctl & IA32_PERF_TURBO_DIS) {
464 perf_ctl &= ~IA32_PERF_TURBO_DIS;
465 wrmsrl(IA32_PERF_CTL, perf_ctl);
470 * ips_enable_cpu_turbo - enable turbo mode on all CPUs
471 * @ips: IPS driver struct
473 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
474 * all logical threads.
476 static void ips_enable_cpu_turbo(struct ips_driver *ips)
478 /* Already on, no need to mess with MSRs */
479 if (ips->__cpu_turbo_on)
480 return;
482 if (ips->turbo_toggle_allowed)
483 on_each_cpu(do_enable_cpu_turbo, ips, 1);
485 ips->__cpu_turbo_on = true;
489 * do_disable_cpu_turbo - internal turbo disable function
490 * @data: unused
492 * Internal function for actually updating MSRs. When we enable/disable
493 * turbo, we need to do it on each CPU; this function is the one called
494 * by on_each_cpu() when needed.
496 static void do_disable_cpu_turbo(void *data)
498 u64 perf_ctl;
500 rdmsrl(IA32_PERF_CTL, perf_ctl);
501 if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
502 perf_ctl |= IA32_PERF_TURBO_DIS;
503 wrmsrl(IA32_PERF_CTL, perf_ctl);
508 * ips_disable_cpu_turbo - disable turbo mode on all CPUs
509 * @ips: IPS driver struct
511 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
512 * all logical threads.
514 static void ips_disable_cpu_turbo(struct ips_driver *ips)
516 /* Already off, leave it */
517 if (!ips->__cpu_turbo_on)
518 return;
520 if (ips->turbo_toggle_allowed)
521 on_each_cpu(do_disable_cpu_turbo, ips, 1);
523 ips->__cpu_turbo_on = false;
527 * ips_gpu_busy - is GPU busy?
528 * @ips: IPS driver struct
530 * Check GPU for load to see whether we should increase its thermal budget.
531 * We need to call into the i915 driver in this case.
533 * RETURNS:
534 * True if the GPU could use more power, false otherwise.
536 static bool ips_gpu_busy(struct ips_driver *ips)
538 if (!ips_gpu_turbo_enabled(ips))
539 return false;
541 return ips->gpu_busy();
545 * ips_gpu_raise - raise GPU power clamp
546 * @ips: IPS driver struct
548 * Raise the GPU frequency/power if possible. We need to call into the
549 * i915 driver in this case.
551 static void ips_gpu_raise(struct ips_driver *ips)
553 if (!ips_gpu_turbo_enabled(ips))
554 return;
556 if (!ips->gpu_raise())
557 ips->gpu_turbo_enabled = false;
559 return;
563 * ips_gpu_lower - lower GPU power clamp
564 * @ips: IPS driver struct
566 * Lower GPU frequency/power if possible. Need to call i915.
568 static void ips_gpu_lower(struct ips_driver *ips)
570 if (!ips_gpu_turbo_enabled(ips))
571 return;
573 if (!ips->gpu_lower())
574 ips->gpu_turbo_enabled = false;
576 return;
580 * ips_enable_gpu_turbo - notify the gfx driver turbo is available
581 * @ips: IPS driver struct
583 * Call into the graphics driver indicating that it can safely use
584 * turbo mode.
586 static void ips_enable_gpu_turbo(struct ips_driver *ips)
588 if (ips->__gpu_turbo_on)
589 return;
590 ips->__gpu_turbo_on = true;
594 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
595 * @ips: IPS driver struct
597 * Request that the graphics driver disable turbo mode.
599 static void ips_disable_gpu_turbo(struct ips_driver *ips)
601 /* Avoid calling i915 if turbo is already disabled */
602 if (!ips->__gpu_turbo_on)
603 return;
605 if (!ips->gpu_turbo_disable())
606 dev_err(&ips->dev->dev, "failed to disable graphis turbo\n");
607 else
608 ips->__gpu_turbo_on = false;
612 * mcp_exceeded - check whether we're outside our thermal & power limits
613 * @ips: IPS driver struct
615 * Check whether the MCP is over its thermal or power budget.
617 static bool mcp_exceeded(struct ips_driver *ips)
619 unsigned long flags;
620 bool ret = false;
621 u32 temp_limit;
622 u32 avg_power;
623 const char *msg = "MCP limit exceeded: ";
625 spin_lock_irqsave(&ips->turbo_status_lock, flags);
627 temp_limit = ips->mcp_temp_limit * 100;
628 if (ips->mcp_avg_temp > temp_limit) {
629 dev_info(&ips->dev->dev,
630 "%sAvg temp %u, limit %u\n", msg, ips->mcp_avg_temp,
631 temp_limit);
632 ret = true;
635 avg_power = ips->cpu_avg_power + ips->mch_avg_power;
636 if (avg_power > ips->mcp_power_limit) {
637 dev_info(&ips->dev->dev,
638 "%sAvg power %u, limit %u\n", msg, avg_power,
639 ips->mcp_power_limit);
640 ret = true;
643 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
645 return ret;
649 * cpu_exceeded - check whether a CPU core is outside its limits
650 * @ips: IPS driver struct
651 * @cpu: CPU number to check
653 * Check a given CPU's average temp or power is over its limit.
655 static bool cpu_exceeded(struct ips_driver *ips, int cpu)
657 unsigned long flags;
658 int avg;
659 bool ret = false;
661 spin_lock_irqsave(&ips->turbo_status_lock, flags);
662 avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
663 if (avg > (ips->limits->core_temp_limit * 100))
664 ret = true;
665 if (ips->cpu_avg_power > ips->core_power_limit * 100)
666 ret = true;
667 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
669 if (ret)
670 dev_info(&ips->dev->dev,
671 "CPU power or thermal limit exceeded\n");
673 return ret;
677 * mch_exceeded - check whether the GPU is over budget
678 * @ips: IPS driver struct
680 * Check the MCH temp & power against their maximums.
682 static bool mch_exceeded(struct ips_driver *ips)
684 unsigned long flags;
685 bool ret = false;
687 spin_lock_irqsave(&ips->turbo_status_lock, flags);
688 if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
689 ret = true;
690 if (ips->mch_avg_power > ips->mch_power_limit)
691 ret = true;
692 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
694 return ret;
698 * verify_limits - verify BIOS provided limits
699 * @ips: IPS structure
701 * BIOS can optionally provide non-default limits for power and temp. Check
702 * them here and use the defaults if the BIOS values are not provided or
703 * are otherwise unusable.
705 static void verify_limits(struct ips_driver *ips)
707 if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
708 ips->mcp_power_limit > 35000)
709 ips->mcp_power_limit = ips->limits->mcp_power_limit;
711 if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
712 ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
713 ips->mcp_temp_limit > 150)
714 ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
715 ips->limits->mch_temp_limit);
719 * update_turbo_limits - get various limits & settings from regs
720 * @ips: IPS driver struct
722 * Update the IPS power & temp limits, along with turbo enable flags,
723 * based on latest register contents.
725 * Used at init time and for runtime BIOS support, which requires polling
726 * the regs for updates (as a result of AC->DC transition for example).
728 * LOCKING:
729 * Caller must hold turbo_status_lock (outside of init)
731 static void update_turbo_limits(struct ips_driver *ips)
733 u32 hts = thm_readl(THM_HTS);
735 ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
737 * Disable turbo for now, until we can figure out why the power figures
738 * are wrong
740 ips->cpu_turbo_enabled = false;
742 if (ips->gpu_busy)
743 ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
745 ips->core_power_limit = thm_readw(THM_MPCPC);
746 ips->mch_power_limit = thm_readw(THM_MMGPC);
747 ips->mcp_temp_limit = thm_readw(THM_PTL);
748 ips->mcp_power_limit = thm_readw(THM_MPPC);
750 verify_limits(ips);
751 /* Ignore BIOS CPU vs GPU pref */
755 * ips_adjust - adjust power clamp based on thermal state
756 * @data: ips driver structure
758 * Wake up every 5s or so and check whether we should adjust the power clamp.
759 * Check CPU and GPU load to determine which needs adjustment. There are
760 * several things to consider here:
761 * - do we need to adjust up or down?
762 * - is CPU busy?
763 * - is GPU busy?
764 * - is CPU in turbo?
765 * - is GPU in turbo?
766 * - is CPU or GPU preferred? (CPU is default)
768 * So, given the above, we do the following:
769 * - up (TDP available)
770 * - CPU not busy, GPU not busy - nothing
771 * - CPU busy, GPU not busy - adjust CPU up
772 * - CPU not busy, GPU busy - adjust GPU up
773 * - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
774 * non-preferred unit if necessary
775 * - down (at TDP limit)
776 * - adjust both CPU and GPU down if possible
778 cpu+ gpu+ cpu+gpu- cpu-gpu+ cpu-gpu-
779 cpu < gpu < cpu+gpu+ cpu+ gpu+ nothing
780 cpu < gpu >= cpu+gpu-(mcp<) cpu+gpu-(mcp<) gpu- gpu-
781 cpu >= gpu < cpu-gpu+(mcp<) cpu- cpu-gpu+(mcp<) cpu-
782 cpu >= gpu >= cpu-gpu- cpu-gpu- cpu-gpu- cpu-gpu-
785 static int ips_adjust(void *data)
787 struct ips_driver *ips = data;
788 unsigned long flags;
790 dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n");
793 * Adjust CPU and GPU clamps every 5s if needed. Doing it more
794 * often isn't recommended due to ME interaction.
796 do {
797 bool cpu_busy = ips_cpu_busy(ips);
798 bool gpu_busy = ips_gpu_busy(ips);
800 spin_lock_irqsave(&ips->turbo_status_lock, flags);
801 if (ips->poll_turbo_status)
802 update_turbo_limits(ips);
803 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
805 /* Update turbo status if necessary */
806 if (ips->cpu_turbo_enabled)
807 ips_enable_cpu_turbo(ips);
808 else
809 ips_disable_cpu_turbo(ips);
811 if (ips->gpu_turbo_enabled)
812 ips_enable_gpu_turbo(ips);
813 else
814 ips_disable_gpu_turbo(ips);
816 /* We're outside our comfort zone, crank them down */
817 if (mcp_exceeded(ips)) {
818 ips_cpu_lower(ips);
819 ips_gpu_lower(ips);
820 goto sleep;
823 if (!cpu_exceeded(ips, 0) && cpu_busy)
824 ips_cpu_raise(ips);
825 else
826 ips_cpu_lower(ips);
828 if (!mch_exceeded(ips) && gpu_busy)
829 ips_gpu_raise(ips);
830 else
831 ips_gpu_lower(ips);
833 sleep:
834 schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
835 } while (!kthread_should_stop());
837 dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n");
839 return 0;
843 * Helpers for reading out temp/power values and calculating their
844 * averages for the decision making and monitoring functions.
847 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
849 u64 total = 0;
850 int i;
851 u16 avg;
853 for (i = 0; i < IPS_SAMPLE_COUNT; i++)
854 total += (u64)(array[i] * 100);
856 do_div(total, IPS_SAMPLE_COUNT);
858 avg = (u16)total;
860 return avg;
863 static u16 read_mgtv(struct ips_driver *ips)
865 u16 ret;
866 u64 slope, offset;
867 u64 val;
869 val = thm_readq(THM_MGTV);
870 val = (val & TV_MASK) >> TV_SHIFT;
872 slope = offset = thm_readw(THM_MGTA);
873 slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
874 offset = offset & MGTA_OFFSET_MASK;
876 ret = ((val * slope + 0x40) >> 7) + offset;
878 return 0; /* MCH temp reporting buggy */
881 static u16 read_ptv(struct ips_driver *ips)
883 u16 val, slope, offset;
885 slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT;
886 offset = ips->pta_val & PTA_OFFSET_MASK;
888 val = thm_readw(THM_PTV) & PTV_MASK;
890 return val;
893 static u16 read_ctv(struct ips_driver *ips, int cpu)
895 int reg = cpu ? THM_CTV2 : THM_CTV1;
896 u16 val;
898 val = thm_readw(reg);
899 if (!(val & CTV_TEMP_ERROR))
900 val = (val) >> 6; /* discard fractional component */
901 else
902 val = 0;
904 return val;
907 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
909 u32 val;
910 u32 ret;
913 * CEC is in joules/65535. Take difference over time to
914 * get watts.
916 val = thm_readl(THM_CEC);
918 /* period is in ms and we want mW */
919 ret = (((val - *last) * 1000) / period);
920 ret = (ret * 1000) / 65535;
921 *last = val;
923 return 0;
926 static const u16 temp_decay_factor = 2;
927 static u16 update_average_temp(u16 avg, u16 val)
929 u16 ret;
931 /* Multiply by 100 for extra precision */
932 ret = (val * 100 / temp_decay_factor) +
933 (((temp_decay_factor - 1) * avg) / temp_decay_factor);
934 return ret;
937 static const u16 power_decay_factor = 2;
938 static u16 update_average_power(u32 avg, u32 val)
940 u32 ret;
942 ret = (val / power_decay_factor) +
943 (((power_decay_factor - 1) * avg) / power_decay_factor);
945 return ret;
948 static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
950 u64 total = 0;
951 u32 avg;
952 int i;
954 for (i = 0; i < IPS_SAMPLE_COUNT; i++)
955 total += array[i];
957 do_div(total, IPS_SAMPLE_COUNT);
958 avg = (u32)total;
960 return avg;
963 static void monitor_timeout(unsigned long arg)
965 wake_up_process((struct task_struct *)arg);
969 * ips_monitor - temp/power monitoring thread
970 * @data: ips driver structure
972 * This is the main function for the IPS driver. It monitors power and
973 * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
975 * We keep a 5s moving average of power consumption and tempurature. Using
976 * that data, along with CPU vs GPU preference, we adjust the power clamps
977 * up or down.
979 static int ips_monitor(void *data)
981 struct ips_driver *ips = data;
982 struct timer_list timer;
983 unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
984 int i;
985 u32 *cpu_samples, *mchp_samples, old_cpu_power;
986 u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
987 u8 cur_seqno, last_seqno;
989 mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
990 ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
991 ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
992 mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
993 cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
994 mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
995 if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
996 !cpu_samples || !mchp_samples) {
997 dev_err(&ips->dev->dev,
998 "failed to allocate sample array, ips disabled\n");
999 kfree(mcp_samples);
1000 kfree(ctv1_samples);
1001 kfree(ctv2_samples);
1002 kfree(mch_samples);
1003 kfree(cpu_samples);
1004 kfree(mchp_samples);
1005 return -ENOMEM;
1008 last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1009 ITV_ME_SEQNO_SHIFT;
1010 seqno_timestamp = get_jiffies_64();
1012 old_cpu_power = thm_readl(THM_CEC);
1013 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1015 /* Collect an initial average */
1016 for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
1017 u32 mchp, cpu_power;
1018 u16 val;
1020 mcp_samples[i] = read_ptv(ips);
1022 val = read_ctv(ips, 0);
1023 ctv1_samples[i] = val;
1025 val = read_ctv(ips, 1);
1026 ctv2_samples[i] = val;
1028 val = read_mgtv(ips);
1029 mch_samples[i] = val;
1031 cpu_power = get_cpu_power(ips, &old_cpu_power,
1032 IPS_SAMPLE_PERIOD);
1033 cpu_samples[i] = cpu_power;
1035 if (ips->read_mch_val) {
1036 mchp = ips->read_mch_val();
1037 mchp_samples[i] = mchp;
1040 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1041 if (kthread_should_stop())
1042 break;
1045 ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1046 ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1047 ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1048 ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1049 ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1050 ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1051 kfree(mcp_samples);
1052 kfree(ctv1_samples);
1053 kfree(ctv2_samples);
1054 kfree(mch_samples);
1055 kfree(cpu_samples);
1056 kfree(mchp_samples);
1058 /* Start the adjustment thread now that we have data */
1059 wake_up_process(ips->adjust);
1062 * Ok, now we have an initial avg. From here on out, we track the
1063 * running avg using a decaying average calculation. This allows
1064 * us to reduce the sample frequency if the CPU and GPU are idle.
1066 old_cpu_power = thm_readl(THM_CEC);
1067 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1068 last_sample_period = IPS_SAMPLE_PERIOD;
1070 setup_deferrable_timer_on_stack(&timer, monitor_timeout,
1071 (unsigned long)current);
1072 do {
1073 u32 cpu_val, mch_val;
1074 u16 val;
1076 /* MCP itself */
1077 val = read_ptv(ips);
1078 ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1080 /* Processor 0 */
1081 val = read_ctv(ips, 0);
1082 ips->ctv1_avg_temp =
1083 update_average_temp(ips->ctv1_avg_temp, val);
1084 /* Power */
1085 cpu_val = get_cpu_power(ips, &old_cpu_power,
1086 last_sample_period);
1087 ips->cpu_avg_power =
1088 update_average_power(ips->cpu_avg_power, cpu_val);
1090 if (ips->second_cpu) {
1091 /* Processor 1 */
1092 val = read_ctv(ips, 1);
1093 ips->ctv2_avg_temp =
1094 update_average_temp(ips->ctv2_avg_temp, val);
1097 /* MCH */
1098 val = read_mgtv(ips);
1099 ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1100 /* Power */
1101 if (ips->read_mch_val) {
1102 mch_val = ips->read_mch_val();
1103 ips->mch_avg_power =
1104 update_average_power(ips->mch_avg_power,
1105 mch_val);
1109 * Make sure ME is updating thermal regs.
1110 * Note:
1111 * If it's been more than a second since the last update,
1112 * the ME is probably hung.
1114 cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1115 ITV_ME_SEQNO_SHIFT;
1116 if (cur_seqno == last_seqno &&
1117 time_after(jiffies, seqno_timestamp + HZ)) {
1118 dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n");
1119 } else {
1120 seqno_timestamp = get_jiffies_64();
1121 last_seqno = cur_seqno;
1124 last_msecs = jiffies_to_msecs(jiffies);
1125 expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1127 __set_current_state(TASK_INTERRUPTIBLE);
1128 mod_timer(&timer, expire);
1129 schedule();
1131 /* Calculate actual sample period for power averaging */
1132 last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1133 if (!last_sample_period)
1134 last_sample_period = 1;
1135 } while (!kthread_should_stop());
1137 del_timer_sync(&timer);
1138 destroy_timer_on_stack(&timer);
1140 dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n");
1142 return 0;
1145 #if 0
1146 #define THM_DUMPW(reg) \
1148 u16 val = thm_readw(reg); \
1149 dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \
1151 #define THM_DUMPL(reg) \
1153 u32 val = thm_readl(reg); \
1154 dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \
1156 #define THM_DUMPQ(reg) \
1158 u64 val = thm_readq(reg); \
1159 dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \
1162 static void dump_thermal_info(struct ips_driver *ips)
1164 u16 ptl;
1166 ptl = thm_readw(THM_PTL);
1167 dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl);
1169 THM_DUMPW(THM_CTA);
1170 THM_DUMPW(THM_TRC);
1171 THM_DUMPW(THM_CTV1);
1172 THM_DUMPL(THM_STS);
1173 THM_DUMPW(THM_PTV);
1174 THM_DUMPQ(THM_MGTV);
1176 #endif
1179 * ips_irq_handler - handle temperature triggers and other IPS events
1180 * @irq: irq number
1181 * @arg: unused
1183 * Handle temperature limit trigger events, generally by lowering the clamps.
1184 * If we're at a critical limit, we clamp back to the lowest possible value
1185 * to prevent emergency shutdown.
1187 static irqreturn_t ips_irq_handler(int irq, void *arg)
1189 struct ips_driver *ips = arg;
1190 u8 tses = thm_readb(THM_TSES);
1191 u8 tes = thm_readb(THM_TES);
1193 if (!tses && !tes)
1194 return IRQ_NONE;
1196 dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses);
1197 dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes);
1199 /* STS update from EC? */
1200 if (tes & 1) {
1201 u32 sts, tc1;
1203 sts = thm_readl(THM_STS);
1204 tc1 = thm_readl(THM_TC1);
1206 if (sts & STS_NVV) {
1207 spin_lock(&ips->turbo_status_lock);
1208 ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1209 STS_PCPL_SHIFT;
1210 ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1211 STS_GPL_SHIFT;
1212 /* ignore EC CPU vs GPU pref */
1213 ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1215 * Disable turbo for now, until we can figure
1216 * out why the power figures are wrong
1218 ips->cpu_turbo_enabled = false;
1219 if (ips->gpu_busy)
1220 ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1221 ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1222 STS_PTL_SHIFT;
1223 ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1224 STS_PPL_SHIFT;
1225 verify_limits(ips);
1226 spin_unlock(&ips->turbo_status_lock);
1228 thm_writeb(THM_SEC, SEC_ACK);
1230 thm_writeb(THM_TES, tes);
1233 /* Thermal trip */
1234 if (tses) {
1235 dev_warn(&ips->dev->dev,
1236 "thermal trip occurred, tses: 0x%04x\n", tses);
1237 thm_writeb(THM_TSES, tses);
1240 return IRQ_HANDLED;
1243 #ifndef CONFIG_DEBUG_FS
1244 static void ips_debugfs_init(struct ips_driver *ips) { return; }
1245 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1246 #else
1248 /* Expose current state and limits in debugfs if possible */
1250 struct ips_debugfs_node {
1251 struct ips_driver *ips;
1252 char *name;
1253 int (*show)(struct seq_file *m, void *data);
1256 static int show_cpu_temp(struct seq_file *m, void *data)
1258 struct ips_driver *ips = m->private;
1260 seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1261 ips->ctv1_avg_temp % 100);
1263 return 0;
1266 static int show_cpu_power(struct seq_file *m, void *data)
1268 struct ips_driver *ips = m->private;
1270 seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1272 return 0;
1275 static int show_cpu_clamp(struct seq_file *m, void *data)
1277 u64 turbo_override;
1278 int tdp, tdc;
1280 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1282 tdp = (int)(turbo_override & TURBO_TDP_MASK);
1283 tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1285 /* Convert to .1W/A units */
1286 tdp = tdp * 10 / 8;
1287 tdc = tdc * 10 / 8;
1289 /* Watts Amperes */
1290 seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1291 tdc / 10, tdc % 10);
1293 return 0;
1296 static int show_mch_temp(struct seq_file *m, void *data)
1298 struct ips_driver *ips = m->private;
1300 seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1301 ips->mch_avg_temp % 100);
1303 return 0;
1306 static int show_mch_power(struct seq_file *m, void *data)
1308 struct ips_driver *ips = m->private;
1310 seq_printf(m, "%dmW\n", ips->mch_avg_power);
1312 return 0;
1315 static struct ips_debugfs_node ips_debug_files[] = {
1316 { NULL, "cpu_temp", show_cpu_temp },
1317 { NULL, "cpu_power", show_cpu_power },
1318 { NULL, "cpu_clamp", show_cpu_clamp },
1319 { NULL, "mch_temp", show_mch_temp },
1320 { NULL, "mch_power", show_mch_power },
1323 static int ips_debugfs_open(struct inode *inode, struct file *file)
1325 struct ips_debugfs_node *node = inode->i_private;
1327 return single_open(file, node->show, node->ips);
1330 static const struct file_operations ips_debugfs_ops = {
1331 .owner = THIS_MODULE,
1332 .open = ips_debugfs_open,
1333 .read = seq_read,
1334 .llseek = seq_lseek,
1335 .release = single_release,
1338 static void ips_debugfs_cleanup(struct ips_driver *ips)
1340 if (ips->debug_root)
1341 debugfs_remove_recursive(ips->debug_root);
1342 return;
1345 static void ips_debugfs_init(struct ips_driver *ips)
1347 int i;
1349 ips->debug_root = debugfs_create_dir("ips", NULL);
1350 if (!ips->debug_root) {
1351 dev_err(&ips->dev->dev,
1352 "failed to create debugfs entries: %ld\n",
1353 PTR_ERR(ips->debug_root));
1354 return;
1357 for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1358 struct dentry *ent;
1359 struct ips_debugfs_node *node = &ips_debug_files[i];
1361 node->ips = ips;
1362 ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1363 ips->debug_root, node,
1364 &ips_debugfs_ops);
1365 if (!ent) {
1366 dev_err(&ips->dev->dev,
1367 "failed to create debug file: %ld\n",
1368 PTR_ERR(ent));
1369 goto err_cleanup;
1373 return;
1375 err_cleanup:
1376 ips_debugfs_cleanup(ips);
1377 return;
1379 #endif /* CONFIG_DEBUG_FS */
1382 * ips_detect_cpu - detect whether CPU supports IPS
1384 * Walk our list and see if we're on a supported CPU. If we find one,
1385 * return the limits for it.
1387 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1389 u64 turbo_power, misc_en;
1390 struct ips_mcp_limits *limits = NULL;
1391 u16 tdp;
1393 if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1394 dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n");
1395 goto out;
1398 rdmsrl(IA32_MISC_ENABLE, misc_en);
1400 * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1401 * turbo manually or we'll get an illegal MSR access, even though
1402 * turbo will still be available.
1404 if (misc_en & IA32_MISC_TURBO_EN)
1405 ips->turbo_toggle_allowed = true;
1406 else
1407 ips->turbo_toggle_allowed = false;
1409 if (strstr(boot_cpu_data.x86_model_id, "CPU M"))
1410 limits = &ips_sv_limits;
1411 else if (strstr(boot_cpu_data.x86_model_id, "CPU L"))
1412 limits = &ips_lv_limits;
1413 else if (strstr(boot_cpu_data.x86_model_id, "CPU U"))
1414 limits = &ips_ulv_limits;
1415 else {
1416 dev_info(&ips->dev->dev, "No CPUID match found.\n");
1417 goto out;
1420 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1421 tdp = turbo_power & TURBO_TDP_MASK;
1423 /* Sanity check TDP against CPU */
1424 if (limits->core_power_limit != (tdp / 8) * 1000) {
1425 dev_info(&ips->dev->dev, "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1426 tdp / 8, limits->core_power_limit / 1000);
1427 limits->core_power_limit = (tdp / 8) * 1000;
1430 out:
1431 return limits;
1435 * ips_get_i915_syms - try to get GPU control methods from i915 driver
1436 * @ips: IPS driver
1438 * The i915 driver exports several interfaces to allow the IPS driver to
1439 * monitor and control graphics turbo mode. If we can find them, we can
1440 * enable graphics turbo, otherwise we must disable it to avoid exceeding
1441 * thermal and power limits in the MCP.
1443 static bool ips_get_i915_syms(struct ips_driver *ips)
1445 ips->read_mch_val = symbol_get(i915_read_mch_val);
1446 if (!ips->read_mch_val)
1447 goto out_err;
1448 ips->gpu_raise = symbol_get(i915_gpu_raise);
1449 if (!ips->gpu_raise)
1450 goto out_put_mch;
1451 ips->gpu_lower = symbol_get(i915_gpu_lower);
1452 if (!ips->gpu_lower)
1453 goto out_put_raise;
1454 ips->gpu_busy = symbol_get(i915_gpu_busy);
1455 if (!ips->gpu_busy)
1456 goto out_put_lower;
1457 ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1458 if (!ips->gpu_turbo_disable)
1459 goto out_put_busy;
1461 return true;
1463 out_put_busy:
1464 symbol_put(i915_gpu_busy);
1465 out_put_lower:
1466 symbol_put(i915_gpu_lower);
1467 out_put_raise:
1468 symbol_put(i915_gpu_raise);
1469 out_put_mch:
1470 symbol_put(i915_read_mch_val);
1471 out_err:
1472 return false;
1475 static bool
1476 ips_gpu_turbo_enabled(struct ips_driver *ips)
1478 if (!ips->gpu_busy && late_i915_load) {
1479 if (ips_get_i915_syms(ips)) {
1480 dev_info(&ips->dev->dev,
1481 "i915 driver attached, reenabling gpu turbo\n");
1482 ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1486 return ips->gpu_turbo_enabled;
1489 void
1490 ips_link_to_i915_driver(void)
1492 /* We can't cleanly get at the various ips_driver structs from
1493 * this caller (the i915 driver), so just set a flag saying
1494 * that it's time to try getting the symbols again.
1496 late_i915_load = true;
1498 EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1500 static DEFINE_PCI_DEVICE_TABLE(ips_id_table) = {
1501 { PCI_DEVICE(PCI_VENDOR_ID_INTEL,
1502 PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1503 { 0, }
1506 MODULE_DEVICE_TABLE(pci, ips_id_table);
1508 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1510 u64 platform_info;
1511 struct ips_driver *ips;
1512 u32 hts;
1513 int ret = 0;
1514 u16 htshi, trc, trc_required_mask;
1515 u8 tse;
1517 ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL);
1518 if (!ips)
1519 return -ENOMEM;
1521 pci_set_drvdata(dev, ips);
1522 ips->dev = dev;
1524 ips->limits = ips_detect_cpu(ips);
1525 if (!ips->limits) {
1526 dev_info(&dev->dev, "IPS not supported on this CPU\n");
1527 ret = -ENXIO;
1528 goto error_free;
1531 spin_lock_init(&ips->turbo_status_lock);
1533 ret = pci_enable_device(dev);
1534 if (ret) {
1535 dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1536 goto error_free;
1539 if (!pci_resource_start(dev, 0)) {
1540 dev_err(&dev->dev, "TBAR not assigned, aborting\n");
1541 ret = -ENXIO;
1542 goto error_free;
1545 ret = pci_request_regions(dev, "ips thermal sensor");
1546 if (ret) {
1547 dev_err(&dev->dev, "thermal resource busy, aborting\n");
1548 goto error_free;
1552 ips->regmap = ioremap(pci_resource_start(dev, 0),
1553 pci_resource_len(dev, 0));
1554 if (!ips->regmap) {
1555 dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1556 ret = -EBUSY;
1557 goto error_release;
1560 tse = thm_readb(THM_TSE);
1561 if (tse != TSE_EN) {
1562 dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1563 ret = -ENXIO;
1564 goto error_unmap;
1567 trc = thm_readw(THM_TRC);
1568 trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1569 if ((trc & trc_required_mask) != trc_required_mask) {
1570 dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1571 ret = -ENXIO;
1572 goto error_unmap;
1575 if (trc & TRC_CORE2_EN)
1576 ips->second_cpu = true;
1578 update_turbo_limits(ips);
1579 dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1580 ips->mcp_power_limit / 10);
1581 dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1582 ips->core_power_limit / 10);
1583 /* BIOS may update limits at runtime */
1584 if (thm_readl(THM_PSC) & PSP_PBRT)
1585 ips->poll_turbo_status = true;
1587 if (!ips_get_i915_syms(ips)) {
1588 dev_err(&dev->dev, "failed to get i915 symbols, graphics turbo disabled\n");
1589 ips->gpu_turbo_enabled = false;
1590 } else {
1591 dev_dbg(&dev->dev, "graphics turbo enabled\n");
1592 ips->gpu_turbo_enabled = true;
1596 * Check PLATFORM_INFO MSR to make sure this chip is
1597 * turbo capable.
1599 rdmsrl(PLATFORM_INFO, platform_info);
1600 if (!(platform_info & PLATFORM_TDP)) {
1601 dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1602 ret = -ENODEV;
1603 goto error_unmap;
1607 * IRQ handler for ME interaction
1608 * Note: don't use MSI here as the PCH has bugs.
1610 pci_disable_msi(dev);
1611 ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips",
1612 ips);
1613 if (ret) {
1614 dev_err(&dev->dev, "request irq failed, aborting\n");
1615 goto error_unmap;
1618 /* Enable aux, hot & critical interrupts */
1619 thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1620 TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1621 thm_writeb(THM_TEN, TEN_UPDATE_EN);
1623 /* Collect adjustment values */
1624 ips->cta_val = thm_readw(THM_CTA);
1625 ips->pta_val = thm_readw(THM_PTA);
1626 ips->mgta_val = thm_readw(THM_MGTA);
1628 /* Save turbo limits & ratios */
1629 rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1631 ips_disable_cpu_turbo(ips);
1632 ips->cpu_turbo_enabled = false;
1634 /* Create thermal adjust thread */
1635 ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1636 if (IS_ERR(ips->adjust)) {
1637 dev_err(&dev->dev,
1638 "failed to create thermal adjust thread, aborting\n");
1639 ret = -ENOMEM;
1640 goto error_free_irq;
1645 * Set up the work queue and monitor thread. The monitor thread
1646 * will wake up ips_adjust thread.
1648 ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1649 if (IS_ERR(ips->monitor)) {
1650 dev_err(&dev->dev,
1651 "failed to create thermal monitor thread, aborting\n");
1652 ret = -ENOMEM;
1653 goto error_thread_cleanup;
1656 hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1657 (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1658 htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1660 thm_writew(THM_HTSHI, htshi);
1661 thm_writel(THM_HTS, hts);
1663 ips_debugfs_init(ips);
1665 dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1666 ips->mcp_temp_limit);
1667 return ret;
1669 error_thread_cleanup:
1670 kthread_stop(ips->adjust);
1671 error_free_irq:
1672 free_irq(ips->dev->irq, ips);
1673 error_unmap:
1674 iounmap(ips->regmap);
1675 error_release:
1676 pci_release_regions(dev);
1677 error_free:
1678 kfree(ips);
1679 return ret;
1682 static void ips_remove(struct pci_dev *dev)
1684 struct ips_driver *ips = pci_get_drvdata(dev);
1685 u64 turbo_override;
1687 if (!ips)
1688 return;
1690 ips_debugfs_cleanup(ips);
1692 /* Release i915 driver */
1693 if (ips->read_mch_val)
1694 symbol_put(i915_read_mch_val);
1695 if (ips->gpu_raise)
1696 symbol_put(i915_gpu_raise);
1697 if (ips->gpu_lower)
1698 symbol_put(i915_gpu_lower);
1699 if (ips->gpu_busy)
1700 symbol_put(i915_gpu_busy);
1701 if (ips->gpu_turbo_disable)
1702 symbol_put(i915_gpu_turbo_disable);
1704 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1705 turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1706 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1707 wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1709 free_irq(ips->dev->irq, ips);
1710 if (ips->adjust)
1711 kthread_stop(ips->adjust);
1712 if (ips->monitor)
1713 kthread_stop(ips->monitor);
1714 iounmap(ips->regmap);
1715 pci_release_regions(dev);
1716 kfree(ips);
1717 dev_dbg(&dev->dev, "IPS driver removed\n");
1720 #ifdef CONFIG_PM
1721 static int ips_suspend(struct pci_dev *dev, pm_message_t state)
1723 return 0;
1726 static int ips_resume(struct pci_dev *dev)
1728 return 0;
1730 #else
1731 #define ips_suspend NULL
1732 #define ips_resume NULL
1733 #endif /* CONFIG_PM */
1735 static void ips_shutdown(struct pci_dev *dev)
1739 static struct pci_driver ips_pci_driver = {
1740 .name = "intel ips",
1741 .id_table = ips_id_table,
1742 .probe = ips_probe,
1743 .remove = ips_remove,
1744 .suspend = ips_suspend,
1745 .resume = ips_resume,
1746 .shutdown = ips_shutdown,
1749 static int __init ips_init(void)
1751 return pci_register_driver(&ips_pci_driver);
1753 module_init(ips_init);
1755 static void ips_exit(void)
1757 pci_unregister_driver(&ips_pci_driver);
1758 return;
1760 module_exit(ips_exit);
1762 MODULE_LICENSE("GPL");
1763 MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1764 MODULE_DESCRIPTION("Intelligent Power Sharing Driver");