Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / drivers / scsi / hpsa.c
blobb200b736b000dc357ba2e416fb899b394c12fd3a
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68 HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76 "Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80 "Use 'simple mode' rather than 'performant mode'");
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
99 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
100 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101 {0,}
104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
106 /* board_id = Subsystem Device ID & Vendor ID
107 * product = Marketing Name for the board
108 * access = Address of the struct of function pointers
110 static struct board_type products[] = {
111 {0x3241103C, "Smart Array P212", &SA5_access},
112 {0x3243103C, "Smart Array P410", &SA5_access},
113 {0x3245103C, "Smart Array P410i", &SA5_access},
114 {0x3247103C, "Smart Array P411", &SA5_access},
115 {0x3249103C, "Smart Array P812", &SA5_access},
116 {0x324a103C, "Smart Array P712m", &SA5_access},
117 {0x324b103C, "Smart Array P711m", &SA5_access},
118 {0x3350103C, "Smart Array", &SA5_access},
119 {0x3351103C, "Smart Array", &SA5_access},
120 {0x3352103C, "Smart Array", &SA5_access},
121 {0x3353103C, "Smart Array", &SA5_access},
122 {0x3354103C, "Smart Array", &SA5_access},
123 {0x3355103C, "Smart Array", &SA5_access},
124 {0x3356103C, "Smart Array", &SA5_access},
125 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
128 static int number_of_controllers;
130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 static void start_io(struct ctlr_info *h);
135 #ifdef CONFIG_COMPAT
136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
137 #endif
139 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
141 static struct CommandList *cmd_alloc(struct ctlr_info *h);
142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
144 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
145 int cmd_type);
147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
148 static void hpsa_scan_start(struct Scsi_Host *);
149 static int hpsa_scan_finished(struct Scsi_Host *sh,
150 unsigned long elapsed_time);
151 static int hpsa_change_queue_depth(struct scsi_device *sdev,
152 int qdepth, int reason);
154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155 static int hpsa_slave_alloc(struct scsi_device *sdev);
156 static void hpsa_slave_destroy(struct scsi_device *sdev);
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static int check_for_unit_attention(struct ctlr_info *h,
160 struct CommandList *c);
161 static void check_ioctl_unit_attention(struct ctlr_info *h,
162 struct CommandList *c);
163 /* performant mode helper functions */
164 static void calc_bucket_map(int *bucket, int num_buckets,
165 int nsgs, int *bucket_map);
166 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
167 static inline u32 next_command(struct ctlr_info *h);
168 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
169 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
170 u64 *cfg_offset);
171 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
172 unsigned long *memory_bar);
173 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
174 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
175 void __iomem *vaddr, int wait_for_ready);
176 #define BOARD_NOT_READY 0
177 #define BOARD_READY 1
179 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
181 unsigned long *priv = shost_priv(sdev->host);
182 return (struct ctlr_info *) *priv;
185 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
187 unsigned long *priv = shost_priv(sh);
188 return (struct ctlr_info *) *priv;
191 static int check_for_unit_attention(struct ctlr_info *h,
192 struct CommandList *c)
194 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
195 return 0;
197 switch (c->err_info->SenseInfo[12]) {
198 case STATE_CHANGED:
199 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
200 "detected, command retried\n", h->ctlr);
201 break;
202 case LUN_FAILED:
203 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
204 "detected, action required\n", h->ctlr);
205 break;
206 case REPORT_LUNS_CHANGED:
207 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
208 "changed, action required\n", h->ctlr);
210 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
212 break;
213 case POWER_OR_RESET:
214 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
215 "or device reset detected\n", h->ctlr);
216 break;
217 case UNIT_ATTENTION_CLEARED:
218 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
219 "cleared by another initiator\n", h->ctlr);
220 break;
221 default:
222 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
223 "unit attention detected\n", h->ctlr);
224 break;
226 return 1;
229 static ssize_t host_store_rescan(struct device *dev,
230 struct device_attribute *attr,
231 const char *buf, size_t count)
233 struct ctlr_info *h;
234 struct Scsi_Host *shost = class_to_shost(dev);
235 h = shost_to_hba(shost);
236 hpsa_scan_start(h->scsi_host);
237 return count;
240 static ssize_t host_show_firmware_revision(struct device *dev,
241 struct device_attribute *attr, char *buf)
243 struct ctlr_info *h;
244 struct Scsi_Host *shost = class_to_shost(dev);
245 unsigned char *fwrev;
247 h = shost_to_hba(shost);
248 if (!h->hba_inquiry_data)
249 return 0;
250 fwrev = &h->hba_inquiry_data[32];
251 return snprintf(buf, 20, "%c%c%c%c\n",
252 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
255 static ssize_t host_show_commands_outstanding(struct device *dev,
256 struct device_attribute *attr, char *buf)
258 struct Scsi_Host *shost = class_to_shost(dev);
259 struct ctlr_info *h = shost_to_hba(shost);
261 return snprintf(buf, 20, "%d\n", h->commands_outstanding);
264 static ssize_t host_show_transport_mode(struct device *dev,
265 struct device_attribute *attr, char *buf)
267 struct ctlr_info *h;
268 struct Scsi_Host *shost = class_to_shost(dev);
270 h = shost_to_hba(shost);
271 return snprintf(buf, 20, "%s\n",
272 h->transMethod & CFGTBL_Trans_Performant ?
273 "performant" : "simple");
276 /* List of controllers which cannot be hard reset on kexec with reset_devices */
277 static u32 unresettable_controller[] = {
278 0x324a103C, /* Smart Array P712m */
279 0x324b103C, /* SmartArray P711m */
280 0x3223103C, /* Smart Array P800 */
281 0x3234103C, /* Smart Array P400 */
282 0x3235103C, /* Smart Array P400i */
283 0x3211103C, /* Smart Array E200i */
284 0x3212103C, /* Smart Array E200 */
285 0x3213103C, /* Smart Array E200i */
286 0x3214103C, /* Smart Array E200i */
287 0x3215103C, /* Smart Array E200i */
288 0x3237103C, /* Smart Array E500 */
289 0x323D103C, /* Smart Array P700m */
290 0x409C0E11, /* Smart Array 6400 */
291 0x409D0E11, /* Smart Array 6400 EM */
294 /* List of controllers which cannot even be soft reset */
295 static u32 soft_unresettable_controller[] = {
296 /* Exclude 640x boards. These are two pci devices in one slot
297 * which share a battery backed cache module. One controls the
298 * cache, the other accesses the cache through the one that controls
299 * it. If we reset the one controlling the cache, the other will
300 * likely not be happy. Just forbid resetting this conjoined mess.
301 * The 640x isn't really supported by hpsa anyway.
303 0x409C0E11, /* Smart Array 6400 */
304 0x409D0E11, /* Smart Array 6400 EM */
307 static int ctlr_is_hard_resettable(u32 board_id)
309 int i;
311 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
312 if (unresettable_controller[i] == board_id)
313 return 0;
314 return 1;
317 static int ctlr_is_soft_resettable(u32 board_id)
319 int i;
321 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
322 if (soft_unresettable_controller[i] == board_id)
323 return 0;
324 return 1;
327 static int ctlr_is_resettable(u32 board_id)
329 return ctlr_is_hard_resettable(board_id) ||
330 ctlr_is_soft_resettable(board_id);
333 static ssize_t host_show_resettable(struct device *dev,
334 struct device_attribute *attr, char *buf)
336 struct ctlr_info *h;
337 struct Scsi_Host *shost = class_to_shost(dev);
339 h = shost_to_hba(shost);
340 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
343 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
345 return (scsi3addr[3] & 0xC0) == 0x40;
348 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
349 "UNKNOWN"
351 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
353 static ssize_t raid_level_show(struct device *dev,
354 struct device_attribute *attr, char *buf)
356 ssize_t l = 0;
357 unsigned char rlevel;
358 struct ctlr_info *h;
359 struct scsi_device *sdev;
360 struct hpsa_scsi_dev_t *hdev;
361 unsigned long flags;
363 sdev = to_scsi_device(dev);
364 h = sdev_to_hba(sdev);
365 spin_lock_irqsave(&h->lock, flags);
366 hdev = sdev->hostdata;
367 if (!hdev) {
368 spin_unlock_irqrestore(&h->lock, flags);
369 return -ENODEV;
372 /* Is this even a logical drive? */
373 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
374 spin_unlock_irqrestore(&h->lock, flags);
375 l = snprintf(buf, PAGE_SIZE, "N/A\n");
376 return l;
379 rlevel = hdev->raid_level;
380 spin_unlock_irqrestore(&h->lock, flags);
381 if (rlevel > RAID_UNKNOWN)
382 rlevel = RAID_UNKNOWN;
383 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
384 return l;
387 static ssize_t lunid_show(struct device *dev,
388 struct device_attribute *attr, char *buf)
390 struct ctlr_info *h;
391 struct scsi_device *sdev;
392 struct hpsa_scsi_dev_t *hdev;
393 unsigned long flags;
394 unsigned char lunid[8];
396 sdev = to_scsi_device(dev);
397 h = sdev_to_hba(sdev);
398 spin_lock_irqsave(&h->lock, flags);
399 hdev = sdev->hostdata;
400 if (!hdev) {
401 spin_unlock_irqrestore(&h->lock, flags);
402 return -ENODEV;
404 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
405 spin_unlock_irqrestore(&h->lock, flags);
406 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
407 lunid[0], lunid[1], lunid[2], lunid[3],
408 lunid[4], lunid[5], lunid[6], lunid[7]);
411 static ssize_t unique_id_show(struct device *dev,
412 struct device_attribute *attr, char *buf)
414 struct ctlr_info *h;
415 struct scsi_device *sdev;
416 struct hpsa_scsi_dev_t *hdev;
417 unsigned long flags;
418 unsigned char sn[16];
420 sdev = to_scsi_device(dev);
421 h = sdev_to_hba(sdev);
422 spin_lock_irqsave(&h->lock, flags);
423 hdev = sdev->hostdata;
424 if (!hdev) {
425 spin_unlock_irqrestore(&h->lock, flags);
426 return -ENODEV;
428 memcpy(sn, hdev->device_id, sizeof(sn));
429 spin_unlock_irqrestore(&h->lock, flags);
430 return snprintf(buf, 16 * 2 + 2,
431 "%02X%02X%02X%02X%02X%02X%02X%02X"
432 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
433 sn[0], sn[1], sn[2], sn[3],
434 sn[4], sn[5], sn[6], sn[7],
435 sn[8], sn[9], sn[10], sn[11],
436 sn[12], sn[13], sn[14], sn[15]);
439 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
440 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
441 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
442 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
443 static DEVICE_ATTR(firmware_revision, S_IRUGO,
444 host_show_firmware_revision, NULL);
445 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
446 host_show_commands_outstanding, NULL);
447 static DEVICE_ATTR(transport_mode, S_IRUGO,
448 host_show_transport_mode, NULL);
449 static DEVICE_ATTR(resettable, S_IRUGO,
450 host_show_resettable, NULL);
452 static struct device_attribute *hpsa_sdev_attrs[] = {
453 &dev_attr_raid_level,
454 &dev_attr_lunid,
455 &dev_attr_unique_id,
456 NULL,
459 static struct device_attribute *hpsa_shost_attrs[] = {
460 &dev_attr_rescan,
461 &dev_attr_firmware_revision,
462 &dev_attr_commands_outstanding,
463 &dev_attr_transport_mode,
464 &dev_attr_resettable,
465 NULL,
468 static struct scsi_host_template hpsa_driver_template = {
469 .module = THIS_MODULE,
470 .name = "hpsa",
471 .proc_name = "hpsa",
472 .queuecommand = hpsa_scsi_queue_command,
473 .scan_start = hpsa_scan_start,
474 .scan_finished = hpsa_scan_finished,
475 .change_queue_depth = hpsa_change_queue_depth,
476 .this_id = -1,
477 .use_clustering = ENABLE_CLUSTERING,
478 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
479 .ioctl = hpsa_ioctl,
480 .slave_alloc = hpsa_slave_alloc,
481 .slave_destroy = hpsa_slave_destroy,
482 #ifdef CONFIG_COMPAT
483 .compat_ioctl = hpsa_compat_ioctl,
484 #endif
485 .sdev_attrs = hpsa_sdev_attrs,
486 .shost_attrs = hpsa_shost_attrs,
490 /* Enqueuing and dequeuing functions for cmdlists. */
491 static inline void addQ(struct list_head *list, struct CommandList *c)
493 list_add_tail(&c->list, list);
496 static inline u32 next_command(struct ctlr_info *h)
498 u32 a;
500 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
501 return h->access.command_completed(h);
503 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
504 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
505 (h->reply_pool_head)++;
506 h->commands_outstanding--;
507 } else {
508 a = FIFO_EMPTY;
510 /* Check for wraparound */
511 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
512 h->reply_pool_head = h->reply_pool;
513 h->reply_pool_wraparound ^= 1;
515 return a;
518 /* set_performant_mode: Modify the tag for cciss performant
519 * set bit 0 for pull model, bits 3-1 for block fetch
520 * register number
522 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
524 if (likely(h->transMethod & CFGTBL_Trans_Performant))
525 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
528 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
529 struct CommandList *c)
531 unsigned long flags;
533 set_performant_mode(h, c);
534 spin_lock_irqsave(&h->lock, flags);
535 addQ(&h->reqQ, c);
536 h->Qdepth++;
537 start_io(h);
538 spin_unlock_irqrestore(&h->lock, flags);
541 static inline void removeQ(struct CommandList *c)
543 if (WARN_ON(list_empty(&c->list)))
544 return;
545 list_del_init(&c->list);
548 static inline int is_hba_lunid(unsigned char scsi3addr[])
550 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
553 static inline int is_scsi_rev_5(struct ctlr_info *h)
555 if (!h->hba_inquiry_data)
556 return 0;
557 if ((h->hba_inquiry_data[2] & 0x07) == 5)
558 return 1;
559 return 0;
562 static int hpsa_find_target_lun(struct ctlr_info *h,
563 unsigned char scsi3addr[], int bus, int *target, int *lun)
565 /* finds an unused bus, target, lun for a new physical device
566 * assumes h->devlock is held
568 int i, found = 0;
569 DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
571 memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
573 for (i = 0; i < h->ndevices; i++) {
574 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
575 set_bit(h->dev[i]->target, lun_taken);
578 for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
579 if (!test_bit(i, lun_taken)) {
580 /* *bus = 1; */
581 *target = i;
582 *lun = 0;
583 found = 1;
584 break;
587 return !found;
590 /* Add an entry into h->dev[] array. */
591 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
592 struct hpsa_scsi_dev_t *device,
593 struct hpsa_scsi_dev_t *added[], int *nadded)
595 /* assumes h->devlock is held */
596 int n = h->ndevices;
597 int i;
598 unsigned char addr1[8], addr2[8];
599 struct hpsa_scsi_dev_t *sd;
601 if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
602 dev_err(&h->pdev->dev, "too many devices, some will be "
603 "inaccessible.\n");
604 return -1;
607 /* physical devices do not have lun or target assigned until now. */
608 if (device->lun != -1)
609 /* Logical device, lun is already assigned. */
610 goto lun_assigned;
612 /* If this device a non-zero lun of a multi-lun device
613 * byte 4 of the 8-byte LUN addr will contain the logical
614 * unit no, zero otherise.
616 if (device->scsi3addr[4] == 0) {
617 /* This is not a non-zero lun of a multi-lun device */
618 if (hpsa_find_target_lun(h, device->scsi3addr,
619 device->bus, &device->target, &device->lun) != 0)
620 return -1;
621 goto lun_assigned;
624 /* This is a non-zero lun of a multi-lun device.
625 * Search through our list and find the device which
626 * has the same 8 byte LUN address, excepting byte 4.
627 * Assign the same bus and target for this new LUN.
628 * Use the logical unit number from the firmware.
630 memcpy(addr1, device->scsi3addr, 8);
631 addr1[4] = 0;
632 for (i = 0; i < n; i++) {
633 sd = h->dev[i];
634 memcpy(addr2, sd->scsi3addr, 8);
635 addr2[4] = 0;
636 /* differ only in byte 4? */
637 if (memcmp(addr1, addr2, 8) == 0) {
638 device->bus = sd->bus;
639 device->target = sd->target;
640 device->lun = device->scsi3addr[4];
641 break;
644 if (device->lun == -1) {
645 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
646 " suspect firmware bug or unsupported hardware "
647 "configuration.\n");
648 return -1;
651 lun_assigned:
653 h->dev[n] = device;
654 h->ndevices++;
655 added[*nadded] = device;
656 (*nadded)++;
658 /* initially, (before registering with scsi layer) we don't
659 * know our hostno and we don't want to print anything first
660 * time anyway (the scsi layer's inquiries will show that info)
662 /* if (hostno != -1) */
663 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
664 scsi_device_type(device->devtype), hostno,
665 device->bus, device->target, device->lun);
666 return 0;
669 /* Replace an entry from h->dev[] array. */
670 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
671 int entry, struct hpsa_scsi_dev_t *new_entry,
672 struct hpsa_scsi_dev_t *added[], int *nadded,
673 struct hpsa_scsi_dev_t *removed[], int *nremoved)
675 /* assumes h->devlock is held */
676 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
677 removed[*nremoved] = h->dev[entry];
678 (*nremoved)++;
681 * New physical devices won't have target/lun assigned yet
682 * so we need to preserve the values in the slot we are replacing.
684 if (new_entry->target == -1) {
685 new_entry->target = h->dev[entry]->target;
686 new_entry->lun = h->dev[entry]->lun;
689 h->dev[entry] = new_entry;
690 added[*nadded] = new_entry;
691 (*nadded)++;
692 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
693 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
694 new_entry->target, new_entry->lun);
697 /* Remove an entry from h->dev[] array. */
698 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
699 struct hpsa_scsi_dev_t *removed[], int *nremoved)
701 /* assumes h->devlock is held */
702 int i;
703 struct hpsa_scsi_dev_t *sd;
705 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
707 sd = h->dev[entry];
708 removed[*nremoved] = h->dev[entry];
709 (*nremoved)++;
711 for (i = entry; i < h->ndevices-1; i++)
712 h->dev[i] = h->dev[i+1];
713 h->ndevices--;
714 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
715 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
716 sd->lun);
719 #define SCSI3ADDR_EQ(a, b) ( \
720 (a)[7] == (b)[7] && \
721 (a)[6] == (b)[6] && \
722 (a)[5] == (b)[5] && \
723 (a)[4] == (b)[4] && \
724 (a)[3] == (b)[3] && \
725 (a)[2] == (b)[2] && \
726 (a)[1] == (b)[1] && \
727 (a)[0] == (b)[0])
729 static void fixup_botched_add(struct ctlr_info *h,
730 struct hpsa_scsi_dev_t *added)
732 /* called when scsi_add_device fails in order to re-adjust
733 * h->dev[] to match the mid layer's view.
735 unsigned long flags;
736 int i, j;
738 spin_lock_irqsave(&h->lock, flags);
739 for (i = 0; i < h->ndevices; i++) {
740 if (h->dev[i] == added) {
741 for (j = i; j < h->ndevices-1; j++)
742 h->dev[j] = h->dev[j+1];
743 h->ndevices--;
744 break;
747 spin_unlock_irqrestore(&h->lock, flags);
748 kfree(added);
751 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
752 struct hpsa_scsi_dev_t *dev2)
754 /* we compare everything except lun and target as these
755 * are not yet assigned. Compare parts likely
756 * to differ first
758 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
759 sizeof(dev1->scsi3addr)) != 0)
760 return 0;
761 if (memcmp(dev1->device_id, dev2->device_id,
762 sizeof(dev1->device_id)) != 0)
763 return 0;
764 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
765 return 0;
766 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
767 return 0;
768 if (dev1->devtype != dev2->devtype)
769 return 0;
770 if (dev1->bus != dev2->bus)
771 return 0;
772 return 1;
775 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
776 * and return needle location in *index. If scsi3addr matches, but not
777 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
778 * location in *index. If needle not found, return DEVICE_NOT_FOUND.
780 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
781 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
782 int *index)
784 int i;
785 #define DEVICE_NOT_FOUND 0
786 #define DEVICE_CHANGED 1
787 #define DEVICE_SAME 2
788 for (i = 0; i < haystack_size; i++) {
789 if (haystack[i] == NULL) /* previously removed. */
790 continue;
791 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
792 *index = i;
793 if (device_is_the_same(needle, haystack[i]))
794 return DEVICE_SAME;
795 else
796 return DEVICE_CHANGED;
799 *index = -1;
800 return DEVICE_NOT_FOUND;
803 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
804 struct hpsa_scsi_dev_t *sd[], int nsds)
806 /* sd contains scsi3 addresses and devtypes, and inquiry
807 * data. This function takes what's in sd to be the current
808 * reality and updates h->dev[] to reflect that reality.
810 int i, entry, device_change, changes = 0;
811 struct hpsa_scsi_dev_t *csd;
812 unsigned long flags;
813 struct hpsa_scsi_dev_t **added, **removed;
814 int nadded, nremoved;
815 struct Scsi_Host *sh = NULL;
817 added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
818 GFP_KERNEL);
819 removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
820 GFP_KERNEL);
822 if (!added || !removed) {
823 dev_warn(&h->pdev->dev, "out of memory in "
824 "adjust_hpsa_scsi_table\n");
825 goto free_and_out;
828 spin_lock_irqsave(&h->devlock, flags);
830 /* find any devices in h->dev[] that are not in
831 * sd[] and remove them from h->dev[], and for any
832 * devices which have changed, remove the old device
833 * info and add the new device info.
835 i = 0;
836 nremoved = 0;
837 nadded = 0;
838 while (i < h->ndevices) {
839 csd = h->dev[i];
840 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
841 if (device_change == DEVICE_NOT_FOUND) {
842 changes++;
843 hpsa_scsi_remove_entry(h, hostno, i,
844 removed, &nremoved);
845 continue; /* remove ^^^, hence i not incremented */
846 } else if (device_change == DEVICE_CHANGED) {
847 changes++;
848 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
849 added, &nadded, removed, &nremoved);
850 /* Set it to NULL to prevent it from being freed
851 * at the bottom of hpsa_update_scsi_devices()
853 sd[entry] = NULL;
855 i++;
858 /* Now, make sure every device listed in sd[] is also
859 * listed in h->dev[], adding them if they aren't found
862 for (i = 0; i < nsds; i++) {
863 if (!sd[i]) /* if already added above. */
864 continue;
865 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
866 h->ndevices, &entry);
867 if (device_change == DEVICE_NOT_FOUND) {
868 changes++;
869 if (hpsa_scsi_add_entry(h, hostno, sd[i],
870 added, &nadded) != 0)
871 break;
872 sd[i] = NULL; /* prevent from being freed later. */
873 } else if (device_change == DEVICE_CHANGED) {
874 /* should never happen... */
875 changes++;
876 dev_warn(&h->pdev->dev,
877 "device unexpectedly changed.\n");
878 /* but if it does happen, we just ignore that device */
881 spin_unlock_irqrestore(&h->devlock, flags);
883 /* Don't notify scsi mid layer of any changes the first time through
884 * (or if there are no changes) scsi_scan_host will do it later the
885 * first time through.
887 if (hostno == -1 || !changes)
888 goto free_and_out;
890 sh = h->scsi_host;
891 /* Notify scsi mid layer of any removed devices */
892 for (i = 0; i < nremoved; i++) {
893 struct scsi_device *sdev =
894 scsi_device_lookup(sh, removed[i]->bus,
895 removed[i]->target, removed[i]->lun);
896 if (sdev != NULL) {
897 scsi_remove_device(sdev);
898 scsi_device_put(sdev);
899 } else {
900 /* We don't expect to get here.
901 * future cmds to this device will get selection
902 * timeout as if the device was gone.
904 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
905 " for removal.", hostno, removed[i]->bus,
906 removed[i]->target, removed[i]->lun);
908 kfree(removed[i]);
909 removed[i] = NULL;
912 /* Notify scsi mid layer of any added devices */
913 for (i = 0; i < nadded; i++) {
914 if (scsi_add_device(sh, added[i]->bus,
915 added[i]->target, added[i]->lun) == 0)
916 continue;
917 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
918 "device not added.\n", hostno, added[i]->bus,
919 added[i]->target, added[i]->lun);
920 /* now we have to remove it from h->dev,
921 * since it didn't get added to scsi mid layer
923 fixup_botched_add(h, added[i]);
926 free_and_out:
927 kfree(added);
928 kfree(removed);
932 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
933 * Assume's h->devlock is held.
935 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
936 int bus, int target, int lun)
938 int i;
939 struct hpsa_scsi_dev_t *sd;
941 for (i = 0; i < h->ndevices; i++) {
942 sd = h->dev[i];
943 if (sd->bus == bus && sd->target == target && sd->lun == lun)
944 return sd;
946 return NULL;
949 /* link sdev->hostdata to our per-device structure. */
950 static int hpsa_slave_alloc(struct scsi_device *sdev)
952 struct hpsa_scsi_dev_t *sd;
953 unsigned long flags;
954 struct ctlr_info *h;
956 h = sdev_to_hba(sdev);
957 spin_lock_irqsave(&h->devlock, flags);
958 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
959 sdev_id(sdev), sdev->lun);
960 if (sd != NULL)
961 sdev->hostdata = sd;
962 spin_unlock_irqrestore(&h->devlock, flags);
963 return 0;
966 static void hpsa_slave_destroy(struct scsi_device *sdev)
968 /* nothing to do. */
971 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
973 int i;
975 if (!h->cmd_sg_list)
976 return;
977 for (i = 0; i < h->nr_cmds; i++) {
978 kfree(h->cmd_sg_list[i]);
979 h->cmd_sg_list[i] = NULL;
981 kfree(h->cmd_sg_list);
982 h->cmd_sg_list = NULL;
985 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
987 int i;
989 if (h->chainsize <= 0)
990 return 0;
992 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
993 GFP_KERNEL);
994 if (!h->cmd_sg_list)
995 return -ENOMEM;
996 for (i = 0; i < h->nr_cmds; i++) {
997 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
998 h->chainsize, GFP_KERNEL);
999 if (!h->cmd_sg_list[i])
1000 goto clean;
1002 return 0;
1004 clean:
1005 hpsa_free_sg_chain_blocks(h);
1006 return -ENOMEM;
1009 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1010 struct CommandList *c)
1012 struct SGDescriptor *chain_sg, *chain_block;
1013 u64 temp64;
1015 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1016 chain_block = h->cmd_sg_list[c->cmdindex];
1017 chain_sg->Ext = HPSA_SG_CHAIN;
1018 chain_sg->Len = sizeof(*chain_sg) *
1019 (c->Header.SGTotal - h->max_cmd_sg_entries);
1020 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1021 PCI_DMA_TODEVICE);
1022 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1023 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1026 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1027 struct CommandList *c)
1029 struct SGDescriptor *chain_sg;
1030 union u64bit temp64;
1032 if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1033 return;
1035 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1036 temp64.val32.lower = chain_sg->Addr.lower;
1037 temp64.val32.upper = chain_sg->Addr.upper;
1038 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1041 static void complete_scsi_command(struct CommandList *cp)
1043 struct scsi_cmnd *cmd;
1044 struct ctlr_info *h;
1045 struct ErrorInfo *ei;
1047 unsigned char sense_key;
1048 unsigned char asc; /* additional sense code */
1049 unsigned char ascq; /* additional sense code qualifier */
1050 unsigned long sense_data_size;
1052 ei = cp->err_info;
1053 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1054 h = cp->h;
1056 scsi_dma_unmap(cmd); /* undo the DMA mappings */
1057 if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1058 hpsa_unmap_sg_chain_block(h, cp);
1060 cmd->result = (DID_OK << 16); /* host byte */
1061 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1062 cmd->result |= ei->ScsiStatus;
1064 /* copy the sense data whether we need to or not. */
1065 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1066 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1067 else
1068 sense_data_size = sizeof(ei->SenseInfo);
1069 if (ei->SenseLen < sense_data_size)
1070 sense_data_size = ei->SenseLen;
1072 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1073 scsi_set_resid(cmd, ei->ResidualCnt);
1075 if (ei->CommandStatus == 0) {
1076 cmd->scsi_done(cmd);
1077 cmd_free(h, cp);
1078 return;
1081 /* an error has occurred */
1082 switch (ei->CommandStatus) {
1084 case CMD_TARGET_STATUS:
1085 if (ei->ScsiStatus) {
1086 /* Get sense key */
1087 sense_key = 0xf & ei->SenseInfo[2];
1088 /* Get additional sense code */
1089 asc = ei->SenseInfo[12];
1090 /* Get addition sense code qualifier */
1091 ascq = ei->SenseInfo[13];
1094 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1095 if (check_for_unit_attention(h, cp)) {
1096 cmd->result = DID_SOFT_ERROR << 16;
1097 break;
1099 if (sense_key == ILLEGAL_REQUEST) {
1101 * SCSI REPORT_LUNS is commonly unsupported on
1102 * Smart Array. Suppress noisy complaint.
1104 if (cp->Request.CDB[0] == REPORT_LUNS)
1105 break;
1107 /* If ASC/ASCQ indicate Logical Unit
1108 * Not Supported condition,
1110 if ((asc == 0x25) && (ascq == 0x0)) {
1111 dev_warn(&h->pdev->dev, "cp %p "
1112 "has check condition\n", cp);
1113 break;
1117 if (sense_key == NOT_READY) {
1118 /* If Sense is Not Ready, Logical Unit
1119 * Not ready, Manual Intervention
1120 * required
1122 if ((asc == 0x04) && (ascq == 0x03)) {
1123 dev_warn(&h->pdev->dev, "cp %p "
1124 "has check condition: unit "
1125 "not ready, manual "
1126 "intervention required\n", cp);
1127 break;
1130 if (sense_key == ABORTED_COMMAND) {
1131 /* Aborted command is retryable */
1132 dev_warn(&h->pdev->dev, "cp %p "
1133 "has check condition: aborted command: "
1134 "ASC: 0x%x, ASCQ: 0x%x\n",
1135 cp, asc, ascq);
1136 cmd->result = DID_SOFT_ERROR << 16;
1137 break;
1139 /* Must be some other type of check condition */
1140 dev_warn(&h->pdev->dev, "cp %p has check condition: "
1141 "unknown type: "
1142 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1143 "Returning result: 0x%x, "
1144 "cmd=[%02x %02x %02x %02x %02x "
1145 "%02x %02x %02x %02x %02x %02x "
1146 "%02x %02x %02x %02x %02x]\n",
1147 cp, sense_key, asc, ascq,
1148 cmd->result,
1149 cmd->cmnd[0], cmd->cmnd[1],
1150 cmd->cmnd[2], cmd->cmnd[3],
1151 cmd->cmnd[4], cmd->cmnd[5],
1152 cmd->cmnd[6], cmd->cmnd[7],
1153 cmd->cmnd[8], cmd->cmnd[9],
1154 cmd->cmnd[10], cmd->cmnd[11],
1155 cmd->cmnd[12], cmd->cmnd[13],
1156 cmd->cmnd[14], cmd->cmnd[15]);
1157 break;
1161 /* Problem was not a check condition
1162 * Pass it up to the upper layers...
1164 if (ei->ScsiStatus) {
1165 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1166 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1167 "Returning result: 0x%x\n",
1168 cp, ei->ScsiStatus,
1169 sense_key, asc, ascq,
1170 cmd->result);
1171 } else { /* scsi status is zero??? How??? */
1172 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1173 "Returning no connection.\n", cp),
1175 /* Ordinarily, this case should never happen,
1176 * but there is a bug in some released firmware
1177 * revisions that allows it to happen if, for
1178 * example, a 4100 backplane loses power and
1179 * the tape drive is in it. We assume that
1180 * it's a fatal error of some kind because we
1181 * can't show that it wasn't. We will make it
1182 * look like selection timeout since that is
1183 * the most common reason for this to occur,
1184 * and it's severe enough.
1187 cmd->result = DID_NO_CONNECT << 16;
1189 break;
1191 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1192 break;
1193 case CMD_DATA_OVERRUN:
1194 dev_warn(&h->pdev->dev, "cp %p has"
1195 " completed with data overrun "
1196 "reported\n", cp);
1197 break;
1198 case CMD_INVALID: {
1199 /* print_bytes(cp, sizeof(*cp), 1, 0);
1200 print_cmd(cp); */
1201 /* We get CMD_INVALID if you address a non-existent device
1202 * instead of a selection timeout (no response). You will
1203 * see this if you yank out a drive, then try to access it.
1204 * This is kind of a shame because it means that any other
1205 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1206 * missing target. */
1207 cmd->result = DID_NO_CONNECT << 16;
1209 break;
1210 case CMD_PROTOCOL_ERR:
1211 dev_warn(&h->pdev->dev, "cp %p has "
1212 "protocol error \n", cp);
1213 break;
1214 case CMD_HARDWARE_ERR:
1215 cmd->result = DID_ERROR << 16;
1216 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1217 break;
1218 case CMD_CONNECTION_LOST:
1219 cmd->result = DID_ERROR << 16;
1220 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1221 break;
1222 case CMD_ABORTED:
1223 cmd->result = DID_ABORT << 16;
1224 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1225 cp, ei->ScsiStatus);
1226 break;
1227 case CMD_ABORT_FAILED:
1228 cmd->result = DID_ERROR << 16;
1229 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1230 break;
1231 case CMD_UNSOLICITED_ABORT:
1232 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1233 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1234 "abort\n", cp);
1235 break;
1236 case CMD_TIMEOUT:
1237 cmd->result = DID_TIME_OUT << 16;
1238 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1239 break;
1240 case CMD_UNABORTABLE:
1241 cmd->result = DID_ERROR << 16;
1242 dev_warn(&h->pdev->dev, "Command unabortable\n");
1243 break;
1244 default:
1245 cmd->result = DID_ERROR << 16;
1246 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1247 cp, ei->CommandStatus);
1249 cmd->scsi_done(cmd);
1250 cmd_free(h, cp);
1253 static int hpsa_scsi_detect(struct ctlr_info *h)
1255 struct Scsi_Host *sh;
1256 int error;
1258 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1259 if (sh == NULL)
1260 goto fail;
1262 sh->io_port = 0;
1263 sh->n_io_port = 0;
1264 sh->this_id = -1;
1265 sh->max_channel = 3;
1266 sh->max_cmd_len = MAX_COMMAND_SIZE;
1267 sh->max_lun = HPSA_MAX_LUN;
1268 sh->max_id = HPSA_MAX_LUN;
1269 sh->can_queue = h->nr_cmds;
1270 sh->cmd_per_lun = h->nr_cmds;
1271 sh->sg_tablesize = h->maxsgentries;
1272 h->scsi_host = sh;
1273 sh->hostdata[0] = (unsigned long) h;
1274 sh->irq = h->intr[h->intr_mode];
1275 sh->unique_id = sh->irq;
1276 error = scsi_add_host(sh, &h->pdev->dev);
1277 if (error)
1278 goto fail_host_put;
1279 scsi_scan_host(sh);
1280 return 0;
1282 fail_host_put:
1283 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1284 " failed for controller %d\n", h->ctlr);
1285 scsi_host_put(sh);
1286 return error;
1287 fail:
1288 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1289 " failed for controller %d\n", h->ctlr);
1290 return -ENOMEM;
1293 static void hpsa_pci_unmap(struct pci_dev *pdev,
1294 struct CommandList *c, int sg_used, int data_direction)
1296 int i;
1297 union u64bit addr64;
1299 for (i = 0; i < sg_used; i++) {
1300 addr64.val32.lower = c->SG[i].Addr.lower;
1301 addr64.val32.upper = c->SG[i].Addr.upper;
1302 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1303 data_direction);
1307 static void hpsa_map_one(struct pci_dev *pdev,
1308 struct CommandList *cp,
1309 unsigned char *buf,
1310 size_t buflen,
1311 int data_direction)
1313 u64 addr64;
1315 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1316 cp->Header.SGList = 0;
1317 cp->Header.SGTotal = 0;
1318 return;
1321 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1322 cp->SG[0].Addr.lower =
1323 (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1324 cp->SG[0].Addr.upper =
1325 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1326 cp->SG[0].Len = buflen;
1327 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
1328 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1331 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1332 struct CommandList *c)
1334 DECLARE_COMPLETION_ONSTACK(wait);
1336 c->waiting = &wait;
1337 enqueue_cmd_and_start_io(h, c);
1338 wait_for_completion(&wait);
1341 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1342 struct CommandList *c, int data_direction)
1344 int retry_count = 0;
1346 do {
1347 memset(c->err_info, 0, sizeof(*c->err_info));
1348 hpsa_scsi_do_simple_cmd_core(h, c);
1349 retry_count++;
1350 } while (check_for_unit_attention(h, c) && retry_count <= 3);
1351 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1354 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1356 struct ErrorInfo *ei;
1357 struct device *d = &cp->h->pdev->dev;
1359 ei = cp->err_info;
1360 switch (ei->CommandStatus) {
1361 case CMD_TARGET_STATUS:
1362 dev_warn(d, "cmd %p has completed with errors\n", cp);
1363 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1364 ei->ScsiStatus);
1365 if (ei->ScsiStatus == 0)
1366 dev_warn(d, "SCSI status is abnormally zero. "
1367 "(probably indicates selection timeout "
1368 "reported incorrectly due to a known "
1369 "firmware bug, circa July, 2001.)\n");
1370 break;
1371 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1372 dev_info(d, "UNDERRUN\n");
1373 break;
1374 case CMD_DATA_OVERRUN:
1375 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1376 break;
1377 case CMD_INVALID: {
1378 /* controller unfortunately reports SCSI passthru's
1379 * to non-existent targets as invalid commands.
1381 dev_warn(d, "cp %p is reported invalid (probably means "
1382 "target device no longer present)\n", cp);
1383 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1384 print_cmd(cp); */
1386 break;
1387 case CMD_PROTOCOL_ERR:
1388 dev_warn(d, "cp %p has protocol error \n", cp);
1389 break;
1390 case CMD_HARDWARE_ERR:
1391 /* cmd->result = DID_ERROR << 16; */
1392 dev_warn(d, "cp %p had hardware error\n", cp);
1393 break;
1394 case CMD_CONNECTION_LOST:
1395 dev_warn(d, "cp %p had connection lost\n", cp);
1396 break;
1397 case CMD_ABORTED:
1398 dev_warn(d, "cp %p was aborted\n", cp);
1399 break;
1400 case CMD_ABORT_FAILED:
1401 dev_warn(d, "cp %p reports abort failed\n", cp);
1402 break;
1403 case CMD_UNSOLICITED_ABORT:
1404 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1405 break;
1406 case CMD_TIMEOUT:
1407 dev_warn(d, "cp %p timed out\n", cp);
1408 break;
1409 case CMD_UNABORTABLE:
1410 dev_warn(d, "Command unabortable\n");
1411 break;
1412 default:
1413 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1414 ei->CommandStatus);
1418 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1419 unsigned char page, unsigned char *buf,
1420 unsigned char bufsize)
1422 int rc = IO_OK;
1423 struct CommandList *c;
1424 struct ErrorInfo *ei;
1426 c = cmd_special_alloc(h);
1428 if (c == NULL) { /* trouble... */
1429 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1430 return -ENOMEM;
1433 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1434 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1435 ei = c->err_info;
1436 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1437 hpsa_scsi_interpret_error(c);
1438 rc = -1;
1440 cmd_special_free(h, c);
1441 return rc;
1444 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1446 int rc = IO_OK;
1447 struct CommandList *c;
1448 struct ErrorInfo *ei;
1450 c = cmd_special_alloc(h);
1452 if (c == NULL) { /* trouble... */
1453 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1454 return -ENOMEM;
1457 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1458 hpsa_scsi_do_simple_cmd_core(h, c);
1459 /* no unmap needed here because no data xfer. */
1461 ei = c->err_info;
1462 if (ei->CommandStatus != 0) {
1463 hpsa_scsi_interpret_error(c);
1464 rc = -1;
1466 cmd_special_free(h, c);
1467 return rc;
1470 static void hpsa_get_raid_level(struct ctlr_info *h,
1471 unsigned char *scsi3addr, unsigned char *raid_level)
1473 int rc;
1474 unsigned char *buf;
1476 *raid_level = RAID_UNKNOWN;
1477 buf = kzalloc(64, GFP_KERNEL);
1478 if (!buf)
1479 return;
1480 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1481 if (rc == 0)
1482 *raid_level = buf[8];
1483 if (*raid_level > RAID_UNKNOWN)
1484 *raid_level = RAID_UNKNOWN;
1485 kfree(buf);
1486 return;
1489 /* Get the device id from inquiry page 0x83 */
1490 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1491 unsigned char *device_id, int buflen)
1493 int rc;
1494 unsigned char *buf;
1496 if (buflen > 16)
1497 buflen = 16;
1498 buf = kzalloc(64, GFP_KERNEL);
1499 if (!buf)
1500 return -1;
1501 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1502 if (rc == 0)
1503 memcpy(device_id, &buf[8], buflen);
1504 kfree(buf);
1505 return rc != 0;
1508 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1509 struct ReportLUNdata *buf, int bufsize,
1510 int extended_response)
1512 int rc = IO_OK;
1513 struct CommandList *c;
1514 unsigned char scsi3addr[8];
1515 struct ErrorInfo *ei;
1517 c = cmd_special_alloc(h);
1518 if (c == NULL) { /* trouble... */
1519 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1520 return -1;
1522 /* address the controller */
1523 memset(scsi3addr, 0, sizeof(scsi3addr));
1524 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1525 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1526 if (extended_response)
1527 c->Request.CDB[1] = extended_response;
1528 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1529 ei = c->err_info;
1530 if (ei->CommandStatus != 0 &&
1531 ei->CommandStatus != CMD_DATA_UNDERRUN) {
1532 hpsa_scsi_interpret_error(c);
1533 rc = -1;
1535 cmd_special_free(h, c);
1536 return rc;
1539 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1540 struct ReportLUNdata *buf,
1541 int bufsize, int extended_response)
1543 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1546 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1547 struct ReportLUNdata *buf, int bufsize)
1549 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1552 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1553 int bus, int target, int lun)
1555 device->bus = bus;
1556 device->target = target;
1557 device->lun = lun;
1560 static int hpsa_update_device_info(struct ctlr_info *h,
1561 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1562 unsigned char *is_OBDR_device)
1565 #define OBDR_SIG_OFFSET 43
1566 #define OBDR_TAPE_SIG "$DR-10"
1567 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1568 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1570 unsigned char *inq_buff;
1571 unsigned char *obdr_sig;
1573 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1574 if (!inq_buff)
1575 goto bail_out;
1577 /* Do an inquiry to the device to see what it is. */
1578 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1579 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1580 /* Inquiry failed (msg printed already) */
1581 dev_err(&h->pdev->dev,
1582 "hpsa_update_device_info: inquiry failed\n");
1583 goto bail_out;
1586 this_device->devtype = (inq_buff[0] & 0x1f);
1587 memcpy(this_device->scsi3addr, scsi3addr, 8);
1588 memcpy(this_device->vendor, &inq_buff[8],
1589 sizeof(this_device->vendor));
1590 memcpy(this_device->model, &inq_buff[16],
1591 sizeof(this_device->model));
1592 memset(this_device->device_id, 0,
1593 sizeof(this_device->device_id));
1594 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1595 sizeof(this_device->device_id));
1597 if (this_device->devtype == TYPE_DISK &&
1598 is_logical_dev_addr_mode(scsi3addr))
1599 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1600 else
1601 this_device->raid_level = RAID_UNKNOWN;
1603 if (is_OBDR_device) {
1604 /* See if this is a One-Button-Disaster-Recovery device
1605 * by looking for "$DR-10" at offset 43 in inquiry data.
1607 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1608 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1609 strncmp(obdr_sig, OBDR_TAPE_SIG,
1610 OBDR_SIG_LEN) == 0);
1613 kfree(inq_buff);
1614 return 0;
1616 bail_out:
1617 kfree(inq_buff);
1618 return 1;
1621 static unsigned char *msa2xxx_model[] = {
1622 "MSA2012",
1623 "MSA2024",
1624 "MSA2312",
1625 "MSA2324",
1626 "P2000 G3 SAS",
1627 NULL,
1630 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1632 int i;
1634 for (i = 0; msa2xxx_model[i]; i++)
1635 if (strncmp(device->model, msa2xxx_model[i],
1636 strlen(msa2xxx_model[i])) == 0)
1637 return 1;
1638 return 0;
1641 /* Helper function to assign bus, target, lun mapping of devices.
1642 * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1643 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1644 * Logical drive target and lun are assigned at this time, but
1645 * physical device lun and target assignment are deferred (assigned
1646 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1648 static void figure_bus_target_lun(struct ctlr_info *h,
1649 u8 *lunaddrbytes, int *bus, int *target, int *lun,
1650 struct hpsa_scsi_dev_t *device)
1652 u32 lunid;
1654 if (is_logical_dev_addr_mode(lunaddrbytes)) {
1655 /* logical device */
1656 if (unlikely(is_scsi_rev_5(h))) {
1657 /* p1210m, logical drives lun assignments
1658 * match SCSI REPORT LUNS data.
1660 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1661 *bus = 0;
1662 *target = 0;
1663 *lun = (lunid & 0x3fff) + 1;
1664 } else {
1665 /* not p1210m... */
1666 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1667 if (is_msa2xxx(h, device)) {
1668 /* msa2xxx way, put logicals on bus 1
1669 * and match target/lun numbers box
1670 * reports.
1672 *bus = 1;
1673 *target = (lunid >> 16) & 0x3fff;
1674 *lun = lunid & 0x00ff;
1675 } else {
1676 /* Traditional smart array way. */
1677 *bus = 0;
1678 *lun = 0;
1679 *target = lunid & 0x3fff;
1682 } else {
1683 /* physical device */
1684 if (is_hba_lunid(lunaddrbytes))
1685 if (unlikely(is_scsi_rev_5(h))) {
1686 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1687 *target = 0;
1688 *lun = 0;
1689 return;
1690 } else
1691 *bus = 3; /* traditional smartarray */
1692 else
1693 *bus = 2; /* physical disk */
1694 *target = -1;
1695 *lun = -1; /* we will fill these in later. */
1700 * If there is no lun 0 on a target, linux won't find any devices.
1701 * For the MSA2xxx boxes, we have to manually detect the enclosure
1702 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1703 * it for some reason. *tmpdevice is the target we're adding,
1704 * this_device is a pointer into the current element of currentsd[]
1705 * that we're building up in update_scsi_devices(), below.
1706 * lunzerobits is a bitmap that tracks which targets already have a
1707 * lun 0 assigned.
1708 * Returns 1 if an enclosure was added, 0 if not.
1710 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1711 struct hpsa_scsi_dev_t *tmpdevice,
1712 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1713 int bus, int target, int lun, unsigned long lunzerobits[],
1714 int *nmsa2xxx_enclosures)
1716 unsigned char scsi3addr[8];
1718 if (test_bit(target, lunzerobits))
1719 return 0; /* There is already a lun 0 on this target. */
1721 if (!is_logical_dev_addr_mode(lunaddrbytes))
1722 return 0; /* It's the logical targets that may lack lun 0. */
1724 if (!is_msa2xxx(h, tmpdevice))
1725 return 0; /* It's only the MSA2xxx that have this problem. */
1727 if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1728 return 0;
1730 memset(scsi3addr, 0, 8);
1731 scsi3addr[3] = target;
1732 if (is_hba_lunid(scsi3addr))
1733 return 0; /* Don't add the RAID controller here. */
1735 if (is_scsi_rev_5(h))
1736 return 0; /* p1210m doesn't need to do this. */
1738 #define MAX_MSA2XXX_ENCLOSURES 32
1739 if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1740 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1741 "enclosures exceeded. Check your hardware "
1742 "configuration.");
1743 return 0;
1746 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1747 return 0;
1748 (*nmsa2xxx_enclosures)++;
1749 hpsa_set_bus_target_lun(this_device, bus, target, 0);
1750 set_bit(target, lunzerobits);
1751 return 1;
1755 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1756 * logdev. The number of luns in physdev and logdev are returned in
1757 * *nphysicals and *nlogicals, respectively.
1758 * Returns 0 on success, -1 otherwise.
1760 static int hpsa_gather_lun_info(struct ctlr_info *h,
1761 int reportlunsize,
1762 struct ReportLUNdata *physdev, u32 *nphysicals,
1763 struct ReportLUNdata *logdev, u32 *nlogicals)
1765 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1766 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1767 return -1;
1769 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1770 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1771 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1772 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1773 *nphysicals - HPSA_MAX_PHYS_LUN);
1774 *nphysicals = HPSA_MAX_PHYS_LUN;
1776 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1777 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1778 return -1;
1780 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1781 /* Reject Logicals in excess of our max capability. */
1782 if (*nlogicals > HPSA_MAX_LUN) {
1783 dev_warn(&h->pdev->dev,
1784 "maximum logical LUNs (%d) exceeded. "
1785 "%d LUNs ignored.\n", HPSA_MAX_LUN,
1786 *nlogicals - HPSA_MAX_LUN);
1787 *nlogicals = HPSA_MAX_LUN;
1789 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1790 dev_warn(&h->pdev->dev,
1791 "maximum logical + physical LUNs (%d) exceeded. "
1792 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1793 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1794 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1796 return 0;
1799 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1800 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1801 struct ReportLUNdata *logdev_list)
1803 /* Helper function, figure out where the LUN ID info is coming from
1804 * given index i, lists of physical and logical devices, where in
1805 * the list the raid controller is supposed to appear (first or last)
1808 int logicals_start = nphysicals + (raid_ctlr_position == 0);
1809 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1811 if (i == raid_ctlr_position)
1812 return RAID_CTLR_LUNID;
1814 if (i < logicals_start)
1815 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1817 if (i < last_device)
1818 return &logdev_list->LUN[i - nphysicals -
1819 (raid_ctlr_position == 0)][0];
1820 BUG();
1821 return NULL;
1824 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1826 /* the idea here is we could get notified
1827 * that some devices have changed, so we do a report
1828 * physical luns and report logical luns cmd, and adjust
1829 * our list of devices accordingly.
1831 * The scsi3addr's of devices won't change so long as the
1832 * adapter is not reset. That means we can rescan and
1833 * tell which devices we already know about, vs. new
1834 * devices, vs. disappearing devices.
1836 struct ReportLUNdata *physdev_list = NULL;
1837 struct ReportLUNdata *logdev_list = NULL;
1838 u32 nphysicals = 0;
1839 u32 nlogicals = 0;
1840 u32 ndev_allocated = 0;
1841 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1842 int ncurrent = 0;
1843 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1844 int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1845 int bus, target, lun;
1846 int raid_ctlr_position;
1847 DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1849 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1850 GFP_KERNEL);
1851 physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1852 logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1853 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1855 if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1856 dev_err(&h->pdev->dev, "out of memory\n");
1857 goto out;
1859 memset(lunzerobits, 0, sizeof(lunzerobits));
1861 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1862 logdev_list, &nlogicals))
1863 goto out;
1865 /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1866 * but each of them 4 times through different paths. The plus 1
1867 * is for the RAID controller.
1869 ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1871 /* Allocate the per device structures */
1872 for (i = 0; i < ndevs_to_allocate; i++) {
1873 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1874 if (!currentsd[i]) {
1875 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1876 __FILE__, __LINE__);
1877 goto out;
1879 ndev_allocated++;
1882 if (unlikely(is_scsi_rev_5(h)))
1883 raid_ctlr_position = 0;
1884 else
1885 raid_ctlr_position = nphysicals + nlogicals;
1887 /* adjust our table of devices */
1888 nmsa2xxx_enclosures = 0;
1889 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1890 u8 *lunaddrbytes, is_OBDR = 0;
1892 /* Figure out where the LUN ID info is coming from */
1893 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1894 i, nphysicals, nlogicals, physdev_list, logdev_list);
1895 /* skip masked physical devices. */
1896 if (lunaddrbytes[3] & 0xC0 &&
1897 i < nphysicals + (raid_ctlr_position == 0))
1898 continue;
1900 /* Get device type, vendor, model, device id */
1901 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1902 &is_OBDR))
1903 continue; /* skip it if we can't talk to it. */
1904 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1905 tmpdevice);
1906 this_device = currentsd[ncurrent];
1909 * For the msa2xxx boxes, we have to insert a LUN 0 which
1910 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1911 * is nonetheless an enclosure device there. We have to
1912 * present that otherwise linux won't find anything if
1913 * there is no lun 0.
1915 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1916 lunaddrbytes, bus, target, lun, lunzerobits,
1917 &nmsa2xxx_enclosures)) {
1918 ncurrent++;
1919 this_device = currentsd[ncurrent];
1922 *this_device = *tmpdevice;
1923 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1925 switch (this_device->devtype) {
1926 case TYPE_ROM:
1927 /* We don't *really* support actual CD-ROM devices,
1928 * just "One Button Disaster Recovery" tape drive
1929 * which temporarily pretends to be a CD-ROM drive.
1930 * So we check that the device is really an OBDR tape
1931 * device by checking for "$DR-10" in bytes 43-48 of
1932 * the inquiry data.
1934 if (is_OBDR)
1935 ncurrent++;
1936 break;
1937 case TYPE_DISK:
1938 if (i < nphysicals)
1939 break;
1940 ncurrent++;
1941 break;
1942 case TYPE_TAPE:
1943 case TYPE_MEDIUM_CHANGER:
1944 ncurrent++;
1945 break;
1946 case TYPE_RAID:
1947 /* Only present the Smartarray HBA as a RAID controller.
1948 * If it's a RAID controller other than the HBA itself
1949 * (an external RAID controller, MSA500 or similar)
1950 * don't present it.
1952 if (!is_hba_lunid(lunaddrbytes))
1953 break;
1954 ncurrent++;
1955 break;
1956 default:
1957 break;
1959 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1960 break;
1962 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1963 out:
1964 kfree(tmpdevice);
1965 for (i = 0; i < ndev_allocated; i++)
1966 kfree(currentsd[i]);
1967 kfree(currentsd);
1968 kfree(physdev_list);
1969 kfree(logdev_list);
1972 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1973 * dma mapping and fills in the scatter gather entries of the
1974 * hpsa command, cp.
1976 static int hpsa_scatter_gather(struct ctlr_info *h,
1977 struct CommandList *cp,
1978 struct scsi_cmnd *cmd)
1980 unsigned int len;
1981 struct scatterlist *sg;
1982 u64 addr64;
1983 int use_sg, i, sg_index, chained;
1984 struct SGDescriptor *curr_sg;
1986 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1988 use_sg = scsi_dma_map(cmd);
1989 if (use_sg < 0)
1990 return use_sg;
1992 if (!use_sg)
1993 goto sglist_finished;
1995 curr_sg = cp->SG;
1996 chained = 0;
1997 sg_index = 0;
1998 scsi_for_each_sg(cmd, sg, use_sg, i) {
1999 if (i == h->max_cmd_sg_entries - 1 &&
2000 use_sg > h->max_cmd_sg_entries) {
2001 chained = 1;
2002 curr_sg = h->cmd_sg_list[cp->cmdindex];
2003 sg_index = 0;
2005 addr64 = (u64) sg_dma_address(sg);
2006 len = sg_dma_len(sg);
2007 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2008 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2009 curr_sg->Len = len;
2010 curr_sg->Ext = 0; /* we are not chaining */
2011 curr_sg++;
2014 if (use_sg + chained > h->maxSG)
2015 h->maxSG = use_sg + chained;
2017 if (chained) {
2018 cp->Header.SGList = h->max_cmd_sg_entries;
2019 cp->Header.SGTotal = (u16) (use_sg + 1);
2020 hpsa_map_sg_chain_block(h, cp);
2021 return 0;
2024 sglist_finished:
2026 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
2027 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2028 return 0;
2032 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2033 void (*done)(struct scsi_cmnd *))
2035 struct ctlr_info *h;
2036 struct hpsa_scsi_dev_t *dev;
2037 unsigned char scsi3addr[8];
2038 struct CommandList *c;
2039 unsigned long flags;
2041 /* Get the ptr to our adapter structure out of cmd->host. */
2042 h = sdev_to_hba(cmd->device);
2043 dev = cmd->device->hostdata;
2044 if (!dev) {
2045 cmd->result = DID_NO_CONNECT << 16;
2046 done(cmd);
2047 return 0;
2049 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2051 /* Need a lock as this is being allocated from the pool */
2052 spin_lock_irqsave(&h->lock, flags);
2053 c = cmd_alloc(h);
2054 spin_unlock_irqrestore(&h->lock, flags);
2055 if (c == NULL) { /* trouble... */
2056 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2057 return SCSI_MLQUEUE_HOST_BUSY;
2060 /* Fill in the command list header */
2062 cmd->scsi_done = done; /* save this for use by completion code */
2064 /* save c in case we have to abort it */
2065 cmd->host_scribble = (unsigned char *) c;
2067 c->cmd_type = CMD_SCSI;
2068 c->scsi_cmd = cmd;
2069 c->Header.ReplyQueue = 0; /* unused in simple mode */
2070 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2071 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2072 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2074 /* Fill in the request block... */
2076 c->Request.Timeout = 0;
2077 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2078 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2079 c->Request.CDBLen = cmd->cmd_len;
2080 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2081 c->Request.Type.Type = TYPE_CMD;
2082 c->Request.Type.Attribute = ATTR_SIMPLE;
2083 switch (cmd->sc_data_direction) {
2084 case DMA_TO_DEVICE:
2085 c->Request.Type.Direction = XFER_WRITE;
2086 break;
2087 case DMA_FROM_DEVICE:
2088 c->Request.Type.Direction = XFER_READ;
2089 break;
2090 case DMA_NONE:
2091 c->Request.Type.Direction = XFER_NONE;
2092 break;
2093 case DMA_BIDIRECTIONAL:
2094 /* This can happen if a buggy application does a scsi passthru
2095 * and sets both inlen and outlen to non-zero. ( see
2096 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2099 c->Request.Type.Direction = XFER_RSVD;
2100 /* This is technically wrong, and hpsa controllers should
2101 * reject it with CMD_INVALID, which is the most correct
2102 * response, but non-fibre backends appear to let it
2103 * slide by, and give the same results as if this field
2104 * were set correctly. Either way is acceptable for
2105 * our purposes here.
2108 break;
2110 default:
2111 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2112 cmd->sc_data_direction);
2113 BUG();
2114 break;
2117 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2118 cmd_free(h, c);
2119 return SCSI_MLQUEUE_HOST_BUSY;
2121 enqueue_cmd_and_start_io(h, c);
2122 /* the cmd'll come back via intr handler in complete_scsi_command() */
2123 return 0;
2126 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2128 static void hpsa_scan_start(struct Scsi_Host *sh)
2130 struct ctlr_info *h = shost_to_hba(sh);
2131 unsigned long flags;
2133 /* wait until any scan already in progress is finished. */
2134 while (1) {
2135 spin_lock_irqsave(&h->scan_lock, flags);
2136 if (h->scan_finished)
2137 break;
2138 spin_unlock_irqrestore(&h->scan_lock, flags);
2139 wait_event(h->scan_wait_queue, h->scan_finished);
2140 /* Note: We don't need to worry about a race between this
2141 * thread and driver unload because the midlayer will
2142 * have incremented the reference count, so unload won't
2143 * happen if we're in here.
2146 h->scan_finished = 0; /* mark scan as in progress */
2147 spin_unlock_irqrestore(&h->scan_lock, flags);
2149 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2151 spin_lock_irqsave(&h->scan_lock, flags);
2152 h->scan_finished = 1; /* mark scan as finished. */
2153 wake_up_all(&h->scan_wait_queue);
2154 spin_unlock_irqrestore(&h->scan_lock, flags);
2157 static int hpsa_scan_finished(struct Scsi_Host *sh,
2158 unsigned long elapsed_time)
2160 struct ctlr_info *h = shost_to_hba(sh);
2161 unsigned long flags;
2162 int finished;
2164 spin_lock_irqsave(&h->scan_lock, flags);
2165 finished = h->scan_finished;
2166 spin_unlock_irqrestore(&h->scan_lock, flags);
2167 return finished;
2170 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2171 int qdepth, int reason)
2173 struct ctlr_info *h = sdev_to_hba(sdev);
2175 if (reason != SCSI_QDEPTH_DEFAULT)
2176 return -ENOTSUPP;
2178 if (qdepth < 1)
2179 qdepth = 1;
2180 else
2181 if (qdepth > h->nr_cmds)
2182 qdepth = h->nr_cmds;
2183 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2184 return sdev->queue_depth;
2187 static void hpsa_unregister_scsi(struct ctlr_info *h)
2189 /* we are being forcibly unloaded, and may not refuse. */
2190 scsi_remove_host(h->scsi_host);
2191 scsi_host_put(h->scsi_host);
2192 h->scsi_host = NULL;
2195 static int hpsa_register_scsi(struct ctlr_info *h)
2197 int rc;
2199 rc = hpsa_scsi_detect(h);
2200 if (rc != 0)
2201 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2202 " hpsa_scsi_detect(), rc is %d\n", rc);
2203 return rc;
2206 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2207 unsigned char lunaddr[])
2209 int rc = 0;
2210 int count = 0;
2211 int waittime = 1; /* seconds */
2212 struct CommandList *c;
2214 c = cmd_special_alloc(h);
2215 if (!c) {
2216 dev_warn(&h->pdev->dev, "out of memory in "
2217 "wait_for_device_to_become_ready.\n");
2218 return IO_ERROR;
2221 /* Send test unit ready until device ready, or give up. */
2222 while (count < HPSA_TUR_RETRY_LIMIT) {
2224 /* Wait for a bit. do this first, because if we send
2225 * the TUR right away, the reset will just abort it.
2227 msleep(1000 * waittime);
2228 count++;
2230 /* Increase wait time with each try, up to a point. */
2231 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2232 waittime = waittime * 2;
2234 /* Send the Test Unit Ready */
2235 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2236 hpsa_scsi_do_simple_cmd_core(h, c);
2237 /* no unmap needed here because no data xfer. */
2239 if (c->err_info->CommandStatus == CMD_SUCCESS)
2240 break;
2242 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2243 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2244 (c->err_info->SenseInfo[2] == NO_SENSE ||
2245 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2246 break;
2248 dev_warn(&h->pdev->dev, "waiting %d secs "
2249 "for device to become ready.\n", waittime);
2250 rc = 1; /* device not ready. */
2253 if (rc)
2254 dev_warn(&h->pdev->dev, "giving up on device.\n");
2255 else
2256 dev_warn(&h->pdev->dev, "device is ready.\n");
2258 cmd_special_free(h, c);
2259 return rc;
2262 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2263 * complaining. Doing a host- or bus-reset can't do anything good here.
2265 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2267 int rc;
2268 struct ctlr_info *h;
2269 struct hpsa_scsi_dev_t *dev;
2271 /* find the controller to which the command to be aborted was sent */
2272 h = sdev_to_hba(scsicmd->device);
2273 if (h == NULL) /* paranoia */
2274 return FAILED;
2275 dev = scsicmd->device->hostdata;
2276 if (!dev) {
2277 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2278 "device lookup failed.\n");
2279 return FAILED;
2281 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2282 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2283 /* send a reset to the SCSI LUN which the command was sent to */
2284 rc = hpsa_send_reset(h, dev->scsi3addr);
2285 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2286 return SUCCESS;
2288 dev_warn(&h->pdev->dev, "resetting device failed.\n");
2289 return FAILED;
2293 * For operations that cannot sleep, a command block is allocated at init,
2294 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2295 * which ones are free or in use. Lock must be held when calling this.
2296 * cmd_free() is the complement.
2298 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2300 struct CommandList *c;
2301 int i;
2302 union u64bit temp64;
2303 dma_addr_t cmd_dma_handle, err_dma_handle;
2305 do {
2306 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2307 if (i == h->nr_cmds)
2308 return NULL;
2309 } while (test_and_set_bit
2310 (i & (BITS_PER_LONG - 1),
2311 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2312 c = h->cmd_pool + i;
2313 memset(c, 0, sizeof(*c));
2314 cmd_dma_handle = h->cmd_pool_dhandle
2315 + i * sizeof(*c);
2316 c->err_info = h->errinfo_pool + i;
2317 memset(c->err_info, 0, sizeof(*c->err_info));
2318 err_dma_handle = h->errinfo_pool_dhandle
2319 + i * sizeof(*c->err_info);
2320 h->nr_allocs++;
2322 c->cmdindex = i;
2324 INIT_LIST_HEAD(&c->list);
2325 c->busaddr = (u32) cmd_dma_handle;
2326 temp64.val = (u64) err_dma_handle;
2327 c->ErrDesc.Addr.lower = temp64.val32.lower;
2328 c->ErrDesc.Addr.upper = temp64.val32.upper;
2329 c->ErrDesc.Len = sizeof(*c->err_info);
2331 c->h = h;
2332 return c;
2335 /* For operations that can wait for kmalloc to possibly sleep,
2336 * this routine can be called. Lock need not be held to call
2337 * cmd_special_alloc. cmd_special_free() is the complement.
2339 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2341 struct CommandList *c;
2342 union u64bit temp64;
2343 dma_addr_t cmd_dma_handle, err_dma_handle;
2345 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2346 if (c == NULL)
2347 return NULL;
2348 memset(c, 0, sizeof(*c));
2350 c->cmdindex = -1;
2352 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2353 &err_dma_handle);
2355 if (c->err_info == NULL) {
2356 pci_free_consistent(h->pdev,
2357 sizeof(*c), c, cmd_dma_handle);
2358 return NULL;
2360 memset(c->err_info, 0, sizeof(*c->err_info));
2362 INIT_LIST_HEAD(&c->list);
2363 c->busaddr = (u32) cmd_dma_handle;
2364 temp64.val = (u64) err_dma_handle;
2365 c->ErrDesc.Addr.lower = temp64.val32.lower;
2366 c->ErrDesc.Addr.upper = temp64.val32.upper;
2367 c->ErrDesc.Len = sizeof(*c->err_info);
2369 c->h = h;
2370 return c;
2373 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2375 int i;
2377 i = c - h->cmd_pool;
2378 clear_bit(i & (BITS_PER_LONG - 1),
2379 h->cmd_pool_bits + (i / BITS_PER_LONG));
2380 h->nr_frees++;
2383 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2385 union u64bit temp64;
2387 temp64.val32.lower = c->ErrDesc.Addr.lower;
2388 temp64.val32.upper = c->ErrDesc.Addr.upper;
2389 pci_free_consistent(h->pdev, sizeof(*c->err_info),
2390 c->err_info, (dma_addr_t) temp64.val);
2391 pci_free_consistent(h->pdev, sizeof(*c),
2392 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2395 #ifdef CONFIG_COMPAT
2397 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2399 IOCTL32_Command_struct __user *arg32 =
2400 (IOCTL32_Command_struct __user *) arg;
2401 IOCTL_Command_struct arg64;
2402 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2403 int err;
2404 u32 cp;
2406 memset(&arg64, 0, sizeof(arg64));
2407 err = 0;
2408 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2409 sizeof(arg64.LUN_info));
2410 err |= copy_from_user(&arg64.Request, &arg32->Request,
2411 sizeof(arg64.Request));
2412 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2413 sizeof(arg64.error_info));
2414 err |= get_user(arg64.buf_size, &arg32->buf_size);
2415 err |= get_user(cp, &arg32->buf);
2416 arg64.buf = compat_ptr(cp);
2417 err |= copy_to_user(p, &arg64, sizeof(arg64));
2419 if (err)
2420 return -EFAULT;
2422 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2423 if (err)
2424 return err;
2425 err |= copy_in_user(&arg32->error_info, &p->error_info,
2426 sizeof(arg32->error_info));
2427 if (err)
2428 return -EFAULT;
2429 return err;
2432 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2433 int cmd, void *arg)
2435 BIG_IOCTL32_Command_struct __user *arg32 =
2436 (BIG_IOCTL32_Command_struct __user *) arg;
2437 BIG_IOCTL_Command_struct arg64;
2438 BIG_IOCTL_Command_struct __user *p =
2439 compat_alloc_user_space(sizeof(arg64));
2440 int err;
2441 u32 cp;
2443 memset(&arg64, 0, sizeof(arg64));
2444 err = 0;
2445 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2446 sizeof(arg64.LUN_info));
2447 err |= copy_from_user(&arg64.Request, &arg32->Request,
2448 sizeof(arg64.Request));
2449 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2450 sizeof(arg64.error_info));
2451 err |= get_user(arg64.buf_size, &arg32->buf_size);
2452 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2453 err |= get_user(cp, &arg32->buf);
2454 arg64.buf = compat_ptr(cp);
2455 err |= copy_to_user(p, &arg64, sizeof(arg64));
2457 if (err)
2458 return -EFAULT;
2460 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2461 if (err)
2462 return err;
2463 err |= copy_in_user(&arg32->error_info, &p->error_info,
2464 sizeof(arg32->error_info));
2465 if (err)
2466 return -EFAULT;
2467 return err;
2470 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2472 switch (cmd) {
2473 case CCISS_GETPCIINFO:
2474 case CCISS_GETINTINFO:
2475 case CCISS_SETINTINFO:
2476 case CCISS_GETNODENAME:
2477 case CCISS_SETNODENAME:
2478 case CCISS_GETHEARTBEAT:
2479 case CCISS_GETBUSTYPES:
2480 case CCISS_GETFIRMVER:
2481 case CCISS_GETDRIVVER:
2482 case CCISS_REVALIDVOLS:
2483 case CCISS_DEREGDISK:
2484 case CCISS_REGNEWDISK:
2485 case CCISS_REGNEWD:
2486 case CCISS_RESCANDISK:
2487 case CCISS_GETLUNINFO:
2488 return hpsa_ioctl(dev, cmd, arg);
2490 case CCISS_PASSTHRU32:
2491 return hpsa_ioctl32_passthru(dev, cmd, arg);
2492 case CCISS_BIG_PASSTHRU32:
2493 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2495 default:
2496 return -ENOIOCTLCMD;
2499 #endif
2501 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2503 struct hpsa_pci_info pciinfo;
2505 if (!argp)
2506 return -EINVAL;
2507 pciinfo.domain = pci_domain_nr(h->pdev->bus);
2508 pciinfo.bus = h->pdev->bus->number;
2509 pciinfo.dev_fn = h->pdev->devfn;
2510 pciinfo.board_id = h->board_id;
2511 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2512 return -EFAULT;
2513 return 0;
2516 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2518 DriverVer_type DriverVer;
2519 unsigned char vmaj, vmin, vsubmin;
2520 int rc;
2522 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2523 &vmaj, &vmin, &vsubmin);
2524 if (rc != 3) {
2525 dev_info(&h->pdev->dev, "driver version string '%s' "
2526 "unrecognized.", HPSA_DRIVER_VERSION);
2527 vmaj = 0;
2528 vmin = 0;
2529 vsubmin = 0;
2531 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2532 if (!argp)
2533 return -EINVAL;
2534 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2535 return -EFAULT;
2536 return 0;
2539 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2541 IOCTL_Command_struct iocommand;
2542 struct CommandList *c;
2543 char *buff = NULL;
2544 union u64bit temp64;
2546 if (!argp)
2547 return -EINVAL;
2548 if (!capable(CAP_SYS_RAWIO))
2549 return -EPERM;
2550 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2551 return -EFAULT;
2552 if ((iocommand.buf_size < 1) &&
2553 (iocommand.Request.Type.Direction != XFER_NONE)) {
2554 return -EINVAL;
2556 if (iocommand.buf_size > 0) {
2557 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2558 if (buff == NULL)
2559 return -EFAULT;
2560 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2561 /* Copy the data into the buffer we created */
2562 if (copy_from_user(buff, iocommand.buf,
2563 iocommand.buf_size)) {
2564 kfree(buff);
2565 return -EFAULT;
2567 } else {
2568 memset(buff, 0, iocommand.buf_size);
2571 c = cmd_special_alloc(h);
2572 if (c == NULL) {
2573 kfree(buff);
2574 return -ENOMEM;
2576 /* Fill in the command type */
2577 c->cmd_type = CMD_IOCTL_PEND;
2578 /* Fill in Command Header */
2579 c->Header.ReplyQueue = 0; /* unused in simple mode */
2580 if (iocommand.buf_size > 0) { /* buffer to fill */
2581 c->Header.SGList = 1;
2582 c->Header.SGTotal = 1;
2583 } else { /* no buffers to fill */
2584 c->Header.SGList = 0;
2585 c->Header.SGTotal = 0;
2587 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2588 /* use the kernel address the cmd block for tag */
2589 c->Header.Tag.lower = c->busaddr;
2591 /* Fill in Request block */
2592 memcpy(&c->Request, &iocommand.Request,
2593 sizeof(c->Request));
2595 /* Fill in the scatter gather information */
2596 if (iocommand.buf_size > 0) {
2597 temp64.val = pci_map_single(h->pdev, buff,
2598 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2599 c->SG[0].Addr.lower = temp64.val32.lower;
2600 c->SG[0].Addr.upper = temp64.val32.upper;
2601 c->SG[0].Len = iocommand.buf_size;
2602 c->SG[0].Ext = 0; /* we are not chaining*/
2604 hpsa_scsi_do_simple_cmd_core(h, c);
2605 if (iocommand.buf_size > 0)
2606 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2607 check_ioctl_unit_attention(h, c);
2609 /* Copy the error information out */
2610 memcpy(&iocommand.error_info, c->err_info,
2611 sizeof(iocommand.error_info));
2612 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2613 kfree(buff);
2614 cmd_special_free(h, c);
2615 return -EFAULT;
2617 if (iocommand.Request.Type.Direction == XFER_READ &&
2618 iocommand.buf_size > 0) {
2619 /* Copy the data out of the buffer we created */
2620 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2621 kfree(buff);
2622 cmd_special_free(h, c);
2623 return -EFAULT;
2626 kfree(buff);
2627 cmd_special_free(h, c);
2628 return 0;
2631 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2633 BIG_IOCTL_Command_struct *ioc;
2634 struct CommandList *c;
2635 unsigned char **buff = NULL;
2636 int *buff_size = NULL;
2637 union u64bit temp64;
2638 BYTE sg_used = 0;
2639 int status = 0;
2640 int i;
2641 u32 left;
2642 u32 sz;
2643 BYTE __user *data_ptr;
2645 if (!argp)
2646 return -EINVAL;
2647 if (!capable(CAP_SYS_RAWIO))
2648 return -EPERM;
2649 ioc = (BIG_IOCTL_Command_struct *)
2650 kmalloc(sizeof(*ioc), GFP_KERNEL);
2651 if (!ioc) {
2652 status = -ENOMEM;
2653 goto cleanup1;
2655 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2656 status = -EFAULT;
2657 goto cleanup1;
2659 if ((ioc->buf_size < 1) &&
2660 (ioc->Request.Type.Direction != XFER_NONE)) {
2661 status = -EINVAL;
2662 goto cleanup1;
2664 /* Check kmalloc limits using all SGs */
2665 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2666 status = -EINVAL;
2667 goto cleanup1;
2669 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2670 status = -EINVAL;
2671 goto cleanup1;
2673 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2674 if (!buff) {
2675 status = -ENOMEM;
2676 goto cleanup1;
2678 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2679 if (!buff_size) {
2680 status = -ENOMEM;
2681 goto cleanup1;
2683 left = ioc->buf_size;
2684 data_ptr = ioc->buf;
2685 while (left) {
2686 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2687 buff_size[sg_used] = sz;
2688 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2689 if (buff[sg_used] == NULL) {
2690 status = -ENOMEM;
2691 goto cleanup1;
2693 if (ioc->Request.Type.Direction == XFER_WRITE) {
2694 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2695 status = -ENOMEM;
2696 goto cleanup1;
2698 } else
2699 memset(buff[sg_used], 0, sz);
2700 left -= sz;
2701 data_ptr += sz;
2702 sg_used++;
2704 c = cmd_special_alloc(h);
2705 if (c == NULL) {
2706 status = -ENOMEM;
2707 goto cleanup1;
2709 c->cmd_type = CMD_IOCTL_PEND;
2710 c->Header.ReplyQueue = 0;
2711 c->Header.SGList = c->Header.SGTotal = sg_used;
2712 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2713 c->Header.Tag.lower = c->busaddr;
2714 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2715 if (ioc->buf_size > 0) {
2716 int i;
2717 for (i = 0; i < sg_used; i++) {
2718 temp64.val = pci_map_single(h->pdev, buff[i],
2719 buff_size[i], PCI_DMA_BIDIRECTIONAL);
2720 c->SG[i].Addr.lower = temp64.val32.lower;
2721 c->SG[i].Addr.upper = temp64.val32.upper;
2722 c->SG[i].Len = buff_size[i];
2723 /* we are not chaining */
2724 c->SG[i].Ext = 0;
2727 hpsa_scsi_do_simple_cmd_core(h, c);
2728 if (sg_used)
2729 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2730 check_ioctl_unit_attention(h, c);
2731 /* Copy the error information out */
2732 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2733 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2734 cmd_special_free(h, c);
2735 status = -EFAULT;
2736 goto cleanup1;
2738 if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2739 /* Copy the data out of the buffer we created */
2740 BYTE __user *ptr = ioc->buf;
2741 for (i = 0; i < sg_used; i++) {
2742 if (copy_to_user(ptr, buff[i], buff_size[i])) {
2743 cmd_special_free(h, c);
2744 status = -EFAULT;
2745 goto cleanup1;
2747 ptr += buff_size[i];
2750 cmd_special_free(h, c);
2751 status = 0;
2752 cleanup1:
2753 if (buff) {
2754 for (i = 0; i < sg_used; i++)
2755 kfree(buff[i]);
2756 kfree(buff);
2758 kfree(buff_size);
2759 kfree(ioc);
2760 return status;
2763 static void check_ioctl_unit_attention(struct ctlr_info *h,
2764 struct CommandList *c)
2766 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2767 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2768 (void) check_for_unit_attention(h, c);
2771 * ioctl
2773 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2775 struct ctlr_info *h;
2776 void __user *argp = (void __user *)arg;
2778 h = sdev_to_hba(dev);
2780 switch (cmd) {
2781 case CCISS_DEREGDISK:
2782 case CCISS_REGNEWDISK:
2783 case CCISS_REGNEWD:
2784 hpsa_scan_start(h->scsi_host);
2785 return 0;
2786 case CCISS_GETPCIINFO:
2787 return hpsa_getpciinfo_ioctl(h, argp);
2788 case CCISS_GETDRIVVER:
2789 return hpsa_getdrivver_ioctl(h, argp);
2790 case CCISS_PASSTHRU:
2791 return hpsa_passthru_ioctl(h, argp);
2792 case CCISS_BIG_PASSTHRU:
2793 return hpsa_big_passthru_ioctl(h, argp);
2794 default:
2795 return -ENOTTY;
2799 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2800 unsigned char *scsi3addr, u8 reset_type)
2802 struct CommandList *c;
2804 c = cmd_alloc(h);
2805 if (!c)
2806 return -ENOMEM;
2807 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2808 RAID_CTLR_LUNID, TYPE_MSG);
2809 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2810 c->waiting = NULL;
2811 enqueue_cmd_and_start_io(h, c);
2812 /* Don't wait for completion, the reset won't complete. Don't free
2813 * the command either. This is the last command we will send before
2814 * re-initializing everything, so it doesn't matter and won't leak.
2816 return 0;
2819 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2820 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2821 int cmd_type)
2823 int pci_dir = XFER_NONE;
2825 c->cmd_type = CMD_IOCTL_PEND;
2826 c->Header.ReplyQueue = 0;
2827 if (buff != NULL && size > 0) {
2828 c->Header.SGList = 1;
2829 c->Header.SGTotal = 1;
2830 } else {
2831 c->Header.SGList = 0;
2832 c->Header.SGTotal = 0;
2834 c->Header.Tag.lower = c->busaddr;
2835 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2837 c->Request.Type.Type = cmd_type;
2838 if (cmd_type == TYPE_CMD) {
2839 switch (cmd) {
2840 case HPSA_INQUIRY:
2841 /* are we trying to read a vital product page */
2842 if (page_code != 0) {
2843 c->Request.CDB[1] = 0x01;
2844 c->Request.CDB[2] = page_code;
2846 c->Request.CDBLen = 6;
2847 c->Request.Type.Attribute = ATTR_SIMPLE;
2848 c->Request.Type.Direction = XFER_READ;
2849 c->Request.Timeout = 0;
2850 c->Request.CDB[0] = HPSA_INQUIRY;
2851 c->Request.CDB[4] = size & 0xFF;
2852 break;
2853 case HPSA_REPORT_LOG:
2854 case HPSA_REPORT_PHYS:
2855 /* Talking to controller so It's a physical command
2856 mode = 00 target = 0. Nothing to write.
2858 c->Request.CDBLen = 12;
2859 c->Request.Type.Attribute = ATTR_SIMPLE;
2860 c->Request.Type.Direction = XFER_READ;
2861 c->Request.Timeout = 0;
2862 c->Request.CDB[0] = cmd;
2863 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2864 c->Request.CDB[7] = (size >> 16) & 0xFF;
2865 c->Request.CDB[8] = (size >> 8) & 0xFF;
2866 c->Request.CDB[9] = size & 0xFF;
2867 break;
2868 case HPSA_CACHE_FLUSH:
2869 c->Request.CDBLen = 12;
2870 c->Request.Type.Attribute = ATTR_SIMPLE;
2871 c->Request.Type.Direction = XFER_WRITE;
2872 c->Request.Timeout = 0;
2873 c->Request.CDB[0] = BMIC_WRITE;
2874 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2875 break;
2876 case TEST_UNIT_READY:
2877 c->Request.CDBLen = 6;
2878 c->Request.Type.Attribute = ATTR_SIMPLE;
2879 c->Request.Type.Direction = XFER_NONE;
2880 c->Request.Timeout = 0;
2881 break;
2882 default:
2883 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2884 BUG();
2885 return;
2887 } else if (cmd_type == TYPE_MSG) {
2888 switch (cmd) {
2890 case HPSA_DEVICE_RESET_MSG:
2891 c->Request.CDBLen = 16;
2892 c->Request.Type.Type = 1; /* It is a MSG not a CMD */
2893 c->Request.Type.Attribute = ATTR_SIMPLE;
2894 c->Request.Type.Direction = XFER_NONE;
2895 c->Request.Timeout = 0; /* Don't time out */
2896 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2897 c->Request.CDB[0] = cmd;
2898 c->Request.CDB[1] = 0x03; /* Reset target above */
2899 /* If bytes 4-7 are zero, it means reset the */
2900 /* LunID device */
2901 c->Request.CDB[4] = 0x00;
2902 c->Request.CDB[5] = 0x00;
2903 c->Request.CDB[6] = 0x00;
2904 c->Request.CDB[7] = 0x00;
2905 break;
2907 default:
2908 dev_warn(&h->pdev->dev, "unknown message type %d\n",
2909 cmd);
2910 BUG();
2912 } else {
2913 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2914 BUG();
2917 switch (c->Request.Type.Direction) {
2918 case XFER_READ:
2919 pci_dir = PCI_DMA_FROMDEVICE;
2920 break;
2921 case XFER_WRITE:
2922 pci_dir = PCI_DMA_TODEVICE;
2923 break;
2924 case XFER_NONE:
2925 pci_dir = PCI_DMA_NONE;
2926 break;
2927 default:
2928 pci_dir = PCI_DMA_BIDIRECTIONAL;
2931 hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2933 return;
2937 * Map (physical) PCI mem into (virtual) kernel space
2939 static void __iomem *remap_pci_mem(ulong base, ulong size)
2941 ulong page_base = ((ulong) base) & PAGE_MASK;
2942 ulong page_offs = ((ulong) base) - page_base;
2943 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2945 return page_remapped ? (page_remapped + page_offs) : NULL;
2948 /* Takes cmds off the submission queue and sends them to the hardware,
2949 * then puts them on the queue of cmds waiting for completion.
2951 static void start_io(struct ctlr_info *h)
2953 struct CommandList *c;
2955 while (!list_empty(&h->reqQ)) {
2956 c = list_entry(h->reqQ.next, struct CommandList, list);
2957 /* can't do anything if fifo is full */
2958 if ((h->access.fifo_full(h))) {
2959 dev_warn(&h->pdev->dev, "fifo full\n");
2960 break;
2963 /* Get the first entry from the Request Q */
2964 removeQ(c);
2965 h->Qdepth--;
2967 /* Tell the controller execute command */
2968 h->access.submit_command(h, c);
2970 /* Put job onto the completed Q */
2971 addQ(&h->cmpQ, c);
2975 static inline unsigned long get_next_completion(struct ctlr_info *h)
2977 return h->access.command_completed(h);
2980 static inline bool interrupt_pending(struct ctlr_info *h)
2982 return h->access.intr_pending(h);
2985 static inline long interrupt_not_for_us(struct ctlr_info *h)
2987 return (h->access.intr_pending(h) == 0) ||
2988 (h->interrupts_enabled == 0);
2991 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2992 u32 raw_tag)
2994 if (unlikely(tag_index >= h->nr_cmds)) {
2995 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2996 return 1;
2998 return 0;
3001 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
3003 removeQ(c);
3004 if (likely(c->cmd_type == CMD_SCSI))
3005 complete_scsi_command(c);
3006 else if (c->cmd_type == CMD_IOCTL_PEND)
3007 complete(c->waiting);
3010 static inline u32 hpsa_tag_contains_index(u32 tag)
3012 return tag & DIRECT_LOOKUP_BIT;
3015 static inline u32 hpsa_tag_to_index(u32 tag)
3017 return tag >> DIRECT_LOOKUP_SHIFT;
3021 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3023 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3024 #define HPSA_SIMPLE_ERROR_BITS 0x03
3025 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3026 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3027 return tag & ~HPSA_PERF_ERROR_BITS;
3030 /* process completion of an indexed ("direct lookup") command */
3031 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3032 u32 raw_tag)
3034 u32 tag_index;
3035 struct CommandList *c;
3037 tag_index = hpsa_tag_to_index(raw_tag);
3038 if (bad_tag(h, tag_index, raw_tag))
3039 return next_command(h);
3040 c = h->cmd_pool + tag_index;
3041 finish_cmd(c, raw_tag);
3042 return next_command(h);
3045 /* process completion of a non-indexed command */
3046 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3047 u32 raw_tag)
3049 u32 tag;
3050 struct CommandList *c = NULL;
3052 tag = hpsa_tag_discard_error_bits(h, raw_tag);
3053 list_for_each_entry(c, &h->cmpQ, list) {
3054 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3055 finish_cmd(c, raw_tag);
3056 return next_command(h);
3059 bad_tag(h, h->nr_cmds + 1, raw_tag);
3060 return next_command(h);
3063 /* Some controllers, like p400, will give us one interrupt
3064 * after a soft reset, even if we turned interrupts off.
3065 * Only need to check for this in the hpsa_xxx_discard_completions
3066 * functions.
3068 static int ignore_bogus_interrupt(struct ctlr_info *h)
3070 if (likely(!reset_devices))
3071 return 0;
3073 if (likely(h->interrupts_enabled))
3074 return 0;
3076 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3077 "(known firmware bug.) Ignoring.\n");
3079 return 1;
3082 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3084 struct ctlr_info *h = dev_id;
3085 unsigned long flags;
3086 u32 raw_tag;
3088 if (ignore_bogus_interrupt(h))
3089 return IRQ_NONE;
3091 if (interrupt_not_for_us(h))
3092 return IRQ_NONE;
3093 spin_lock_irqsave(&h->lock, flags);
3094 while (interrupt_pending(h)) {
3095 raw_tag = get_next_completion(h);
3096 while (raw_tag != FIFO_EMPTY)
3097 raw_tag = next_command(h);
3099 spin_unlock_irqrestore(&h->lock, flags);
3100 return IRQ_HANDLED;
3103 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3105 struct ctlr_info *h = dev_id;
3106 unsigned long flags;
3107 u32 raw_tag;
3109 if (ignore_bogus_interrupt(h))
3110 return IRQ_NONE;
3112 spin_lock_irqsave(&h->lock, flags);
3113 raw_tag = get_next_completion(h);
3114 while (raw_tag != FIFO_EMPTY)
3115 raw_tag = next_command(h);
3116 spin_unlock_irqrestore(&h->lock, flags);
3117 return IRQ_HANDLED;
3120 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3122 struct ctlr_info *h = dev_id;
3123 unsigned long flags;
3124 u32 raw_tag;
3126 if (interrupt_not_for_us(h))
3127 return IRQ_NONE;
3128 spin_lock_irqsave(&h->lock, flags);
3129 while (interrupt_pending(h)) {
3130 raw_tag = get_next_completion(h);
3131 while (raw_tag != FIFO_EMPTY) {
3132 if (hpsa_tag_contains_index(raw_tag))
3133 raw_tag = process_indexed_cmd(h, raw_tag);
3134 else
3135 raw_tag = process_nonindexed_cmd(h, raw_tag);
3138 spin_unlock_irqrestore(&h->lock, flags);
3139 return IRQ_HANDLED;
3142 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3144 struct ctlr_info *h = dev_id;
3145 unsigned long flags;
3146 u32 raw_tag;
3148 spin_lock_irqsave(&h->lock, flags);
3149 raw_tag = get_next_completion(h);
3150 while (raw_tag != FIFO_EMPTY) {
3151 if (hpsa_tag_contains_index(raw_tag))
3152 raw_tag = process_indexed_cmd(h, raw_tag);
3153 else
3154 raw_tag = process_nonindexed_cmd(h, raw_tag);
3156 spin_unlock_irqrestore(&h->lock, flags);
3157 return IRQ_HANDLED;
3160 /* Send a message CDB to the firmware. Careful, this only works
3161 * in simple mode, not performant mode due to the tag lookup.
3162 * We only ever use this immediately after a controller reset.
3164 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3165 unsigned char type)
3167 struct Command {
3168 struct CommandListHeader CommandHeader;
3169 struct RequestBlock Request;
3170 struct ErrDescriptor ErrorDescriptor;
3172 struct Command *cmd;
3173 static const size_t cmd_sz = sizeof(*cmd) +
3174 sizeof(cmd->ErrorDescriptor);
3175 dma_addr_t paddr64;
3176 uint32_t paddr32, tag;
3177 void __iomem *vaddr;
3178 int i, err;
3180 vaddr = pci_ioremap_bar(pdev, 0);
3181 if (vaddr == NULL)
3182 return -ENOMEM;
3184 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3185 * CCISS commands, so they must be allocated from the lower 4GiB of
3186 * memory.
3188 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3189 if (err) {
3190 iounmap(vaddr);
3191 return -ENOMEM;
3194 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3195 if (cmd == NULL) {
3196 iounmap(vaddr);
3197 return -ENOMEM;
3200 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3201 * although there's no guarantee, we assume that the address is at
3202 * least 4-byte aligned (most likely, it's page-aligned).
3204 paddr32 = paddr64;
3206 cmd->CommandHeader.ReplyQueue = 0;
3207 cmd->CommandHeader.SGList = 0;
3208 cmd->CommandHeader.SGTotal = 0;
3209 cmd->CommandHeader.Tag.lower = paddr32;
3210 cmd->CommandHeader.Tag.upper = 0;
3211 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3213 cmd->Request.CDBLen = 16;
3214 cmd->Request.Type.Type = TYPE_MSG;
3215 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3216 cmd->Request.Type.Direction = XFER_NONE;
3217 cmd->Request.Timeout = 0; /* Don't time out */
3218 cmd->Request.CDB[0] = opcode;
3219 cmd->Request.CDB[1] = type;
3220 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3221 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3222 cmd->ErrorDescriptor.Addr.upper = 0;
3223 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3225 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3227 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3228 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3229 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3230 break;
3231 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3234 iounmap(vaddr);
3236 /* we leak the DMA buffer here ... no choice since the controller could
3237 * still complete the command.
3239 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3240 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3241 opcode, type);
3242 return -ETIMEDOUT;
3245 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3247 if (tag & HPSA_ERROR_BIT) {
3248 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3249 opcode, type);
3250 return -EIO;
3253 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3254 opcode, type);
3255 return 0;
3258 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3260 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3261 void * __iomem vaddr, u32 use_doorbell)
3263 u16 pmcsr;
3264 int pos;
3266 if (use_doorbell) {
3267 /* For everything after the P600, the PCI power state method
3268 * of resetting the controller doesn't work, so we have this
3269 * other way using the doorbell register.
3271 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3272 writel(use_doorbell, vaddr + SA5_DOORBELL);
3273 } else { /* Try to do it the PCI power state way */
3275 /* Quoting from the Open CISS Specification: "The Power
3276 * Management Control/Status Register (CSR) controls the power
3277 * state of the device. The normal operating state is D0,
3278 * CSR=00h. The software off state is D3, CSR=03h. To reset
3279 * the controller, place the interface device in D3 then to D0,
3280 * this causes a secondary PCI reset which will reset the
3281 * controller." */
3283 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3284 if (pos == 0) {
3285 dev_err(&pdev->dev,
3286 "hpsa_reset_controller: "
3287 "PCI PM not supported\n");
3288 return -ENODEV;
3290 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3291 /* enter the D3hot power management state */
3292 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3293 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3294 pmcsr |= PCI_D3hot;
3295 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3297 msleep(500);
3299 /* enter the D0 power management state */
3300 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3301 pmcsr |= PCI_D0;
3302 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3304 return 0;
3307 static __devinit void init_driver_version(char *driver_version, int len)
3309 memset(driver_version, 0, len);
3310 strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3313 static __devinit int write_driver_ver_to_cfgtable(
3314 struct CfgTable __iomem *cfgtable)
3316 char *driver_version;
3317 int i, size = sizeof(cfgtable->driver_version);
3319 driver_version = kmalloc(size, GFP_KERNEL);
3320 if (!driver_version)
3321 return -ENOMEM;
3323 init_driver_version(driver_version, size);
3324 for (i = 0; i < size; i++)
3325 writeb(driver_version[i], &cfgtable->driver_version[i]);
3326 kfree(driver_version);
3327 return 0;
3330 static __devinit void read_driver_ver_from_cfgtable(
3331 struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3333 int i;
3335 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3336 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3339 static __devinit int controller_reset_failed(
3340 struct CfgTable __iomem *cfgtable)
3343 char *driver_ver, *old_driver_ver;
3344 int rc, size = sizeof(cfgtable->driver_version);
3346 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3347 if (!old_driver_ver)
3348 return -ENOMEM;
3349 driver_ver = old_driver_ver + size;
3351 /* After a reset, the 32 bytes of "driver version" in the cfgtable
3352 * should have been changed, otherwise we know the reset failed.
3354 init_driver_version(old_driver_ver, size);
3355 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3356 rc = !memcmp(driver_ver, old_driver_ver, size);
3357 kfree(old_driver_ver);
3358 return rc;
3360 /* This does a hard reset of the controller using PCI power management
3361 * states or the using the doorbell register.
3363 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3365 u64 cfg_offset;
3366 u32 cfg_base_addr;
3367 u64 cfg_base_addr_index;
3368 void __iomem *vaddr;
3369 unsigned long paddr;
3370 u32 misc_fw_support;
3371 int rc;
3372 struct CfgTable __iomem *cfgtable;
3373 u32 use_doorbell;
3374 u32 board_id;
3375 u16 command_register;
3377 /* For controllers as old as the P600, this is very nearly
3378 * the same thing as
3380 * pci_save_state(pci_dev);
3381 * pci_set_power_state(pci_dev, PCI_D3hot);
3382 * pci_set_power_state(pci_dev, PCI_D0);
3383 * pci_restore_state(pci_dev);
3385 * For controllers newer than the P600, the pci power state
3386 * method of resetting doesn't work so we have another way
3387 * using the doorbell register.
3390 rc = hpsa_lookup_board_id(pdev, &board_id);
3391 if (rc < 0 || !ctlr_is_resettable(board_id)) {
3392 dev_warn(&pdev->dev, "Not resetting device.\n");
3393 return -ENODEV;
3396 /* if controller is soft- but not hard resettable... */
3397 if (!ctlr_is_hard_resettable(board_id))
3398 return -ENOTSUPP; /* try soft reset later. */
3400 /* Save the PCI command register */
3401 pci_read_config_word(pdev, 4, &command_register);
3402 /* Turn the board off. This is so that later pci_restore_state()
3403 * won't turn the board on before the rest of config space is ready.
3405 pci_disable_device(pdev);
3406 pci_save_state(pdev);
3408 /* find the first memory BAR, so we can find the cfg table */
3409 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3410 if (rc)
3411 return rc;
3412 vaddr = remap_pci_mem(paddr, 0x250);
3413 if (!vaddr)
3414 return -ENOMEM;
3416 /* find cfgtable in order to check if reset via doorbell is supported */
3417 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3418 &cfg_base_addr_index, &cfg_offset);
3419 if (rc)
3420 goto unmap_vaddr;
3421 cfgtable = remap_pci_mem(pci_resource_start(pdev,
3422 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3423 if (!cfgtable) {
3424 rc = -ENOMEM;
3425 goto unmap_vaddr;
3427 rc = write_driver_ver_to_cfgtable(cfgtable);
3428 if (rc)
3429 goto unmap_vaddr;
3431 /* If reset via doorbell register is supported, use that.
3432 * There are two such methods. Favor the newest method.
3434 misc_fw_support = readl(&cfgtable->misc_fw_support);
3435 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3436 if (use_doorbell) {
3437 use_doorbell = DOORBELL_CTLR_RESET2;
3438 } else {
3439 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3440 if (use_doorbell) {
3441 dev_warn(&pdev->dev, "Controller claims that "
3442 "'Bit 2 doorbell reset' is "
3443 "supported, but not 'bit 5 doorbell reset'. "
3444 "Firmware update is recommended.\n");
3445 rc = -ENOTSUPP; /* try soft reset */
3446 goto unmap_cfgtable;
3450 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3451 if (rc)
3452 goto unmap_cfgtable;
3454 pci_restore_state(pdev);
3455 rc = pci_enable_device(pdev);
3456 if (rc) {
3457 dev_warn(&pdev->dev, "failed to enable device.\n");
3458 goto unmap_cfgtable;
3460 pci_write_config_word(pdev, 4, command_register);
3462 /* Some devices (notably the HP Smart Array 5i Controller)
3463 need a little pause here */
3464 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3466 /* Wait for board to become not ready, then ready. */
3467 dev_info(&pdev->dev, "Waiting for board to reset.\n");
3468 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3469 if (rc) {
3470 dev_warn(&pdev->dev,
3471 "failed waiting for board to reset."
3472 " Will try soft reset.\n");
3473 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3474 goto unmap_cfgtable;
3476 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3477 if (rc) {
3478 dev_warn(&pdev->dev,
3479 "failed waiting for board to become ready "
3480 "after hard reset\n");
3481 goto unmap_cfgtable;
3484 rc = controller_reset_failed(vaddr);
3485 if (rc < 0)
3486 goto unmap_cfgtable;
3487 if (rc) {
3488 dev_warn(&pdev->dev, "Unable to successfully reset "
3489 "controller. Will try soft reset.\n");
3490 rc = -ENOTSUPP;
3491 } else {
3492 dev_info(&pdev->dev, "board ready after hard reset.\n");
3495 unmap_cfgtable:
3496 iounmap(cfgtable);
3498 unmap_vaddr:
3499 iounmap(vaddr);
3500 return rc;
3504 * We cannot read the structure directly, for portability we must use
3505 * the io functions.
3506 * This is for debug only.
3508 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3510 #ifdef HPSA_DEBUG
3511 int i;
3512 char temp_name[17];
3514 dev_info(dev, "Controller Configuration information\n");
3515 dev_info(dev, "------------------------------------\n");
3516 for (i = 0; i < 4; i++)
3517 temp_name[i] = readb(&(tb->Signature[i]));
3518 temp_name[4] = '\0';
3519 dev_info(dev, " Signature = %s\n", temp_name);
3520 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
3521 dev_info(dev, " Transport methods supported = 0x%x\n",
3522 readl(&(tb->TransportSupport)));
3523 dev_info(dev, " Transport methods active = 0x%x\n",
3524 readl(&(tb->TransportActive)));
3525 dev_info(dev, " Requested transport Method = 0x%x\n",
3526 readl(&(tb->HostWrite.TransportRequest)));
3527 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
3528 readl(&(tb->HostWrite.CoalIntDelay)));
3529 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
3530 readl(&(tb->HostWrite.CoalIntCount)));
3531 dev_info(dev, " Max outstanding commands = 0x%d\n",
3532 readl(&(tb->CmdsOutMax)));
3533 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3534 for (i = 0; i < 16; i++)
3535 temp_name[i] = readb(&(tb->ServerName[i]));
3536 temp_name[16] = '\0';
3537 dev_info(dev, " Server Name = %s\n", temp_name);
3538 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
3539 readl(&(tb->HeartBeat)));
3540 #endif /* HPSA_DEBUG */
3543 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3545 int i, offset, mem_type, bar_type;
3547 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3548 return 0;
3549 offset = 0;
3550 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3551 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3552 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3553 offset += 4;
3554 else {
3555 mem_type = pci_resource_flags(pdev, i) &
3556 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3557 switch (mem_type) {
3558 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3559 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3560 offset += 4; /* 32 bit */
3561 break;
3562 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3563 offset += 8;
3564 break;
3565 default: /* reserved in PCI 2.2 */
3566 dev_warn(&pdev->dev,
3567 "base address is invalid\n");
3568 return -1;
3569 break;
3572 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3573 return i + 1;
3575 return -1;
3578 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3579 * controllers that are capable. If not, we use IO-APIC mode.
3582 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3584 #ifdef CONFIG_PCI_MSI
3585 int err;
3586 struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3587 {0, 2}, {0, 3}
3590 /* Some boards advertise MSI but don't really support it */
3591 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3592 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3593 goto default_int_mode;
3594 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3595 dev_info(&h->pdev->dev, "MSIX\n");
3596 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3597 if (!err) {
3598 h->intr[0] = hpsa_msix_entries[0].vector;
3599 h->intr[1] = hpsa_msix_entries[1].vector;
3600 h->intr[2] = hpsa_msix_entries[2].vector;
3601 h->intr[3] = hpsa_msix_entries[3].vector;
3602 h->msix_vector = 1;
3603 return;
3605 if (err > 0) {
3606 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3607 "available\n", err);
3608 goto default_int_mode;
3609 } else {
3610 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3611 err);
3612 goto default_int_mode;
3615 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3616 dev_info(&h->pdev->dev, "MSI\n");
3617 if (!pci_enable_msi(h->pdev))
3618 h->msi_vector = 1;
3619 else
3620 dev_warn(&h->pdev->dev, "MSI init failed\n");
3622 default_int_mode:
3623 #endif /* CONFIG_PCI_MSI */
3624 /* if we get here we're going to use the default interrupt mode */
3625 h->intr[h->intr_mode] = h->pdev->irq;
3628 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3630 int i;
3631 u32 subsystem_vendor_id, subsystem_device_id;
3633 subsystem_vendor_id = pdev->subsystem_vendor;
3634 subsystem_device_id = pdev->subsystem_device;
3635 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3636 subsystem_vendor_id;
3638 for (i = 0; i < ARRAY_SIZE(products); i++)
3639 if (*board_id == products[i].board_id)
3640 return i;
3642 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3643 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3644 !hpsa_allow_any) {
3645 dev_warn(&pdev->dev, "unrecognized board ID: "
3646 "0x%08x, ignoring.\n", *board_id);
3647 return -ENODEV;
3649 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3652 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3654 u16 command;
3656 (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3657 return ((command & PCI_COMMAND_MEMORY) == 0);
3660 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3661 unsigned long *memory_bar)
3663 int i;
3665 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3666 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3667 /* addressing mode bits already removed */
3668 *memory_bar = pci_resource_start(pdev, i);
3669 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3670 *memory_bar);
3671 return 0;
3673 dev_warn(&pdev->dev, "no memory BAR found\n");
3674 return -ENODEV;
3677 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3678 void __iomem *vaddr, int wait_for_ready)
3680 int i, iterations;
3681 u32 scratchpad;
3682 if (wait_for_ready)
3683 iterations = HPSA_BOARD_READY_ITERATIONS;
3684 else
3685 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3687 for (i = 0; i < iterations; i++) {
3688 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3689 if (wait_for_ready) {
3690 if (scratchpad == HPSA_FIRMWARE_READY)
3691 return 0;
3692 } else {
3693 if (scratchpad != HPSA_FIRMWARE_READY)
3694 return 0;
3696 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3698 dev_warn(&pdev->dev, "board not ready, timed out.\n");
3699 return -ENODEV;
3702 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3703 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3704 u64 *cfg_offset)
3706 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3707 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3708 *cfg_base_addr &= (u32) 0x0000ffff;
3709 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3710 if (*cfg_base_addr_index == -1) {
3711 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3712 return -ENODEV;
3714 return 0;
3717 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3719 u64 cfg_offset;
3720 u32 cfg_base_addr;
3721 u64 cfg_base_addr_index;
3722 u32 trans_offset;
3723 int rc;
3725 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3726 &cfg_base_addr_index, &cfg_offset);
3727 if (rc)
3728 return rc;
3729 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3730 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3731 if (!h->cfgtable)
3732 return -ENOMEM;
3733 rc = write_driver_ver_to_cfgtable(h->cfgtable);
3734 if (rc)
3735 return rc;
3736 /* Find performant mode table. */
3737 trans_offset = readl(&h->cfgtable->TransMethodOffset);
3738 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3739 cfg_base_addr_index)+cfg_offset+trans_offset,
3740 sizeof(*h->transtable));
3741 if (!h->transtable)
3742 return -ENOMEM;
3743 return 0;
3746 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3748 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3750 /* Limit commands in memory limited kdump scenario. */
3751 if (reset_devices && h->max_commands > 32)
3752 h->max_commands = 32;
3754 if (h->max_commands < 16) {
3755 dev_warn(&h->pdev->dev, "Controller reports "
3756 "max supported commands of %d, an obvious lie. "
3757 "Using 16. Ensure that firmware is up to date.\n",
3758 h->max_commands);
3759 h->max_commands = 16;
3763 /* Interrogate the hardware for some limits:
3764 * max commands, max SG elements without chaining, and with chaining,
3765 * SG chain block size, etc.
3767 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3769 hpsa_get_max_perf_mode_cmds(h);
3770 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3771 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3773 * Limit in-command s/g elements to 32 save dma'able memory.
3774 * Howvever spec says if 0, use 31
3776 h->max_cmd_sg_entries = 31;
3777 if (h->maxsgentries > 512) {
3778 h->max_cmd_sg_entries = 32;
3779 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3780 h->maxsgentries--; /* save one for chain pointer */
3781 } else {
3782 h->maxsgentries = 31; /* default to traditional values */
3783 h->chainsize = 0;
3787 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3789 if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3790 (readb(&h->cfgtable->Signature[1]) != 'I') ||
3791 (readb(&h->cfgtable->Signature[2]) != 'S') ||
3792 (readb(&h->cfgtable->Signature[3]) != 'S')) {
3793 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3794 return false;
3796 return true;
3799 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3800 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3802 #ifdef CONFIG_X86
3803 u32 prefetch;
3805 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3806 prefetch |= 0x100;
3807 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3808 #endif
3811 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
3812 * in a prefetch beyond physical memory.
3814 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3816 u32 dma_prefetch;
3818 if (h->board_id != 0x3225103C)
3819 return;
3820 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3821 dma_prefetch |= 0x8000;
3822 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3825 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3827 int i;
3828 u32 doorbell_value;
3829 unsigned long flags;
3831 /* under certain very rare conditions, this can take awhile.
3832 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3833 * as we enter this code.)
3835 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3836 spin_lock_irqsave(&h->lock, flags);
3837 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3838 spin_unlock_irqrestore(&h->lock, flags);
3839 if (!(doorbell_value & CFGTBL_ChangeReq))
3840 break;
3841 /* delay and try again */
3842 usleep_range(10000, 20000);
3846 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3848 u32 trans_support;
3850 trans_support = readl(&(h->cfgtable->TransportSupport));
3851 if (!(trans_support & SIMPLE_MODE))
3852 return -ENOTSUPP;
3854 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3855 /* Update the field, and then ring the doorbell */
3856 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3857 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3858 hpsa_wait_for_mode_change_ack(h);
3859 print_cfg_table(&h->pdev->dev, h->cfgtable);
3860 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3861 dev_warn(&h->pdev->dev,
3862 "unable to get board into simple mode\n");
3863 return -ENODEV;
3865 h->transMethod = CFGTBL_Trans_Simple;
3866 return 0;
3869 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3871 int prod_index, err;
3873 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3874 if (prod_index < 0)
3875 return -ENODEV;
3876 h->product_name = products[prod_index].product_name;
3877 h->access = *(products[prod_index].access);
3879 if (hpsa_board_disabled(h->pdev)) {
3880 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3881 return -ENODEV;
3883 err = pci_enable_device(h->pdev);
3884 if (err) {
3885 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3886 return err;
3889 err = pci_request_regions(h->pdev, "hpsa");
3890 if (err) {
3891 dev_err(&h->pdev->dev,
3892 "cannot obtain PCI resources, aborting\n");
3893 return err;
3895 hpsa_interrupt_mode(h);
3896 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3897 if (err)
3898 goto err_out_free_res;
3899 h->vaddr = remap_pci_mem(h->paddr, 0x250);
3900 if (!h->vaddr) {
3901 err = -ENOMEM;
3902 goto err_out_free_res;
3904 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3905 if (err)
3906 goto err_out_free_res;
3907 err = hpsa_find_cfgtables(h);
3908 if (err)
3909 goto err_out_free_res;
3910 hpsa_find_board_params(h);
3912 if (!hpsa_CISS_signature_present(h)) {
3913 err = -ENODEV;
3914 goto err_out_free_res;
3916 hpsa_enable_scsi_prefetch(h);
3917 hpsa_p600_dma_prefetch_quirk(h);
3918 err = hpsa_enter_simple_mode(h);
3919 if (err)
3920 goto err_out_free_res;
3921 return 0;
3923 err_out_free_res:
3924 if (h->transtable)
3925 iounmap(h->transtable);
3926 if (h->cfgtable)
3927 iounmap(h->cfgtable);
3928 if (h->vaddr)
3929 iounmap(h->vaddr);
3931 * Deliberately omit pci_disable_device(): it does something nasty to
3932 * Smart Array controllers that pci_enable_device does not undo
3934 pci_release_regions(h->pdev);
3935 return err;
3938 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3940 int rc;
3942 #define HBA_INQUIRY_BYTE_COUNT 64
3943 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3944 if (!h->hba_inquiry_data)
3945 return;
3946 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3947 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3948 if (rc != 0) {
3949 kfree(h->hba_inquiry_data);
3950 h->hba_inquiry_data = NULL;
3954 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3956 int rc, i;
3958 if (!reset_devices)
3959 return 0;
3961 /* Reset the controller with a PCI power-cycle or via doorbell */
3962 rc = hpsa_kdump_hard_reset_controller(pdev);
3964 /* -ENOTSUPP here means we cannot reset the controller
3965 * but it's already (and still) up and running in
3966 * "performant mode". Or, it might be 640x, which can't reset
3967 * due to concerns about shared bbwc between 6402/6404 pair.
3969 if (rc == -ENOTSUPP)
3970 return rc; /* just try to do the kdump anyhow. */
3971 if (rc)
3972 return -ENODEV;
3974 /* Now try to get the controller to respond to a no-op */
3975 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
3976 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3977 if (hpsa_noop(pdev) == 0)
3978 break;
3979 else
3980 dev_warn(&pdev->dev, "no-op failed%s\n",
3981 (i < 11 ? "; re-trying" : ""));
3983 return 0;
3986 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
3988 h->cmd_pool_bits = kzalloc(
3989 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
3990 sizeof(unsigned long), GFP_KERNEL);
3991 h->cmd_pool = pci_alloc_consistent(h->pdev,
3992 h->nr_cmds * sizeof(*h->cmd_pool),
3993 &(h->cmd_pool_dhandle));
3994 h->errinfo_pool = pci_alloc_consistent(h->pdev,
3995 h->nr_cmds * sizeof(*h->errinfo_pool),
3996 &(h->errinfo_pool_dhandle));
3997 if ((h->cmd_pool_bits == NULL)
3998 || (h->cmd_pool == NULL)
3999 || (h->errinfo_pool == NULL)) {
4000 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4001 return -ENOMEM;
4003 return 0;
4006 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4008 kfree(h->cmd_pool_bits);
4009 if (h->cmd_pool)
4010 pci_free_consistent(h->pdev,
4011 h->nr_cmds * sizeof(struct CommandList),
4012 h->cmd_pool, h->cmd_pool_dhandle);
4013 if (h->errinfo_pool)
4014 pci_free_consistent(h->pdev,
4015 h->nr_cmds * sizeof(struct ErrorInfo),
4016 h->errinfo_pool,
4017 h->errinfo_pool_dhandle);
4020 static int hpsa_request_irq(struct ctlr_info *h,
4021 irqreturn_t (*msixhandler)(int, void *),
4022 irqreturn_t (*intxhandler)(int, void *))
4024 int rc;
4026 if (h->msix_vector || h->msi_vector)
4027 rc = request_irq(h->intr[h->intr_mode], msixhandler,
4028 IRQF_DISABLED, h->devname, h);
4029 else
4030 rc = request_irq(h->intr[h->intr_mode], intxhandler,
4031 IRQF_DISABLED, h->devname, h);
4032 if (rc) {
4033 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4034 h->intr[h->intr_mode], h->devname);
4035 return -ENODEV;
4037 return 0;
4040 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4042 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4043 HPSA_RESET_TYPE_CONTROLLER)) {
4044 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4045 return -EIO;
4048 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4049 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4050 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4051 return -1;
4054 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4055 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4056 dev_warn(&h->pdev->dev, "Board failed to become ready "
4057 "after soft reset.\n");
4058 return -1;
4061 return 0;
4064 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4066 free_irq(h->intr[h->intr_mode], h);
4067 #ifdef CONFIG_PCI_MSI
4068 if (h->msix_vector)
4069 pci_disable_msix(h->pdev);
4070 else if (h->msi_vector)
4071 pci_disable_msi(h->pdev);
4072 #endif /* CONFIG_PCI_MSI */
4073 hpsa_free_sg_chain_blocks(h);
4074 hpsa_free_cmd_pool(h);
4075 kfree(h->blockFetchTable);
4076 pci_free_consistent(h->pdev, h->reply_pool_size,
4077 h->reply_pool, h->reply_pool_dhandle);
4078 if (h->vaddr)
4079 iounmap(h->vaddr);
4080 if (h->transtable)
4081 iounmap(h->transtable);
4082 if (h->cfgtable)
4083 iounmap(h->cfgtable);
4084 pci_release_regions(h->pdev);
4085 kfree(h);
4088 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4089 const struct pci_device_id *ent)
4091 int dac, rc;
4092 struct ctlr_info *h;
4093 int try_soft_reset = 0;
4094 unsigned long flags;
4096 if (number_of_controllers == 0)
4097 printk(KERN_INFO DRIVER_NAME "\n");
4099 rc = hpsa_init_reset_devices(pdev);
4100 if (rc) {
4101 if (rc != -ENOTSUPP)
4102 return rc;
4103 /* If the reset fails in a particular way (it has no way to do
4104 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4105 * a soft reset once we get the controller configured up to the
4106 * point that it can accept a command.
4108 try_soft_reset = 1;
4109 rc = 0;
4112 reinit_after_soft_reset:
4114 /* Command structures must be aligned on a 32-byte boundary because
4115 * the 5 lower bits of the address are used by the hardware. and by
4116 * the driver. See comments in hpsa.h for more info.
4118 #define COMMANDLIST_ALIGNMENT 32
4119 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4120 h = kzalloc(sizeof(*h), GFP_KERNEL);
4121 if (!h)
4122 return -ENOMEM;
4124 h->pdev = pdev;
4125 h->busy_initializing = 1;
4126 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4127 INIT_LIST_HEAD(&h->cmpQ);
4128 INIT_LIST_HEAD(&h->reqQ);
4129 spin_lock_init(&h->lock);
4130 spin_lock_init(&h->scan_lock);
4131 rc = hpsa_pci_init(h);
4132 if (rc != 0)
4133 goto clean1;
4135 sprintf(h->devname, "hpsa%d", number_of_controllers);
4136 h->ctlr = number_of_controllers;
4137 number_of_controllers++;
4139 /* configure PCI DMA stuff */
4140 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4141 if (rc == 0) {
4142 dac = 1;
4143 } else {
4144 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4145 if (rc == 0) {
4146 dac = 0;
4147 } else {
4148 dev_err(&pdev->dev, "no suitable DMA available\n");
4149 goto clean1;
4153 /* make sure the board interrupts are off */
4154 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4156 if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4157 goto clean2;
4158 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4159 h->devname, pdev->device,
4160 h->intr[h->intr_mode], dac ? "" : " not");
4161 if (hpsa_allocate_cmd_pool(h))
4162 goto clean4;
4163 if (hpsa_allocate_sg_chain_blocks(h))
4164 goto clean4;
4165 init_waitqueue_head(&h->scan_wait_queue);
4166 h->scan_finished = 1; /* no scan currently in progress */
4168 pci_set_drvdata(pdev, h);
4169 h->ndevices = 0;
4170 h->scsi_host = NULL;
4171 spin_lock_init(&h->devlock);
4172 hpsa_put_ctlr_into_performant_mode(h);
4174 /* At this point, the controller is ready to take commands.
4175 * Now, if reset_devices and the hard reset didn't work, try
4176 * the soft reset and see if that works.
4178 if (try_soft_reset) {
4180 /* This is kind of gross. We may or may not get a completion
4181 * from the soft reset command, and if we do, then the value
4182 * from the fifo may or may not be valid. So, we wait 10 secs
4183 * after the reset throwing away any completions we get during
4184 * that time. Unregister the interrupt handler and register
4185 * fake ones to scoop up any residual completions.
4187 spin_lock_irqsave(&h->lock, flags);
4188 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4189 spin_unlock_irqrestore(&h->lock, flags);
4190 free_irq(h->intr[h->intr_mode], h);
4191 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4192 hpsa_intx_discard_completions);
4193 if (rc) {
4194 dev_warn(&h->pdev->dev, "Failed to request_irq after "
4195 "soft reset.\n");
4196 goto clean4;
4199 rc = hpsa_kdump_soft_reset(h);
4200 if (rc)
4201 /* Neither hard nor soft reset worked, we're hosed. */
4202 goto clean4;
4204 dev_info(&h->pdev->dev, "Board READY.\n");
4205 dev_info(&h->pdev->dev,
4206 "Waiting for stale completions to drain.\n");
4207 h->access.set_intr_mask(h, HPSA_INTR_ON);
4208 msleep(10000);
4209 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4211 rc = controller_reset_failed(h->cfgtable);
4212 if (rc)
4213 dev_info(&h->pdev->dev,
4214 "Soft reset appears to have failed.\n");
4216 /* since the controller's reset, we have to go back and re-init
4217 * everything. Easiest to just forget what we've done and do it
4218 * all over again.
4220 hpsa_undo_allocations_after_kdump_soft_reset(h);
4221 try_soft_reset = 0;
4222 if (rc)
4223 /* don't go to clean4, we already unallocated */
4224 return -ENODEV;
4226 goto reinit_after_soft_reset;
4229 /* Turn the interrupts on so we can service requests */
4230 h->access.set_intr_mask(h, HPSA_INTR_ON);
4232 hpsa_hba_inquiry(h);
4233 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
4234 h->busy_initializing = 0;
4235 return 1;
4237 clean4:
4238 hpsa_free_sg_chain_blocks(h);
4239 hpsa_free_cmd_pool(h);
4240 free_irq(h->intr[h->intr_mode], h);
4241 clean2:
4242 clean1:
4243 h->busy_initializing = 0;
4244 kfree(h);
4245 return rc;
4248 static void hpsa_flush_cache(struct ctlr_info *h)
4250 char *flush_buf;
4251 struct CommandList *c;
4253 flush_buf = kzalloc(4, GFP_KERNEL);
4254 if (!flush_buf)
4255 return;
4257 c = cmd_special_alloc(h);
4258 if (!c) {
4259 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4260 goto out_of_memory;
4262 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4263 RAID_CTLR_LUNID, TYPE_CMD);
4264 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4265 if (c->err_info->CommandStatus != 0)
4266 dev_warn(&h->pdev->dev,
4267 "error flushing cache on controller\n");
4268 cmd_special_free(h, c);
4269 out_of_memory:
4270 kfree(flush_buf);
4273 static void hpsa_shutdown(struct pci_dev *pdev)
4275 struct ctlr_info *h;
4277 h = pci_get_drvdata(pdev);
4278 /* Turn board interrupts off and send the flush cache command
4279 * sendcmd will turn off interrupt, and send the flush...
4280 * To write all data in the battery backed cache to disks
4282 hpsa_flush_cache(h);
4283 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4284 free_irq(h->intr[h->intr_mode], h);
4285 #ifdef CONFIG_PCI_MSI
4286 if (h->msix_vector)
4287 pci_disable_msix(h->pdev);
4288 else if (h->msi_vector)
4289 pci_disable_msi(h->pdev);
4290 #endif /* CONFIG_PCI_MSI */
4293 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4295 struct ctlr_info *h;
4297 if (pci_get_drvdata(pdev) == NULL) {
4298 dev_err(&pdev->dev, "unable to remove device \n");
4299 return;
4301 h = pci_get_drvdata(pdev);
4302 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
4303 hpsa_shutdown(pdev);
4304 iounmap(h->vaddr);
4305 iounmap(h->transtable);
4306 iounmap(h->cfgtable);
4307 hpsa_free_sg_chain_blocks(h);
4308 pci_free_consistent(h->pdev,
4309 h->nr_cmds * sizeof(struct CommandList),
4310 h->cmd_pool, h->cmd_pool_dhandle);
4311 pci_free_consistent(h->pdev,
4312 h->nr_cmds * sizeof(struct ErrorInfo),
4313 h->errinfo_pool, h->errinfo_pool_dhandle);
4314 pci_free_consistent(h->pdev, h->reply_pool_size,
4315 h->reply_pool, h->reply_pool_dhandle);
4316 kfree(h->cmd_pool_bits);
4317 kfree(h->blockFetchTable);
4318 kfree(h->hba_inquiry_data);
4320 * Deliberately omit pci_disable_device(): it does something nasty to
4321 * Smart Array controllers that pci_enable_device does not undo
4323 pci_release_regions(pdev);
4324 pci_set_drvdata(pdev, NULL);
4325 kfree(h);
4328 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4329 __attribute__((unused)) pm_message_t state)
4331 return -ENOSYS;
4334 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4336 return -ENOSYS;
4339 static struct pci_driver hpsa_pci_driver = {
4340 .name = "hpsa",
4341 .probe = hpsa_init_one,
4342 .remove = __devexit_p(hpsa_remove_one),
4343 .id_table = hpsa_pci_device_id, /* id_table */
4344 .shutdown = hpsa_shutdown,
4345 .suspend = hpsa_suspend,
4346 .resume = hpsa_resume,
4349 /* Fill in bucket_map[], given nsgs (the max number of
4350 * scatter gather elements supported) and bucket[],
4351 * which is an array of 8 integers. The bucket[] array
4352 * contains 8 different DMA transfer sizes (in 16
4353 * byte increments) which the controller uses to fetch
4354 * commands. This function fills in bucket_map[], which
4355 * maps a given number of scatter gather elements to one of
4356 * the 8 DMA transfer sizes. The point of it is to allow the
4357 * controller to only do as much DMA as needed to fetch the
4358 * command, with the DMA transfer size encoded in the lower
4359 * bits of the command address.
4361 static void calc_bucket_map(int bucket[], int num_buckets,
4362 int nsgs, int *bucket_map)
4364 int i, j, b, size;
4366 /* even a command with 0 SGs requires 4 blocks */
4367 #define MINIMUM_TRANSFER_BLOCKS 4
4368 #define NUM_BUCKETS 8
4369 /* Note, bucket_map must have nsgs+1 entries. */
4370 for (i = 0; i <= nsgs; i++) {
4371 /* Compute size of a command with i SG entries */
4372 size = i + MINIMUM_TRANSFER_BLOCKS;
4373 b = num_buckets; /* Assume the biggest bucket */
4374 /* Find the bucket that is just big enough */
4375 for (j = 0; j < 8; j++) {
4376 if (bucket[j] >= size) {
4377 b = j;
4378 break;
4381 /* for a command with i SG entries, use bucket b. */
4382 bucket_map[i] = b;
4386 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4387 u32 use_short_tags)
4389 int i;
4390 unsigned long register_value;
4392 /* This is a bit complicated. There are 8 registers on
4393 * the controller which we write to to tell it 8 different
4394 * sizes of commands which there may be. It's a way of
4395 * reducing the DMA done to fetch each command. Encoded into
4396 * each command's tag are 3 bits which communicate to the controller
4397 * which of the eight sizes that command fits within. The size of
4398 * each command depends on how many scatter gather entries there are.
4399 * Each SG entry requires 16 bytes. The eight registers are programmed
4400 * with the number of 16-byte blocks a command of that size requires.
4401 * The smallest command possible requires 5 such 16 byte blocks.
4402 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4403 * blocks. Note, this only extends to the SG entries contained
4404 * within the command block, and does not extend to chained blocks
4405 * of SG elements. bft[] contains the eight values we write to
4406 * the registers. They are not evenly distributed, but have more
4407 * sizes for small commands, and fewer sizes for larger commands.
4409 int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4410 BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4411 /* 5 = 1 s/g entry or 4k
4412 * 6 = 2 s/g entry or 8k
4413 * 8 = 4 s/g entry or 16k
4414 * 10 = 6 s/g entry or 24k
4417 h->reply_pool_wraparound = 1; /* spec: init to 1 */
4419 /* Controller spec: zero out this buffer. */
4420 memset(h->reply_pool, 0, h->reply_pool_size);
4421 h->reply_pool_head = h->reply_pool;
4423 bft[7] = h->max_sg_entries + 4;
4424 calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4425 for (i = 0; i < 8; i++)
4426 writel(bft[i], &h->transtable->BlockFetch[i]);
4428 /* size of controller ring buffer */
4429 writel(h->max_commands, &h->transtable->RepQSize);
4430 writel(1, &h->transtable->RepQCount);
4431 writel(0, &h->transtable->RepQCtrAddrLow32);
4432 writel(0, &h->transtable->RepQCtrAddrHigh32);
4433 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4434 writel(0, &h->transtable->RepQAddr0High32);
4435 writel(CFGTBL_Trans_Performant | use_short_tags,
4436 &(h->cfgtable->HostWrite.TransportRequest));
4437 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4438 hpsa_wait_for_mode_change_ack(h);
4439 register_value = readl(&(h->cfgtable->TransportActive));
4440 if (!(register_value & CFGTBL_Trans_Performant)) {
4441 dev_warn(&h->pdev->dev, "unable to get board into"
4442 " performant mode\n");
4443 return;
4445 /* Change the access methods to the performant access methods */
4446 h->access = SA5_performant_access;
4447 h->transMethod = CFGTBL_Trans_Performant;
4450 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4452 u32 trans_support;
4454 if (hpsa_simple_mode)
4455 return;
4457 trans_support = readl(&(h->cfgtable->TransportSupport));
4458 if (!(trans_support & PERFORMANT_MODE))
4459 return;
4461 hpsa_get_max_perf_mode_cmds(h);
4462 h->max_sg_entries = 32;
4463 /* Performant mode ring buffer and supporting data structures */
4464 h->reply_pool_size = h->max_commands * sizeof(u64);
4465 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4466 &(h->reply_pool_dhandle));
4468 /* Need a block fetch table for performant mode */
4469 h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4470 sizeof(u32)), GFP_KERNEL);
4472 if ((h->reply_pool == NULL)
4473 || (h->blockFetchTable == NULL))
4474 goto clean_up;
4476 hpsa_enter_performant_mode(h,
4477 trans_support & CFGTBL_Trans_use_short_tags);
4479 return;
4481 clean_up:
4482 if (h->reply_pool)
4483 pci_free_consistent(h->pdev, h->reply_pool_size,
4484 h->reply_pool, h->reply_pool_dhandle);
4485 kfree(h->blockFetchTable);
4489 * This is it. Register the PCI driver information for the cards we control
4490 * the OS will call our registered routines when it finds one of our cards.
4492 static int __init hpsa_init(void)
4494 return pci_register_driver(&hpsa_pci_driver);
4497 static void __exit hpsa_cleanup(void)
4499 pci_unregister_driver(&hpsa_pci_driver);
4502 module_init(hpsa_init);
4503 module_exit(hpsa_cleanup);