Merge remote-tracking branch 'moduleh/module.h-split'
[linux-2.6/next.git] / drivers / scsi / isci / request.c
blobb5d3a8c4d3297ebf87e72a8087d5277500abc17d
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
5 * GPL LICENSE SUMMARY
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
24 * BSD LICENSE
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
56 #include "isci.h"
57 #include "task.h"
58 #include "request.h"
59 #include "scu_completion_codes.h"
60 #include "scu_event_codes.h"
61 #include "sas.h"
63 static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq,
64 int idx)
66 if (idx == 0)
67 return &ireq->tc->sgl_pair_ab;
68 else if (idx == 1)
69 return &ireq->tc->sgl_pair_cd;
70 else if (idx < 0)
71 return NULL;
72 else
73 return &ireq->sg_table[idx - 2];
76 static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost,
77 struct isci_request *ireq, u32 idx)
79 u32 offset;
81 if (idx == 0) {
82 offset = (void *) &ireq->tc->sgl_pair_ab -
83 (void *) &ihost->task_context_table[0];
84 return ihost->task_context_dma + offset;
85 } else if (idx == 1) {
86 offset = (void *) &ireq->tc->sgl_pair_cd -
87 (void *) &ihost->task_context_table[0];
88 return ihost->task_context_dma + offset;
91 return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]);
94 static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg)
96 e->length = sg_dma_len(sg);
97 e->address_upper = upper_32_bits(sg_dma_address(sg));
98 e->address_lower = lower_32_bits(sg_dma_address(sg));
99 e->address_modifier = 0;
102 static void sci_request_build_sgl(struct isci_request *ireq)
104 struct isci_host *ihost = ireq->isci_host;
105 struct sas_task *task = isci_request_access_task(ireq);
106 struct scatterlist *sg = NULL;
107 dma_addr_t dma_addr;
108 u32 sg_idx = 0;
109 struct scu_sgl_element_pair *scu_sg = NULL;
110 struct scu_sgl_element_pair *prev_sg = NULL;
112 if (task->num_scatter > 0) {
113 sg = task->scatter;
115 while (sg) {
116 scu_sg = to_sgl_element_pair(ireq, sg_idx);
117 init_sgl_element(&scu_sg->A, sg);
118 sg = sg_next(sg);
119 if (sg) {
120 init_sgl_element(&scu_sg->B, sg);
121 sg = sg_next(sg);
122 } else
123 memset(&scu_sg->B, 0, sizeof(scu_sg->B));
125 if (prev_sg) {
126 dma_addr = to_sgl_element_pair_dma(ihost,
127 ireq,
128 sg_idx);
130 prev_sg->next_pair_upper =
131 upper_32_bits(dma_addr);
132 prev_sg->next_pair_lower =
133 lower_32_bits(dma_addr);
136 prev_sg = scu_sg;
137 sg_idx++;
139 } else { /* handle when no sg */
140 scu_sg = to_sgl_element_pair(ireq, sg_idx);
142 dma_addr = dma_map_single(&ihost->pdev->dev,
143 task->scatter,
144 task->total_xfer_len,
145 task->data_dir);
147 ireq->zero_scatter_daddr = dma_addr;
149 scu_sg->A.length = task->total_xfer_len;
150 scu_sg->A.address_upper = upper_32_bits(dma_addr);
151 scu_sg->A.address_lower = lower_32_bits(dma_addr);
154 if (scu_sg) {
155 scu_sg->next_pair_upper = 0;
156 scu_sg->next_pair_lower = 0;
160 static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq)
162 struct ssp_cmd_iu *cmd_iu;
163 struct sas_task *task = isci_request_access_task(ireq);
165 cmd_iu = &ireq->ssp.cmd;
167 memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
168 cmd_iu->add_cdb_len = 0;
169 cmd_iu->_r_a = 0;
170 cmd_iu->_r_b = 0;
171 cmd_iu->en_fburst = 0; /* unsupported */
172 cmd_iu->task_prio = task->ssp_task.task_prio;
173 cmd_iu->task_attr = task->ssp_task.task_attr;
174 cmd_iu->_r_c = 0;
176 sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cdb,
177 sizeof(task->ssp_task.cdb) / sizeof(u32));
180 static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq)
182 struct ssp_task_iu *task_iu;
183 struct sas_task *task = isci_request_access_task(ireq);
184 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
186 task_iu = &ireq->ssp.tmf;
188 memset(task_iu, 0, sizeof(struct ssp_task_iu));
190 memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
192 task_iu->task_func = isci_tmf->tmf_code;
193 task_iu->task_tag =
194 (ireq->ttype == tmf_task) ?
195 isci_tmf->io_tag :
196 SCI_CONTROLLER_INVALID_IO_TAG;
200 * This method is will fill in the SCU Task Context for any type of SSP request.
201 * @sci_req:
202 * @task_context:
205 static void scu_ssp_reqeust_construct_task_context(
206 struct isci_request *ireq,
207 struct scu_task_context *task_context)
209 dma_addr_t dma_addr;
210 struct isci_remote_device *idev;
211 struct isci_port *iport;
213 idev = ireq->target_device;
214 iport = idev->owning_port;
216 /* Fill in the TC with the its required data */
217 task_context->abort = 0;
218 task_context->priority = 0;
219 task_context->initiator_request = 1;
220 task_context->connection_rate = idev->connection_rate;
221 task_context->protocol_engine_index = ISCI_PEG;
222 task_context->logical_port_index = iport->physical_port_index;
223 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
224 task_context->valid = SCU_TASK_CONTEXT_VALID;
225 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
227 task_context->remote_node_index = idev->rnc.remote_node_index;
228 task_context->command_code = 0;
230 task_context->link_layer_control = 0;
231 task_context->do_not_dma_ssp_good_response = 1;
232 task_context->strict_ordering = 0;
233 task_context->control_frame = 0;
234 task_context->timeout_enable = 0;
235 task_context->block_guard_enable = 0;
237 task_context->address_modifier = 0;
239 /* task_context->type.ssp.tag = ireq->io_tag; */
240 task_context->task_phase = 0x01;
242 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
243 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
244 (iport->physical_port_index <<
245 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
246 ISCI_TAG_TCI(ireq->io_tag));
249 * Copy the physical address for the command buffer to the
250 * SCU Task Context
252 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd);
254 task_context->command_iu_upper = upper_32_bits(dma_addr);
255 task_context->command_iu_lower = lower_32_bits(dma_addr);
258 * Copy the physical address for the response buffer to the
259 * SCU Task Context
261 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp);
263 task_context->response_iu_upper = upper_32_bits(dma_addr);
264 task_context->response_iu_lower = lower_32_bits(dma_addr);
268 * This method is will fill in the SCU Task Context for a SSP IO request.
269 * @sci_req:
272 static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq,
273 enum dma_data_direction dir,
274 u32 len)
276 struct scu_task_context *task_context = ireq->tc;
278 scu_ssp_reqeust_construct_task_context(ireq, task_context);
280 task_context->ssp_command_iu_length =
281 sizeof(struct ssp_cmd_iu) / sizeof(u32);
282 task_context->type.ssp.frame_type = SSP_COMMAND;
284 switch (dir) {
285 case DMA_FROM_DEVICE:
286 case DMA_NONE:
287 default:
288 task_context->task_type = SCU_TASK_TYPE_IOREAD;
289 break;
290 case DMA_TO_DEVICE:
291 task_context->task_type = SCU_TASK_TYPE_IOWRITE;
292 break;
295 task_context->transfer_length_bytes = len;
297 if (task_context->transfer_length_bytes > 0)
298 sci_request_build_sgl(ireq);
302 * This method will fill in the SCU Task Context for a SSP Task request. The
303 * following important settings are utilized: -# priority ==
304 * SCU_TASK_PRIORITY_HIGH. This ensures that the task request is issued
305 * ahead of other task destined for the same Remote Node. -# task_type ==
306 * SCU_TASK_TYPE_IOREAD. This simply indicates that a normal request type
307 * (i.e. non-raw frame) is being utilized to perform task management. -#
308 * control_frame == 1. This ensures that the proper endianess is set so
309 * that the bytes are transmitted in the right order for a task frame.
310 * @sci_req: This parameter specifies the task request object being
311 * constructed.
314 static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq)
316 struct scu_task_context *task_context = ireq->tc;
318 scu_ssp_reqeust_construct_task_context(ireq, task_context);
320 task_context->control_frame = 1;
321 task_context->priority = SCU_TASK_PRIORITY_HIGH;
322 task_context->task_type = SCU_TASK_TYPE_RAW_FRAME;
323 task_context->transfer_length_bytes = 0;
324 task_context->type.ssp.frame_type = SSP_TASK;
325 task_context->ssp_command_iu_length =
326 sizeof(struct ssp_task_iu) / sizeof(u32);
330 * This method is will fill in the SCU Task Context for any type of SATA
331 * request. This is called from the various SATA constructors.
332 * @sci_req: The general IO request object which is to be used in
333 * constructing the SCU task context.
334 * @task_context: The buffer pointer for the SCU task context which is being
335 * constructed.
337 * The general io request construction is complete. The buffer assignment for
338 * the command buffer is complete. none Revisit task context construction to
339 * determine what is common for SSP/SMP/STP task context structures.
341 static void scu_sata_reqeust_construct_task_context(
342 struct isci_request *ireq,
343 struct scu_task_context *task_context)
345 dma_addr_t dma_addr;
346 struct isci_remote_device *idev;
347 struct isci_port *iport;
349 idev = ireq->target_device;
350 iport = idev->owning_port;
352 /* Fill in the TC with the its required data */
353 task_context->abort = 0;
354 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
355 task_context->initiator_request = 1;
356 task_context->connection_rate = idev->connection_rate;
357 task_context->protocol_engine_index = ISCI_PEG;
358 task_context->logical_port_index = iport->physical_port_index;
359 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
360 task_context->valid = SCU_TASK_CONTEXT_VALID;
361 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
363 task_context->remote_node_index = idev->rnc.remote_node_index;
364 task_context->command_code = 0;
366 task_context->link_layer_control = 0;
367 task_context->do_not_dma_ssp_good_response = 1;
368 task_context->strict_ordering = 0;
369 task_context->control_frame = 0;
370 task_context->timeout_enable = 0;
371 task_context->block_guard_enable = 0;
373 task_context->address_modifier = 0;
374 task_context->task_phase = 0x01;
376 task_context->ssp_command_iu_length =
377 (sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
379 /* Set the first word of the H2D REG FIS */
380 task_context->type.words[0] = *(u32 *)&ireq->stp.cmd;
382 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
383 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
384 (iport->physical_port_index <<
385 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
386 ISCI_TAG_TCI(ireq->io_tag));
388 * Copy the physical address for the command buffer to the SCU Task
389 * Context. We must offset the command buffer by 4 bytes because the
390 * first 4 bytes are transfered in the body of the TC.
392 dma_addr = sci_io_request_get_dma_addr(ireq,
393 ((char *) &ireq->stp.cmd) +
394 sizeof(u32));
396 task_context->command_iu_upper = upper_32_bits(dma_addr);
397 task_context->command_iu_lower = lower_32_bits(dma_addr);
399 /* SATA Requests do not have a response buffer */
400 task_context->response_iu_upper = 0;
401 task_context->response_iu_lower = 0;
404 static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq)
406 struct scu_task_context *task_context = ireq->tc;
408 scu_sata_reqeust_construct_task_context(ireq, task_context);
410 task_context->control_frame = 0;
411 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
412 task_context->task_type = SCU_TASK_TYPE_SATA_RAW_FRAME;
413 task_context->type.stp.fis_type = FIS_REGH2D;
414 task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
417 static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq,
418 bool copy_rx_frame)
420 struct isci_stp_request *stp_req = &ireq->stp.req;
422 scu_stp_raw_request_construct_task_context(ireq);
424 stp_req->status = 0;
425 stp_req->sgl.offset = 0;
426 stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A;
428 if (copy_rx_frame) {
429 sci_request_build_sgl(ireq);
430 stp_req->sgl.index = 0;
431 } else {
432 /* The user does not want the data copied to the SGL buffer location */
433 stp_req->sgl.index = -1;
436 return SCI_SUCCESS;
441 * @sci_req: This parameter specifies the request to be constructed as an
442 * optimized request.
443 * @optimized_task_type: This parameter specifies whether the request is to be
444 * an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
445 * value of 1 indicates NCQ.
447 * This method will perform request construction common to all types of STP
448 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
449 * returns an indication as to whether the construction was successful.
451 static void sci_stp_optimized_request_construct(struct isci_request *ireq,
452 u8 optimized_task_type,
453 u32 len,
454 enum dma_data_direction dir)
456 struct scu_task_context *task_context = ireq->tc;
458 /* Build the STP task context structure */
459 scu_sata_reqeust_construct_task_context(ireq, task_context);
461 /* Copy over the SGL elements */
462 sci_request_build_sgl(ireq);
464 /* Copy over the number of bytes to be transfered */
465 task_context->transfer_length_bytes = len;
467 if (dir == DMA_TO_DEVICE) {
469 * The difference between the DMA IN and DMA OUT request task type
470 * values are consistent with the difference between FPDMA READ
471 * and FPDMA WRITE values. Add the supplied task type parameter
472 * to this difference to set the task type properly for this
473 * DATA OUT (WRITE) case. */
474 task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
475 - SCU_TASK_TYPE_DMA_IN);
476 } else {
478 * For the DATA IN (READ) case, simply save the supplied
479 * optimized task type. */
480 task_context->task_type = optimized_task_type;
486 static enum sci_status
487 sci_io_request_construct_sata(struct isci_request *ireq,
488 u32 len,
489 enum dma_data_direction dir,
490 bool copy)
492 enum sci_status status = SCI_SUCCESS;
493 struct sas_task *task = isci_request_access_task(ireq);
495 /* check for management protocols */
496 if (ireq->ttype == tmf_task) {
497 struct isci_tmf *tmf = isci_request_access_tmf(ireq);
499 if (tmf->tmf_code == isci_tmf_sata_srst_high ||
500 tmf->tmf_code == isci_tmf_sata_srst_low) {
501 scu_stp_raw_request_construct_task_context(ireq);
502 return SCI_SUCCESS;
503 } else {
504 dev_err(&ireq->owning_controller->pdev->dev,
505 "%s: Request 0x%p received un-handled SAT "
506 "management protocol 0x%x.\n",
507 __func__, ireq, tmf->tmf_code);
509 return SCI_FAILURE;
513 if (!sas_protocol_ata(task->task_proto)) {
514 dev_err(&ireq->owning_controller->pdev->dev,
515 "%s: Non-ATA protocol in SATA path: 0x%x\n",
516 __func__,
517 task->task_proto);
518 return SCI_FAILURE;
522 /* non data */
523 if (task->data_dir == DMA_NONE) {
524 scu_stp_raw_request_construct_task_context(ireq);
525 return SCI_SUCCESS;
528 /* NCQ */
529 if (task->ata_task.use_ncq) {
530 sci_stp_optimized_request_construct(ireq,
531 SCU_TASK_TYPE_FPDMAQ_READ,
532 len, dir);
533 return SCI_SUCCESS;
536 /* DMA */
537 if (task->ata_task.dma_xfer) {
538 sci_stp_optimized_request_construct(ireq,
539 SCU_TASK_TYPE_DMA_IN,
540 len, dir);
541 return SCI_SUCCESS;
542 } else /* PIO */
543 return sci_stp_pio_request_construct(ireq, copy);
545 return status;
548 static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq)
550 struct sas_task *task = isci_request_access_task(ireq);
552 ireq->protocol = SCIC_SSP_PROTOCOL;
554 scu_ssp_io_request_construct_task_context(ireq,
555 task->data_dir,
556 task->total_xfer_len);
558 sci_io_request_build_ssp_command_iu(ireq);
560 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
562 return SCI_SUCCESS;
565 enum sci_status sci_task_request_construct_ssp(
566 struct isci_request *ireq)
568 /* Construct the SSP Task SCU Task Context */
569 scu_ssp_task_request_construct_task_context(ireq);
571 /* Fill in the SSP Task IU */
572 sci_task_request_build_ssp_task_iu(ireq);
574 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
576 return SCI_SUCCESS;
579 static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq)
581 enum sci_status status;
582 bool copy = false;
583 struct sas_task *task = isci_request_access_task(ireq);
585 ireq->protocol = SCIC_STP_PROTOCOL;
587 copy = (task->data_dir == DMA_NONE) ? false : true;
589 status = sci_io_request_construct_sata(ireq,
590 task->total_xfer_len,
591 task->data_dir,
592 copy);
594 if (status == SCI_SUCCESS)
595 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
597 return status;
600 enum sci_status sci_task_request_construct_sata(struct isci_request *ireq)
602 enum sci_status status = SCI_SUCCESS;
604 /* check for management protocols */
605 if (ireq->ttype == tmf_task) {
606 struct isci_tmf *tmf = isci_request_access_tmf(ireq);
608 if (tmf->tmf_code == isci_tmf_sata_srst_high ||
609 tmf->tmf_code == isci_tmf_sata_srst_low) {
610 scu_stp_raw_request_construct_task_context(ireq);
611 } else {
612 dev_err(&ireq->owning_controller->pdev->dev,
613 "%s: Request 0x%p received un-handled SAT "
614 "Protocol 0x%x.\n",
615 __func__, ireq, tmf->tmf_code);
617 return SCI_FAILURE;
621 if (status != SCI_SUCCESS)
622 return status;
623 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
625 return status;
629 * sci_req_tx_bytes - bytes transferred when reply underruns request
630 * @sci_req: request that was terminated early
632 #define SCU_TASK_CONTEXT_SRAM 0x200000
633 static u32 sci_req_tx_bytes(struct isci_request *ireq)
635 struct isci_host *ihost = ireq->owning_controller;
636 u32 ret_val = 0;
638 if (readl(&ihost->smu_registers->address_modifier) == 0) {
639 void __iomem *scu_reg_base = ihost->scu_registers;
641 /* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
642 * BAR1 is the scu_registers
643 * 0x20002C = 0x200000 + 0x2c
644 * = start of task context SRAM + offset of (type.ssp.data_offset)
645 * TCi is the io_tag of struct sci_request
647 ret_val = readl(scu_reg_base +
648 (SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
649 ((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag)));
652 return ret_val;
655 enum sci_status sci_request_start(struct isci_request *ireq)
657 enum sci_base_request_states state;
658 struct scu_task_context *tc = ireq->tc;
659 struct isci_host *ihost = ireq->owning_controller;
661 state = ireq->sm.current_state_id;
662 if (state != SCI_REQ_CONSTRUCTED) {
663 dev_warn(&ihost->pdev->dev,
664 "%s: SCIC IO Request requested to start while in wrong "
665 "state %d\n", __func__, state);
666 return SCI_FAILURE_INVALID_STATE;
669 tc->task_index = ISCI_TAG_TCI(ireq->io_tag);
671 switch (tc->protocol_type) {
672 case SCU_TASK_CONTEXT_PROTOCOL_SMP:
673 case SCU_TASK_CONTEXT_PROTOCOL_SSP:
674 /* SSP/SMP Frame */
675 tc->type.ssp.tag = ireq->io_tag;
676 tc->type.ssp.target_port_transfer_tag = 0xFFFF;
677 break;
679 case SCU_TASK_CONTEXT_PROTOCOL_STP:
680 /* STP/SATA Frame
681 * tc->type.stp.ncq_tag = ireq->ncq_tag;
683 break;
685 case SCU_TASK_CONTEXT_PROTOCOL_NONE:
686 /* / @todo When do we set no protocol type? */
687 break;
689 default:
690 /* This should never happen since we build the IO
691 * requests */
692 break;
695 /* Add to the post_context the io tag value */
696 ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag);
698 /* Everything is good go ahead and change state */
699 sci_change_state(&ireq->sm, SCI_REQ_STARTED);
701 return SCI_SUCCESS;
704 enum sci_status
705 sci_io_request_terminate(struct isci_request *ireq)
707 enum sci_base_request_states state;
709 state = ireq->sm.current_state_id;
711 switch (state) {
712 case SCI_REQ_CONSTRUCTED:
713 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
714 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
715 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
716 return SCI_SUCCESS;
717 case SCI_REQ_STARTED:
718 case SCI_REQ_TASK_WAIT_TC_COMP:
719 case SCI_REQ_SMP_WAIT_RESP:
720 case SCI_REQ_SMP_WAIT_TC_COMP:
721 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
722 case SCI_REQ_STP_UDMA_WAIT_D2H:
723 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
724 case SCI_REQ_STP_NON_DATA_WAIT_D2H:
725 case SCI_REQ_STP_PIO_WAIT_H2D:
726 case SCI_REQ_STP_PIO_WAIT_FRAME:
727 case SCI_REQ_STP_PIO_DATA_IN:
728 case SCI_REQ_STP_PIO_DATA_OUT:
729 case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED:
730 case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG:
731 case SCI_REQ_STP_SOFT_RESET_WAIT_D2H:
732 sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
733 return SCI_SUCCESS;
734 case SCI_REQ_TASK_WAIT_TC_RESP:
735 /* The task frame was already confirmed to have been
736 * sent by the SCU HW. Since the state machine is
737 * now only waiting for the task response itself,
738 * abort the request and complete it immediately
739 * and don't wait for the task response.
741 sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
742 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
743 return SCI_SUCCESS;
744 case SCI_REQ_ABORTING:
745 /* If a request has a termination requested twice, return
746 * a failure indication, since HW confirmation of the first
747 * abort is still outstanding.
749 case SCI_REQ_COMPLETED:
750 default:
751 dev_warn(&ireq->owning_controller->pdev->dev,
752 "%s: SCIC IO Request requested to abort while in wrong "
753 "state %d\n",
754 __func__,
755 ireq->sm.current_state_id);
756 break;
759 return SCI_FAILURE_INVALID_STATE;
762 enum sci_status sci_request_complete(struct isci_request *ireq)
764 enum sci_base_request_states state;
765 struct isci_host *ihost = ireq->owning_controller;
767 state = ireq->sm.current_state_id;
768 if (WARN_ONCE(state != SCI_REQ_COMPLETED,
769 "isci: request completion from wrong state (%d)\n", state))
770 return SCI_FAILURE_INVALID_STATE;
772 if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
773 sci_controller_release_frame(ihost,
774 ireq->saved_rx_frame_index);
776 /* XXX can we just stop the machine and remove the 'final' state? */
777 sci_change_state(&ireq->sm, SCI_REQ_FINAL);
778 return SCI_SUCCESS;
781 enum sci_status sci_io_request_event_handler(struct isci_request *ireq,
782 u32 event_code)
784 enum sci_base_request_states state;
785 struct isci_host *ihost = ireq->owning_controller;
787 state = ireq->sm.current_state_id;
789 if (state != SCI_REQ_STP_PIO_DATA_IN) {
790 dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %d\n",
791 __func__, event_code, state);
793 return SCI_FAILURE_INVALID_STATE;
796 switch (scu_get_event_specifier(event_code)) {
797 case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
798 /* We are waiting for data and the SCU has R_ERR the data frame.
799 * Go back to waiting for the D2H Register FIS
801 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
802 return SCI_SUCCESS;
803 default:
804 dev_err(&ihost->pdev->dev,
805 "%s: pio request unexpected event %#x\n",
806 __func__, event_code);
808 /* TODO Should we fail the PIO request when we get an
809 * unexpected event?
811 return SCI_FAILURE;
816 * This function copies response data for requests returning response data
817 * instead of sense data.
818 * @sci_req: This parameter specifies the request object for which to copy
819 * the response data.
821 static void sci_io_request_copy_response(struct isci_request *ireq)
823 void *resp_buf;
824 u32 len;
825 struct ssp_response_iu *ssp_response;
826 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
828 ssp_response = &ireq->ssp.rsp;
830 resp_buf = &isci_tmf->resp.resp_iu;
832 len = min_t(u32,
833 SSP_RESP_IU_MAX_SIZE,
834 be32_to_cpu(ssp_response->response_data_len));
836 memcpy(resp_buf, ssp_response->resp_data, len);
839 static enum sci_status
840 request_started_state_tc_event(struct isci_request *ireq,
841 u32 completion_code)
843 struct ssp_response_iu *resp_iu;
844 u8 datapres;
846 /* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
847 * to determine SDMA status
849 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
850 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
851 ireq->scu_status = SCU_TASK_DONE_GOOD;
852 ireq->sci_status = SCI_SUCCESS;
853 break;
854 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
855 /* There are times when the SCU hardware will return an early
856 * response because the io request specified more data than is
857 * returned by the target device (mode pages, inquiry data,
858 * etc.). We must check the response stats to see if this is
859 * truly a failed request or a good request that just got
860 * completed early.
862 struct ssp_response_iu *resp = &ireq->ssp.rsp;
863 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
865 sci_swab32_cpy(&ireq->ssp.rsp,
866 &ireq->ssp.rsp,
867 word_cnt);
869 if (resp->status == 0) {
870 ireq->scu_status = SCU_TASK_DONE_GOOD;
871 ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
872 } else {
873 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
874 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
876 break;
878 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
879 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
881 sci_swab32_cpy(&ireq->ssp.rsp,
882 &ireq->ssp.rsp,
883 word_cnt);
885 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
886 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
887 break;
890 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
891 /* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
892 * guaranteed to be received before this completion status is
893 * posted?
895 resp_iu = &ireq->ssp.rsp;
896 datapres = resp_iu->datapres;
898 if (datapres == 1 || datapres == 2) {
899 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
900 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
901 } else {
902 ireq->scu_status = SCU_TASK_DONE_GOOD;
903 ireq->sci_status = SCI_SUCCESS;
905 break;
906 /* only stp device gets suspended. */
907 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
908 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
909 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
910 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
911 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
912 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
913 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
914 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
915 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
916 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
917 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
918 if (ireq->protocol == SCIC_STP_PROTOCOL) {
919 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
920 SCU_COMPLETION_TL_STATUS_SHIFT;
921 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
922 } else {
923 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
924 SCU_COMPLETION_TL_STATUS_SHIFT;
925 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
927 break;
929 /* both stp/ssp device gets suspended */
930 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
931 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
932 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
933 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
934 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
935 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
936 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
937 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
938 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
939 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
940 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
941 SCU_COMPLETION_TL_STATUS_SHIFT;
942 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
943 break;
945 /* neither ssp nor stp gets suspended. */
946 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
947 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
948 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
949 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
950 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
951 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
952 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
953 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
954 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
955 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
956 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
957 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
958 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
959 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
960 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
961 default:
962 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
963 SCU_COMPLETION_TL_STATUS_SHIFT;
964 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
965 break;
969 * TODO: This is probably wrong for ACK/NAK timeout conditions
972 /* In all cases we will treat this as the completion of the IO req. */
973 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
974 return SCI_SUCCESS;
977 static enum sci_status
978 request_aborting_state_tc_event(struct isci_request *ireq,
979 u32 completion_code)
981 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
982 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
983 case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
984 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
985 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
986 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
987 break;
989 default:
990 /* Unless we get some strange error wait for the task abort to complete
991 * TODO: Should there be a state change for this completion?
993 break;
996 return SCI_SUCCESS;
999 static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq,
1000 u32 completion_code)
1002 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1003 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1004 ireq->scu_status = SCU_TASK_DONE_GOOD;
1005 ireq->sci_status = SCI_SUCCESS;
1006 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1007 break;
1008 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1009 /* Currently, the decision is to simply allow the task request
1010 * to timeout if the task IU wasn't received successfully.
1011 * There is a potential for receiving multiple task responses if
1012 * we decide to send the task IU again.
1014 dev_warn(&ireq->owning_controller->pdev->dev,
1015 "%s: TaskRequest:0x%p CompletionCode:%x - "
1016 "ACK/NAK timeout\n", __func__, ireq,
1017 completion_code);
1019 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1020 break;
1021 default:
1023 * All other completion status cause the IO to be complete.
1024 * If a NAK was received, then it is up to the user to retry
1025 * the request.
1027 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1028 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1029 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1030 break;
1033 return SCI_SUCCESS;
1036 static enum sci_status
1037 smp_request_await_response_tc_event(struct isci_request *ireq,
1038 u32 completion_code)
1040 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1041 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1042 /* In the AWAIT RESPONSE state, any TC completion is
1043 * unexpected. but if the TC has success status, we
1044 * complete the IO anyway.
1046 ireq->scu_status = SCU_TASK_DONE_GOOD;
1047 ireq->sci_status = SCI_SUCCESS;
1048 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1049 break;
1050 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1051 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1052 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1053 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1054 /* These status has been seen in a specific LSI
1055 * expander, which sometimes is not able to send smp
1056 * response within 2 ms. This causes our hardware break
1057 * the connection and set TC completion with one of
1058 * these SMP_XXX_XX_ERR status. For these type of error,
1059 * we ask ihost user to retry the request.
1061 ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR;
1062 ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED;
1063 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1064 break;
1065 default:
1066 /* All other completion status cause the IO to be complete. If a NAK
1067 * was received, then it is up to the user to retry the request
1069 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1070 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1071 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1072 break;
1075 return SCI_SUCCESS;
1078 static enum sci_status
1079 smp_request_await_tc_event(struct isci_request *ireq,
1080 u32 completion_code)
1082 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1083 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1084 ireq->scu_status = SCU_TASK_DONE_GOOD;
1085 ireq->sci_status = SCI_SUCCESS;
1086 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1087 break;
1088 default:
1089 /* All other completion status cause the IO to be
1090 * complete. If a NAK was received, then it is up to
1091 * the user to retry the request.
1093 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1094 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1095 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1096 break;
1099 return SCI_SUCCESS;
1102 static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req)
1104 struct scu_sgl_element *sgl;
1105 struct scu_sgl_element_pair *sgl_pair;
1106 struct isci_request *ireq = to_ireq(stp_req);
1107 struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl;
1109 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1110 if (!sgl_pair)
1111 sgl = NULL;
1112 else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) {
1113 if (sgl_pair->B.address_lower == 0 &&
1114 sgl_pair->B.address_upper == 0) {
1115 sgl = NULL;
1116 } else {
1117 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B;
1118 sgl = &sgl_pair->B;
1120 } else {
1121 if (sgl_pair->next_pair_lower == 0 &&
1122 sgl_pair->next_pair_upper == 0) {
1123 sgl = NULL;
1124 } else {
1125 pio_sgl->index++;
1126 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A;
1127 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1128 sgl = &sgl_pair->A;
1132 return sgl;
1135 static enum sci_status
1136 stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq,
1137 u32 completion_code)
1139 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1140 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1141 ireq->scu_status = SCU_TASK_DONE_GOOD;
1142 ireq->sci_status = SCI_SUCCESS;
1143 sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
1144 break;
1146 default:
1147 /* All other completion status cause the IO to be
1148 * complete. If a NAK was received, then it is up to
1149 * the user to retry the request.
1151 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1152 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1153 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1154 break;
1157 return SCI_SUCCESS;
1160 #define SCU_MAX_FRAME_BUFFER_SIZE 0x400 /* 1K is the maximum SCU frame data payload */
1162 /* transmit DATA_FIS from (current sgl + offset) for input
1163 * parameter length. current sgl and offset is alreay stored in the IO request
1165 static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame(
1166 struct isci_request *ireq,
1167 u32 length)
1169 struct isci_stp_request *stp_req = &ireq->stp.req;
1170 struct scu_task_context *task_context = ireq->tc;
1171 struct scu_sgl_element_pair *sgl_pair;
1172 struct scu_sgl_element *current_sgl;
1174 /* Recycle the TC and reconstruct it for sending out DATA FIS containing
1175 * for the data from current_sgl+offset for the input length
1177 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1178 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A)
1179 current_sgl = &sgl_pair->A;
1180 else
1181 current_sgl = &sgl_pair->B;
1183 /* update the TC */
1184 task_context->command_iu_upper = current_sgl->address_upper;
1185 task_context->command_iu_lower = current_sgl->address_lower;
1186 task_context->transfer_length_bytes = length;
1187 task_context->type.stp.fis_type = FIS_DATA;
1189 /* send the new TC out. */
1190 return sci_controller_continue_io(ireq);
1193 static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq)
1195 struct isci_stp_request *stp_req = &ireq->stp.req;
1196 struct scu_sgl_element_pair *sgl_pair;
1197 struct scu_sgl_element *sgl;
1198 enum sci_status status;
1199 u32 offset;
1200 u32 len = 0;
1202 offset = stp_req->sgl.offset;
1203 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1204 if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__))
1205 return SCI_FAILURE;
1207 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) {
1208 sgl = &sgl_pair->A;
1209 len = sgl_pair->A.length - offset;
1210 } else {
1211 sgl = &sgl_pair->B;
1212 len = sgl_pair->B.length - offset;
1215 if (stp_req->pio_len == 0)
1216 return SCI_SUCCESS;
1218 if (stp_req->pio_len >= len) {
1219 status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len);
1220 if (status != SCI_SUCCESS)
1221 return status;
1222 stp_req->pio_len -= len;
1224 /* update the current sgl, offset and save for future */
1225 sgl = pio_sgl_next(stp_req);
1226 offset = 0;
1227 } else if (stp_req->pio_len < len) {
1228 sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len);
1230 /* Sgl offset will be adjusted and saved for future */
1231 offset += stp_req->pio_len;
1232 sgl->address_lower += stp_req->pio_len;
1233 stp_req->pio_len = 0;
1236 stp_req->sgl.offset = offset;
1238 return status;
1243 * @stp_request: The request that is used for the SGL processing.
1244 * @data_buffer: The buffer of data to be copied.
1245 * @length: The length of the data transfer.
1247 * Copy the data from the buffer for the length specified to the IO reqeust SGL
1248 * specified data region. enum sci_status
1250 static enum sci_status
1251 sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req,
1252 u8 *data_buf, u32 len)
1254 struct isci_request *ireq;
1255 u8 *src_addr;
1256 int copy_len;
1257 struct sas_task *task;
1258 struct scatterlist *sg;
1259 void *kaddr;
1260 int total_len = len;
1262 ireq = to_ireq(stp_req);
1263 task = isci_request_access_task(ireq);
1264 src_addr = data_buf;
1266 if (task->num_scatter > 0) {
1267 sg = task->scatter;
1269 while (total_len > 0) {
1270 struct page *page = sg_page(sg);
1272 copy_len = min_t(int, total_len, sg_dma_len(sg));
1273 kaddr = kmap_atomic(page, KM_IRQ0);
1274 memcpy(kaddr + sg->offset, src_addr, copy_len);
1275 kunmap_atomic(kaddr, KM_IRQ0);
1276 total_len -= copy_len;
1277 src_addr += copy_len;
1278 sg = sg_next(sg);
1280 } else {
1281 BUG_ON(task->total_xfer_len < total_len);
1282 memcpy(task->scatter, src_addr, total_len);
1285 return SCI_SUCCESS;
1290 * @sci_req: The PIO DATA IN request that is to receive the data.
1291 * @data_buffer: The buffer to copy from.
1293 * Copy the data buffer to the io request data region. enum sci_status
1295 static enum sci_status sci_stp_request_pio_data_in_copy_data(
1296 struct isci_stp_request *stp_req,
1297 u8 *data_buffer)
1299 enum sci_status status;
1302 * If there is less than 1K remaining in the transfer request
1303 * copy just the data for the transfer */
1304 if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) {
1305 status = sci_stp_request_pio_data_in_copy_data_buffer(
1306 stp_req, data_buffer, stp_req->pio_len);
1308 if (status == SCI_SUCCESS)
1309 stp_req->pio_len = 0;
1310 } else {
1311 /* We are transfering the whole frame so copy */
1312 status = sci_stp_request_pio_data_in_copy_data_buffer(
1313 stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
1315 if (status == SCI_SUCCESS)
1316 stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE;
1319 return status;
1322 static enum sci_status
1323 stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq,
1324 u32 completion_code)
1326 enum sci_status status = SCI_SUCCESS;
1328 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1329 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1330 ireq->scu_status = SCU_TASK_DONE_GOOD;
1331 ireq->sci_status = SCI_SUCCESS;
1332 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1333 break;
1335 default:
1336 /* All other completion status cause the IO to be
1337 * complete. If a NAK was received, then it is up to
1338 * the user to retry the request.
1340 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1341 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1342 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1343 break;
1346 return status;
1349 static enum sci_status
1350 pio_data_out_tx_done_tc_event(struct isci_request *ireq,
1351 u32 completion_code)
1353 enum sci_status status = SCI_SUCCESS;
1354 bool all_frames_transferred = false;
1355 struct isci_stp_request *stp_req = &ireq->stp.req;
1357 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1358 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1359 /* Transmit data */
1360 if (stp_req->pio_len != 0) {
1361 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1362 if (status == SCI_SUCCESS) {
1363 if (stp_req->pio_len == 0)
1364 all_frames_transferred = true;
1366 } else if (stp_req->pio_len == 0) {
1368 * this will happen if the all data is written at the
1369 * first time after the pio setup fis is received
1371 all_frames_transferred = true;
1374 /* all data transferred. */
1375 if (all_frames_transferred) {
1377 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1378 * and wait for PIO_SETUP fis / or D2H REg fis. */
1379 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1381 break;
1383 default:
1385 * All other completion status cause the IO to be complete.
1386 * If a NAK was received, then it is up to the user to retry
1387 * the request.
1389 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1390 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1391 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1392 break;
1395 return status;
1398 static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq,
1399 u32 frame_index)
1401 struct isci_host *ihost = ireq->owning_controller;
1402 struct dev_to_host_fis *frame_header;
1403 enum sci_status status;
1404 u32 *frame_buffer;
1406 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1407 frame_index,
1408 (void **)&frame_header);
1410 if ((status == SCI_SUCCESS) &&
1411 (frame_header->fis_type == FIS_REGD2H)) {
1412 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1413 frame_index,
1414 (void **)&frame_buffer);
1416 sci_controller_copy_sata_response(&ireq->stp.rsp,
1417 frame_header,
1418 frame_buffer);
1421 sci_controller_release_frame(ihost, frame_index);
1423 return status;
1426 enum sci_status
1427 sci_io_request_frame_handler(struct isci_request *ireq,
1428 u32 frame_index)
1430 struct isci_host *ihost = ireq->owning_controller;
1431 struct isci_stp_request *stp_req = &ireq->stp.req;
1432 enum sci_base_request_states state;
1433 enum sci_status status;
1434 ssize_t word_cnt;
1436 state = ireq->sm.current_state_id;
1437 switch (state) {
1438 case SCI_REQ_STARTED: {
1439 struct ssp_frame_hdr ssp_hdr;
1440 void *frame_header;
1442 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1443 frame_index,
1444 &frame_header);
1446 word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1447 sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1449 if (ssp_hdr.frame_type == SSP_RESPONSE) {
1450 struct ssp_response_iu *resp_iu;
1451 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1453 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1454 frame_index,
1455 (void **)&resp_iu);
1457 sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt);
1459 resp_iu = &ireq->ssp.rsp;
1461 if (resp_iu->datapres == 0x01 ||
1462 resp_iu->datapres == 0x02) {
1463 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1464 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1465 } else {
1466 ireq->scu_status = SCU_TASK_DONE_GOOD;
1467 ireq->sci_status = SCI_SUCCESS;
1469 } else {
1470 /* not a response frame, why did it get forwarded? */
1471 dev_err(&ihost->pdev->dev,
1472 "%s: SCIC IO Request 0x%p received unexpected "
1473 "frame %d type 0x%02x\n", __func__, ireq,
1474 frame_index, ssp_hdr.frame_type);
1478 * In any case we are done with this frame buffer return it to
1479 * the controller
1481 sci_controller_release_frame(ihost, frame_index);
1483 return SCI_SUCCESS;
1486 case SCI_REQ_TASK_WAIT_TC_RESP:
1487 sci_io_request_copy_response(ireq);
1488 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1489 sci_controller_release_frame(ihost, frame_index);
1490 return SCI_SUCCESS;
1492 case SCI_REQ_SMP_WAIT_RESP: {
1493 struct smp_resp *rsp_hdr = &ireq->smp.rsp;
1494 void *frame_header;
1496 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1497 frame_index,
1498 &frame_header);
1500 /* byte swap the header. */
1501 word_cnt = SMP_RESP_HDR_SZ / sizeof(u32);
1502 sci_swab32_cpy(rsp_hdr, frame_header, word_cnt);
1504 if (rsp_hdr->frame_type == SMP_RESPONSE) {
1505 void *smp_resp;
1507 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1508 frame_index,
1509 &smp_resp);
1511 word_cnt = (sizeof(struct smp_resp) - SMP_RESP_HDR_SZ) /
1512 sizeof(u32);
1514 sci_swab32_cpy(((u8 *) rsp_hdr) + SMP_RESP_HDR_SZ,
1515 smp_resp, word_cnt);
1517 ireq->scu_status = SCU_TASK_DONE_GOOD;
1518 ireq->sci_status = SCI_SUCCESS;
1519 sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP);
1520 } else {
1522 * This was not a response frame why did it get
1523 * forwarded?
1525 dev_err(&ihost->pdev->dev,
1526 "%s: SCIC SMP Request 0x%p received unexpected "
1527 "frame %d type 0x%02x\n",
1528 __func__,
1529 ireq,
1530 frame_index,
1531 rsp_hdr->frame_type);
1533 ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR;
1534 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1535 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1538 sci_controller_release_frame(ihost, frame_index);
1540 return SCI_SUCCESS;
1543 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1544 return sci_stp_request_udma_general_frame_handler(ireq,
1545 frame_index);
1547 case SCI_REQ_STP_UDMA_WAIT_D2H:
1548 /* Use the general frame handler to copy the resposne data */
1549 status = sci_stp_request_udma_general_frame_handler(ireq, frame_index);
1551 if (status != SCI_SUCCESS)
1552 return status;
1554 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1555 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1556 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1557 return SCI_SUCCESS;
1559 case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
1560 struct dev_to_host_fis *frame_header;
1561 u32 *frame_buffer;
1563 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1564 frame_index,
1565 (void **)&frame_header);
1567 if (status != SCI_SUCCESS) {
1568 dev_err(&ihost->pdev->dev,
1569 "%s: SCIC IO Request 0x%p could not get frame "
1570 "header for frame index %d, status %x\n",
1571 __func__,
1572 stp_req,
1573 frame_index,
1574 status);
1576 return status;
1579 switch (frame_header->fis_type) {
1580 case FIS_REGD2H:
1581 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1582 frame_index,
1583 (void **)&frame_buffer);
1585 sci_controller_copy_sata_response(&ireq->stp.rsp,
1586 frame_header,
1587 frame_buffer);
1589 /* The command has completed with error */
1590 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1591 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1592 break;
1594 default:
1595 dev_warn(&ihost->pdev->dev,
1596 "%s: IO Request:0x%p Frame Id:%d protocol "
1597 "violation occurred\n", __func__, stp_req,
1598 frame_index);
1600 ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1601 ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1602 break;
1605 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1607 /* Frame has been decoded return it to the controller */
1608 sci_controller_release_frame(ihost, frame_index);
1610 return status;
1613 case SCI_REQ_STP_PIO_WAIT_FRAME: {
1614 struct sas_task *task = isci_request_access_task(ireq);
1615 struct dev_to_host_fis *frame_header;
1616 u32 *frame_buffer;
1618 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1619 frame_index,
1620 (void **)&frame_header);
1622 if (status != SCI_SUCCESS) {
1623 dev_err(&ihost->pdev->dev,
1624 "%s: SCIC IO Request 0x%p could not get frame "
1625 "header for frame index %d, status %x\n",
1626 __func__, stp_req, frame_index, status);
1627 return status;
1630 switch (frame_header->fis_type) {
1631 case FIS_PIO_SETUP:
1632 /* Get from the frame buffer the PIO Setup Data */
1633 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1634 frame_index,
1635 (void **)&frame_buffer);
1637 /* Get the data from the PIO Setup The SCU Hardware
1638 * returns first word in the frame_header and the rest
1639 * of the data is in the frame buffer so we need to
1640 * back up one dword
1643 /* transfer_count: first 16bits in the 4th dword */
1644 stp_req->pio_len = frame_buffer[3] & 0xffff;
1646 /* status: 4th byte in the 3rd dword */
1647 stp_req->status = (frame_buffer[2] >> 24) & 0xff;
1649 sci_controller_copy_sata_response(&ireq->stp.rsp,
1650 frame_header,
1651 frame_buffer);
1653 ireq->stp.rsp.status = stp_req->status;
1655 /* The next state is dependent on whether the
1656 * request was PIO Data-in or Data out
1658 if (task->data_dir == DMA_FROM_DEVICE) {
1659 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN);
1660 } else if (task->data_dir == DMA_TO_DEVICE) {
1661 /* Transmit data */
1662 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1663 if (status != SCI_SUCCESS)
1664 break;
1665 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT);
1667 break;
1669 case FIS_SETDEVBITS:
1670 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1671 break;
1673 case FIS_REGD2H:
1674 if (frame_header->status & ATA_BUSY) {
1676 * Now why is the drive sending a D2H Register
1677 * FIS when it is still busy? Do nothing since
1678 * we are still in the right state.
1680 dev_dbg(&ihost->pdev->dev,
1681 "%s: SCIC PIO Request 0x%p received "
1682 "D2H Register FIS with BSY status "
1683 "0x%x\n",
1684 __func__,
1685 stp_req,
1686 frame_header->status);
1687 break;
1690 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1691 frame_index,
1692 (void **)&frame_buffer);
1694 sci_controller_copy_sata_response(&ireq->stp.req,
1695 frame_header,
1696 frame_buffer);
1698 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1699 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1700 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1701 break;
1703 default:
1704 /* FIXME: what do we do here? */
1705 break;
1708 /* Frame is decoded return it to the controller */
1709 sci_controller_release_frame(ihost, frame_index);
1711 return status;
1714 case SCI_REQ_STP_PIO_DATA_IN: {
1715 struct dev_to_host_fis *frame_header;
1716 struct sata_fis_data *frame_buffer;
1718 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1719 frame_index,
1720 (void **)&frame_header);
1722 if (status != SCI_SUCCESS) {
1723 dev_err(&ihost->pdev->dev,
1724 "%s: SCIC IO Request 0x%p could not get frame "
1725 "header for frame index %d, status %x\n",
1726 __func__,
1727 stp_req,
1728 frame_index,
1729 status);
1730 return status;
1733 if (frame_header->fis_type != FIS_DATA) {
1734 dev_err(&ihost->pdev->dev,
1735 "%s: SCIC PIO Request 0x%p received frame %d "
1736 "with fis type 0x%02x when expecting a data "
1737 "fis.\n",
1738 __func__,
1739 stp_req,
1740 frame_index,
1741 frame_header->fis_type);
1743 ireq->scu_status = SCU_TASK_DONE_GOOD;
1744 ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT;
1745 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1747 /* Frame is decoded return it to the controller */
1748 sci_controller_release_frame(ihost, frame_index);
1749 return status;
1752 if (stp_req->sgl.index < 0) {
1753 ireq->saved_rx_frame_index = frame_index;
1754 stp_req->pio_len = 0;
1755 } else {
1756 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1757 frame_index,
1758 (void **)&frame_buffer);
1760 status = sci_stp_request_pio_data_in_copy_data(stp_req,
1761 (u8 *)frame_buffer);
1763 /* Frame is decoded return it to the controller */
1764 sci_controller_release_frame(ihost, frame_index);
1767 /* Check for the end of the transfer, are there more
1768 * bytes remaining for this data transfer
1770 if (status != SCI_SUCCESS || stp_req->pio_len != 0)
1771 return status;
1773 if ((stp_req->status & ATA_BUSY) == 0) {
1774 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1775 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1776 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1777 } else {
1778 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1780 return status;
1783 case SCI_REQ_STP_SOFT_RESET_WAIT_D2H: {
1784 struct dev_to_host_fis *frame_header;
1785 u32 *frame_buffer;
1787 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1788 frame_index,
1789 (void **)&frame_header);
1790 if (status != SCI_SUCCESS) {
1791 dev_err(&ihost->pdev->dev,
1792 "%s: SCIC IO Request 0x%p could not get frame "
1793 "header for frame index %d, status %x\n",
1794 __func__,
1795 stp_req,
1796 frame_index,
1797 status);
1798 return status;
1801 switch (frame_header->fis_type) {
1802 case FIS_REGD2H:
1803 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1804 frame_index,
1805 (void **)&frame_buffer);
1807 sci_controller_copy_sata_response(&ireq->stp.rsp,
1808 frame_header,
1809 frame_buffer);
1811 /* The command has completed with error */
1812 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1813 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1814 break;
1816 default:
1817 dev_warn(&ihost->pdev->dev,
1818 "%s: IO Request:0x%p Frame Id:%d protocol "
1819 "violation occurred\n",
1820 __func__,
1821 stp_req,
1822 frame_index);
1824 ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1825 ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1826 break;
1829 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1831 /* Frame has been decoded return it to the controller */
1832 sci_controller_release_frame(ihost, frame_index);
1834 return status;
1836 case SCI_REQ_ABORTING:
1838 * TODO: Is it even possible to get an unsolicited frame in the
1839 * aborting state?
1841 sci_controller_release_frame(ihost, frame_index);
1842 return SCI_SUCCESS;
1844 default:
1845 dev_warn(&ihost->pdev->dev,
1846 "%s: SCIC IO Request given unexpected frame %x while "
1847 "in state %d\n",
1848 __func__,
1849 frame_index,
1850 state);
1852 sci_controller_release_frame(ihost, frame_index);
1853 return SCI_FAILURE_INVALID_STATE;
1857 static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq,
1858 u32 completion_code)
1860 enum sci_status status = SCI_SUCCESS;
1862 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1863 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1864 ireq->scu_status = SCU_TASK_DONE_GOOD;
1865 ireq->sci_status = SCI_SUCCESS;
1866 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1867 break;
1868 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
1869 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
1870 /* We must check ther response buffer to see if the D2H
1871 * Register FIS was received before we got the TC
1872 * completion.
1874 if (ireq->stp.rsp.fis_type == FIS_REGD2H) {
1875 sci_remote_device_suspend(ireq->target_device,
1876 SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code)));
1878 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1879 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1880 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1881 } else {
1882 /* If we have an error completion status for the
1883 * TC then we can expect a D2H register FIS from
1884 * the device so we must change state to wait
1885 * for it
1887 sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
1889 break;
1891 /* TODO Check to see if any of these completion status need to
1892 * wait for the device to host register fis.
1894 /* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
1895 * - this comes only for B0
1897 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_INV_FIS_LEN):
1898 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
1899 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_R_ERR):
1900 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CMD_LL_R_ERR):
1901 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CRC_ERR):
1902 sci_remote_device_suspend(ireq->target_device,
1903 SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code)));
1904 /* Fall through to the default case */
1905 default:
1906 /* All other completion status cause the IO to be complete. */
1907 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1908 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1909 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1910 break;
1913 return status;
1916 static enum sci_status
1917 stp_request_soft_reset_await_h2d_asserted_tc_event(struct isci_request *ireq,
1918 u32 completion_code)
1920 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1921 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1922 ireq->scu_status = SCU_TASK_DONE_GOOD;
1923 ireq->sci_status = SCI_SUCCESS;
1924 sci_change_state(&ireq->sm, SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG);
1925 break;
1927 default:
1929 * All other completion status cause the IO to be complete.
1930 * If a NAK was received, then it is up to the user to retry
1931 * the request.
1933 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1934 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1935 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1936 break;
1939 return SCI_SUCCESS;
1942 static enum sci_status
1943 stp_request_soft_reset_await_h2d_diagnostic_tc_event(struct isci_request *ireq,
1944 u32 completion_code)
1946 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1947 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1948 ireq->scu_status = SCU_TASK_DONE_GOOD;
1949 ireq->sci_status = SCI_SUCCESS;
1950 sci_change_state(&ireq->sm, SCI_REQ_STP_SOFT_RESET_WAIT_D2H);
1951 break;
1953 default:
1954 /* All other completion status cause the IO to be complete. If
1955 * a NAK was received, then it is up to the user to retry the
1956 * request.
1958 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1959 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1960 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1961 break;
1964 return SCI_SUCCESS;
1967 enum sci_status
1968 sci_io_request_tc_completion(struct isci_request *ireq,
1969 u32 completion_code)
1971 enum sci_base_request_states state;
1972 struct isci_host *ihost = ireq->owning_controller;
1974 state = ireq->sm.current_state_id;
1976 switch (state) {
1977 case SCI_REQ_STARTED:
1978 return request_started_state_tc_event(ireq, completion_code);
1980 case SCI_REQ_TASK_WAIT_TC_COMP:
1981 return ssp_task_request_await_tc_event(ireq,
1982 completion_code);
1984 case SCI_REQ_SMP_WAIT_RESP:
1985 return smp_request_await_response_tc_event(ireq,
1986 completion_code);
1988 case SCI_REQ_SMP_WAIT_TC_COMP:
1989 return smp_request_await_tc_event(ireq, completion_code);
1991 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1992 return stp_request_udma_await_tc_event(ireq,
1993 completion_code);
1995 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
1996 return stp_request_non_data_await_h2d_tc_event(ireq,
1997 completion_code);
1999 case SCI_REQ_STP_PIO_WAIT_H2D:
2000 return stp_request_pio_await_h2d_completion_tc_event(ireq,
2001 completion_code);
2003 case SCI_REQ_STP_PIO_DATA_OUT:
2004 return pio_data_out_tx_done_tc_event(ireq, completion_code);
2006 case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED:
2007 return stp_request_soft_reset_await_h2d_asserted_tc_event(ireq,
2008 completion_code);
2010 case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG:
2011 return stp_request_soft_reset_await_h2d_diagnostic_tc_event(ireq,
2012 completion_code);
2014 case SCI_REQ_ABORTING:
2015 return request_aborting_state_tc_event(ireq,
2016 completion_code);
2018 default:
2019 dev_warn(&ihost->pdev->dev,
2020 "%s: SCIC IO Request given task completion "
2021 "notification %x while in wrong state %d\n",
2022 __func__,
2023 completion_code,
2024 state);
2025 return SCI_FAILURE_INVALID_STATE;
2030 * isci_request_process_response_iu() - This function sets the status and
2031 * response iu, in the task struct, from the request object for the upper
2032 * layer driver.
2033 * @sas_task: This parameter is the task struct from the upper layer driver.
2034 * @resp_iu: This parameter points to the response iu of the completed request.
2035 * @dev: This parameter specifies the linux device struct.
2037 * none.
2039 static void isci_request_process_response_iu(
2040 struct sas_task *task,
2041 struct ssp_response_iu *resp_iu,
2042 struct device *dev)
2044 dev_dbg(dev,
2045 "%s: resp_iu = %p "
2046 "resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2047 "resp_iu->response_data_len = %x, "
2048 "resp_iu->sense_data_len = %x\nrepsonse data: ",
2049 __func__,
2050 resp_iu,
2051 resp_iu->status,
2052 resp_iu->datapres,
2053 resp_iu->response_data_len,
2054 resp_iu->sense_data_len);
2056 task->task_status.stat = resp_iu->status;
2058 /* libsas updates the task status fields based on the response iu. */
2059 sas_ssp_task_response(dev, task, resp_iu);
2063 * isci_request_set_open_reject_status() - This function prepares the I/O
2064 * completion for OPEN_REJECT conditions.
2065 * @request: This parameter is the completed isci_request object.
2066 * @response_ptr: This parameter specifies the service response for the I/O.
2067 * @status_ptr: This parameter specifies the exec status for the I/O.
2068 * @complete_to_host_ptr: This parameter specifies the action to be taken by
2069 * the LLDD with respect to completing this request or forcing an abort
2070 * condition on the I/O.
2071 * @open_rej_reason: This parameter specifies the encoded reason for the
2072 * abandon-class reject.
2074 * none.
2076 static void isci_request_set_open_reject_status(
2077 struct isci_request *request,
2078 struct sas_task *task,
2079 enum service_response *response_ptr,
2080 enum exec_status *status_ptr,
2081 enum isci_completion_selection *complete_to_host_ptr,
2082 enum sas_open_rej_reason open_rej_reason)
2084 /* Task in the target is done. */
2085 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2086 *response_ptr = SAS_TASK_UNDELIVERED;
2087 *status_ptr = SAS_OPEN_REJECT;
2088 *complete_to_host_ptr = isci_perform_normal_io_completion;
2089 task->task_status.open_rej_reason = open_rej_reason;
2093 * isci_request_handle_controller_specific_errors() - This function decodes
2094 * controller-specific I/O completion error conditions.
2095 * @request: This parameter is the completed isci_request object.
2096 * @response_ptr: This parameter specifies the service response for the I/O.
2097 * @status_ptr: This parameter specifies the exec status for the I/O.
2098 * @complete_to_host_ptr: This parameter specifies the action to be taken by
2099 * the LLDD with respect to completing this request or forcing an abort
2100 * condition on the I/O.
2102 * none.
2104 static void isci_request_handle_controller_specific_errors(
2105 struct isci_remote_device *idev,
2106 struct isci_request *request,
2107 struct sas_task *task,
2108 enum service_response *response_ptr,
2109 enum exec_status *status_ptr,
2110 enum isci_completion_selection *complete_to_host_ptr)
2112 unsigned int cstatus;
2114 cstatus = request->scu_status;
2116 dev_dbg(&request->isci_host->pdev->dev,
2117 "%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2118 "- controller status = 0x%x\n",
2119 __func__, request, cstatus);
2121 /* Decode the controller-specific errors; most
2122 * important is to recognize those conditions in which
2123 * the target may still have a task outstanding that
2124 * must be aborted.
2126 * Note that there are SCU completion codes being
2127 * named in the decode below for which SCIC has already
2128 * done work to handle them in a way other than as
2129 * a controller-specific completion code; these are left
2130 * in the decode below for completeness sake.
2132 switch (cstatus) {
2133 case SCU_TASK_DONE_DMASETUP_DIRERR:
2134 /* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2135 case SCU_TASK_DONE_XFERCNT_ERR:
2136 /* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2137 if (task->task_proto == SAS_PROTOCOL_SMP) {
2138 /* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2139 *response_ptr = SAS_TASK_COMPLETE;
2141 /* See if the device has been/is being stopped. Note
2142 * that we ignore the quiesce state, since we are
2143 * concerned about the actual device state.
2145 if (!idev)
2146 *status_ptr = SAS_DEVICE_UNKNOWN;
2147 else
2148 *status_ptr = SAS_ABORTED_TASK;
2150 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2152 *complete_to_host_ptr =
2153 isci_perform_normal_io_completion;
2154 } else {
2155 /* Task in the target is not done. */
2156 *response_ptr = SAS_TASK_UNDELIVERED;
2158 if (!idev)
2159 *status_ptr = SAS_DEVICE_UNKNOWN;
2160 else
2161 *status_ptr = SAM_STAT_TASK_ABORTED;
2163 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2165 *complete_to_host_ptr =
2166 isci_perform_error_io_completion;
2169 break;
2171 case SCU_TASK_DONE_CRC_ERR:
2172 case SCU_TASK_DONE_NAK_CMD_ERR:
2173 case SCU_TASK_DONE_EXCESS_DATA:
2174 case SCU_TASK_DONE_UNEXP_FIS:
2175 /* Also SCU_TASK_DONE_UNEXP_RESP: */
2176 case SCU_TASK_DONE_VIIT_ENTRY_NV: /* TODO - conditions? */
2177 case SCU_TASK_DONE_IIT_ENTRY_NV: /* TODO - conditions? */
2178 case SCU_TASK_DONE_RNCNV_OUTBOUND: /* TODO - conditions? */
2179 /* These are conditions in which the target
2180 * has completed the task, so that no cleanup
2181 * is necessary.
2183 *response_ptr = SAS_TASK_COMPLETE;
2185 /* See if the device has been/is being stopped. Note
2186 * that we ignore the quiesce state, since we are
2187 * concerned about the actual device state.
2189 if (!idev)
2190 *status_ptr = SAS_DEVICE_UNKNOWN;
2191 else
2192 *status_ptr = SAS_ABORTED_TASK;
2194 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2196 *complete_to_host_ptr = isci_perform_normal_io_completion;
2197 break;
2200 /* Note that the only open reject completion codes seen here will be
2201 * abandon-class codes; all others are automatically retried in the SCU.
2203 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2205 isci_request_set_open_reject_status(
2206 request, task, response_ptr, status_ptr,
2207 complete_to_host_ptr, SAS_OREJ_WRONG_DEST);
2208 break;
2210 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2212 /* Note - the return of AB0 will change when
2213 * libsas implements detection of zone violations.
2215 isci_request_set_open_reject_status(
2216 request, task, response_ptr, status_ptr,
2217 complete_to_host_ptr, SAS_OREJ_RESV_AB0);
2218 break;
2220 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2222 isci_request_set_open_reject_status(
2223 request, task, response_ptr, status_ptr,
2224 complete_to_host_ptr, SAS_OREJ_RESV_AB1);
2225 break;
2227 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2229 isci_request_set_open_reject_status(
2230 request, task, response_ptr, status_ptr,
2231 complete_to_host_ptr, SAS_OREJ_RESV_AB2);
2232 break;
2234 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2236 isci_request_set_open_reject_status(
2237 request, task, response_ptr, status_ptr,
2238 complete_to_host_ptr, SAS_OREJ_RESV_AB3);
2239 break;
2241 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2243 isci_request_set_open_reject_status(
2244 request, task, response_ptr, status_ptr,
2245 complete_to_host_ptr, SAS_OREJ_BAD_DEST);
2246 break;
2248 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2250 isci_request_set_open_reject_status(
2251 request, task, response_ptr, status_ptr,
2252 complete_to_host_ptr, SAS_OREJ_STP_NORES);
2253 break;
2255 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2257 isci_request_set_open_reject_status(
2258 request, task, response_ptr, status_ptr,
2259 complete_to_host_ptr, SAS_OREJ_EPROTO);
2260 break;
2262 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2264 isci_request_set_open_reject_status(
2265 request, task, response_ptr, status_ptr,
2266 complete_to_host_ptr, SAS_OREJ_CONN_RATE);
2267 break;
2269 case SCU_TASK_DONE_LL_R_ERR:
2270 /* Also SCU_TASK_DONE_ACK_NAK_TO: */
2271 case SCU_TASK_DONE_LL_PERR:
2272 case SCU_TASK_DONE_LL_SY_TERM:
2273 /* Also SCU_TASK_DONE_NAK_ERR:*/
2274 case SCU_TASK_DONE_LL_LF_TERM:
2275 /* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2276 case SCU_TASK_DONE_LL_ABORT_ERR:
2277 case SCU_TASK_DONE_SEQ_INV_TYPE:
2278 /* Also SCU_TASK_DONE_UNEXP_XR: */
2279 case SCU_TASK_DONE_XR_IU_LEN_ERR:
2280 case SCU_TASK_DONE_INV_FIS_LEN:
2281 /* Also SCU_TASK_DONE_XR_WD_LEN: */
2282 case SCU_TASK_DONE_SDMA_ERR:
2283 case SCU_TASK_DONE_OFFSET_ERR:
2284 case SCU_TASK_DONE_MAX_PLD_ERR:
2285 case SCU_TASK_DONE_LF_ERR:
2286 case SCU_TASK_DONE_SMP_RESP_TO_ERR: /* Escalate to dev reset? */
2287 case SCU_TASK_DONE_SMP_LL_RX_ERR:
2288 case SCU_TASK_DONE_UNEXP_DATA:
2289 case SCU_TASK_DONE_UNEXP_SDBFIS:
2290 case SCU_TASK_DONE_REG_ERR:
2291 case SCU_TASK_DONE_SDB_ERR:
2292 case SCU_TASK_DONE_TASK_ABORT:
2293 default:
2294 /* Task in the target is not done. */
2295 *response_ptr = SAS_TASK_UNDELIVERED;
2296 *status_ptr = SAM_STAT_TASK_ABORTED;
2298 if (task->task_proto == SAS_PROTOCOL_SMP) {
2299 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2301 *complete_to_host_ptr = isci_perform_normal_io_completion;
2302 } else {
2303 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2305 *complete_to_host_ptr = isci_perform_error_io_completion;
2307 break;
2312 * isci_task_save_for_upper_layer_completion() - This function saves the
2313 * request for later completion to the upper layer driver.
2314 * @host: This parameter is a pointer to the host on which the the request
2315 * should be queued (either as an error or success).
2316 * @request: This parameter is the completed request.
2317 * @response: This parameter is the response code for the completed task.
2318 * @status: This parameter is the status code for the completed task.
2320 * none.
2322 static void isci_task_save_for_upper_layer_completion(
2323 struct isci_host *host,
2324 struct isci_request *request,
2325 enum service_response response,
2326 enum exec_status status,
2327 enum isci_completion_selection task_notification_selection)
2329 struct sas_task *task = isci_request_access_task(request);
2331 task_notification_selection
2332 = isci_task_set_completion_status(task, response, status,
2333 task_notification_selection);
2335 /* Tasks aborted specifically by a call to the lldd_abort_task
2336 * function should not be completed to the host in the regular path.
2338 switch (task_notification_selection) {
2340 case isci_perform_normal_io_completion:
2342 /* Normal notification (task_done) */
2343 dev_dbg(&host->pdev->dev,
2344 "%s: Normal - task = %p, response=%d (%d), status=%d (%d)\n",
2345 __func__,
2346 task,
2347 task->task_status.resp, response,
2348 task->task_status.stat, status);
2349 /* Add to the completed list. */
2350 list_add(&request->completed_node,
2351 &host->requests_to_complete);
2353 /* Take the request off the device's pending request list. */
2354 list_del_init(&request->dev_node);
2355 break;
2357 case isci_perform_aborted_io_completion:
2358 /* No notification to libsas because this request is
2359 * already in the abort path.
2361 dev_dbg(&host->pdev->dev,
2362 "%s: Aborted - task = %p, response=%d (%d), status=%d (%d)\n",
2363 __func__,
2364 task,
2365 task->task_status.resp, response,
2366 task->task_status.stat, status);
2368 /* Wake up whatever process was waiting for this
2369 * request to complete.
2371 WARN_ON(request->io_request_completion == NULL);
2373 if (request->io_request_completion != NULL) {
2375 /* Signal whoever is waiting that this
2376 * request is complete.
2378 complete(request->io_request_completion);
2380 break;
2382 case isci_perform_error_io_completion:
2383 /* Use sas_task_abort */
2384 dev_dbg(&host->pdev->dev,
2385 "%s: Error - task = %p, response=%d (%d), status=%d (%d)\n",
2386 __func__,
2387 task,
2388 task->task_status.resp, response,
2389 task->task_status.stat, status);
2390 /* Add to the aborted list. */
2391 list_add(&request->completed_node,
2392 &host->requests_to_errorback);
2393 break;
2395 default:
2396 dev_dbg(&host->pdev->dev,
2397 "%s: Unknown - task = %p, response=%d (%d), status=%d (%d)\n",
2398 __func__,
2399 task,
2400 task->task_status.resp, response,
2401 task->task_status.stat, status);
2403 /* Add to the error to libsas list. */
2404 list_add(&request->completed_node,
2405 &host->requests_to_errorback);
2406 break;
2410 static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis)
2412 struct task_status_struct *ts = &task->task_status;
2413 struct ata_task_resp *resp = (void *)&ts->buf[0];
2415 resp->frame_len = sizeof(*fis);
2416 memcpy(resp->ending_fis, fis, sizeof(*fis));
2417 ts->buf_valid_size = sizeof(*resp);
2419 /* If the device fault bit is set in the status register, then
2420 * set the sense data and return.
2422 if (fis->status & ATA_DF)
2423 ts->stat = SAS_PROTO_RESPONSE;
2424 else
2425 ts->stat = SAM_STAT_GOOD;
2427 ts->resp = SAS_TASK_COMPLETE;
2430 static void isci_request_io_request_complete(struct isci_host *ihost,
2431 struct isci_request *request,
2432 enum sci_io_status completion_status)
2434 struct sas_task *task = isci_request_access_task(request);
2435 struct ssp_response_iu *resp_iu;
2436 unsigned long task_flags;
2437 struct isci_remote_device *idev = isci_lookup_device(task->dev);
2438 enum service_response response = SAS_TASK_UNDELIVERED;
2439 enum exec_status status = SAS_ABORTED_TASK;
2440 enum isci_request_status request_status;
2441 enum isci_completion_selection complete_to_host
2442 = isci_perform_normal_io_completion;
2444 dev_dbg(&ihost->pdev->dev,
2445 "%s: request = %p, task = %p,\n"
2446 "task->data_dir = %d completion_status = 0x%x\n",
2447 __func__,
2448 request,
2449 task,
2450 task->data_dir,
2451 completion_status);
2453 spin_lock(&request->state_lock);
2454 request_status = request->status;
2456 /* Decode the request status. Note that if the request has been
2457 * aborted by a task management function, we don't care
2458 * what the status is.
2460 switch (request_status) {
2462 case aborted:
2463 /* "aborted" indicates that the request was aborted by a task
2464 * management function, since once a task management request is
2465 * perfomed by the device, the request only completes because
2466 * of the subsequent driver terminate.
2468 * Aborted also means an external thread is explicitly managing
2469 * this request, so that we do not complete it up the stack.
2471 * The target is still there (since the TMF was successful).
2473 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2474 response = SAS_TASK_COMPLETE;
2476 /* See if the device has been/is being stopped. Note
2477 * that we ignore the quiesce state, since we are
2478 * concerned about the actual device state.
2480 if (!idev)
2481 status = SAS_DEVICE_UNKNOWN;
2482 else
2483 status = SAS_ABORTED_TASK;
2485 complete_to_host = isci_perform_aborted_io_completion;
2486 /* This was an aborted request. */
2488 spin_unlock(&request->state_lock);
2489 break;
2491 case aborting:
2492 /* aborting means that the task management function tried and
2493 * failed to abort the request. We need to note the request
2494 * as SAS_TASK_UNDELIVERED, so that the scsi mid layer marks the
2495 * target as down.
2497 * Aborting also means an external thread is explicitly managing
2498 * this request, so that we do not complete it up the stack.
2500 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2501 response = SAS_TASK_UNDELIVERED;
2503 if (!idev)
2504 /* The device has been /is being stopped. Note that
2505 * we ignore the quiesce state, since we are
2506 * concerned about the actual device state.
2508 status = SAS_DEVICE_UNKNOWN;
2509 else
2510 status = SAS_PHY_DOWN;
2512 complete_to_host = isci_perform_aborted_io_completion;
2514 /* This was an aborted request. */
2516 spin_unlock(&request->state_lock);
2517 break;
2519 case terminating:
2521 /* This was an terminated request. This happens when
2522 * the I/O is being terminated because of an action on
2523 * the device (reset, tear down, etc.), and the I/O needs
2524 * to be completed up the stack.
2526 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2527 response = SAS_TASK_UNDELIVERED;
2529 /* See if the device has been/is being stopped. Note
2530 * that we ignore the quiesce state, since we are
2531 * concerned about the actual device state.
2533 if (!idev)
2534 status = SAS_DEVICE_UNKNOWN;
2535 else
2536 status = SAS_ABORTED_TASK;
2538 complete_to_host = isci_perform_aborted_io_completion;
2540 /* This was a terminated request. */
2542 spin_unlock(&request->state_lock);
2543 break;
2545 case dead:
2546 /* This was a terminated request that timed-out during the
2547 * termination process. There is no task to complete to
2548 * libsas.
2550 complete_to_host = isci_perform_normal_io_completion;
2551 spin_unlock(&request->state_lock);
2552 break;
2554 default:
2556 /* The request is done from an SCU HW perspective. */
2557 request->status = completed;
2559 spin_unlock(&request->state_lock);
2561 /* This is an active request being completed from the core. */
2562 switch (completion_status) {
2564 case SCI_IO_FAILURE_RESPONSE_VALID:
2565 dev_dbg(&ihost->pdev->dev,
2566 "%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2567 __func__,
2568 request,
2569 task);
2571 if (sas_protocol_ata(task->task_proto)) {
2572 isci_process_stp_response(task, &request->stp.rsp);
2573 } else if (SAS_PROTOCOL_SSP == task->task_proto) {
2575 /* crack the iu response buffer. */
2576 resp_iu = &request->ssp.rsp;
2577 isci_request_process_response_iu(task, resp_iu,
2578 &ihost->pdev->dev);
2580 } else if (SAS_PROTOCOL_SMP == task->task_proto) {
2582 dev_err(&ihost->pdev->dev,
2583 "%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2584 "SAS_PROTOCOL_SMP protocol\n",
2585 __func__);
2587 } else
2588 dev_err(&ihost->pdev->dev,
2589 "%s: unknown protocol\n", __func__);
2591 /* use the task status set in the task struct by the
2592 * isci_request_process_response_iu call.
2594 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2595 response = task->task_status.resp;
2596 status = task->task_status.stat;
2597 break;
2599 case SCI_IO_SUCCESS:
2600 case SCI_IO_SUCCESS_IO_DONE_EARLY:
2602 response = SAS_TASK_COMPLETE;
2603 status = SAM_STAT_GOOD;
2604 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2606 if (task->task_proto == SAS_PROTOCOL_SMP) {
2607 void *rsp = &request->smp.rsp;
2609 dev_dbg(&ihost->pdev->dev,
2610 "%s: SMP protocol completion\n",
2611 __func__);
2613 sg_copy_from_buffer(
2614 &task->smp_task.smp_resp, 1,
2615 rsp, sizeof(struct smp_resp));
2616 } else if (completion_status
2617 == SCI_IO_SUCCESS_IO_DONE_EARLY) {
2619 /* This was an SSP / STP / SATA transfer.
2620 * There is a possibility that less data than
2621 * the maximum was transferred.
2623 u32 transferred_length = sci_req_tx_bytes(request);
2625 task->task_status.residual
2626 = task->total_xfer_len - transferred_length;
2628 /* If there were residual bytes, call this an
2629 * underrun.
2631 if (task->task_status.residual != 0)
2632 status = SAS_DATA_UNDERRUN;
2634 dev_dbg(&ihost->pdev->dev,
2635 "%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2636 __func__,
2637 status);
2639 } else
2640 dev_dbg(&ihost->pdev->dev,
2641 "%s: SCI_IO_SUCCESS\n",
2642 __func__);
2644 break;
2646 case SCI_IO_FAILURE_TERMINATED:
2647 dev_dbg(&ihost->pdev->dev,
2648 "%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2649 __func__,
2650 request,
2651 task);
2653 /* The request was terminated explicitly. No handling
2654 * is needed in the SCSI error handler path.
2656 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2657 response = SAS_TASK_UNDELIVERED;
2659 /* See if the device has been/is being stopped. Note
2660 * that we ignore the quiesce state, since we are
2661 * concerned about the actual device state.
2663 if (!idev)
2664 status = SAS_DEVICE_UNKNOWN;
2665 else
2666 status = SAS_ABORTED_TASK;
2668 complete_to_host = isci_perform_normal_io_completion;
2669 break;
2671 case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
2673 isci_request_handle_controller_specific_errors(
2674 idev, request, task, &response, &status,
2675 &complete_to_host);
2677 break;
2679 case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
2680 /* This is a special case, in that the I/O completion
2681 * is telling us that the device needs a reset.
2682 * In order for the device reset condition to be
2683 * noticed, the I/O has to be handled in the error
2684 * handler. Set the reset flag and cause the
2685 * SCSI error thread to be scheduled.
2687 spin_lock_irqsave(&task->task_state_lock, task_flags);
2688 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2689 spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2691 /* Fail the I/O. */
2692 response = SAS_TASK_UNDELIVERED;
2693 status = SAM_STAT_TASK_ABORTED;
2695 complete_to_host = isci_perform_error_io_completion;
2696 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2697 break;
2699 case SCI_FAILURE_RETRY_REQUIRED:
2701 /* Fail the I/O so it can be retried. */
2702 response = SAS_TASK_UNDELIVERED;
2703 if (!idev)
2704 status = SAS_DEVICE_UNKNOWN;
2705 else
2706 status = SAS_ABORTED_TASK;
2708 complete_to_host = isci_perform_normal_io_completion;
2709 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2710 break;
2713 default:
2714 /* Catch any otherwise unhandled error codes here. */
2715 dev_dbg(&ihost->pdev->dev,
2716 "%s: invalid completion code: 0x%x - "
2717 "isci_request = %p\n",
2718 __func__, completion_status, request);
2720 response = SAS_TASK_UNDELIVERED;
2722 /* See if the device has been/is being stopped. Note
2723 * that we ignore the quiesce state, since we are
2724 * concerned about the actual device state.
2726 if (!idev)
2727 status = SAS_DEVICE_UNKNOWN;
2728 else
2729 status = SAS_ABORTED_TASK;
2731 if (SAS_PROTOCOL_SMP == task->task_proto) {
2732 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2733 complete_to_host = isci_perform_normal_io_completion;
2734 } else {
2735 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2736 complete_to_host = isci_perform_error_io_completion;
2738 break;
2740 break;
2743 switch (task->task_proto) {
2744 case SAS_PROTOCOL_SSP:
2745 if (task->data_dir == DMA_NONE)
2746 break;
2747 if (task->num_scatter == 0)
2748 /* 0 indicates a single dma address */
2749 dma_unmap_single(&ihost->pdev->dev,
2750 request->zero_scatter_daddr,
2751 task->total_xfer_len, task->data_dir);
2752 else /* unmap the sgl dma addresses */
2753 dma_unmap_sg(&ihost->pdev->dev, task->scatter,
2754 request->num_sg_entries, task->data_dir);
2755 break;
2756 case SAS_PROTOCOL_SMP: {
2757 struct scatterlist *sg = &task->smp_task.smp_req;
2758 struct smp_req *smp_req;
2759 void *kaddr;
2761 dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE);
2763 /* need to swab it back in case the command buffer is re-used */
2764 kaddr = kmap_atomic(sg_page(sg), KM_IRQ0);
2765 smp_req = kaddr + sg->offset;
2766 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
2767 kunmap_atomic(kaddr, KM_IRQ0);
2768 break;
2770 default:
2771 break;
2774 /* Put the completed request on the correct list */
2775 isci_task_save_for_upper_layer_completion(ihost, request, response,
2776 status, complete_to_host
2779 /* complete the io request to the core. */
2780 sci_controller_complete_io(ihost, request->target_device, request);
2781 isci_put_device(idev);
2783 /* set terminated handle so it cannot be completed or
2784 * terminated again, and to cause any calls into abort
2785 * task to recognize the already completed case.
2787 set_bit(IREQ_TERMINATED, &request->flags);
2790 static void sci_request_started_state_enter(struct sci_base_state_machine *sm)
2792 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2793 struct domain_device *dev = ireq->target_device->domain_dev;
2794 struct sas_task *task;
2796 /* XXX as hch said always creating an internal sas_task for tmf
2797 * requests would simplify the driver
2799 task = ireq->ttype == io_task ? isci_request_access_task(ireq) : NULL;
2801 /* all unaccelerated request types (non ssp or ncq) handled with
2802 * substates
2804 if (!task && dev->dev_type == SAS_END_DEV) {
2805 sci_change_state(sm, SCI_REQ_TASK_WAIT_TC_COMP);
2806 } else if (!task &&
2807 (isci_request_access_tmf(ireq)->tmf_code == isci_tmf_sata_srst_high ||
2808 isci_request_access_tmf(ireq)->tmf_code == isci_tmf_sata_srst_low)) {
2809 sci_change_state(sm, SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED);
2810 } else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
2811 sci_change_state(sm, SCI_REQ_SMP_WAIT_RESP);
2812 } else if (task && sas_protocol_ata(task->task_proto) &&
2813 !task->ata_task.use_ncq) {
2814 u32 state;
2816 if (task->data_dir == DMA_NONE)
2817 state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
2818 else if (task->ata_task.dma_xfer)
2819 state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
2820 else /* PIO */
2821 state = SCI_REQ_STP_PIO_WAIT_H2D;
2823 sci_change_state(sm, state);
2827 static void sci_request_completed_state_enter(struct sci_base_state_machine *sm)
2829 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2830 struct isci_host *ihost = ireq->owning_controller;
2832 /* Tell the SCI_USER that the IO request is complete */
2833 if (!test_bit(IREQ_TMF, &ireq->flags))
2834 isci_request_io_request_complete(ihost, ireq,
2835 ireq->sci_status);
2836 else
2837 isci_task_request_complete(ihost, ireq, ireq->sci_status);
2840 static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm)
2842 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2844 /* Setting the abort bit in the Task Context is required by the silicon. */
2845 ireq->tc->abort = 1;
2848 static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
2850 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2852 ireq->target_device->working_request = ireq;
2855 static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
2857 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2859 ireq->target_device->working_request = ireq;
2862 static void sci_stp_request_started_soft_reset_await_h2d_asserted_completion_enter(struct sci_base_state_machine *sm)
2864 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2866 ireq->target_device->working_request = ireq;
2869 static void sci_stp_request_started_soft_reset_await_h2d_diagnostic_completion_enter(struct sci_base_state_machine *sm)
2871 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2872 struct scu_task_context *tc = ireq->tc;
2873 struct host_to_dev_fis *h2d_fis;
2874 enum sci_status status;
2876 /* Clear the SRST bit */
2877 h2d_fis = &ireq->stp.cmd;
2878 h2d_fis->control = 0;
2880 /* Clear the TC control bit */
2881 tc->control_frame = 0;
2883 status = sci_controller_continue_io(ireq);
2884 WARN_ONCE(status != SCI_SUCCESS, "isci: continue io failure\n");
2887 static const struct sci_base_state sci_request_state_table[] = {
2888 [SCI_REQ_INIT] = { },
2889 [SCI_REQ_CONSTRUCTED] = { },
2890 [SCI_REQ_STARTED] = {
2891 .enter_state = sci_request_started_state_enter,
2893 [SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
2894 .enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter,
2896 [SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
2897 [SCI_REQ_STP_PIO_WAIT_H2D] = {
2898 .enter_state = sci_stp_request_started_pio_await_h2d_completion_enter,
2900 [SCI_REQ_STP_PIO_WAIT_FRAME] = { },
2901 [SCI_REQ_STP_PIO_DATA_IN] = { },
2902 [SCI_REQ_STP_PIO_DATA_OUT] = { },
2903 [SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
2904 [SCI_REQ_STP_UDMA_WAIT_D2H] = { },
2905 [SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED] = {
2906 .enter_state = sci_stp_request_started_soft_reset_await_h2d_asserted_completion_enter,
2908 [SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG] = {
2909 .enter_state = sci_stp_request_started_soft_reset_await_h2d_diagnostic_completion_enter,
2911 [SCI_REQ_STP_SOFT_RESET_WAIT_D2H] = { },
2912 [SCI_REQ_TASK_WAIT_TC_COMP] = { },
2913 [SCI_REQ_TASK_WAIT_TC_RESP] = { },
2914 [SCI_REQ_SMP_WAIT_RESP] = { },
2915 [SCI_REQ_SMP_WAIT_TC_COMP] = { },
2916 [SCI_REQ_COMPLETED] = {
2917 .enter_state = sci_request_completed_state_enter,
2919 [SCI_REQ_ABORTING] = {
2920 .enter_state = sci_request_aborting_state_enter,
2922 [SCI_REQ_FINAL] = { },
2925 static void
2926 sci_general_request_construct(struct isci_host *ihost,
2927 struct isci_remote_device *idev,
2928 struct isci_request *ireq)
2930 sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT);
2932 ireq->target_device = idev;
2933 ireq->protocol = SCIC_NO_PROTOCOL;
2934 ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
2936 ireq->sci_status = SCI_SUCCESS;
2937 ireq->scu_status = 0;
2938 ireq->post_context = 0xFFFFFFFF;
2941 static enum sci_status
2942 sci_io_request_construct(struct isci_host *ihost,
2943 struct isci_remote_device *idev,
2944 struct isci_request *ireq)
2946 struct domain_device *dev = idev->domain_dev;
2947 enum sci_status status = SCI_SUCCESS;
2949 /* Build the common part of the request */
2950 sci_general_request_construct(ihost, idev, ireq);
2952 if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
2953 return SCI_FAILURE_INVALID_REMOTE_DEVICE;
2955 if (dev->dev_type == SAS_END_DEV)
2956 /* pass */;
2957 else if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP))
2958 memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
2959 else if (dev_is_expander(dev))
2960 /* pass */;
2961 else
2962 return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
2964 memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab));
2966 return status;
2969 enum sci_status sci_task_request_construct(struct isci_host *ihost,
2970 struct isci_remote_device *idev,
2971 u16 io_tag, struct isci_request *ireq)
2973 struct domain_device *dev = idev->domain_dev;
2974 enum sci_status status = SCI_SUCCESS;
2976 /* Build the common part of the request */
2977 sci_general_request_construct(ihost, idev, ireq);
2979 if (dev->dev_type == SAS_END_DEV ||
2980 dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP)) {
2981 set_bit(IREQ_TMF, &ireq->flags);
2982 memset(ireq->tc, 0, sizeof(struct scu_task_context));
2983 } else
2984 status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
2986 return status;
2989 static enum sci_status isci_request_ssp_request_construct(
2990 struct isci_request *request)
2992 enum sci_status status;
2994 dev_dbg(&request->isci_host->pdev->dev,
2995 "%s: request = %p\n",
2996 __func__,
2997 request);
2998 status = sci_io_request_construct_basic_ssp(request);
2999 return status;
3002 static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq)
3004 struct sas_task *task = isci_request_access_task(ireq);
3005 struct host_to_dev_fis *fis = &ireq->stp.cmd;
3006 struct ata_queued_cmd *qc = task->uldd_task;
3007 enum sci_status status;
3009 dev_dbg(&ireq->isci_host->pdev->dev,
3010 "%s: ireq = %p\n",
3011 __func__,
3012 ireq);
3014 memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
3015 if (!task->ata_task.device_control_reg_update)
3016 fis->flags |= 0x80;
3017 fis->flags &= 0xF0;
3019 status = sci_io_request_construct_basic_sata(ireq);
3021 if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
3022 qc->tf.command == ATA_CMD_FPDMA_READ)) {
3023 fis->sector_count = qc->tag << 3;
3024 ireq->tc->type.stp.ncq_tag = qc->tag;
3027 return status;
3030 static enum sci_status
3031 sci_io_request_construct_smp(struct device *dev,
3032 struct isci_request *ireq,
3033 struct sas_task *task)
3035 struct scatterlist *sg = &task->smp_task.smp_req;
3036 struct isci_remote_device *idev;
3037 struct scu_task_context *task_context;
3038 struct isci_port *iport;
3039 struct smp_req *smp_req;
3040 void *kaddr;
3041 u8 req_len;
3042 u32 cmd;
3044 kaddr = kmap_atomic(sg_page(sg), KM_IRQ0);
3045 smp_req = kaddr + sg->offset;
3047 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3048 * functions under SAS 2.0, a zero request length really indicates
3049 * a non-zero default length.
3051 if (smp_req->req_len == 0) {
3052 switch (smp_req->func) {
3053 case SMP_DISCOVER:
3054 case SMP_REPORT_PHY_ERR_LOG:
3055 case SMP_REPORT_PHY_SATA:
3056 case SMP_REPORT_ROUTE_INFO:
3057 smp_req->req_len = 2;
3058 break;
3059 case SMP_CONF_ROUTE_INFO:
3060 case SMP_PHY_CONTROL:
3061 case SMP_PHY_TEST_FUNCTION:
3062 smp_req->req_len = 9;
3063 break;
3064 /* Default - zero is a valid default for 2.0. */
3067 req_len = smp_req->req_len;
3068 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3069 cmd = *(u32 *) smp_req;
3070 kunmap_atomic(kaddr, KM_IRQ0);
3072 if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
3073 return SCI_FAILURE;
3075 ireq->protocol = SCIC_SMP_PROTOCOL;
3077 /* byte swap the smp request. */
3079 task_context = ireq->tc;
3081 idev = ireq->target_device;
3082 iport = idev->owning_port;
3085 * Fill in the TC with the its required data
3086 * 00h
3088 task_context->priority = 0;
3089 task_context->initiator_request = 1;
3090 task_context->connection_rate = idev->connection_rate;
3091 task_context->protocol_engine_index = ISCI_PEG;
3092 task_context->logical_port_index = iport->physical_port_index;
3093 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
3094 task_context->abort = 0;
3095 task_context->valid = SCU_TASK_CONTEXT_VALID;
3096 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
3098 /* 04h */
3099 task_context->remote_node_index = idev->rnc.remote_node_index;
3100 task_context->command_code = 0;
3101 task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
3103 /* 08h */
3104 task_context->link_layer_control = 0;
3105 task_context->do_not_dma_ssp_good_response = 1;
3106 task_context->strict_ordering = 0;
3107 task_context->control_frame = 1;
3108 task_context->timeout_enable = 0;
3109 task_context->block_guard_enable = 0;
3111 /* 0ch */
3112 task_context->address_modifier = 0;
3114 /* 10h */
3115 task_context->ssp_command_iu_length = req_len;
3117 /* 14h */
3118 task_context->transfer_length_bytes = 0;
3121 * 18h ~ 30h, protocol specific
3122 * since commandIU has been build by framework at this point, we just
3123 * copy the frist DWord from command IU to this location. */
3124 memcpy(&task_context->type.smp, &cmd, sizeof(u32));
3127 * 40h
3128 * "For SMP you could program it to zero. We would prefer that way
3129 * so that done code will be consistent." - Venki
3131 task_context->task_phase = 0;
3133 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
3134 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
3135 (iport->physical_port_index <<
3136 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
3137 ISCI_TAG_TCI(ireq->io_tag));
3139 * Copy the physical address for the command buffer to the SCU Task
3140 * Context command buffer should not contain command header.
3142 task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
3143 task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
3145 /* SMP response comes as UF, so no need to set response IU address. */
3146 task_context->response_iu_upper = 0;
3147 task_context->response_iu_lower = 0;
3149 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
3151 return SCI_SUCCESS;
3155 * isci_smp_request_build() - This function builds the smp request.
3156 * @ireq: This parameter points to the isci_request allocated in the
3157 * request construct function.
3159 * SCI_SUCCESS on successfull completion, or specific failure code.
3161 static enum sci_status isci_smp_request_build(struct isci_request *ireq)
3163 struct sas_task *task = isci_request_access_task(ireq);
3164 struct device *dev = &ireq->isci_host->pdev->dev;
3165 enum sci_status status = SCI_FAILURE;
3167 status = sci_io_request_construct_smp(dev, ireq, task);
3168 if (status != SCI_SUCCESS)
3169 dev_dbg(&ireq->isci_host->pdev->dev,
3170 "%s: failed with status = %d\n",
3171 __func__,
3172 status);
3174 return status;
3178 * isci_io_request_build() - This function builds the io request object.
3179 * @ihost: This parameter specifies the ISCI host object
3180 * @request: This parameter points to the isci_request object allocated in the
3181 * request construct function.
3182 * @sci_device: This parameter is the handle for the sci core's remote device
3183 * object that is the destination for this request.
3185 * SCI_SUCCESS on successfull completion, or specific failure code.
3187 static enum sci_status isci_io_request_build(struct isci_host *ihost,
3188 struct isci_request *request,
3189 struct isci_remote_device *idev)
3191 enum sci_status status = SCI_SUCCESS;
3192 struct sas_task *task = isci_request_access_task(request);
3194 dev_dbg(&ihost->pdev->dev,
3195 "%s: idev = 0x%p; request = %p, "
3196 "num_scatter = %d\n",
3197 __func__,
3198 idev,
3199 request,
3200 task->num_scatter);
3202 /* map the sgl addresses, if present.
3203 * libata does the mapping for sata devices
3204 * before we get the request.
3206 if (task->num_scatter &&
3207 !sas_protocol_ata(task->task_proto) &&
3208 !(SAS_PROTOCOL_SMP & task->task_proto)) {
3210 request->num_sg_entries = dma_map_sg(
3211 &ihost->pdev->dev,
3212 task->scatter,
3213 task->num_scatter,
3214 task->data_dir
3217 if (request->num_sg_entries == 0)
3218 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
3221 status = sci_io_request_construct(ihost, idev, request);
3223 if (status != SCI_SUCCESS) {
3224 dev_dbg(&ihost->pdev->dev,
3225 "%s: failed request construct\n",
3226 __func__);
3227 return SCI_FAILURE;
3230 switch (task->task_proto) {
3231 case SAS_PROTOCOL_SMP:
3232 status = isci_smp_request_build(request);
3233 break;
3234 case SAS_PROTOCOL_SSP:
3235 status = isci_request_ssp_request_construct(request);
3236 break;
3237 case SAS_PROTOCOL_SATA:
3238 case SAS_PROTOCOL_STP:
3239 case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
3240 status = isci_request_stp_request_construct(request);
3241 break;
3242 default:
3243 dev_dbg(&ihost->pdev->dev,
3244 "%s: unknown protocol\n", __func__);
3245 return SCI_FAILURE;
3248 return SCI_SUCCESS;
3251 static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag)
3253 struct isci_request *ireq;
3255 ireq = ihost->reqs[ISCI_TAG_TCI(tag)];
3256 ireq->io_tag = tag;
3257 ireq->io_request_completion = NULL;
3258 ireq->flags = 0;
3259 ireq->num_sg_entries = 0;
3260 INIT_LIST_HEAD(&ireq->completed_node);
3261 INIT_LIST_HEAD(&ireq->dev_node);
3262 isci_request_change_state(ireq, allocated);
3264 return ireq;
3267 static struct isci_request *isci_io_request_from_tag(struct isci_host *ihost,
3268 struct sas_task *task,
3269 u16 tag)
3271 struct isci_request *ireq;
3273 ireq = isci_request_from_tag(ihost, tag);
3274 ireq->ttype_ptr.io_task_ptr = task;
3275 ireq->ttype = io_task;
3276 task->lldd_task = ireq;
3278 return ireq;
3281 struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost,
3282 struct isci_tmf *isci_tmf,
3283 u16 tag)
3285 struct isci_request *ireq;
3287 ireq = isci_request_from_tag(ihost, tag);
3288 ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
3289 ireq->ttype = tmf_task;
3291 return ireq;
3294 int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
3295 struct sas_task *task, u16 tag)
3297 enum sci_status status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3298 struct isci_request *ireq;
3299 unsigned long flags;
3300 int ret = 0;
3302 /* do common allocation and init of request object. */
3303 ireq = isci_io_request_from_tag(ihost, task, tag);
3305 status = isci_io_request_build(ihost, ireq, idev);
3306 if (status != SCI_SUCCESS) {
3307 dev_dbg(&ihost->pdev->dev,
3308 "%s: request_construct failed - status = 0x%x\n",
3309 __func__,
3310 status);
3311 return status;
3314 spin_lock_irqsave(&ihost->scic_lock, flags);
3316 if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) {
3318 if (isci_task_is_ncq_recovery(task)) {
3320 /* The device is in an NCQ recovery state. Issue the
3321 * request on the task side. Note that it will
3322 * complete on the I/O request side because the
3323 * request was built that way (ie.
3324 * ireq->is_task_management_request is false).
3326 status = sci_controller_start_task(ihost,
3327 idev,
3328 ireq);
3329 } else {
3330 status = SCI_FAILURE;
3332 } else {
3333 /* send the request, let the core assign the IO TAG. */
3334 status = sci_controller_start_io(ihost, idev,
3335 ireq);
3338 if (status != SCI_SUCCESS &&
3339 status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3340 dev_dbg(&ihost->pdev->dev,
3341 "%s: failed request start (0x%x)\n",
3342 __func__, status);
3343 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3344 return status;
3347 /* Either I/O started OK, or the core has signaled that
3348 * the device needs a target reset.
3350 * In either case, hold onto the I/O for later.
3352 * Update it's status and add it to the list in the
3353 * remote device object.
3355 list_add(&ireq->dev_node, &idev->reqs_in_process);
3357 if (status == SCI_SUCCESS) {
3358 isci_request_change_state(ireq, started);
3359 } else {
3360 /* The request did not really start in the
3361 * hardware, so clear the request handle
3362 * here so no terminations will be done.
3364 set_bit(IREQ_TERMINATED, &ireq->flags);
3365 isci_request_change_state(ireq, completed);
3367 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3369 if (status ==
3370 SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3371 /* Signal libsas that we need the SCSI error
3372 * handler thread to work on this I/O and that
3373 * we want a device reset.
3375 spin_lock_irqsave(&task->task_state_lock, flags);
3376 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
3377 spin_unlock_irqrestore(&task->task_state_lock, flags);
3379 /* Cause this task to be scheduled in the SCSI error
3380 * handler thread.
3382 isci_execpath_callback(ihost, task,
3383 sas_task_abort);
3385 /* Change the status, since we are holding
3386 * the I/O until it is managed by the SCSI
3387 * error handler.
3389 status = SCI_SUCCESS;
3392 return ret;